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Abstract 

The amount of both FMO1 mRNA and protein in various human tissues has 

previously been shown to vary by as much as 10-fold between individuals. This is 

likely to be caused by genetic variation as the enzyme‟s expression profile is not 

affected by exogenous agents.  

 

DNA sequences controlling transcription (promoter regions) have been defined 

upstream of the three transcriptional start sites P0, P1 and P2 within different cell 

lines. The use of these promoters has also been defined in various mouse tissues by 

real-time PCR.    

 

A number of SNPs are present within the three defined FMO1 promoters in addition 

to the 3′UTR. Sequencing of individuals from the Corriel repository consisting of 

individuals from Africa, Asia and Europe has revealed further variation including a 

CT deletion at the P1 transcriptional start site. 

 

To test the effect of genetic variation high-throughput DNase I capillary footprinting 

has been used to check for the effect of SNPs on DNA-protein binding. The 

technique has been shown to detect the effects of mutations on DNA-protein binding 

but no differences have been seen for FMO1 SNPs within promoter regions as yet. 

The technique has the potential to rapidly analyse regulatory polymorphism in a 

number of genes and the effect in different tissues without the need for cloning or 

cell culture. 

 

A SNP which introduces an additional in-frame upstream translation initiation codon 

has been tested in-vitro for its effect on translational efficiency. The upstream ATG 

variation has been shown to have a 2-fold increase in protein expression over the 

downstream ATG and therefore individuals with this SNP are likely to produce 2-fold 

more FMO1 protein resulting in different effects to drugs. 
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Chapter 1: Introduction 

1.1 Xenobiotic metabolism 
 
Xenobiotics are chemicals that are taken up by the body from exogenous sources. 

These chemicals are usually lipophilic and therefore chemical modifications are 

required to facilitate their removal from the body. Drug metabolising enzymes 

(DMEs) modify xenobiotics by bio-transformation.  These bio-transformations convert 

the xenobiotics into inactive, more polar and more readily excretable metabolites. 

 

Xenobiotic metabolism is divided into two phases; phase I and phase II reactions 

(Table 1.1). Phase I reactions bio-transform the xenobiotic in preparation for 

downstream phase II reactions by either unmasking or creating a functional group. 

Phase II enzymes conjugate the metabolite produced from the phase I reaction with 

a more polar chemical of endogenous origin. 

 

Phase I reactions can be separated into three pathways. Two of these pathways 

function to unmask existing functional groups by either the use of hydrolytic or 

reductive enzymes. The third pathway consists of oxidising enzymes, which add a 

new functional group on to the xenobiotic. It is this group of enzymes to which the 

Flavin-containing monooxygenases (FMOs) belong. 

1.2 Flavin-containing monooxygenases, background 
 
The flavin-containing monooxygenases (FMOs) are the second largest family of 

phase-1 drug-metabolizing enzymes (DMEs). The enzymes are membrane-bound  
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Phase I enzymes Phase II enzymes 

1.Hydrolytic enzymes 1.UDP-glucuronyl transferases 

a) Amidases 2.Glutathione transferases 

b) Esterases 3.Glycine N-acetyl transferases 

c) Epoxide hydrolases 4. Sulfotransferases 

2. Reductive enzymes 5. Acetyl CoA transferases 

a) Azo reductases  

b) Disulfide reductase  

c) Aldo-keto reductases  

d) Nitro reductases  

e) Reductive dehalogenation  

3. Oxidative enzymes  

a) Flavin-containing monooxygenases  

b) Amine oxidases  

c) Alcohol and aldehyde dehydrogenases  

d) Cytochrome P450 monooxygenases  
 

Table 1.1 Xenobiotic Metabolism 
The table shows drug metabolising enzymes from the two phases of metabolism. 
Modified from Schenkman et al 1999. 
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and are located within the endoplasmic reticulum with relative molecular masses of 

between 59-63 kDa. The FMOs all contain a flavin-adenine dinucleotide (FAD) group 

and are able to catalyze, in the presence of NAPDPH, the oxidation of a wide range 

of foreign chemicals including therapeutic drugs, dietary-derived compounds and 

pesticides (Cashman and Zhang, 2006; Krueger and Williams, 2005; Ziegler, 1993). 

The xenobiotic being metabolized is said to be mono-oxygenated by the FMO 

enzyme as only one atom of molecular oxygen is inserted into the molecule within 

the xenobiotic (for reviews on this process see Ziegler, 1990; Hines et al., 1994; 

Phillips et al.,1995). FMO activity was first discovered in 1964 (Pettit et al., 1964) and 

an FMO protein was first purified in 1972 (Ziegler and Mitchell, 1972). The FMO 

protein was initially named after the person who isolated it, Daniel Ziegler, and was 

known as “Ziegler‟s enzyme”. FMO activity has been observed and tested in human, 

rabbit, mouse, rat, dog, sheep and guinea pig. A prokaryotic equivalent of FMO, the 

cyclohexanone monooxygenase from Acinetobacter exists. This is described as an 

FMO due to its mechanistic similarities (Ryerson et al., 1982). The homology 

between mammalian and the prokaryotic form is only 25% (Donoghue et al., 1976). 

FMO-like proteins have also been observed in plants within the Arabidopsis species 

(Zhao et al., 2001). Some evidence suggests an FMO role in resistance to microbial 

pathogens within Arabidopsis (Koch et al., 2006).  As the products of FMO 

metabolism are generally less toxic or pharmacologically active than the parent 

compound these proteins play an important role in detoxification. 

1.3 FMO catalytic cycle and substrates 
 

The FMO catalytic cycle is unique to this family of enzymes. The cycle is based on 

kinetic and spectral studies with FMO protein purified from pig liver (Poulsen et al., 
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1979; Beaty and Ballou, 1980; Beaty and Ballou, 1981). The cycle is described 

below. 

 

FMOs contain a flavin adenine dinucleotide (FAD) as their prosthetic group. The 

FAD prosthetic group is reduced by NADPH and H+. It is this reduced form that 

reacts with molecular oxygen creating a peroxyflavin intermediate defined as 4α-

hydroperoxyflavin (FAD-OOH) (see Fig.1.1 for catalytic cycle).  This stable 

intermediate is capable of oxygenating any compound able to enter the active site of 

the FMO. This is due to the energy required for the reaction already present within 

the enzyme before contact with the substrate. Therefore the precise fit usually 

required to lower the activation energy of the reaction is not required. This is a novel 

characteristic for a monooxygenase enzyme (including the major DME family, the 

cytochrome P450s) because the substrate does not need to bind to the enzyme to 

activate it (Ziegler, 1993). Compounds gaining access to the active site of FMOs are 

generally restricted to those compounds containing a soft nucleophile. The site of 

FMO oxidation occurs within the electron-rich centre of the nuceleophile, which is 

usually nitrogen, sulphur, or phosphorous heteroatom. Boron and iodide are also 

substrates of FMOs (Jones and Ballou, 1986). Substrates include dietary 

metabolites, medicinal drugs, toxins, pesticides and selenium-containing 

compounds. 

 

There are many endogenous biochemicals that contain soft nucleophiles. It is 

thought that these chemicals are protected from FMO oxidation due to the number 

and position of charged groups on nucleophiles within these molecules (Taylor and 
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Ziegler, 1987). FMOs are able to oxidise monocationic amines or anionic sulphur 

compounds where the charge is localised to the sulphur atom. However, if there is  

 

 

 

Figure 1.1 Catalytic cycle of FMOs 
NADPH reduces the flavin group, FAD, to FADH2 (1). Oxygen binds to the reduced 
enzyme and an internal electron transfer generates the 4α-hydroperoxyflavin form of 
the enzyme. (2) It is in this state that the substrate contacts FMO1. One atom of 
oxygen is attached to the substrate to form SO and one atom to form water and the 
product is released immediately (3). H20 and NADP+ are released (4 and 5). The 
enzyme is then once again available for the generation of the 4α-hydroperoxyflavin 
form of the enzyme (Krueger and Williams, 2005). 
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an additional charged group within the molecule the FMO enzyme does not 

metabolize it. All essential nucleophiles are dications (polyamines), dipolar ions 

(amino acids) or have one or more anionic groups distal to an electron-rich 

heteroatom (e.g. biotin). An exception to this is cysteamine which has been observed 

as a substrate for FMOs (Duffel et al., 1987). It is for this reason outlined that cellular 

nucleophiles are not substrates, and FMOs are able to discriminate between 

essential and xenobiotic soft nucleophiles.   

 

There are a few known endogenous substrates of FMO1. As mentioned previously 

cystamine can be converted to the disulphide cysteamine by pig liver FMO (Duffel et 

al., 1987) and the yeast FMO (Suh and Robertus, 2000). As yet, only two other 

endogenous substrates have been identified, cysteine S-conjugates (Elfarra, 1995; 

Krause et al., 2003) and methionine (Duescher et al., 1994; Krause et al., 1996). 

Both of these are converted to sulphoxides by FMOs. The KM for methionine 

sulphoxidation (Elfarra, 1995) suggests that this reaction is only significant when 

toxic levels of methionine are present in the diet or in the event of a defect in 

methionine metabolism (Regina et al., 1993). Table 1.2 lists some of the known 

substrates for FMO1, the isoform that is the subject of this thesis.
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Compound Site of oxidation Type of compound Reference 

MPTP N Neurotoxin (Cashman and Ziegler, 1986) 

Nicotine N Stimulant (Park et al., 1993) 

Cimetidine S Gastric ulcer drug (Cashman et al., 1995) 

Thiobenzamide S Hepatoxicant (Hodgson, 1999b) 

Phorate S Pesticide (Hodgson, 1999b) 

Ranitidine N/S Gastric/ duodenum ulcer drug (Chung et al., 2000) 

Tamoxifen N Anti-cancer drug (Hodgson et al., 2000) 

Amphetamine N Behaviour stimulant (Cashman et al., 1999) 

Trimethylamine N Dietary derived amine (Lang et al., 1998) 

Maclobemide N 
Monoamine oxidase inhibitor 
(antidepressant) (Hoskins et al., 2001) 

Imipramine  N Tricyclic antidepressant (Narimatsu et al., 1999) 

Clozapine N Tricyclic antidepressant (Tugnait et al., 1997) 

Brompheniramine N Antihistamine (Cashman et al., 1993) 

Albendazole S Tapeworm infection drug (Fargetton et al., 1986) 

Fonofos P Pesticide (Venkatesh et al., 1991) 

Methimazole S Anti-thyroid drug (Kedderis and Rickert, 1985) 
 

Table 1.2 Examples of some FMO1 substrates and their sites of oxidation 
The first column is the compound metabolized by FMO1. The next column shows the atom that is oxygenated within the molecule 
by FMO, the third column shows the type of compound the FMO substrate is.
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1.4 The Flavin-containing monooxygenase family 
 
As mentioned previously, FMO activity was first identified in pig liver in 1964. 

Subsequently, FMO was identified within liver (Kimura et al., 1983), lung, and 

kidney of rat, mouse (Sabourin et al., 1984), rabbit (Tynes et al., 1985), 

guinea pig (Yamada et al., 1990), dog (Lattard et al., 2002) and sheep 

(Williams et al., 1989; Longin-Sauvageon et al., 1998). Characterization of 

FMO protein preparations suggested multiple forms of FMOs. The rate of 

dimethylaniline N-oxidation, a reaction carried out by the FMO enzyme, was 

shown to be effected differently within different tissues. The addition of Hg2+ 

and Mg2+ ions increased the rate of reaction using purified FMO from rabbit 

lung but decreased the rate of reaction when purified FMO was used from 

rabbit liver (Devereux et al., 1977). Further characterisation of the rabbit lung 

and liver FMO forms revealed that they are immunologically and catalytically 

distinct (Williams et al., 1984). It was later discovered that these proteins were 

products of two distinct genes.   

 

Molecular biology techniques were used to isolate FMO cDNAs from various 

species by a number of different research groups. As a result of sequence 

analysis it was clear that the FMOs could be divided into 5 distinct groups. 

These groups corresponded to the different FMO isoforms. These isoforms 

were named FMO1, FMO2, FMO3, FMO4 and FMO5 (Lawton et al., 1994). 

Pig liver FMO was renamed FMO1 and the rabbit lung isoform was named 

FMO2.  Each isoform is encoded by a different gene.  
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The FMOs have been well characterised within mice as mouse is an 

important model organism for toxicological studies. A mouse liver cDNA 

library was screened with the rabbit FMO3 cDNA as the probe. As a result the 

mouse FMO3 cDNA was isolated (Falls et al., 1997). The purified FMO3 

protein has a molecular weight of 58 kDa (534 amino acids) and has 82% 

sequence homology with human FMO3. The mouse FMO2 cDNA was 

obtained from an expressed sequence tag (EST) from the IMAGE consortium 

(Karoly and Rose, 2001). This cDNA was also expressed within E. coli and 

encodes a protein of 61 kDa (535 amino acids) in size and shows 86% 

sequence homology with human FMO2. The mouse FMO1 and FMO5 cDNAs 

were isolated by screening a mouse liver library with rabbit cDNA sequences 

as probes (Cherrington et al., 1998b). Analysis of the cDNA sequences 

revealed the FMO1 mouse protein to have a molecular weight of 59.9 kDa 

and was 532 amino acids in length. It shares an 83.8% sequence similarity 

with human FMO1. The FMO5 protein has a molecular weight of 60 kDa and 

was 533 amino acids in length. It shares an 84.1% sequence similarity with 

human FMO5.  

 

The human FMO1 cDNA was isolated using a pig FMO1 cDNA probe and 

revealed that the human protein is 532 amino acids in length (Dolphin et al., 

1991). The human FMO4 cDNA was also isolated by the same research 

group using the newly isolated FMO1 cDNA as a probe (Dolphin et al., 1992). 

The paper describes the now classified FMO4 gene as the FMO2 gene. The 

genes were renamed at a later date, with numbers being given in order of the 

isolation of the purified proteins (Lawton et al., 1994). The isolated cDNA 
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encodes an FMO4 protein of 558 amino acids (Dolphin et al., 1992). The 

human FMO3 gene was isolated using three synthetic 36-mer oligonucleotide 

probes which were designed from the pig FMO1 nucleic acid sequence. 

Analysis of the FMO3 cDNA sequence revealed a protein length of 533 amino 

acids (Dolphin et al., 1996). The human FMO2 cDNA was isolated from a 

human lung cDNA library using a PCR product from the rabbit FMO2 cDNA 

(Dolphin et al., 1998). The identified FMO2 protein was shown to contain a 

premature stop codon and contains 64 fewer amino acids compared to the 

orthologues of other mammals (Dolphin et al., 1998). When the human FMO2 

protein was heterologously expressed, the protein produced was inactive. 

