Strategies for the synthesis of 2,3-dihydrobenzofurans
Tom D. Sheppard*

Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London WC1H 0AJ, UK

Tom Sheppard grew up in Lancashire, UK. He obtained his MSc degree from the University of Cambridge in 1999. After a year working in the pharmaceutical industry at GlaxoWellcome, he went on to obtain his PhD from the University of Cambridge in 2004, working under the supervision of Professor Steven Ley on the development of butane-2,3-diacetal desymmetrised glycolic acid. He then carried out postdoctoral research with Professor William Motherwell at University College London, working on new methods for cyclopropane synthesis and novel multi-component reactions. In 2007, he was awarded an EPSRC Advanced Research Fellowship and appointed to a lectureship at University College London where his research is focused on the development and application of novel organocatalytic and metal-catalysed reactions.

This article gives an overview of synthetic approaches to the 2,3-dihydrobenzofuran ring system with an emphasis on recently developed methods. The synthetic approaches are classified according to the key bond(s) formed during the construction of the dihydrobenzofuran skeleton, and approaches of relevance to the synthesis of natural products are highlighted.

Keywords: dihydrobenzofurans, natural products, heterocycles, cyclisation, catalysis

1 Introduction
The 2,3-dihydrobenzofuran (DHB) skeleton 1 comprises a saturated 5-membered oxygen heterocycle fused to a benzene ring with the oxygen atom adjacent to the aromatic system (Fig. 1). This ring system confers a rigid shape to a molecule, with a well defined spatial arrangement of substituents in a similar manner to strained small rings such as cyclopropanes and cyclobutanes. However, the ring-strain in the DHB system is moderate, and somewhat smaller than in the corresponding dihydrofuran system 2 without the fused benzene ring.1

Many bioactive molecules containing the DHB structural motif have been reported including a vast array of natural products (selected examples shown in Fig. 2, 3–8)7–9 and numerous synthetic compounds with useful biological activity (selected examples shown in Fig. 3, 9–14). DHB containing natural products have been reported with activity against cancer (4–5),2,4,8–10 tuberculosis,11 malaria12 and cataracts,13 as well as activity at specific targets such as HIF-1 (8), α-glucosidase,14 aldose reductase,5 5-LOX (7),1 COX-2 (7),2 NF-kB3 and the muscarinic M1 receptor.13,19,20 Other DHB natural products show antioxidant and/or cytoprotective properties8 and insecticidal activity.19 Figure 1 shows only a fraction of the many known DHB natural products — more than 500 DHB-containing natural products were reported in 2009–2010 alone. [A Reaxys® search of DHB containing natural products reported during this time period produced 562 substance hits. Note that this includes previously known structures (resolutions, etc) as well as structurally novel natural products.]

It should also be noted that a DHB system forms part of the skeleton of the morphine alkaloids, although the synthesis of these more complex polycyclic systems will not be considered here.

Synthetic DHB derivatives include recently reported molecules such as the GPR4 Agonist 9,21 imidazolium compound 10 (cytotoxic),22 triazole 11 (antibacterial),23 diester 12 (active against leishmaniasis),24 and the drugs Prucalopride 13 (treatment of constipation) and Efaroxan 14 (α2-adrenoceptor antagonist).25

As a consequence of the diverse biological activities displayed by these compounds, synthetic chemists have developed many effective methods for accessing the DHB skeleton. This review article will summarise the different synthetic approaches to DHBs, focusing largely on recent reports since a previous review of the field in 2009.26 The synthetic approaches are classified according to the method by which the saturated oxygen ring is constructed.

Plausible synthetic approaches to the DHB skeleton are shown in Scheme 1. The most obvious strategy involves a classical phenol alkylation approach (I, O-alkyl bond formation). Alternatively, the O-aryl bond can be constructed via a transition-metal catalysed cross coupling (II). The direct construction of the aromatic ring itself (III) is an approach that has rarely been applied in DHB synthesis. In contrast, the construction of the C-aryl bond (IV) is a well explored approach (e.g. via lithation of an aryl halide). The formation of the alkyl C–C bond (V) is commonly achieved via transition-metal mediated carbene C–H insertion processes using diazo compounds. Finally, more complex strategies involving either the formation of two or more bonds in a single reaction (VI), or the rearrangement of an existing ring system (VII) can be employed.

