UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Multi-target tracking in clutter with sequential Monte Carlo methods

Liu, B; Ji, C; Zhang, Y; Hao, C; Wong, KK; (2010) Multi-target tracking in clutter with sequential Monte Carlo methods. IET Radar, Sonar and Navigation , 4 (5) pp. 662-672. 10.1049/iet-rsn.2009.0051.

Full text not available from this repository.


For multi-target tracking (MTT) in the presence of clutters, both issues of state estimation and data association are crucial. This study tackles them jointly by Sequential Monte Carlo methods, a.k.a. particle filters. A number of novel particle algorithms are devised. The first one, which we term Monte-Carlo data association (MCDA), is a direct extension of the classical sequential importance resampling (SIR) algorithm. The second one is called maximum predictive particle filter (MPPF), in which the measurement combination with the maximum predictive likelihood is used to update the estimate of the multi-target's posterior. The third, called proportionally weighting particle filter (PWPF), weights all feasible measurement combinations according to their predictive likelihoods, and uses them proportionally in the importance sampling framework. We demonstrate the efficiency and superiority of our methods over conventional approaches through simulations. © 2010 The Institution of Engineering and Technology.

Type: Article
Title: Multi-target tracking in clutter with sequential Monte Carlo methods
DOI: 10.1049/iet-rsn.2009.0051
UCL classification: UCL > School of BEAMS
UCL > School of BEAMS > Faculty of Engineering Science
URI: http://discovery.ucl.ac.uk/id/eprint/1323754
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item