This premature stop codon has been shown not to occur in some African and 

Hispanic populations (Dolphin et al., 1998; Veeramah et al., 2008). About 

28% of individuals of African descent carry at least one copy of the functional 

gene (Dolphin et al., 1998, Veeramah et al., 2008). The human FMO5 cDNA 

was isolated using the rabbit FMO5 cDNA. The cDNA encodes a protein of 

533 amino acids (Overby et al., 1995).  

 

Once isolated, the FMO cDNA clones of the different FMO isoforms were 

expressed heterologously in E .coli, yeast or in Sf9 insect cells. This allowed 

the substrate for each isoform to be studied. There is a substantial amount of 

data comparing substrate specificity of rabbit lung FMO2 and the pig lung 

FMO1. It has been shown that FMO2 can oxygenate long aliphatic primary 

amines (e.g. n-octylamine) but the FMO1 enzyme cannot (Poulsen et al., 

1986)(Nagata et al., 1990). The FMO1 enzyme metabolizes short side chain 

tertiary amines (e.g. imipramine) but the FMO2 enzyme does not. 
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Comparative studies have compared different mouse FMOs using different 

pesticide substrates. This study revealed specific and common substrates 

between the isoforms (Hodgson, 1999a). For example, the pesticide phorate 

is the preferred substrate of FMO1 and the pesticide fonofos is a substrate for 

FMO5 (Hodgson, 1999a). Methimazole, a drug used in the treatment of hyper-

thyroidism is oxidised by the FMO isoforms at different efficiencies (Itagaki et 

al., 1996). The KM value for the oxidation of methimazole by FMO5 is very 

high compared to other isoforms. 

 

The five functional FMOs share 51-57% amino acid sequence homology and 

>80% similarity exists between the orthologous mammalian isoforms. The 

conserved functional domains within the protein sequence include two 

GXGXXG motifs which are proposed to be binding sites for FAD (amino acids 

9-14) and NADP (amino acids 191-206) (Fig.1.2). These domains are present 

in the five functional FMOs. The three glycine residues in the proposed FAD 

binding site were mutated independently in the rat FMO1 protein. The mutant 

proteins were expressed within yeast. This experiment revealed that all three 

glycines are required for a catalytically active FMO (Kubo et al., 1997).  

The FAD binding site is within a fingerprint sequence which predicts a βαβ 

secondary structure known as a Rossman fold. This fingerprint sequence is 

predicted to be involved in the binding of di-nucleotides (Wierenga, 1985). A 

hydrophobic motif is conserved through the functional FMOs (F (A/T) TGY) 

centred around residue 330. The conservation of these residues is illustrated 

within Fig. 1.2. As yet no mammalian structure exists for any of the functional 

FMOs. However a structure exists for the yeast Schizosaccharomyces pombe 
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Figure 1.2 The predicted FAD and NADPH binding sites of 
mammalian FMOs 
These sites are conserved and are found at a similar position in all 
known mammalian FMOs (reproduced from Kubo et al., 1997). 
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(Eswaramoorthy et al., 2006). This FMO is cytosolic and lacks an extra 85 

residues from the mammalian FMOs at the C-terminus. It is thought this 

protein plays a role in regulating the thiol/disulfide ratios in the cell (Suh et al., 

1999). Deletion of the enzyme within yeast reduces proper folding of 

endogenous carboxypeptidase Y by about 40%.    

1.4.1 Human FMO chromosomal locations 
 
FMO1- FMO4 genes were localised to a cluster spread out over a region of 

245kb along the long arm of chromosome 1(1q24.3) (Shephard et al., 

1993)(Phillips et al., 1995). FMO5 was mapped closer to the centromere in 

the region 1q21 (McCombie et al., 1996). The order and position of the FMO 

genes were determined experimentally which was in agreement with the order 

determined by the human genome project. An additional gene was identified 

from the human genome project data and named FMO6P 

(http://www.sanger.ac.uk/UGP/Chr1/). Later Hines et al showed that FMO6P 

probably encodes a pseudogene as full-length transcripts were not identified 

(Hines et al., 2002). A second cluster of 5 FMO genes was identified from the 

human genome data (http://www.sanger.ac.uk/UGP/Chr1/) but all have shown 

to be pseudogenes (FMO7P-FMO11P) (Hernandez et al., 2004). 

 

The five functional FMOs, through phylogenetic analysis, have been shown to 

have evolved around 210-275 million years ago through several gene 

duplications of an ancestral gene (Hernandez et al., 2004). This pre-dates the 

evolution of mammals and therefore it is predicted that all mammals possess 

the five functional FMOs. 

http://www.sanger.ac.uk/UGP/Chr1/
http://www.sanger.ac.uk/UGP/Chr1/
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An endogenous role for FMOs has yet to be fully determined, however, a few 

endogenous substrates exist as discussed earlier. Two mouse knockout lines 

recently developed by our laboratory, (Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-) and 

Fmo5 (-/-), show evidence for a role for FMOs in energy homeostasis. The 

Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-) mice are as healthy as their age matched 

wild-types but have a significantly lower weight (Veeravalli et al., 2010). 

Histology of white adipose tissue has also shown reduced storage of fat 

(Veeravalli et al., 2010).This is a consequence of enhanced whole-body 

energy expenditure, due mostly to increased resting energy expenditure, 

attributed, partly, to increased fatty acid β-oxidation in skeletal muscle. The 

knockout mice have an increased capacity for exercise, with no evidence for 

an increase in adaptive thermogenesis (Veeravalli et al., 2010). 

1.5 Contribution of FMOs to xenobiotic metabolism 
 

Before the discovery of the FMO family of drug-metabolising enzymes, 

oxygen and NADPH-dependent microsomal oxidations were attributed to the 

cytochrome P450 (CYP) family of monooxygenases. This is the largest family 

of drug metabolizing enzymes in humans containing over 50 isoforms 

(Danielson, 2002). Like the FMOs the CYPs catalyse the oxidation of 

xenobiotics and chemicals. In addition endogenous roles have been defined 

for many of the CYP enzymes, e.g. the metabolism of steroids (Danielson, 

2002). There exists an overlap between some FMO and cytochrome P450 

substrates. There are a number of substrates that can be oxidised by both the 

FMOs and cytochrome P450s. For example, within the mouse liver 

thioridizane which is an anti-psychotic drug is oxidised at two sulphur atoms 
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by CYP or oxidised at a nitrogen atom by FMO (Blake et al., 1995). 

Tamoxifen, an estrogen receptor inhibitor, used in the treatment of mammary 

cancer has shown to be metabolized to its N-oxide form by FMOs and is 

metabolized to other metabolites by CYP (Mani et al., 1993).  

 

There are cases where both CYPs and FMOs monooxygenate a substrate to 

produce the same product. Thiobenzamide, which is a liver toxicant, is 

oxygenated by both families and the contribution ratio of this compound was 

1:1 to 1:4 in the mouse liver and 1:2 in the rat liver and 2:3 in the rat lung 

(Tynes and Hodgson, 1983). 

 

The relative contribution of each family to the metabolism of a substrate can 

be determined by selectively inhibiting the activity of either FMOs or CYPs. 

There are no known chemical inhibitors for FMOs, but their activity can be 

knocked down by heating, whereas CYPs are more thermally stable 

(Cashman, 2008; Shephard and Phillips, 2010). There are several CYP 

inhibitors but all microsomal CYP activity can be inhibited by knocking out the 

activity of NADPH-dependent cytochrome P450 reductase with an antibody to 

this protein. FMO activity can be inferred by monitoring activity in the 

presence and absence of the FMO substrate methimazole (Kedderis and 

Rickert, 1985). 

 

MPTP is metabolized in the mitochondria by monoamine oxidase type B. One 

of the products of this reaction is a neurotoxin, the MPP+ (1-methyl-4-

phenylpyridinium) ion. MPP+ induces the degeneration of dopaminergic 
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neurons and causes Parkinson‟s disease-like symptoms in humans and 

monkeys (Langston and Irwin, 1986)(Tipton and Singer, 1993). MPTP is 

detoxified in the liver by MTP N-oxide, by FMOs (Tipton and Singer, 1993) 

and to 4-phenyl-1, 2, 3, 6 tetrahydropyridine (PTP) by CYPs (Weissman et al., 

1985). Before the MPTP drug was administered, mice were treated with an 

FMO substrate. This caused an increased level of MPP+ in the mouse brain 

(Chiba et al., 1988) and a reduction of dopamine in the brain (Chiba et al., 

1990). This suggests FMOs play an important role in MPTP detoxification. 

 

MPTP metabolism has been studied with the house musk shrew due to the 

low level of FMO1 expression within this model organism (Mushiroda et al., 

2000b). In contrast the house musk shrew contains a high expression of CYP 

enzymes. Brain homogenates from rat and Suncus were both able to produce 

the MPP+ toxin. However, only the MPTP N-oxide was detected within rat 

brain homogenates. Interestingly the administration of MPTP results in the 

accumulation of MPP+ toxins within the Suncus brain and not in the rat brain 

(Mushiroda et al., 2001). It is hypothesised that FMO expression in the small 

microvessels of the rat brain allows the detoxification of the MPTP toxin, 

preventing its entry to the brain by its conversion to the N-oxide. 

An FMO and CYP substrate called Ranitidine is a drug used to treat gastric 

ulcers and Zollinger Ellison Syndrome (Zeldis et al., 1983). The drug can be 

metabolized to its N-or S-oxide or to desmethylrantidine. By competitively 

inhibiting FMOs with methimazole it was shown that FMOs are responsible for 

93% of the N- or S oxidations (Zeldis et al., 1983). By using a specific CYP 
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inhibitor, SKF525A, it was shown that CYPs are responsible for all of the 

desmethylations (Zeldis et al., 1983). 

 

FMOs exclusively carry out the N-oxidation of the dietary derived tertiary 

amine trimethylamine (TMA) (Lang et al., 1998). An inability to process this 

compound results in the disorder trimethylaminuria (Humbert et al., 1970). 

 

Recently mice lacking FMOs have shown adverse effects to the drug 

imipramine. An Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-) mouse line was produced by 

using chromosomal engineering and Cre-loxP technology (Hernandez et al., 

2009). Imipramine has four major metabolites, three produced by 

cytochromes P450 and one, imipramine N-oxide, solely by FMO1. When 

treated with imipramine, wild-type mice became sedated and produced 

imipramine N-oxide in the brain and other tissues. In contrast, knockout mice 

did not produce imipramine N-oxide, but showed exaggerated 

pharmacological behavioural responses, such as tremor and body spasm, 

and had a higher concentration of the parent compound imipramine in the 

serum and kidney and there was an increase in desipramine in the brain 

(Hernandez et al., 2009). The absence of FMO1-mediated N-oxidation of 

imipramine shows enhanced central nervous system effects of the drug. 
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1.6 FMO1 chemical regulation 
 
It was shown by Ziegler et al. that the short amine n-octylamine can increase 

the rate of oxidation of dimethylaniline by pig FMO1 (Ziegler et al., 1971). 

However, n-octylamine is not a substrate for FMO1 (Nagata et al., 1990). It 

was proposed that FMO possesses distinct catalytic and regulatory sites 

(Ziegler et al., 1971). 

 

Indole-3-carbinol is a breakdown product of gucobrassin which is a 

component of cruciferous vegetables (McDanell et al., 1988). The compound 

has been shown to inhibit the expression of the FMO1 protein by 75-90% in 

the rat liver (Katchamart et al., 2000). This compound is not however able to 

inhibit FMO1 expression within the guinea pig, mouse and the rabbit 

(Katchamart and Williams, 2001). The effect of nitric oxide on FMO1 was 

investigated within the rat. FMO1 mRNA levels were decreased to 33% of 

control levels when nitric oxide was over produced in the rat liver (Park et al., 

1999). Within rat also, the FMO1 protein was shown to be induced by a 

polycyclic aromatic hydrocarbon, 3-methylcholanthrene (3MC). FMO1 mRNA  

level was induced by 3.5 fold and the catalytic activity was induced by 2.9 fold 

by 3MC (Chung et al., 1997). 

1.7 Mechanisms of gene regulation 
 
The regulation of human gene expression is a highly coordinated, complex 

and critical process. Gene regulation determines the biological variability seen 

between different cell types, different developmental states, and 
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environmental reactions. A region of DNA crucial for gene expression is the 

promoter region. In protein-coding genes these regions are located upstream 

of the transcriptional start site. They consist of a core promoter where the 

RNA polymerase II and its co-factors bind forming the pre-initiation complex. 

This sequence is usually about 50 bp in size. The further sequence upstream 

is defined as the extended promoter region. Transcription factors will bind 

within these regions. This region is where factors may bind which allow 

temporal and spatial transcription of the gene. These factors interact with the 

RNA initiation complex to enhance or reduce the amount of transcription. This 

region semantically can be defined as the promoter, however regulatory 

sequence which affects transcription have been shown to occur megabases 

away from the transcriptional start site or occur downstream of the 

transcriptional start site and in general are defined as enhancers. Enhancers 

can be affected by further binding factors called insulators which bind 

between the enhancer and the promoter preventing their interaction. 

Insulators can prevent the binding of enhancers to neighbouring genes or to 

the native loci.  

 

Epigenetics plays a large role in the regulation of genes. Epigenetics 

describes the modifications to the DNA in structure and chemistry. 

Methylation and acetylation of DNA, can switch genes on and off by 

preventing the binding of a regulatory factor or preventing that region of DNA 

to be structurally modified to allow regulatory factors to bind. For example the 

IGF2 gene is regulated differentially depending on the methylation state of an 

insulator (Sasaki et al., 2000). Insulators can act differently depending on 



 35 

which parental allele is inherited through a phenomenon known as genomic 

imprinting. Due to methylation of the DNA the insulator is no longer able to 

bind. The paternal IGF2 allele is methylated and prevents the binding of the 

insulating factor CTCF whereas the mother‟s IGF2 allele is unmethylated and 

the CTCF factor can bind. This results in only the paternal allele being active 

(Giannoukakis et al., 1993). 