2 Formation of the O-alkyl bond
The intramolecular alkylation of a phenol is perhaps the most common method for the construction of DHBs. Given that many natural products contain a hydroxyalkyl group
joined to the ring system at C2, the ring opening of an epoxide is a particularly useful approach and has been explored extensively in recent years. For example, the chiral ketone 15 was used to access enantoenriched epoxides 17 which gave the corresponding DHB derivatives 18 in good yield and high ee (Scheme 2), after deprotection of the phenol with fluoride. This approach was used in the synthesis of the DHB containing natural product (+)-marmesin.

In a similar fashion, Sharpless asymmetric epoxidation of allylic alcohols such as 19 gave enantoenriched epoxides 20 (Scheme 3). Deprotection of the phenol and cyclisation with base enabled chiral diol 21 to be synthesised in good yield. This approach was used to access the core structure 22 of helianuols G and H.

A very similar approach using a Sharpless asymmetric dihydroxylation enabled ring systems such as 25 to be synthesised, via regioselective monotosylation of the diol 23 (Scheme 4). After protection of the remaining free hydroxyl group, DHB formation readily took place upon deprotection of the

Fig. 2 Selected DHB natural products.

Fig. 3 Some synthetic DHBs with useful biological activity.
phenol and treatment with base. This approach was used to synthesise both enantiomers of the core structure 26, present in a variety of natural products including Avicenol A 32 and Brosimacutin G.33

A very common strategy for constructing the DHB ring system involves the electrophile-mediated cyclisation of o-allylphenols (Scheme 5).34–38 Thus, activation of o-allylphenol 27 with suitable electrophiles can provide access to DHBs 28 containing halogens,38 thioethers35 or simple alkyl groups 34,37 in the side chain. In a similar vein, Pd-mediated cyclisation of propargylic phenols 29 was shown to give access to the exocyclic alkenes 30 which are potentially useful building blocks for further elaboration.39

A practical biocatalytic strategy for accessing simple DHBs in high ee was recently reported (Scheme 6).40 Two complementary methods were developed: enantioselective reduction of ketone 31 with alcohol dehydrogenase (ADH) and kinetic resolution of alcohol 32 with vinyl acetate/Lipase. In both cases the resulting enantiopure alcohols 33 were cyclised via a Mitsunobu reaction with clean inversion of stereochemistry to give the enantiopure DHB products 34.

A catalytic enantioselective DHB formation was recently reported using chiral iodide 35 in the presence of BuOOH for the oxidative cyclisation of ketophenols 36 (Scheme 7).41

A range of DHBs (e.g. 37) could be prepared in excellent ee and high yield, with even 2,2-disubstituted products such as 38 being produced efficiently. The imidazole group could be cleaved to give a more synthetically useful ethyl ester without loss of ee, by treatment with MeOTf followed by ethanol and base. The authors proposed that the chiral cation of 35 directs the reaction of a phenolate anion with the ketone, which is activated by a hypervalent iodine species generated in situ.

3 Formation of the O-aryl bond

The intramolecular copper or palladium-catalysed coupling of an aliphatic alcohol with an aryl halide is an effective strategy to access DHB derivatives which was developed several years ago.42–45 Surprisingly there have been few recent developments in this area, despite the high level of interest in the development of novel catalytic methods for aryl-heteroatom bond formation. An unusual approach to DHBs via a catalytic intramolecular Chan–Lam coupling reaction has recently been reported (Scheme 8).46 o-Alkynylbenzenemethinic acids 39 undergo Au-catalysed enolate formation and aldol reaction to give cyclic borates 40. These compounds can be cyclised to the corresponding 2,3-disubstituted DHBs 41 containing a pendant ketone group at C3 with very good yields over this three step reaction process. It is notable that this cross-coupling reaction involves the arylation of an aliphatic alcohol and also only requires catalytic quantities of copper; both of these factors being somewhat unusual in Chan-Lam coupling reactions.47 This approach is potentially quite versatile as variation of the groups at R1 and R2 can easily be achieved (e.g. 42–43).