 

A project was begun in 2004, as a collective effort of many laboratories, to 

identify the functional elements in 1% of the human genome (The ENCODE 

Project Consortium 2004). Transcriptional start sites and promoter regions 

were predicted for the 900 genes found within this resource. Promoter 

sequences were cloned into a reporter plasmid and tested for their ability to 

drive transcription within the environment of 16 different cell lines. Using 

correlative data comparing RNA expression and promoter activity, the 

contribution of the promoter to overall transcriptional activity was predicted for 

the 900 genes. It is predicted from the data that promoter regions defined as 

between -300 to -50 upstream of the transcriptional start site contributes to 

28% of the variability seen in RNA expression (Cooper et al., 2006). This 

shows that the promoter region plays an important role in overall expression 

of the gene but also that enhancer elements outside of this region contribute 

to RNA expression. Extended sequence of up to 1000 bp of the transcriptional 

start sites were tested for 45 genes. These extended regions were shown to 

contain negative regulatory elements in 55% of the genes studied (Cooper et 

al., 2006). Fig.1.3 summarises different regulatory elements that interact with 

the core promoter. 
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Figure 1.3 Illustration of methods of gene regulation within the 
cell 
(A) Different types of regulatory factors illustrated positionally to the binding of 
RNA polymerase II and cofactors. RNA pol II and cofactors represent the core 
promoter. Upstream of this region, further transcription factor binding sites are 
present within a region defined as the extended promoter. Upstream of the 
promoter, further regulatory factors are present which enhance or reduce 
transcriptional activity. Insulators can bind to prevent the effect of enhancers. 
(B) Illustration of how enhancers might activate transcription and (C) the 
ability of insulators to block enhancer activity. The black bars represent 
alterations in the methylation state of the DNA altering DNA structure and 
allowing insulator binding. 
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1.8 Chromosomal localisation and structure of the human and 
mouse FMO1 genes 
 
The human FMO1 gene is 37.5 kb long and the mouse Fmo1 gene is 37.5 kb 

and in both species the gene has 8 coding exons (2-9) and 2 non-coding 

exons (0 and 1). Translation initiation occurs within exon 2 at a weak Kozak 

consensus sequence. Transcription starts at promoter sites located within 

intron 1, or upstream of exons 0 or 1. The choice of promoter is tissue-

specific. In the human, it has been discovered that transcription only begins in 

the foetal liver from the beginning of exon 0 from a promoter designated P0 

(Shephard et al., 2007), and the mRNA is produced by a splicing event from 

exon 0 to exon 2 (Fig.1.4) (Hernandez et al., 2004). In the kidney, 

transcription also begins from P0 and the kidney mRNA is also spliced in the 

same way (Fig.1.4). In addition to this promoter, in the kidney the FMO1 

mRNA is transcribed from a promoter designated P2, located just upstream of 

exon 2 in an intronic sequence (see Fig.1.4) (Shephard et al., 2007). A cDNA 

that encodes a full-length protein has been found that has a transcriptional 

start site at the beginning of exon 1. This cDNA was found in the human small 

intestine (accession no. AK097039). The method of oligo-capping was used to 

isolate the cDNA. The P1 transcript is therefore predicted to be full length (Ota 

et al., 2004). This promoter has been designated P1 (see Fig.1.4). The mRNA 

is formed by a splicing event from the sequences derived from exon 1 to exon 

2 (see Fig.1.4). Alternative promoters in the FMO1 gene do not result in 

variations in protein sequence as exon 0 and 1 are non-coding exons. 
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Figure 1.4 The 5′FMO1 gene region of (A) human and (B) mouse 
The illustrations show the two non-coding exons 0 and 1 that are present in 
both mouse and human. The translation of the FMO1 protein occurs within 
and near the start of exon 2. The human and mouse both produce transcripts 
from the start of the non-coding exon 0 and 1. These transcripts are spliced 
as shown in the illustration. The P0 transcript is spliced from exon 0 to exon 2. 
The P1 transcript is spliced from exon 1 to exon 2. A third transcript which 
starts intronically from exon 2, defined as P2, has been observed in both 
human and mouse. Each of the transcriptional start sites are depicted in the 
above figure by P0, P1 or P2. 
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Inter-individual variation in the amount of FMO1 protein has been shown to be 

high. Within the foetal liver, variation is between 10-20 fold depending on 

gestational age (Koukouritaki et al., 2002). In the kidney, variation has been 

reported to be less than 4-fold (Krause et al., 2003), or less than 5-fold 

(Hamman et al., 2000). In the small intestine variation has been reported to be 

up to 5-fold (Yeung et al., 2000). As FMO1 is rarely inducible by exogenous 

agents it is highly likely these variations in amount of protein are manifested 

by genetic polymorphism. By locating these polymorphisms, the function and 

impact of this enzyme in humans for drug metabolism can be assessed.  

 

Analysis of available mouse liver cDNA clones found within the NCBI 

database identified (D16215, BC011229, BF532824, AI115B9, AA245076, 

AI255718, AA238774 and BI247068) show different lengths of cDNA, but 

each contain exon 0. Therefore all the cDNAs isolated from the liver are the 

P0 transcript. There are five available kidney cDNA clones. Three of these 

cDNA clones have 5′UTR sequences derived from the 3′-end of intron 1 and 

exon 2. RT–PCR and sequence analysis of the amplified products confirmed 

that, in kidney, transcription can occur from within intron 1, from a promoter 

designated P2 (Shephard et al., 2007). Two other cDNA clones, AI118998 

and CB955318 are the products of a splicing event between exon 2 and a 

novel exon 1. Figure 4 show the production of the alternatively spliced 

transcripts seen in mouse and human. 
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1.9 FMO1 expression 

In 1971 Daniel Ziegler isolated and identified a novel mixed-function oxidase 

which metabolized nitrogen- and sulphur- containing compounds. The 

enzyme is therefore sometimes referred to as Ziegler‟s enzyme (Ziegler et al., 

1971).  As described above, a cDNA for the mixed function oxidase was 

isolated in 1991 (Dolphin et al., 1991) and was mapped to the long arm of 

chromosome 1 (Shephard et al., 1993) which encodes a protein with 532 

amino acid residues and a molecular weight of 60 Kda. The protein was 

classified as FMO1 in 1993 (Lawton et al., 1994). In the human foetal liver 

FMO1 is expressed but is switched off shortly after birth and is not expressed 

in the adult (Koukouritaki et al., 2002). Currently it is not known what causes 

the silencing of the FMO1 gene in human adult liver. There is evidence from 

transfection studies of HepG2 cells that repetitive elements specific to the 

human just upstream of the liver core promoter repress transcription from P0 

in the foetal liver (Shephard et al., 2007). It is thought that continuation of 

expression in adult extra-hepatic tissues can be explained by the use of the 

alternative promoters found for kidney and small intestine. Table 1.3 

summarises the amounts of FMO1 RNA or protein detected in different 

tissues. 

 

FMO1 is also expressed in mouse and rabbit foetal liver (Dolphin et al., 1996). 

The expression of FMO1 in the foetus suggests a possible role for FMO1 in 

the metabolism of xenobiotics that the foetus is exposed to via the placenta. 

The FMO1 enzyme may also have an endogenous role within the foetus. 
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In all other mammals including mouse, rat, dog, pig and rabbit, FMO1 remains 

expressed in the adult liver (Cherrington et al., 1998a; Gasser et al., 1990; 

Lattard et al., 2002; Lawton et al., 1990; Stevens et al., 2003). The main site 

of expression of FMO1 in the adult human is the kidney (Dolphin et al., 1991; 

Dolphin et al., 1996; Phillips et al., 1995; Yeung et al., 2000). In the adult 

human kidney expression levels are not much lower than the major hepatic 

cytochrome P450 (CYP450) CYP3A4 (see table 1.3 for amount of expression) 

(Shimada et al., 1994) and greater than the total content of CYP450s in the 

kidney (Jakobsson and Cintig, 1973). It is therefore likely FMO1 plays a major 

role in renal drug metabolism within the human. The human FMO1 gene is 

also expressed, but to a lesser extent, in the small intestine (see table 1.3) 

(Yeung et al., 2000). In addition to the kidney and small intestine, EST profiles 

have shown FMO1 to be expressed in heart, pineal gland, lymph node, 

mammary gland, pharynx, placenta, testis, pancreas, thymus, thyroid, medulla 

and muscle. EST profiles have also shown FMO1 expression to significantly 

decrease in tumours. The expression of FMO1 in numerous extra-hepatic 

tissues suggests a possible further as yet unknown endogenous role for this 

protein.  

 

Mouse Fmo1 has been localised in different cell types using antisense RNA 

probes specific to FMO1 (Janmohamed et al., 2004). Within the liver, FMO1 

was localised to the perivenous region. In kidney it was localised to the 

proximal and distal tubules as well as the glomerulus. In lung it was localised 

to the terminal bronchiote and the alveoli and within the brain it is localised to 

the neurons of the cerebellum and the choroid plexus. EST profiles within the 
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mouse show Fmo1 expression in the kidney, embryonic and mammary 

tissues, brain, lung, heart, ovaries, testis, foetal kidney and liver.  

 

Tissue 
RNA molecules 
per cell 

Protein 
(pmol/mg) Reference 

Foetal Liver 945.7  
(Zhang and 
Cashman, 2006) 

Adult Liver 96  
(Zhang and 
Cashman, 2006) 

Adult Kidney 6198.2  
(Zhang and 
Cashman, 2006) 

Adult Lung 595.7  
(Zhang and 
Cashman, 2006) 

Adult Small 
Intestine 522.9  

(Zhang and 
Cashman, 2006) 

Adult Liver  <1 (Yeung et al., 2000) 

Adult Kidney  47±9 (Yeung et al., 2000) 

Adult Small 
Intestine  2.9±1.9 (Yeung et al., 2000) 

Foetal liver  14.4±3.5 
(Koukouritaki et al., 
2002) 

Foetal liver 
<15weeks  7.8±5.3 

(Koukouritaki et al., 
2002) 

Foetal liver 
15W≤26W  3.8±2.6 

(Koukouritaki et al., 
2002) 

Foetal liver 
26W≤3days  2.0±1.8 

(Koukouritaki et al., 
2002) 

Foetal liver >3 
days  0.1±0.3 

(Koukouritaki et al., 
2002) 

 

Table 1.3 Expression levels of FMO1 mRNA or protein measured 
in different human tissues 
The left column identifies the tissue being analysed. The second 
and third column give RNA and protein quantification respectively 
and with standard deviations. 
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1.10 Alternatively spliced, non-coding exons and their function 
 
The use of alternative splicing by mammalian genes allows for the expansion 

of transcript and protein diversity. A variety of mRNAs can be produced from a 

single gene to produce proteins of diverse function (Pajares et al., 2007). A 

number of genes display complex gene regulation due to the use of 

alternative promoters, which in turn produce alternative transcripts (Landry et 

al., 2003). Genome-wide analysis indicate that >60% of human genes use 

alternative splicing (Baek et al., 2007; Sun et al., 2006; Takeda et al., 2007; 

Kimura et al., 2006; Cooper et al., 2006). It is predicted that between 30-50% 

of human genes have multiple promoters (Cooper et al., 2006).  ENCODE 

regions which are characterised promoters (representing 1% of the human 

genome) were analysed in 16 diverse cell lines using transient transfection 

reporter assays. That study identified more than 20% of genes as having 

functional alternative promoters (Birney et al., 2007). An independent study 

found that 35% of 100 erythroid genes examined had evidence of alternative 

first exons and promoters in humans (Tan et al., 2006). These studies indicate 

the common existence of alternative promoters in mammalian genomes. 

Although alternative promoters are common, the functional significance and 

their role in disease has been minimally explored, with the exception of a few 

genes e.g. TP53, tumor protein p53; LEF1, lymphoid enhancer-binding factor 

1; GNAS, guanine nucleotide binding protein (Murray-Zmijewski et al., 2006).  

Alternative promoter usage allows for the diversification of gene regulation. 

Separate promoters allow for tissue- , developmental-, cell-, and lineage- 

specific regulation. For example the EIF1AX (eukaryotic translation initiation 

factor I, X linked) and HBG1 (haemoglobin, g A) genes both contain a TATA-
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box promoter and a TATA-less promoter. The TATA box promoter is used 

during and after embryonic development (Davis and Schultz, 2000; Duan et 

al., 2002). This allows for developmental-specific factors to regulate the gene 

at the desired level between the different developmental states. This 

regulation can be very complex, for example the NRG1 gene contains 9 

alternative promoters (Steinthorsdottir et al., 2004). NRG1 is tightly regulated 

during neuronal differentiation and the different promoters, which consist of 

non-coding and coding alterations, are believed to regulate spatio and 

temporal expression (Steinthorsdottir et al., 2004). Modifications of this 

regulation have been linked to cancer and schizophrenia (Tan et al., 2007).  

 

The FMO1 gene is in the category of genes that use multiple promoters that 

do not change the overall protein sequence. The transcripts contain different 

5′ regions due to alternative splicing of non-coding exons (Fig.1.4). The FMO1 

gene has three alternative promoters P0, P1 and P2 which are regulated 

tissue-specifically and developmentally. Alternative promoters which alter the 

5′ region of the transcript have been shown to alter the translational efficiency 

of the protein. The mRNA for the gene RUNX1 which is initiated from the 

proximal promoter has a long 5′UTR which contains an internal ribosomal 

entry site (Levanon and Groner, 2004). This internal ribosome site mediates 

cap-independent translation (Pozner et al., 2000). OTX2 (orthodenticle 

homeobox 2) which is associated with medulloblastoma brain tumor, like 

FMO1 is transcribed from three alternative promoters which produce identical 

proteins (Courtois et al., 2003). The sequence characteristics within 5′ UTRs, 

which can contain upstream translation initiation codons (AUGs), upstream 
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open reading frames (ORFs), secondary structure and internal ribosomal 

entry sites) play important roles in differential regulation of translation 

efficiency.  

1.11 FMO1 Genetic Variation 
 
The genomic reference sequence used in this thesis is NT_004487.19. The 

cDNA reference sequence used to describe protein-coding variation in this 

thesis is NM_002021.1. The Adenine base of the methionine initiation codon 

is defined as +1. The FMO1 transcripts have been reported to start from 

different locations. I am therefore reporting SNPs in untranslated regions from 

the adenine base of the methionine initiation codon for ease of comparison. 

1.11.1 Protein coding region variation 
 
Sequencing of the FMO1 gene in 50 unrelated individuals of African American 

descent identified four non-synonymous single nucleotide polymorphisms. 

The dbSNP reference number is given followed by the nucleotide and protein 

position relative to the reference sequence. 

 

 rs56841822 

NM_002021.1: c.291C>G 

NP_002012.1: p. (His97Gln)  

 

rs1684314 

NM_002021.1: 907A>G  

NP_002012.1: p. (Leu303Val), 
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rs28360418  

NM_002021.1: 908T>C  

NP_002012.1: p. (Leu303Thr) 

 

rs606390545  

NM_002021.1: g.1504C>T  

NP_002012.1: p. (Arg502X) 

 

(Fig.1.5) (Furnes et al., 2003). These are all rare variations except for 

Ile303Val. This is found within African American populations and more 

specifically the Yoruba population of Nigeria at a frequency of 10-15%. This 

variant has so far not been found in Asians and Europeans. For each of these 

protein-coding variants catalytic activity has been assessed using a 

heterologous expression system. The four substrates tested were 

methimazole, imipramine, fenthion, and methyl p-tolyl sulphide (Furnes and 

Schlenk, 2004). Three of the variants His97Gln, Ile303Thr, and Ile303Val had 

no significant effect on enzyme activity. Arg502X which causes a premature 

stop codon resulting in 31 residues missing from the FMO1 protein had 

variable effect on enzyme activity. On imipramine, fenthion and methyl p-tolyl 

sulphide there were only modest affects. Towards methimazole the variant 

was completely inactive. This study shows protein coding SNPs in FMO1 may 

have a substrate specific affect on enzyme activity. The Arg502X variant is 

very rare and would therefore have little or no effect on the general 

population. An additional SNP is reported within dbSNP126 classified as 

rs16864310. There is currently no functional data on this SNP. Its prevalence 
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so far has been shown to be limited to a Chinese population and has only a 

frequency of 2% within this population and is therefore unlikely to have an 

effect on the general population. 

 

There are three synonymous variants,  

rs742350 

NM_002021.1:c.746C>T  

NP_002012.1: p. (Thr249Thr)  

 

rs1126692 

NM_002021.1:c.1187A>G 

NP_002012.1: p. (Val396Val) 

 

rs28360432 

NM_002021.1:c.1400A>G  

NP_002012.1: p. (P467P)  

(See Fig.1.5) (Furnes et al., 2003), within FMO1 which have not been 

analysed for any possible effect on RNA secondary structure or splicing rates 

and efficiency.  
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Figure 1.5 The FMO1 gene and the location of protein coding SNPs 
The figure shows the position of the SNP relative to the amino acid position. If there is a non-synonymous change the amino acid 
substitution is shown, reproduced from Phillips and Shephard, 2008. 
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1.11.2 Untranslated mRNA Variants 
 
There are four verified SNPs within the 3′ untranslated region of the FMO1 

mRNA: +27590G>A (dbSNP126, rs28360435), +27578 G>A (dbSNP126, 

rs28360434), +27568C>T (dbSNP126, rs12954) and +27664C>T 

(dbSNP126, rs7877) (Hines et al., 2003). The SNP rs12954 has been verified 

by eight sequencing panels. Hardy Weinberg estimates of genotype 

frequencies suggest selection against the T/T genotype. This SNP and 

+27664C>T has also been associated with amyotrophic lateral sclerosis as 

discussed later. 

 

1.11.3 Promoter Variants 
 
There is a large amount of variation upstream of the FMO1 transcriptional 

start sites (see chapter 5) which may influence the amount of transcript 

produced. Due to the 10-20 fold observed variation between individuals in the 

amount of FMO1, this is a strong hypothesis. This variation is also likely to be 

due to genetic polymorphism as FMO1 expression has been shown not to be 

greatly affected by foreign chemicals as is the case for the CYP genes.   

 

To date there has been limited analysis of polymorphisms within sequences 

upstream of the FMO1 transcriptional start sites. The largest sequencing 

study was undertaken by Hines and co-workers. They sequenced and 

analysed FMO1 regions in 177 individuals who collectively represented a 

diverse population of individuals including Northern Europeans, Africans, and 

East and South Asians (Hines et al., 2003). Regions flanking the P0 promoter, 

exons 0, 2, 9 and short flanking intronic sequences were examined for SNPs. 
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Four SNPs were identified upstream of P0 (g.-10361T>A, dbSNP126, g.-

10330C>T, g.-10046A>G and g.-9782C>A) but none were found to be within 

previously defined regulatory regions (Luo and Hines, 2001). A polymorphism 

within exon 0 (-9536C>A relative to the ATG translation start site) lies within a 

conserved core binding sequence for the yin yang 1 (YY1) transcription factor.  

Electrophoretic mobility shift assays (EMSAs) using HepG2 cellular extracts 

demonstrated that the C>A transversion eliminates YY1 binding (Hines et al., 

2003). However this transversion also increased the affinity for this sequence 

to bind to other regulatory factors Oct1, HNF1α and HNF1β indicating a 

complex mechanism of gene regulation. Transfection of HepG2 cells with 

reporter constructs under the control of either the -9536C or -9536A alleles 

showed no difference in the activity of the minimal promoter (Hines et al., 

2003). An extended construct caused a 2-3 fold loss of reporter gene activity 

expression only when the -9536A variation was present.  

 

There is a distinct question mark over these results as FMO1 expression data 

of two human foetal livers homozygous for the -9536G>A variant showed 

expression of FMO1 in the upper quartile range within their age bracket. This 

result contradicts the reporter gene data that suggested that this variant 

reduces FMO1 expression (Koukouritaki et al., 2002). Further analysis is 

needed to elucidate the role of other transcription factors, which may bind to 

this region and compensate for the loss of expression as a consequence of 

YY1 binding. 

 



 51 

Two SNPs, -11T>C and +17248T>C are located within splice acceptor sites 

(Hines et al., 2003). However, it is unlikely they affect splicing of the FMO1 

transcript and subsequently the amount of protein as both SNPs are 

pyrimidine to pyrimidine changes. SNPs within the P1 and P2 promoters have 

yet to be defined and this aspect forms part of this thesis (Chapter 4). Defining 

of these promoters will allow the testing of polymorphism identified upstream 

of the P1 and P2 transcriptional start sites for their influence on gene 

expression. 

1.12 FMO1 in drug metabolism 
 
FMO1 metabolizes a number of therapeutic drugs (Krueger and Williams, 

2005). These are generally nitrogen or sulphur (see Table 1.4) containing 

compounds and are used as treatments for a wide range different diseases 

and disorders including breast cancer (FMO1 metabolizes tamoxifen) and 

tuberculosis (FMO1 metabolizes thiacetazone). FMO1 substrates are, in 

general, also metabolized by members of the cytochrome P450 family of 

DMEs. 

 

The metabolites of the two enzyme systems (the FMOs and the CYP450s) 

can be quite different e.g. tamoxifen metabolism CYP3A4 produces a toxic 

metabolite whereas FMO1 produces the N-oxide, which is considered to be a 

detoxification pathway (Parte and Kupfer, 2005). The FMO1 metabolite is also 

capable of being reduced back to tamoxifen by CYP3A4 (Parte and Kupfer, 

2005). The role of FMOs and CYPs in the metabolism of the same drug and 
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the retro-reduction of FMO products is discussed in a recent review 

(Shephard and Phillips, 2010).  

 

Knockout mice that are null for the Fmo1 gene show extreme adverse affects 

towards the drug imipramine, which was not seen in age-matched wild type 

mice (Hernandez et al., 2009). The drug is also a substrate for various CYPs. 

The knockout mice produce no imipramine N-oxide (a product only of FMO1). 

The adverse affects of the drug, in the absence of FMO1, show that the 

protein is required for the detoxification of this drug in vivo. This study also 

provides evidence for a more important role for FMO1 in the metabolism of 

imipramine than was previously thought. To understand an individual‟s 

response to a specific drug a good understanding of the contribution of both 

the FMO and CYP systems is required as well as the other enzymes that may 

be involved in the detoxification (or activation) of a drug. 

 

 

 



 53 

Compound Type Health condition Oxidation site Reference 

Benzydamine Nonsteroidal antiinflammatory   N 
(Lang and Rettie, 2000), (Stormer et al., 
2000) 

Chlorpromazine Dopamine D2 antagonist  Psychosis N (Kim and Ziegler, 2000) 

Deprenyl  
Monoamine oxidase type B 
inhibitor  Parkinson‟s disease N (Szoko et al., 2004) 

Imipramine 
5HT/noradrenalin re-uptake 
inhibitor  Antidepressant N (Kim and Ziegler, 2000) 

Itopride Dopamine D2 antagonist  Gastroprokinetic N (Mushiroda et al., 2000a) 

Methamphetamine Psychostimulant  N (Szoko et al., 2004) 
N-deacetyl 
ketoconazole* Antifungal agent  N (Rodriguez and Miranda, 2000) 

Olopatadine Antihistamine   N (Kajita et al., 2002) 

Orphenadrine Anticholinergic  Parkinson‟s disease N (Kim and Ziegler, 2000) 

SNI-2011 Muscarinic receptor agonist  Sjogren's Syndrome N (Washio et al., 2003) 

Tamoxifen Estrogen receptor modulator  
Breast Cancer 
Therapy N (Parte and Kupfer, 2005) 

Xanomeline Muscarinic receptor agonist  Alzheimer‟s Disease N (Ring et al., 1999) 

Ethionamide Antibiotic  Tuberculosis S (Krueger and Williams, 2005) 

Methimazole Thyroperoxidase inhibitor Hyperthyroidism S (Furnes and Schlenk, 2004) 

S-methyl esonarimod*  Cytokine production inhibitor Rheumatism S (Ohmi et al., 2003) 

Tazarotenic acid** Retinoic acid receptor modulator Acne/Psoriasis S (Attar et al., 2003) 

Thiacetazone Antibiotic  Tuberculosis S (Qian and Ortiz de Montellano, 2006) 
 

Table 1.4 Drugs metabolized by FMO1 
The table above shows the compounds metabolized by FMO1, the type of compound, and the site of oxidation by FMO1.
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1.13 FMO1 and disease 

Gene expression profiling of myocardial tissue from patients with atrial 

fibrillation showed a significant increase in FMO1 mRNA (Kim et al., 2003). 

Most of the genes up-regulated in this study were involved in oxidative stress. 

No SNPs within FMO1 have been associated with this disease. Expression 

profiling of spinal cord tissue from patients suffering from sporadic 

amyotrophic lateral sclerosis (ALS) showed significant decrease in FMO1 

mRNA (Malaspina et al., 2001). An association study was subsequently 

carried out on two SNPs within the 3′UTR region of FMO1, +27568C>T 

(rs12954) and +27664C>T (rs7877) in a group of sporadic ALS patients and a 

control group (Cereda et al., 2006). They were shown to both be over-

represented in female, but not male, ALS patients.  

1.14 Expression Profiles 
 
There are a number of expression profiles available for mouse and human 

FMO1 from a range of microarray data. This resource is available through the 

National Centre for Biotechnology Information database 

(http://www.ncbi.nlm.nih.gov/GEOprofiles). These profiles give clues to the 

regulation of the FMO1 gene and support evidence for an endogenous role for 

the protein in energy homeostasis. The GEO profiles where FMO1 expression 

changes significantly are illustrated in table 1.5 and 1.6. The fatty acid 

palmitate, which is a negative regulator of PGC-1 , represses Fmo1 

expression (GDS2648 / 1417429_at / Fmo1 / Mus musculus) (Crunkhorn et 

al., 2007). PGC-1  is a transcription co-factor which plays a role in the 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/gds/gds_browse.cgi?gds=2648


 55 

regulation of reactive oxygen species (ROS) metabolism (Uldry et al., 2006), 

thermogenesis, gluconeogenesis, brown adipose differentiation, mitochondrial 

biogenesis and fatty acid oxidation (Liang and Ward, 2006). These processes 

that are involved in energy homeostasis can be linked to the metabolic 

phenotype of the Fmo1 (-/-), 2 (-/-), 4(-/-) knockout mouse observed in our 

laboratory. 

 

Expression profiles have also shown that knocking out the transcription factor 

HNF4α results in severe down regulation of Fmo1 within mouse embryonic 

liver (see GEO profile: GDS1916/1417429_at/FMO1/Mus musculus (Battle et 

al., 2006). However, the absence of HNF4 has no effect on Fmo1 expression 

in the foetal colon (Garrison et al., 2006). HNF4α and PGC-1α as a cofactor, 

regulate genes involved in gluconeogenesis in the liver and pancreas, but not 

the small intestine (Puigserver, 2005). Another transcription factor from the 

same family as HNF4α, HNF-1α, down regulates Fmo1 in pancreatic β-cells 

(see GEO profile: GDS1916/1417429 _at/FMO1/Mus musculus) (Akpinar et 

al., 2005). HNF-1α and HNF4α have been linked to type 2 diabetes in the 

young (Ellard, 2000). Many other expression profiles show increased Fmo1 

expression in differentiated cells. Time course studies of myocyte and 

adipocyte differentiation show increased FMO1 mRNA over time. A 

microarray study of within 3T3-L1 adipocytes using RNA isolated from mice in 

which  insulin receptors were knocked out to disable differentiation shows 

FMO1 mRNA to be significantly repressed (p<0.003) (Tseng et al., 2005). A 

number of other factors involved in cellular differentiation also seem to 

regulate Fmo1 within different tissues (see table 1.4 and 1.5). 
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An analysis of the available FMO1 expression data indicates transcription 

factor candidates that might regulate the gene and lends further evidence for 

a role of the FMO1 protein in regulating energy homeostasis. 
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Geoprofile code Regulatory 
factor 

Role/Function Organism System Reference 

GDS1473 / 101911_at/FMO1/Mus musculus HNF1-α Pancreatic beta cell 
growth, Glucose 
homeostasis 

mouse Pancreatic islets (Akpinar et al., 2005) 

GDS1916 / 1417429_at/FMO1/Mus musculus HNF4-α Hepatogenesis, 
Gluconeogenesis, 
Glucose homeostasis 

mouse Embryonic Liver (Battle et al., 2006) 

GDS2854 / 1417429_at / Fmo1 / Mus 
musculus 

MYOD Regulates myogenic 
differentiation 

mouse Embryonic 
fibroblasts  

(Di Padova et al., 2007) 

GDS2334 / 1417429_at / Fmo1 / Mus 
musculus 

MYOD Regulates myogenic 
differentiation 

mouse Embryonic 
fibroblasts  

(Cao et al., 2006) 

GDS2660 / Msa.63.0_s_at / Fmo1 / Mus 
musculus 

 Adipocyte differentiation mouse 3T3-L1 
differentiation 

(Cheung et al., 2007) 

GDS2412 / 1417429_at / Fmo1 / Mus 
musculus 

 Myotube differentiation mouse Myotube 
differentiaion 

(Chen et al., 2006) 

 

 

Table 1.5 GEO profile data which show an increase in Fmo1 expression 
The GEO profile is shown on the left column. The next column describes the regulatory factor that influences the expression of 
Fmo1. The third column describes the role of this factor and the next two columns describe the organism system used for the 
analysis.  
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Geoprofile code Regulating 
factor 

Role/Function Organism System used Reference 

GDS1384 / 205666_at / FMO1 / Homo 
sapiens 

v-myb, c-myb 
transcription 
factors 

Induces apoptosis in 
tumours 

human MCF7 cells (Liu et al., 2006) 

GDS1434 / 101991_at / Fmo1 / Mus 
musculus 

P63 transcription 
factor 

Epidermal 
morphogenesis 

mouse 18.5 days skin layer 
embryo 

(Koster et al., 2006) 

GDS2184 / 101991_at / Fmo1 / Mus 
musculus 

Runx2 Skeletogenesis mouse Embryo 14.5 days 
developed 

(Hecht et al., 2007) 

GDS2629 / 1417429_at / Fmo1 / Mus 
musculus 

Get-1 Epidermal differentiation mouse Embryonic skin (Yu et al., 2006) 

GDS2648 / 1417429_at / Fmo1 / Mus 
musculus 

Palmitate Induces apoptosis in the 
Heart 

mouse CDC12 myotubes (Crunkhorn et al., 2007) 

GDS2610 / 1417429_at / Fmo1 / Mus 
musculus 

glycerol kinase 
knock down 

GK is at the interface of 
fat and carbohydrate 
metabolism 

mouse brown adipose (Rahib et al., 2007) 

 

Table 1.6 GEO profiles which show a decrease in human FMO1 or mouse Fmo1 expression 
The GEO profile is shown on the left column. The next column describes the regulatory factor influencing the expression of the 
gene. The third column describes the Role of this factor and the next two columns describe the organism system used within the 
experiment.   
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1.15 How Regulatory polymorphisms and polymorphism 
influencing splicing cause changes in gene expression 
 
Many studies have shown that variation in the expression of genes is 

heritable. Expression profiling and genome-wide mapping studies have added 

to our knowledge of the extent of variation and its influence. Inter-individual 

variation in mRNA amounts can be accounted for in general by differences in 

cis-acting elements (such as DNA polymorphism in such an element) and the 

binding of trans-acting modulators (transcription factors) to these elements.  It 

is predicted that 25-35% of inter-individual differences in gene expression are 

due to variation in cis-acting elements (Pastinen and Hudson, 2004). A DNA 

polymorphism changing a cis-acting element sequence, and as a 

consequence the transcript abundance, can be defined as a regulatory 

polymorphism. Transcript expression can be changed by a number of different 

mechanisms. In general, regulatory polymorphism is found outside the 

protein-coding region of the gene, although premature translation stop codons 

also influence the amount of mRNA produced (Willing et al., 1996). 