Yu and co-workers recently reported a Pd-mediated C-H activation protocol for the direct cyclisation of homo-benzylic alcohols 44, which proceeds in high yield to give 2,2-disubstituted DHBs 45 (Scheme 9).48 These reactions were much more efficient for the formation of 2,2-disubstituted DHBs (e.g. 46–47), with the corresponding reactions of secondary alcohols proceeding in lower yield. Nevertheless, this methodology is potentially very powerful as it does not require
pre-functionalisation of the aromatic ring. It is also compatible with the presence of aryl bromides, enabling the construction of halogenated DHBs (47) which can then be further elaborated via traditional transition-metal catalysed coupling reactions.

4 Formation of the aromatic ring

The direct formation of the benzene ring has rarely been used in the construction of DHBs, despite the fact that Rh-catalysed [2+2+2] cycloadditions for the formation of closely related fused benzofurans have been reported.49 An iron-mediated approach proceeding via the Fe-complexed cyclopentadienone 49 was reported in 2001 (Scheme 10).50 An alkynyl homo-propargyl ether, generated from the dichlorovinyl ether 48, underwent cyclisation in the presence of iron pentacarbonyl to give 49 in moderate yield over the two steps. After oxidative decomplexation, the free cyclopentadienone system readily undergoes cycloaddition with dimethyl acetylenedicarboxylate (DMAD) followed by extrusion of CO, to give the polysubstituted DHB 50 in moderate yield over two steps. This example serves to illustrate how this type of approach can be used to construct DHBs containing a highly substituted aromatic ring.

5 Formation of the aryl-C3 bond

The formation of the aryl-C bond has been used to access a number of DHB systems. Chiral ligand 53 was prepared via a reaction sequence which involved the one-pot double lithiation/cyclisation/phosphination of tribromide 51 (Scheme 11).51 The DHB phosphine 52 was obtained in 66% yield and was then dimerised to give the racemic bidentate ligand 53 which was subsequently resolved by HPLC. Although enantioselective reactions of ligand 53 were not reported, more recently a different DHB-containing phosphine has been employed in enantioselective Pd-catalysed [3+2] cycladdition reactions.52

Bromoarylalkynes such as 54 were shown to selectively undergo trans carbolithiation upon treatment with n-BuLi (Scheme 12).53 The resulting alkenes 55 are potentially useful compounds for further elaboration.

One obvious approach to the construction of the aryl-C3 bond is to employ a Heck reaction to cyclise an allylic ether of an o-halophenol (Scheme 13). This provides a product with an unsaturated side chain at C3 which can be exploited in further reactions. For example, Heck reaction of aryliodides 56 containing a pendant chiral allylic ether (prepared by asymmetric reduction of a cyclohexenone) was shown to give DHBs fused to a cyclohexene ring 57, with predominantly cis stereochemistry.54 Carbonylative Heck cyclisation of aryldiazonium salts 58 onto pendant alkenes was shown to give DHBs 59 containing a carboxylic acid group on the C3 side chain in moderate yield.55 Using aryl bromide 60, a series of Pd-catalysed tandem cyclisation/coupling reactions were investigated.56 For example, tandem cyclisation/Stille coupling yielded 3,3-disubstituted DHB 61 in good yield in the presence of 1,3-dimethyl-1,2-imidazolidinone (DMI). Tandem Suzuki coupling reactions with a range of aryl boronic acids were also successful, and these reactions could even be combined with the preparation of 60 in situ by alkylation of the parent phenol. Very recently, a potentially useful procedure for Heck cyclisation and concomitant cyanation was reported.57 Treatment of
methallyl ether 62 with palladium acetate in the presence of K₄Fe(CN)₆ as a cyanide source led to the formation of a 3,3-disubstituted DHB 63 containing a cyanomethyl substituent at C₃ in moderate yield.

6 Formation of the alkyl C₂–C₃ bond

Surprisingly, one of the most common approaches to the synthesis of DHBs has been the formation of the alkyl C₂–C₃ bond. The most widely used approach exploits the asymmetric carbene C–H insertion reactions originally developed by Davies.58–60 These reactions proceed with high stereoselectivity and through the use of chiral ligands and/or a chiral auxiliary,61 highly enantioselective reactions are possible. For example, diazo compound 64 cyclised efficiently to give 65 in high ee and with good yield in the presence of a Rh catalyst (Scheme 14).62 This reaction was used in the synthesis of conocarpan 66 and epi-conocarpan 67.63 Similarly, the Rh-catalysed asymmetric C–H insertion reaction of 68 was used to construct the DHB core (69) of Serotobenine.65, 66

In a recent example, Yu employed a chiral auxiliary directed carbene insertion reaction to construct 71 containing the DHB skeleton of Lithospermic acid 73 (Scheme 15).67 This was then followed by a late-stage Pd-catalysed carboxylate-directed C-H alkenylation reaction to introduce the complete side chain of the natural product at the final stage.