Regulatory polymorphism can influence transcription by altering the binding of 

RNA polymerase and transcription factors to the DNA, pre-mRNA splicing, 

exonic splicing enhancers (ESEs), exon skipping (Gregory et al., 2007), 

mRNA stability (Carter et al., 2002; Sheets et al., 1990; Conne et al., 2000; Di 

Paola et al., 2002), mRNA trafficking, or induce epigenetic changes (Ober et 

al., 2003; Ober et al., 2006). Epigenetic regulatory variation can alter 

transcription rates by changing the methylation state of the promoter or 

enhancer. Alterations in methylation patterns due to regulatory polymorphism 

can alter the imprinting of the gene (Singh et al., 2010). Regulatory 
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polymorphism may also cause disruption of insulator binding (Roberts et al., 

2007).  

 

Regulatory polymorphism has been observed to alter the binding of 

transcription factors in a variety of ways. This can be through disruption of a 

binding site or modification of a binding site so that the efficiency of protein 

binding is altered (Taulan et al., 2007). With the advent of genome wide 

association studies a large number of cis-acting regulatory polymorphism are 

being shown to be associated with disease. Functional studies on these SNPs 

have shown cis-acting regulatory variation to alter transcription factor binding 

in novel ways. For example, a genome-wide association study identified a 

locus on chromosome 1p13 strongly associated with both plasma low-density 

lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. The 

authors showed, through a series of studies in human cohorts and human-

derived hepatocytes, that a common non-coding polymorphism at the 1p13 

locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) 

transcription factor binding site and alters the hepatic expression of the 

SORT1 gene (Musunuru et al., 2010).   
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Figure 1.6 Mechanisms that result in differences in protein 
expression between individuals 
The diagram shows the nucleus within the cell. The two chromosomes are 
depicted. The chromosomes show how different mechanisms can alter the 
expression of genes. Epigenetic mechanisms including methylation and 
acetylation as shown in the diagram can lead to changes in mRNA 
expression. Differential recruitment of transcription factor binding can also 
lead to differences in mRNA expression. The processing of the transcript 
(splicing, transport) can also vary between individuals resulting in varied 
availabilities of transcripts within the cytoplasm for translation. All these 
factors contribute to the overall variability in protein expression between 
individuals. 
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1.16 Regulatory polymorphism and splice-site polymorphism 
observed in drug metabolizing enzyme genes 
 
This section outlines a number of regulatory SNPs and SNPs that influence 

splicing that have been identified in some important genes coding for drug 

metabolising enzymes. This will reinforce the importance of regulatory 

polymorphism in drug metabolism and outline some of the issues which make 

their identification difficult. 

 

The majority of regulatory polymorphisms have been found within promoter or 

enhancer regions. Other SNPs that influence mRNA splicing and thus the 

amount of activity of the protein are also included. The CYP family have been 

extensively studied for regulatory polymorphism. This is the major hepatic 

family of drug metabolizing enzymes. I will review the literature on the 

CYP1A2, CYP2D6 and CYP2A6. CYP1A2, which metabolizes clozapine, 

paracetamol, phenacetin, theophylline, imipramine, and tacrine. Four 

regulatory polymorphisms have been observed in CYP1A2 that alter transcript 

abundance. The SNP, -2964G>A is found within an enhancer region. 

Individuals with the A allele have a reduction in enzyme activity compared to 

individuals that possess the G allele (Nakajima et al., 1999). The SNP -

163C>A was found associated with increased enzyme induction in patients 

given caffeine (Sachse et al., 1999).  A novel SNP -730C>T was identified 

within an Ethiopian population. A haplotype containing the T variant showed 

significantly decreased enzyme activity towards the substrate caffeine. The T 

allele was shown to prevent the binding of the transcription factor ets (Aklillu 

et al., 2003).  A CYP1A2 splice donor site polymorphism, found in a single 
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individual, was implicated in the poor metabolism of clozapine (Allorge et al., 

2003). 

 

CYP2D6 is the most polymorphic of the CYP genes and the protein 

constitutes 2% of total hepatic CYP protein. CYP2D6 is involved in the 

oxidative metabolism of more than 70 drugs. Two SNPs alter the splicing of 

the gene. A G>A SNP within the consensus sequence at the splice site of the 

third intron causes a loss of protein in individuals with the A/A genotype. 

These individuals have been shown to be poor metabolizers of CYP2D6 

substrates (Kagimoto et al., 1990). The second polymorphism, a splice 

acceptor site found within intron 1, which causes a premature stop codon, 

was observed in a poor metabolizer of CYP2D6 substrates (Marez et al., 

1995). The third SNP, a regulatory polymorphism, 1584G>C, in the promoter 

of CYP2D6, was shown to be associated with CYP2D6 activity in vivo (Lovlie 

et al., 2001) possibly due to an increase in protein expression (Zanger et al., 

2001). More recent evidence suggests the -1584G>C is in linkage 

disequilibrium with the functional CYP2D6*35 allele, which has been found in 

many duplication-negative "ultra rapid" metabolizers (Gaedigk et al., 2003). 

These are individuals which do not contain duplications of the gene and are 

ultra-rapid metabolizers. This outlines the difficulty in defining regulatory 

polymorphism based on purely associative studies. 

 

The enzyme CYP2A6 accounts for about 10% of all CYP expression within 

the liver (Pelkonen et al., 2000). The enzyme metabolizes nicotine, cotinine, 

and some drugs (e.g., fadrozole, halothane, losigamone, letrozole, 
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methoxyflurane).  A SNP, -48T>G, which disrupts the TATA box of the gene, 

was identified in a Turkish individual. This SNP was further identified in 

different populations and allele frequencies (the G allele) were between 5-

15%. The G/G genotype reduces reporter gene activity to 50% of the T/T 

genotype (Pitarque et al., 2001). A polymorphism was identified within an 

enhancer region of CYP2A6 located at position -1013A>G. Reporter gene 

assays showed the region, between -1005 and -1019, containing the 

polymorphism elicited a strong enhancer effect. The CYP2A6*1D allele, 

containing the -1013 G/G genotype showed significantly reduced reporter 

gene activity. An EMSA showed that the A/A genotype have higher affinity 

nuclear protein binding than does the G/G genotype (Pitarque et al., 2004). A 

novel polymorphism was identified in the 5′ flanking region of the CYP2A6 

gene located at position -745A>G. This polymorphism lowers the binding 

efficiency of the NF-Y transcription factor to the CCAAT binding sequence. 

Reporter gene assays show the -745 G variant reducing promoter activity to 

78% of the wild type activity (von Richter et al., 2004).  

1.17 Methods of identifying and analysing regulatory 
polymorphism 
 
Linkage disequilibrium can be described as the non-random association of 

alleles. Definition of regulatory polymorphisms is complicated by linkage 

disequilibrium (LD) within the human genome. A variant in one individual or a 

population may seem like the causative polymorphism when in reality it is only 

in linkage disequilibrium with the causative polymorphism. To illustrate, the 

lactase persistence phenotype is conferred by a regulatory SNP, C>T, 14 kb 

upstream of the start of translation (Enattah et al., 2002). The T allele is in 
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complete association with lactase persistence within a Finish population 

(Enattah et al., 2002). Subsequent studies show, that in some individuals, 

there is equal contribution of expression from the C and T allele (Poulter et al., 

2003). The variation has not been associated with lactase persistence within 

certain African populations (Mulcare et al., 2004). 

 

In the previous section the CYP2D6 gene polymorphism, -1584G>C, was 

described. This shows an in vivo association with reduced CYPD26 activity 

(Gaedigk et al., 2003). The polymorphism was shown to be in strong linkage 

disequilibrium with a coding region SNP associated with a poor metabolizer 

phenotype. Therefore the SNP could potentially only be in linkage with the 

causative polymorphism. To partly overcome the problem of LD, the order of 

polymorphisms that exist along the chromosome of an individual (known as a 

haplotype) can be tested for functional effect instead of testing only a single 

variant. This way the influence of regulatory polymorphism can be deduced by 

studying the effects of different genetic backgrounds.  This, however, requires 

detailed knowledge of the regulatory sequence. Therefore there is a 

requirement for in vivo associative data to be combined with functional data to 

define the influence of a regulatory polymorphism.  

 

There are many methods to analyse regulatory polymorphism and I will review 

both common and more recent methodologies. The most common and 

traditional way of identifying a regulatory polymorphism is by measuring its 

ability to drive transcription when attached to a synthetic reporter construct. 

The reporter gene produces an exogenous product allowing quantification of 
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this protein within transfected cells. Originally, the reporter gene used was the 

chloramphenicol acetyltransferase (CAT) gene. Subsequently the reporter 

gene luciferase was introduced due to its ability to be easily quantified by 

luminescence, in comparison to the quantification of radioactive acetylated 

products of chloramphenicol. Before regulatory polymorphisms can be tested, 

the promoter needs to be defined. This is achieved by refining the sequences 

upstream of the transcriptional start sites until the most important regulatory 

sequences have been established. Polymorphisms can then be studied, either 

by introducing the mutation by site-directed mutagenesis or by amplifying and 

cloning the promoter sequence from different individuals. Candidate 

polymorphisms can be chosen which disrupt consensus DNA binding sites for 

transcription factors. These are good candidates for playing a role in 

regulating the gene being studied. This technique is limited as the causative 

SNP may be in LD with the promoter SNP being analysed. Thus the influence 

of the causative SNP will be missed as it is not present within the promoter 

region that has been defined.  

 

Additional techniques are required to observe the physical effect of the SNP 

on gene regulation. DNase I footprints have traditionally been used to identify 

the DNA-protein binding profile along the promoter. The EMSA can be used to 

determine if the SNP affects the binding of a trans-acting regulatory factor. 

There are disadvantages to analysing regulatory polymorphism in vitro. The 

regulatory variation is not found in its natural environment. The DNA is not in 

the natural chromatic state and the DNA will not necessarily regulate 

expression or influence protein binding as it does in vivo. 
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In an attempt to overcome some of the limitation of regulatory polymorphism 

analysis, use has been made of allele-specific markers to analyse the 

influence of an individual allele. First, allele-specific markers are identified. 

Subsequently, gene expression from each allele is measured by specific RT-

PCR toward each allele (Singer-Sam et al., 1992). This technique is limited 

because it cannot identify differences in trans-acting-factor binding that may 

cause differences in gene regulation between individuals. To address the 

problem, allelic expression and differences in trans-acting factor binding 

measuring can be carried out within the same individual using the same cell 

type. The allelic expression can then be determined for individuals and 

association studies made to obtain candidate regulatory SNPs. This technique 

is limited to studying markers within the mRNA coding region or with SNPs 

that are in LD.  

 

The development of an assay, which does not require a heterozygote marker, 

is that which measures the amount of RNA polymerase II phosphorylation. 

The phosphorylation of specific serine residues within RNA polymerase II 

allows its release from the initiation complex and the commencement of 

elongation (Knight et al., 2003). Phosphorylation is therefore directly linked to 

the activation of transcription. The authors showed that chromatin 

immunoprecipitation assays, using antibodies to phosphorylated RNA 

polymerase II, allows the influence of allelic differences on transcription to be 

assessed.  
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Measurements of allele-specific expression that better reflect the in vivo 

situation are a powerful and accurate tool for elucidating regulatory 

polymorphism. The causative SNP responsible for influencing expression 

must of course be identified. To identify causative regulatory SNPs, allele-

specific approaches would have to be combined with techniques that can 

directly test the effect of individual SNPs on gene expression. 

1.18 Illumina second-generation sequencing and its application 
for regulatory polymorphism 
 
The techniques described thus far have been based on analysing a single 

gene or a small group of genes. Genome-wide sequencing is now feasible 

with the advent of second-generation sequencing (Shendure and Ji, 2008). 

There are a number of different types of second-generation sequencing and I 

describe here the use of cyclic-array sequencing. Cyclic array sequencing has 

been realized in different commercial products. The 454 sequencing 

technology (used in the 454 Genome Sequencers, Roche Applied Science; 

Basel), Solexa technology (used in the Illumina (San Diego) Genome 

Analyzer) and the SOLiD platform (Applied Biosystems; Foster City, CA, 

USA), the Polonator (Dover/Harvard). All systems are based on a similar work 

flow. The DNA to be sequenced is fragmented. The fragments are each 

ligated to a linker sequencer. PCR by amplification from the linker DNA is 

used to generate amplicons. Within the different systems these PCR products 

are spatially oriented (Solexa). The amplified products are sequenced via 

enzymatic reaction (454) or fluorescence imaging of terminated reactions 

(Solexa and SOLiD).  
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The ability to sequence whole genomes using second-generation sequencing 

will lead to the rapid increase in the identification of human genetic variation. 

A project to sequence 1000 individual genomes from various populations is 

currently being undertaken which should identify novel variation (Siva, 2008). 

The second-generation sequencing platforms have been utilised to study not 

only variation but also the analysis of gene regulation on a genomic scale. 

Researchers are now able to analyse the epigenome using second-

generation sequencing technology. The epigenome can be described as the 

source of variation within the genome other than the sequence itself. This 

includes the chromatin, methylation and acetylation state of the DNA. These 

modifications are extremely important in overall gene expression in altering 

the chromatin structure of DNA thus effecting the regulation of genes. As a 

result epigenetics is responsible for cell-type specificity, differentiation, 

development, proliferation, and the cell‟s environmental responses.  

 

Analysis of the epigenome can identify regulatory regions that are specific to 

the condition of the cell. DNase I-seq (Song and Crawford, 2010), NA-seq 

(Gargiulo et al., 2009), and Formaldehyde-Assisted Isolation of Regulatory 

Elements (FAIRE-seq) (Giresi et al., 2007), are three epigenetic techniques 

which allow the identification of regulatory regions throughout the whole 

genome. The techniques work under the same principle. The DNA is treated 

with DNase I, which digests DNA that is in a relaxed state as opposed to a 

nucleosomal state. In the relaxed state the DNA is more liable to be digested 

by DNase I. These digested regions will result in many smaller fragments. 

These DNase I digested fragments will therefore be enriched. The DNA 
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fragments are transferred to an illumina sequencing machine and analysed. 

The sequence signal strength is correlated with the amount of DNase I 

digestion and areas of high signal strength are good indicators of regulatory 

regions.  DNase I-seq has identified a substantial number of open regions 

within many different cell lines and tissues revealing a large number of tissue 

specific regulatory regions. For example the epigenome of human pancreatic 

islet cells has been examined by Formaldehyde-Assisted Isolation of 

Regulatory Elements (FAIRE-seq) analysis (Gaulton et al., 2010). By 

removing identified regulatory regions from other cell types, regions specific to 

the islet cells can be determined (Gaulton et al., 2010). By locating regulatory 

specific regions polymorphism can be identified and tested for their functional 

effect (Gaulton et al., 2010).  

 

DNase I-seq has been undertaken at a resolution high enough to resolve the 

sequence to which individual proteins are bound. However the resolution 

required means that the number of sequence reads is extremely expensive 

(Hesselberth et al., 2009). 

 

1.19 Polymorphism effecting translation efficiency 
 
A number of genetic polymorphisms have been shown to occur within the 

mRNA coding sequence that influences the translational efficiency of the 

protein. Polymorphism has been shown to alter the rate of translation and the 

production of protein. This can occur due to the polymorphism introducing a 

mutation within the Kozak sequence. A polymorphism within the Kozak 
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sequence of the glycoprotein ib alpha gene is a major determinant of plasma 

membrane levels of the platelet GPIb-IX-V complex (Afshar-Kharghan et al., 

1999). A polymorphism within the Kozak sequence of the annexin V gene is 

associated with myocardial infarction in young people (Gonzalez-Conejero et 

al., 2002). Polymorphism has also been shown to disrupt or create ATG 

initiation codons. A polymorphism within the vitamin D receptor gene 

introduces a second upstream ATG initiation codon. This polymorphism has 

shown to be a risk factor associated with insulin resistance in Caucasians 

(Chiu et al., 2001), associated with bone mineral density and vertebral 

fractures in postmenopausal Italian women(Gennari et al., 1999), and 

associated with height (Minamitani et al., 1998). The polymorphism creates a 

second translation initiation site. It has been shown that individuals with this 

polymorphism produce two distinct proteins (Arai et al., 1997). The upstream 

ATG was shown to produce 1.7-fold increase in reporter gene activity than the 

ACG form in transfected COS-7 cells (Arai et al., 1997).    

 

In the course of the work described in this thesis, a common polymorphism 

was identified within the FMO1 gene. This results in a second ATG upstream 

of the defined translational start site. This polymorphism, a C>T transition, 

occurs in-frame, 12 base pairs upstream of the accepted ATG for FMO1. This 

is the same distance as seen between the ATG initiation sites in the vitamin D 

receptor gene (Zysow et al., 1995).  Chapter 2 describes the experimental 

work carried out on the FMO1 ATG polymorphism. 
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1.20 3T3-L1 adipocytes and their use as a model for adipocyte 
biology 
 
3T3-L1 cells were used in the experiments described in Chapters 1 and 2. 

Several different fibroblast cell lines exist that can be differentiated into 

adipocytes in culture. The 3T3 cell line was immortalised from primary 

embryonic stem cells from the Swiss mouse strain.  These cells were 

originally isolated to obtain immortal cell lines suitable for viral transformation 

(Todaro and Green, 1963). When in culture, the cells were observed to 

produce foci of cells that accumulated lipid. In 1972, 3T3 cells were clonally 

expanded based on lipid accumulation within the cells. Different clones 

produced differing amounts of lipid. The 3T3-L1 line is one of the clonal 

expansions of the 3T3 cells that convert to cells accumulating a large amount 

of lipid (Green and Meuth, 1974). The cells were shown to possess a latent 

programme of differentiation that, when activated, converts them to 

adipocytes. The differentiation process was shown to have specific stages of 

conversion (Fig.1.7). The first stage is the accumulation of triglycerides, which 

could be stained with oil-red O. In the second stage the cells have extended 

processes. When the cells enter the third stage they become spherical and 

take on the morphology of young, adipose cells. The cells were shown to 

accumulate the enzymes and proteins responsible for the synthesis and 

degradation of triglyceride and hormonal regulation of lipid accumulation. 3T3-

L1 cells were confirmed as containing a latent programme of adipocyte 

differentiation when they developed into mature fat pads after injection into 

athymic mice (Green and Kehinde, 1979). The 3T3-L1 adipocytes have been 

shown to possess most of the structural and organelle characteristics of 
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animal adipocytes (Novikoff et al., 1980). The formation and development of 

fat droplets also mimic primary adipose tissue (Green and Meuth, 1974). 

 

Adipose conversion was shown to be more efficient when a cocktail of 

adipogenic factors are introduced to the culturing media. These factors are 

high concentrations of insulin, a glucocorticoid, usually dexamethasone, and 

an agent that elevates intracellular cyclic adenosine monophosphate (cAMP) 

levels, a signalling molecule which activates protein kinases and subsequently 

changes glycogen, sugar, and lipid metabolism with the cell, and foetal bovine 

serum(Student et al., 1980). This cocktail is added to the cells after they reach 

confluency when cultured in foetal bovine serum. Twenty four hours later, with 

the addition of the differentiation cocktail, the cells undergo a post-confluent 

mitosis and subsequent growth arrest (Bernlohr et al., 1985). This is followed 

by one round of DNA replication and cell division. At day 2, the cells complete 

post-confluent mitosis and enter into an unusual growth arrest called GD (Scott 

et al., 1982). This has been hypothesised to happen so the DNA can unwind 

and allow transcription factors access to the open form of the DNA (Cornelius 

et al., 1994). After growth arrest the cells are committed to becoming 

adipocytes. The growth arrest is a requirement for subsequent differentiation. 

At day 3, growth-arrested cells begin to express late markers of differentiation. 

These late markers consist of lipogenic and lipolytic enzymes in addition to 

other proteins responsible for producing the mature adipocyte phenotype. At 

day 5-7 the cells round up, accumulate fat droplets, and become terminally 

differentiated adipocytes. 

 

http://en.wikipedia.org/wiki/Glycogen
http://en.wikipedia.org/wiki/Sugar
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Metabolism
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Figure 1.7 Illustration of the morphological and gene regulatory 
changes that occur during 3T3-L1 adipocyte differentiation 
The diagram shows the 3T3-L1 differentiation process post addition of 
differentiation media (MIX (methylisobutylxanthine), DEX (dexamethasone), 
and INSULIN). The time course of morphological changes is shown. The 
illustration below shows the time course of expression of key regulators of 
3T3-L1 differentiation and key changes within the cell cycle. 
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1.21: Aims of this study 
 
1. To further investigate the usage of the FMO1 alternative promoters in 

different mouse tissues and mouse cell lines.  

 

FMO1 has a role in drug metabolism and more recently a role in energy 

homeostasis has been defined. Further definition of promoter usage in 

different tissues and cell types will help further our understanding of the 

multiple promoters used and the mechanisms that regulate FMO1 

transcription. Identifying which of the FMO1 transcripts is produced in different 

tissues will give context to a genetic polymorphism that may have a transcript-

specific effect. 

 

2. To define the human FMO1 P1 and P2 promoter sequences that are 

responsible for transcription of FMO1. 

 

This will be carried out in the context of different cell types. These promoter 

regions will help define regulatory polymorphism that may be responsible for 

the large inter-individual variation seen between individuals in the expression 

of FMO1. Data will be collated from genome-wide expression analysis to 

further validate the defined promoter regions. 

 

3. To identify the amount of genetic variation within the FMO1 P0, P1 and P2 

promoters.  
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Re-sequencing of the FMO1 promoters may yield novel variation that may be 

responsible for the high inter-individual variation seen between individuals. 

Re-sequencing will also identify genotype frequencies in different populations 

for previously discovered polymorphism. 

 

4. To examine the effects of FMO1 promoter polymorphism a novel approach 

will be taken to improve the speed at which promoter polymorphism may be 

analysed by the researcher.  

 

Recent developments in DNase I capillary footprinting will be further 

developed and used to analyse promoter polymorphism. This approach will 

also allow the effects of the polymorphism on DNA-protein binding to be 

visualised. The FMO1 promoter polymorphism will ideally be examined with 

this method as well as the DNA-protein binding profile of the FMO1 P1 and P2 

promoters. 
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Chapter 2: Materials and Methods 
 

General laboratory chemicals were purchased from BDH. Trizma base was 

purchased from Sigma. Other chemicals and materials were purchased from 

various companies. Company names, other than BDH, have been indicated in 

bracket. 

2.1 Escherichia coli (E.coli) strains and culture conditions 
 

2.1.1 Genotypes of E.coli strains 
 

XL-Blue MRA strain: Δ (mcrAI) 183, (mcrCB-hsdSMR-mrr) 173, endA1, 

supE44, thi-1, gyrA96, relA1, lac) (Stratagene) 

Library efficiency DH5α™ competent cells [supE44, Δlac U169 (Ф80 

lacZΔM15), hsdR17, recA1, endA1, gyr A96, thi-1, relA1] (Invitrogen) 

2.1.2 Culture of E. coli cells 
 
Materials 

-Luria Bertani (LB) agar medium (10 g bactotryptone, 5 g yeast extract, 5 g 

NaCl, 15 g agar per litre) (BIO101, Anachem). 

-Luria Bertani (LB) medium (10 g bactotryptone, 5 g yeast extract, 5 g NaCl 

per litre) (BIO101, Anachem). 

-Ampicillin (amp), 50 mg/mL stock solution (Sigma) 

 

Method 

LB Medium and LB agar were both purchased in tablet form. After addition of 

an appropriate amount of distilled water the media were autoclaved. The 
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medium was cooled to 50°C in a water bath. At this temperature ampicillin 

was added to a concentration of 100 µg/mL. The agar was poured into 82 mm 

Petri dishes (20 mL/plate). The agar solidified at room temperature and plates 

were stored at 4°C. Bacteria (either from a glycerol stock or transformed cells) 

were streaked or spread on to the plates. Inverted plates were incubated at 

37°C. 

 

Ampicillin was added to LB medium to a concentration of 50 µg/mL. A single 

colony of bacteria from an agar plate was used to inoculate 5 mL of LB-amp 

media and incubated overnight at 37°C in a shaking incubator. This is referred 

to as a starter culture. 

2.2 Small scale isolation of plasmid DNA from E. Coli 
 
Materials 

-Luria Bertani (LB) medium (10 g bactotryptone, 5 g yeast extract, 5 g NaCl 

per litre) (BIO101, Anachem). 

-Qiaprep Miniprep Kit (all solutions were provided in the kit) (QIAGEN). 

 

Method 

All centrifuge steps were carried out using a Tube centrifuga 5415R. 

 

A 4 mL starter culture was divided into two 2 mL Tube tubes and centrifuged 

at 4,000 rpm in a bench top centrifuge for 4 minutes (min). The supernatant 

was discarded and the bacterial pellet was re-suspended in 150 µL of P1 
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buffer. The two samples, containing the resuspended bacteria, were added 

together. All subsequent centrifugation steps were carried out at 13,000 rpm. 

 

Cells were lysed by the addition of 250 µL of lysis solution, P2 and mixed 

gently. The lysis solution was neutralized by the addition of 350 µL of solution 

N3. This is a high salt buffer, which precipitates denatured genomic DNA and 

proteins leaving plasmid DNA in solution. 

 

The precipitate was pelleted by centrifugation for 10 min. The lysate is added 

to the QIAprep column, which fits in a collection tube. The resin in the column 

selectively binds plasmid DNA at high salt concentrations and elutes at low 

salt concentration. 

 

The column was centrifuged for 1 min and the eluate discarded. The column 

was then washed with 750 µL of PE buffer and centrifuged for 1 min and the 

eluate discarded. The column was centrifuged for a further 1 min to remove 

any traces of buffer PE. The collection is discarded and the column is placed 

in a fresh 1.5 mL Tube. Plasmid DNA was eluted with 50 µL of water followed 

by centrifugation for 1 min. 

 

2.3 Large-scale isolation of plasmid DNA from E. Coli 
 
Materials 

-Isopropanol 

-Ethanol (70%) 
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-TE Buffer (10 mM Tris-HCL, 1 mM EDTA pH 8) 

-QIAfilter Plasmid Midi Kit (QIAGEN). Kit includes the following solutions: 

-P1, resuspension buffer (50 mM Tris-Cl (pH 8), 10 mM EDTA, 100 U/mL 

RNase A). 

-P2, lysis solution (200 mM NaOH, 1% w/v SDS). 

-P3, neutralization buffer (3 M potassium acetate, pH 8). 

-QBT, equilibration buffer (750 mM NaCl, 50 mM MOPS, pH 7, 15% v/v 

isopropanol, 0.15% v/v Triton X-100). 

-QC, wash buffer (1 M NaCl, 50 mM MOPS pH 7, 15% v/v isopropanol). 

-QF, elution buffer (1.25 M NaCl, 50 mM Tris-CL pH 8.5, 15% v/v 

isopropanol). 

 

Method 

100 mL of LB media was inoculated with 5 mL of an overnight starter culture. 

The culture was incubated 37oC overnight in a shaking incubator. The culture 

was centrifuged at 4000 rpm (using a Sorvall Evolution RC 728411) for 15 

min. The supernatant was discarded and the bacterial pellet resuspended in 4 

mL of buffer P1.  