An alternative strategy for C₂–C₃ bond formation is the asymmetric organocatalytic cyclisation of carboxylenones 74 (Scheme 16).68 Generation of the mixed anhydride from the acid 74, followed by reaction with the catalyst 75 leads to ammonium enolate intermediate 76, which cyclises via reaction with the pendant Michael acceptor. These reactions proceed with high diastereoselectivity and excellent enantioselectivity to give the corresponding cis 2,3-disubstituted DHBs 77 in good to excellent yield. This provides a useful asymmetric method for accessing cis-substituted DHB systems (e.g. 78–79) which can be difficult to obtain via many other approaches.

The formation of the C₂–C₃ bond by generation of an anion on the carbon adjacent to the oxygen atom is an unusual alternative strategy. This was accomplished by reaction of phenol 80 with 81 to give α-silylthioether 82, which could be cyclised in the presence of fluoride to give a mixture of diastereoisomers of the 2,3-disubstituted DHB 83 in good yield (Scheme 17).69

The C₂–C₃ bond has also been constructed photochemically. Benzophenone 84, bearing a prenyl ether subsituent was shown to cyclise under irradiation to give DHB 85 in 40% yield as a mixture of diastereoisomers (Scheme 18).70 However, the major product of this reaction was acetal 86.

7 Two-component cyclisation approaches

Concerted cyclisation approaches in which two bonds are formed in the same reaction are highly attractive, as substituents can readily be varied at many different locations on...
the DHB ring system by changing the two components employed in the reaction. One such approach is the reaction of iminophenols with carbonates in the presence of a phosphine catalyst, to give the 3-amino DHBs with good yield and moderate to high stereoselectivity (Scheme 19). DHBs with two (90) or three (91) substituents on the oxygen heterocycle could be obtained.

An improved procedure was recently reported for the Pd-catalysed reaction of 2-iodophenyl acetates with dienes to give DHBs (Scheme 20). A range of 2,2-disubstituted DHBs (e.g. 95) could be accessed in good yield, although the effect of substituents at all positions on the diene was not investigated simultaneously. Only two examples were reported in which more than one diastereoisomer can be formed, though these products were formed with high trans diastereoselectivity (e.g. 96).

In a related approach, aminophenols were converted directly into trans-2,3-disubstituted DHBs in a one-pot process (Scheme 21). Diazotisation of the aniline was followed by treatment with a palladium catalyst in the presence of a β-substituted styrene to give DHBs. A range of electron rich styrenes were used to access a variety of 2,3-disubstituted DHBs (e.g. 100–101). This approach was used to construct a DHB intermediate in the synthesis of cinerins A–C, lignans isolated from Pleurothyrium cinereum which show platelet activating factor (PAF) antagonist activity.

The oxidative dimerisation of caffeic acid esters with silver(I) oxide has been applied to the synthesis of trans-DHBs in a biomimetic fashion in several reports (Scheme 22). Oxidative coupling of the same substrates with Mn salts did not give DHBs, with benzoanthenes and arylidyndronaphthalenes being produced. This reaction has also been achieved biocatalytically. In a very recent example, the oxidative dimerisation of related esters using crude peroxidase derived from onions has been reported, although the resulting products had no optical rotation.

Arylmethyl cyclopropyl ketones were shown to undergo ring-opening and condensation with ethyl acetoacetate in the presence of trimethylsilyl triflate to give DHBs in moderate yield (Scheme 23). The reaction is thought to proceed via ring opening of the cyclopropyl ketone to give a γ-hydroxyketone, which undergoes aldol condensation with ethyl acetoacetate to give a second condensation product, and finally cyclisation and condensation of the pendant hydroxyl group to give the DHB. Notably this involves the synthesis of both the benzene ring and the oxygen heterocycle in the same reaction.