 

Cells were lysed with the addition of 4 mL of buffer P2. The tube was inverted 

4-6 times and left to stand for 5 min. 4 mL of buffer P3 was added to 

neutralise the lysis solution. This results in formation of a white precipitate. 

The lysate was immediately poured into a filter cartridge. The cartridge was 

left for 10 min at room temperature to allow separation of the precipitate.  
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The cleared lysate was filtered into a column which had previously been 

equilibrated with 10 mL of buffer QBT. The resin in the column selectively 

binds plasmid DNA. The lysate was allowed to pass through the column. 

Cellular metabolites and RNA were washed off the column with the addition of 

2, 10 mL washes with solution QC. 

 

A 10 mL plastic tube was placed under the column and 5 mL of elution buffer 

was added to the column to elute plasmid DNA. 1.5 mL of isopropanol was 

added to the eluate, the sample mixed well. Plasmid DNA was pelleted by 

centrifugation at 4oC at 8000 rpm (Sorvall Evolution RC 728411). The 

supernatant was discarded and the clear pellet was transferred to a 1.5 mL 

tube using a pipette tip. The pellet was washed with ~1.4 mL of 70% ethanol 

and the sample centrifuged at 13000 rpm for 10 min (Tube centrifuga 5415R). 

The supernatant was removed and the pellet dried in a heat block at 50oC for 

10 min. The dried pellet was re-suspended in an appropriate volume of TE 

buffer. 

2.4 Quantification of DNA/RNA by UV spectrophotometry 
 
The concentration of DNA or RNA was determined using the Nanodrop™ 

1000. After setting a blank reading (TE buffer), 1 µL of DNA sample was 

added directly onto the reader. The absorbance of this solution was measured 

at 260 nm. The machine gave a reading of ng (DNA/RNA)/µL. 

2.5 Bacterial Transformation 
 
Materials 
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-Library efficiency DH5α competent cells (Invitrogen). 

-SOC medium (20 g tryptone, 5 g yeast extract, 5 g NaCl, 2.5 mM KCL, per 

litre, pH 7.5) (Sigma). 

-LB/amp plates (see 2.1) 

 

Method 

Competent cells were thawed on ice. Cells (10 µL) were mixed with 1 ng of 

plasmid DNA or 50 µL of cells were mixed with 2 µL of a ligation reaction. The 

mixture was incubated on ice for 30 min. The cells were subsequently heat-

shocked for 60 s at 42oC and transferred back to ice. 250 µL of SOC medium 

was added and the cells were incubated at 37oC for 1 hr in a shaking 

incubator. 100 µL of the bacterial culture was placed on LB/amp plates.  

2.6 Preparation of glycerol stocks 
 
Materials 

Glycerol (100%, autoclaved) 

Overnight culture of E.coli. 

 

Method 

 For long-term storage of E. coli cultures, 1 mL of bacterial culture was mixed 

with 200µl of glycerol in a 1.5 mL tube. The contents were mixed well and 

immediately stored at -70oC. 
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2.7 Restriction endonuclease digestion of DNA 
 
Materials 

-Restriction enzymes (NEB). Enzyme concentration was 10,000units/mL 

-10X Reaction buffer1 (NEB) 10 mM Bis Tris Propane-HCL, 10 mM MgCl2, 1 

mM dithiothreitol (pH 7.0 @ 25C). 

-10X Reaction buffer 4:50 mM potassium acetate, 20 mM Tris-acetate, 

10 mM Magnesium Acetate, 1 mM Dithiothreitol (pH 7.9 @ 25°C). 

-BSA (10mg/mL stock solution) (NEB). 

Note: the reaction buffer was selected according to the enzyme used. 

 

Methods 

Plasmid DNA, reaction buffer (to a final concentration of 1x) and BSA to a 

final concentration of 0.1 μg/μL were added to a 1.5 mL tube. Different total 

reaction volumes (ranging from 20 to 100 μL) were used depending on the 

amount of DNA being digested. The restriction enzyme was added last, at a 

concentration of 1 unit per μg of DNA. The sample was incubated at 37oC (the 

optimum temperature of the restriction enzymes used). The incubation time 

was at least 1 hr. 

 

When two enzymes were used, with two different optimal buffer conditions, 

the most compatible buffer was chosen and the amount of enzyme added 

modified to allow for any loss in enzyme activity.  
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2.8 Agarose gel electrophoresis of DNA fragments 
 
 

Materials  

-10x Tris borate-EDTA buffer (TBE) (0.89 M Tris-base, 0.09 M Boric acid, 20 

mM EDTA (pH 8) 

-Agarose (BioLine) 

-6x loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol, 30% 

glycerol), stored at room temperature. 

-Ethidium Bromide (EtBr) (10 mg/mL stock solution, stored at 4oC) (Fisher) 

-DNA hyperladder I and V (BioLine) 

 

Method 

A 1% agarose gel was prepared by melting 1 g of agarose in 100 mL of 

1xTBE buffer in a microwave oven. EtBr was added to the mixture to a final 

concentration of 0.5 μg/mL. The cooled mixture was poured into a gel mould 

with the appropriate comb in place. The gel was left to set for at least 30 min. 

Once set, running buffer (1xTBE) was poured in to the gel mould placed in the 

gel tank. TBE was added until the gel was completely submerged. The comb 

was then removed. 

 

DNA marker (10 μL, containing loading buffer) was loaded into the first well. 

Three microlitres of loading buffer (on Nesco film) was mixed with each 

sample prior to loading the gel. The gel was electrophoresed at 60-100 volts 

to separate the DNA fragments. After electrophoresis the DNA fragments 

were visualised on a UV transilluminator.   
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2.9 Purification of DNA fragments from agarose gels 
 
Isolation of DNA using QIA quick Gel extraction kit. 

 

Materials 

-Agarose gel (1%, w/v, supplemented with EtBr). 

-Electrophoresis buffer (1xTBE) 

-6x loading buffer  

-Isopropanol 

-Qiaquick Gel extraction kit (QIAGEN). All solutions were supplied with the kit. 

 

Method 

DNA was mixed with the loading buffer and electrophoresed on a 1% agarose 

gel in TBE as described above. The separated DNA fragments were 

visualised on a UV transilluminator. The fragment of interest was excised 

using a sterile blade. The piece of agarose was transferred to a 1.5 mL tube 

and weighed.  

 

Three volumes of buffer QG was added to the tube (3 volumes more than the 

weight of the piece of agarose gel). The agarose was melted by heating to 

50oC for 10 min. 1 volume of isopropanol was added. The mixture was loaded 

onto a QIAquick column, which had been placed inside a collection tube. The 

column was centrifuged for 1 min at 13000 rpm in a bench top centrifuge for 1 

min. The DNA fragment binds to the resin and the eluate was discarded. All 

centrifuge steps in this protocol were carried out at 13000 rpm in a bench top 

centrifuge for 1 min. 
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500 μL of Solution QG was added the column centrifuged to remove traces of 

agarose. 750 μL of Solution PE was added and the column centrifuged to 

remove salts. After removing the eluate the column was centrifuged for a 

further 1 min to remove all traces of solution. DNA was eluted by adding 30 μL 

of water to the column, followed by centrifugation. The amount and quality of 

DNA was assessed with a nanodrop spectrophotometer by determining 

absorbance at 260 and 280 nm. 

2.9.1 Purification of DNA in solution 
 
Additional materials from method 2.9 

Buffer PB - (supplied within the Qiagen PCR purification kit) 

 

Method 

Purification of DNA in solution (from PCR reactions or binding reactions) was 

carried out using the above protocol but without the need to dissolve the 

agarose gel in buffer QG. 5 parts buffer PB was added to one part of DNA 

and mixed before passing through the column. 

 

2.10 DNA ligation 
 
Materials 

-DNA ligase kit (BioLine). The kit includes the following: 

-Quick-stick ligase (2000 U/μL) 

-Quick-stick buffer 
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Method 

20 ng of vector was mixed with a 3-fold molar excess of insert in a 1.5 mL 

Tube. The volume was adjusted to 14 μL using sterile water. 1 μL of QS 

ligase was added. Finally 5 μL of QS buffer (4x stock solution) was added to 

make a total reaction volume of 20 μL. 

 

The reaction sample was mixed thoroughly by pipetting and incubated at 

room temperature for 5 min. 2 μL of the ligation reaction was used to 

transform 50 μL of competent cells. Plasmid DNA was isolated from 5 of the 

resulting bacterial colonies. Plasmid DNA was analysed by restriction 

endonuclease digestion to confirm which colony corresponds to a 

recombinant plasmid, resulting from the ligation reaction. 

2.11 Polymerase chain reaction (PCR) 
 
All PCR reactions were carried out in a Techne Genium PCR machine. 

 

Materials 

-BioTaq DNA polymerase (BioLine) 

-10x NH4 Reaction Buffer-160 mM (NH4)2SO4, 670 mM Tris-HCL (pH 8.8 at 

25oC). (BioLine) 

-50 mM MgCl2 (BioLine) 

-100 mM dNTPs (BioLine) 

-Forward and reverse primers lyopholised (MWG), resuspended and stored at 

100 ng/µl and used at a working concentration of 10 ng/µl. 
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Method 

The PCR consisted of 10 ng of genomic DNA or 1 ng of plasmid DNA, 1x 

reaction buffer, 0.2 mM dNTP mix, 0.5 μM reverse and forward primers, 

1.5mM MgCl2 made up to 24.9 μL using sterile water. Finally 0.5 U of BioTaq 

polymerase was added. If multiple PCR reactions were carried out, a 

mastermix was made and 24.9 μL distributed to each tube before adding the 

taq enzyme separately. A control reaction, with no DNA template, was used 

as a negative control.  

 

Amplification parameters are shown in table 2.1. The annealing temperature 

was dependent on the melting temperature of the primers. The melting and 

annealing temperature of the primers was determined using the equation in 

table 2.1. The amplified products were visualised using agarose gel 

electrophoresis. 
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Programme Cycle and temperature Time 

Programme 1 1 cycle Time 

 
95°C 5min 

 
annealing temp 30 sec 

 
72°C/68°C 1min/kb 

Programme 2 30 cycles 
 

 
95°C 30 sec 

 
annealing temp 30 sec 

 
72°C/68°C 1min/kb 

Programme 3 1 cycle 
 

 
72°C/68°C 10min 

 

B 

 Tm = 69.3+ (0.41x (G+C))- 650/length (nt) 

 Annealing temperature= ((Tm1 + Tm2)/2) -6  

 

Table 2.1 PCR cycling conditions 
Extension temperature was 72°C for Taq and 68°C for BioXact. The annealing 
temperature is dependent on the primer pair. The Tm of each primer was 
calculated using the equation in (B). The Tm values of both primers were 
used to calculate the annealing temperature. 
 

 

 

 

 

 



 91 

2.11.1 Bio-X-act DNA polymerase 
 
This is a mixture of polymerase enzymes that display 3′-5′ proof reading 

activity in addition to 5′-3′ polymerase activity. This reduces the chance of 

misincorporated nucleotides during primer extension. This enzyme was used 

to produce constructs used in reporter gene assays as accurate replication of 

the template was essential. 

 

Material 

BIO-X-ACT Long DNA polymerase (4 U/μL) (BioLine) 

-OptiBuffer (10x reaction buffer) (BioLine) 

-dNTP mix (100 mM) (BioLine) 

-Forward and reverse primers (lyophilized) (MWG) resuspended and stored at 

100 ng/µL and used at a working concentration of 10 ng/µL. 

-MgCl2 (50 mM) (BioLine) 

 

Method 

The PCR reaction consisted of 10 ng of human genomic DNA, 1x reaction 

buffer, 0.2 mM dNTP mix, 4 mM MgCl2 and 0.5 μM reverse and forward 

primers. The volume of the reaction was made to 24.5 μL. Finally, 1 unit of 

Bio-X-Act long was added. 

 

The amplification parameters were devised in the same way as for BioTaq 

polymerase, but the optimum extension temperature is 68oC rather than 72oC. 

The extension time is also increased to 1 min/1kb). 
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2.12 Reverse transcriptase polymerase chain reaction 
 
Materials 

-First-Strand cDNA Synthesis Kit containing the following materials: 

-Superscript II reverse transcriptase (50 U/μL) 

-Reaction buffer (200 mM Tris-HCL (pH 8.4), 500 mM KCl) 

-dNTP mix (10 mM) 

-MgCL2 (25 mM) 

-RNase OUT (recombinant ribonuclease inhibitor (40 U/μL)) 

-Oligo (dT) 12-16 (0.5 μg/μL) 

-Diothiothreitol (DTT) (0.1 M) 

 

Method 

In a 1.5 mL tube an RNA/Primer mix was made consisting of up to 5 μg of 

total RNA, 1 mM of dNTPs, 1 μL Oligo (dT) 12-18 and made up to 10 μL with 

DEPC-treated water. The RNA/Primer mix was then incubated at 65oC in a 

heat block for 5 min. During this time the reaction mixture was prepared. This 

consisted of 2 μL Reaction buffer, 4 μL MgCl2, 2 μL DTT and 1 μL of RNAse 

OUT (40 U/µl). Nine microlitres of reaction mixture was added to each 

RNA/Primer mixture which was incubated at 42oC in a heat block. Fifty units 

of superscript enzyme was added per tube and samples were incubated for 

50 min at 42oC. The reaction was terminated by increasing the incubation 

temperature to 70oC for 15 min. This denatured the enzyme and therefore 

stopped the reaction. The samples were collected by brief centrifugation and 

1 μL of RNase H was added followed by incubation at 37oC for 20 min to 
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degrade any RNA. The DNA product was used as a template for PCR 

amplification. 

2.13 TOPO T/A cloning 
 
Materials 

-TOPO TA cloning kit for sequencing (Invitrogen). The kit included in the 

following components: 

-PCR4-TOPO vector (Fig.2.1) This was provided as a solution which 

contained 10 ng plasmid DNA/mL in 50% (v/v) glycerol, 50 mM Tris-HCL, (pH 

7.4 (at 25oC)), 1 mM EDTA, 2 mM DTT, 0.1% (v/v) Triton X-100, 100 mg/mL 

BSA, 30 μM phenol red. 

-Salt solution (1.2 M NaCl, 0.06 M MgCl2) 

 

Method 

The TOPO vector is a linearised vector and possesses single thymine 

overhangs. The PCR products, produced by the Bio-X-act enzyme, have 

adenosine bases at the 3′ end of each DNA strand. The adenine overhangs of 

the PCR product can be ligated to the thymine overhangs from the TOPO 

vector and the DNAs are ligated with a DNA ligase that is covalently bound to 

the linearised vector.  