Quinones and their derivatives have frequently been employed in DHB synthesis (Scheme 24). In a recent example, the reaction of quinone mono imine with α,β-unsaturated hydrazone was reported to give 2,2-disubstituted DHB in 90% yield. This compound was subsequently employed in a total synthesis of the α2-adrenergic receptor antagonist Efaroxan, and a range of related amino derivatives. The
reaction of hydroquinone 113 with stilbene oxide 114 was reported to proceed well in the presence of BF₃.OEt₂, giving polysubstituted DHB 115 in good yield. This reaction was initially observed during the development of a method for benzofuran synthesis using the corresponding quinones. In a similar reaction, quinone 116 was reported to react with β-methylstyrenes 117 using catalytic BF₃.OEt₂ in PEG-400 to give DHBs 118–119 in moderate yield. The copper or silver catalysed 3-component coupling of salicylaldehydes 119, alkynes 120 and piperidine 121 was found to give 3-amino DHBs 123 in good yield. The reaction proceeds via initial formation of propargyl amine 122. Metal-catalysed cyclisation of the phenol onto the alkyne then takes place to give exclusively the Z-alkene, provided there is a heteroatom in the R-group on the alkyne (e.g. 124–125). The heteroatom was thought to be required in order to assist the transition-metal activation of the alkyne for cyclisation. Substrates which do not contain a heteroatom on the R group are able to undergo the initial reaction to give 122, but do not cyclise to the DHB.

Recently, two research groups have simultaneously reported an elegant approach to the antimalarial natural product Decursivine 127, via photochemical rearrangement of dichloroamide 126 (Scheme 26). The reaction leads to diastereoselective formation of the fused lactam-DHB core of the natural product in a single photochemical reaction in moderate to good yield. This synthetic approach is considerably more concise than previous syntheses of the related natural product Serotoninine (Scheme 14).

8 Rearrangement reactions

DHB systems have occasionally been synthesised by rearrangement of other ring systems. This can provide a method to construct DHBs with unusual substitution patterns which may not be readily accessible by other means. For example, furans bearing a pendant alkyne ether substituent 129 were shown to undergo rearrangement in the presence of catalytic AuCl₃ to give 2,6,7-trisubstituted DHBs 130 (Scheme 27). The reaction is thought to proceed via formation of the tricyclic cyclopropane 131, which undergoes ring opening and then recyclication to the benzene epoxide 133. Rearrangement of this intermediate then gives the polysubstituted DHB 130 in moderate yield over two steps from the dichlorovinyl ether 128.

A Tl(NO₃)₃ mediated ring contraction of 136, was recently employed in a synthesis of the proposed Lawsonicin skeleton, during a study which led to a revision of the original structural assignment of the natural product (Scheme 28). The reaction
is thought to involve acid-catalysed formation of the enol ether 137, which reacts with the thallium salt and then undergoes a ring-contraction of intermediate 138 to give 139 via aryl migration with concomitant reduction of the thallium from Tl(III) to Tl(I).

In the presence of Lewis acids, 3-aminodihydrobenzopyrans 140 were recently reported to rearrange to the corresponding 2-aminomethyl DHBs 141 (Scheme 29). In a brief study, boron tribromide was found to be the most effective Lewis acid for inducing this transformation.

As can be seen from this article, there have been numerous recent developments in the chemical synthesis of DHBs, many of which provide excellent control over the relative or absolute stereochemistry of substituents on the saturated oxygen heterocycle. It should be noted that most of the synthetic strategies outlined above enable DHBs to be constructed via short reaction sequences from readily available starting materials. Such methods enable the synthesis of even very highly complex DHB systems to be readily achieved, with excellent scope for structural variation on the DHB scaffold. The diverse biological activities exhibited by both synthetic and naturally occurring DHBs suggest that they have great potential as lead compounds in the study of biological processes and the treatment of disease. It is hoped that this article, by providing a general overview of the synthetic strategies available, will serve to stimulate greater interest in the study of DHBs in medicinal chemistry, and further improvement of the synthetic strategies available for constructing them.

I would like to thank the EPSRC for supporting my research through the award of an Advanced Research Fellowship (EP/E052789/1).