 

In a 1.5 mL Tube, 4 μL of a PCR product was mixed with 1 μL of salt solution 

and 1 μL of PCR 4-TOPO vector. The tube was incubated at room 

temperature for 5min. 2 μL of this reaction was used to transform 50 μL of 
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competent cells. DNA was isolated from bacterial colonies cultured on 

ampicillin agar plates. 

 

 

 

 

Figure 2.1 pCR®4-TOPO vector map (Invitrogen catalogue) 
The pCR®4-TOPO vector was used to clone PCR products. 
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2.14 Isolation of RNA from cells, mouse and human tissues 
 
Materials 

-Ribopure RNA extraction kit (Ambion) containing: 

-TRI reagent 

-Filter cartridges 

-Collection tubes (2 mL) 

-1-bromo-3-chloropropane (BCP) 

-Wash solution concentrate  

-Ethanol 

-Elution buffer 

2.14.1 Tissue preparation 
 
Adult C57BL/6 mice were sacrificed. The relevant tissues were excised and 

stored in RNAlater (SIGMA). To isolate RNA, 100 mg of tissue was 

transferred to a 1.5 mL Tube containing 1 mL of TRI reagent. Using a hand-

held tissue homogeniser tissues were homogenised and then left at room 

temperature for 5 min. After centrifugation for 10 min at 12,000 g, insoluble 

material is removed from the top of the homogenate.   

 

2.14.2 RNA isolation from tissue cultured cells 
 
Cells were grown in a monolayer to confluency in 35-mm cell culture dishes. 

TRI reagent was added directly to the culture dish. Cell clumps were removed 

by pipetting up and down several times. The mixture was then transferred to a 

1.5 mL tube.  
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100 μL of BCP was added per 1 mL of homogenate and vortexed at maximum 

speed for 15 s. This mixture was left to incubate at room temperature for 5 

min. After centrifugation at 12000 g for 10 min at 4oC, the mixture is separated 

into a lower, red, organic phase (phenol-BCP phase); an interphase; and a 

colourless, upper, aqueous phase.  

 

The RNA remains in the aqueous phase while DNA and proteins are in the 

interphase and organic phase. The aqueous layer (around 400 μL of 1 mL) is 

transferred to a new 1.5 mL tube. 200 μL of 100% ethanol is added to 400 μL 

of the aqueous phase and the sample vortexed immediately for 5 s. This 

avoids precipitation of RNA. 

 

The sample was transferred to a filter cartridge, which binds RNA. The filter 

cartridge is placed inside a collection tube and centrifuged for 1 min at 12,000 

g in a bench top centrifuge. The eluate is discarded and 500 μL of wash 

solution is applied to the column and centrifuged for 1 min. This is then 

repeated once. 

 

The filter cartridge is then transferred to a new collection tube and 100 μL of 

elution buffer is added to the cartridge and centrifuged for 1 min. The eluate 

contains the RNA. The RNA is then used as the template to create cDNA. 
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2.15 COS-7 AND 3T3-L1 cell culture 
 
Materials 

-COS-7, 3T3-L1 cells (Obtained from European Collection of Animal cell 

culture (ECACC™)) 

-Dulbecco‟s Modified Essential Medium (DMEM) (Gibco). Supplemented with 

50 μg/mL of gentamycin (Gibco), 10% foetal calf serum (Gibco). Once 

supplemented the medium is referred to as complete medium. 

-PBS (1x) (137 mM NaCl, 2.7 mM KCL, 10 mM Na2HPO4, 1.8 mM KH2PO4) 

(PAA). 

 

Method 

COS-7 and 3T3-L1 cells were seeded into Nunclone tissue culture flasks (MG 

Scientific) and grown in a Heraeus incubator (Kendro), at 37oC with 5% CO2 

until the cells were 70-75% confluent. Cells were then washed twice with 

PBS, detached with 4mM EDTA in 1x PBS and pelleted by centrifugation at 

1900 rpm for 2 min at room temperature in a bench top centrifuge (Sigma). 

The pellet was resuspended in complete medium and seeded on to 24-well 

plates. Cells were seeded 24 hr prior to transfection. 

 

2.15.1 HK-2 cell culture 
 
Materials 

-Defined Keratinocyte-SFM (1X) liquid (Gibco) 

Method 
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Cells were cultured in the same conditions as COS-7 and 3T3-L1 cells. 

2.16 Transient transfection of cells 
 
The chosen method of transfection of cultured cells was lipid-mediated 

transfection (Felgner and Ringold, 1989). The chosen lipid was LTX 

(Invitrogen). This is a highly efficient lipid for the transfection of cells in culture. 

The lipid forms vesicles that associates with DNA and is thought to aid the 

transfer of DNA into cells by fusion of vesicles with the cell membrane.  

 

Materials 

-LTX transfection reagent (Invitrogen) 

-Opti-MEM® I Reduced Serum Media without serum (Invitrogen) 
 

Method 

24 hrs prior to transfection, cells were transferred into 24-well plates, so on 

the day of transfection the cells were 80-90% confluent. Each well 

represented an individual transfection experiment and each transfection was 

carried out in triplicate. The amount of DNA was optimised for each cell line 

and was therefore dependent on the cells that were transfected (section 

4.1.2). COS-7 and 3T3-L1 cells were transfected with 0.4 µg of reporter 

construct DNA and 0.05 µg of pRL-TK (internal control plasmid). HK-2 cells 

were transfected with 1 µg of reporter plasmid and 0.125 µg of pRL-TK. A 1:1 

ratio of transfection was shown to be suitable for COS-7, 3T3-L1, and HK-2 

transfection. A mastermix solution was made for triplicate experiments. DNA 

was added to 300 µl of Opti-MEM® Reduced Serum Media without serum. 

LTX was added to this solution at a ratio of 1:1, e.g. for transfection of COS-7 
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cells, 0.45 µg of DNA is used for each reaction. This is multiplied by three as 

transfection is carried out in triplicate. This results in a total of 1.35 µg. 1.35 

µL of LTX was added to the solution. The solution was gently mixed and left at 

room temperature for 30 min. After 30 min, 100µL of the solution was added 

directly into the well. Culture media was replaced after 24 hours with the 

growth medium and cells assayed after 48 hours. 

2.17 Isolation of Nuclear proteins from cell lines 
 
Materials 

-PBS (1x) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4). 

-Hypotonic buffer (10 mM HEPES (pH 7.9), 10 mM KCl, 0.2 mM EDTA, 0.1 

mM EGTA). Immediately before use, the buffer was supplemented with a 

protease inhibitor cocktail (Roche) and 1 mM DTT.  

-Roche Complete Protease Inhibitor Cocktail Tablets - Mixture of several 

protease inhibitors with broad inhibitory specificity. For the inhibition of serine, 

cysteine, and metalloproteases. 

-NP-40 (Sigma) 

-Nuclear lysis buffer (20 mM HEPES (pH 7.9), 0.4 M NaCl, 1 mM EDTA). 

Immediately before use the buffer was supplemented with 1 mM DTT, 

protease inhibitor cocktail (Roche) and 0.02% v/v NP-40. 

-Dialysis buffer (20 mM HEPES (pH 7.6), 1 mM EDTA (pH8)). Buffer was 

autoclaved and stored at 4oC. Immediately before use, 1 mM DTT was added 

to the buffer. 
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Method 

Approximately 107 cells were pelleted by centrifugation at 2500 rpm for 5 min 

in an Eppendorf bench centrifuge. The pellet was washed with 1x cold PBS 

and resuspended in 1 mL of cold hypotonic buffer. Cells were incubated on 

ice for 15 min. 0.4% (v/v) NP-40 was added to the cells. Cells were passaged 

through a 25G needle, 5-6 times to lyse the cells. The lysate was centrifuged 

at 10000 g for 2 min at 4oC. Supernatent was discarded and 300 µL of nuclear 

lysis buffer was added to the nuclear pellet. The samples were rolled on a 

denly spiramix for 30 min at 4oC. The supernatant (the nuclear extract) was 

transferred into another tube and was dialysed to remove excess salt. A 500 

µL sample was placed in a Slide-a-Lyzer® Dialysis cassette (Pierce). The 

cassette was attached to a buoy and immersed in 1 litre of cold dialysis 

bufferin a glass beaker which contained a magnetic stirrer. The dialysis took 

place in the cold room and the buffer was constantly stirred. After 2 hours the 

buffer was replaced with fresh buffer. After an additional 2 hours of dialysis 

the sample was removed from the cassette and transferred into a 1.5 mL 

Eppendorf tube. The samples were alliquoted and stored at -70oC. 

2.18 Dual-luciferase® reporter assay and pGL3 vectors 
 
The pGL3-Basic vector contains a multiple cloning site upstream of the firefly 

(Photinus pyralis) luciferase gene. FMO1 DNA sequences upstream of 

transcriptional start sites were cloned within the multiple cloning site upstream 

of the luciferase gene. The ability of these sequences to drive transcription of 

the reporter gene was measured. The cells were simultaneously transfected 

with a second vector, pRL-TK, which contains a luciferase gene sequence 
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from Renilla reniformis (Renilla) under the control of the herpes simplex virus 

thymidine kinase (HSV-TK) promoter. 

 

The basis of the Dual-Luciferase reporter assay is the different substrate 

requirements for the firefly and the renilla luciferase proteins. The firefly 

luciferase activity is measured first by mixing the cell lysate (containing the 

expressed luciferase protein) with the Luciferase assay reagent II (LARII). To 

the same well, the substrate for the Renilla luciferase protein (Stop and Glo® 

reagent) is added and its activity measured. The Stop and Glo buffer also 

inhibits the firefly luciferase reaction measured previously. This allows both 

luciferase protein activities to be measured within the same sample. The 

Renilla reporter acts as an internal transfection control and allows for the 

normalisation of the firefly luciferase gene expression. 

 

Materials 

-PBS (1x) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4). 

(PAA) 

-Dual-Luciferase® Reporter assay System (Promega) contains 

-Passive Lysis Buffer (PLB, 5x) (11.5 g Na2HPO4, 2 g KH2PO4, 80 g NaCl, 2 g 

KCl per litre. Final pH 7.4) 

-Luciferase Assay Buffer II and substrate 

-Stop and Glo® substrate and buffer 

-Vectors: pGL3 basic, pGL3 control, pRL-TK 

-RNA produced from the vector pSP-LUC containing the P2 FMO1 leader 

sequence. 
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Method 

COS-7, HK-2, 3T3-L1 fibroblasts and 3T3-L1 adipocytes were transfected 

with the above vectors as described previously. Cells were harvested 48 

hours post transfection. This was shown to be the optimal conditions for 

luciferase activity. The medium was removed and cells were washed 1x with 

PBS. 3T3-L1 fibroblasts and adipocytes require careful removal of PBS so 

cells remain intact. The amount of passive lysis buffer (PLB) added depended 

on the area of cells to be lysed. COS-7, 3T3-L1 fibroblasts, and HK-2 cells 

were lysed within 24-well plates. The amount of PLB added was 100 µL. 3T3-

L1 adipocytes were grown in 18 mm dishes and 200 µL of PLB was added. 

The plates were left on a rocking platform for 15 min. The lysate was removed 

and transferred into a 1.5 mL tube. Samples were pipette up and down and 

centrifuged briefly before performing the dual-luciferase assay. 

 

One-hundred microlitres of Luciferase assay buffer was added to wells of a 

black 96-well plate. Twenty microlitres of cell lysate was added to each well. 

Luminescence was measured using the micro plate reader, PHERAstar. 

Timing of the addition of cell lysate ensured the luciferase reaction took place 

for an equal amount of time within each well. A delay in measurement of 10 s 

took place for each well. One hundred microlitres of the Stop and Glo reagent 

was added to the wells and the Renilla luciferase activity was measured in the 

same format as the luciferase activity. The final luciferase reading for each 

assay was in the form of a ratio of firefly: renilla luciferase activity. 

 



 103 

The control plasmid, pGL3-control, contains the SV40 promoter upstream of 

the firefly luciferase reporter gene and an SV40 enhancer located 

downstream of it. Each cell line was transfected with this vector as a positive 

control for the transfection procedure. The vector pGL3-Basic was used as a 

negative control. 

2.19 RNA Transfection 
 
Materials 

-COS-7 cells 

-RNA produced in-vitro (section 2.27) from pSP-ATG and pSP ACG vectors 

(section 2.20.2 for cloning procedure) 

-LTX lipid transfection reagent (Invitrogen) 

 

Method 

Cells were transfected as shown previousy (section 2.16). The amount of 

RNA used for each individual transfection was 1µg. It was shown that a 2:1 

ratio of LTX lipid reagent to RNA was optimal for transfection (section 4.7). 

2.20 Reporter constructs used for transfection studies 
 

2.20.1 FMO1 promoter reporter constructs 
 

The promoter fragments -255_-128, -858_-128, -1243_-128, -2433_-128 and -

858_-343, -1243_-343, -2433_-343 were amplified from genomic DNA 

(BioLine Cat.no.BIO-35025) by PCR (see section 2.11).  
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For cloning of promoter fragments, HindIII and SacI restriction endonuclease 

sites were integrated into the primer sequences (see appendix). The amplified 

products were cloned into the TOPO vector as described above. Upon 

cleavage out of the TOPO vector the fragments were purified from an agarose 

gel (see above) and ligated to a HindIII/SacI digested pGL3-Basic vector. The 

resulting reporter constructs are defined as pGL-255_-128, pGL-1243_-128, 

pGL-2433_-128 and pGL-858_-343, pGL-1243_-343, pGL-2433_-343.  

 

2.20.2 FMO1 P2 leader sequence construct 
 

The FMO1 P2 leader sequence was cloned into the pSP-luc vector to test the 

significance of a polymorphism which introduces an in-frame ATG 12 bp 

upstream of the translational start site (Fig.2.3). The translation initiation 

codon of the luciferase gene is within an NcoI restriction site; this site and a 

KpnI site further upstream were used to clone the P2 leader sequence within 

the vector. This positioned the FMO1 leader sequence directly in-frame with 

the luciferase gene. Due to the 3′ sequence similarities between the FMO1 

sequence and the NcoIsite, the NcoI site could form part of the leader 

sequence.  

 

Once the leader sequence was cloned, the leader sequence contained an 

additional cytidine residue from the NcoI restriction site. This was deleted by 

site-directed mutagenesis (section 2.28), ligated (section 2.10) and 

transformed into competent cells (section 2.5). The plasmid was isolated and 

the upstream ATG was mutated to ACG using site-directed mutagenesis. 
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Both plasmids were prepared using large-scale purification and transfected 

into COS-7 cells. The luciferase activity was measured after 48 hr transfection 

using the dual luciferase assay reporter system (section 2.18).  
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Figure 2.2 Maps of pGL3 vectors and the pRL vector 
The plasmids that were used to analyze FMO1 reporter gene constructs in combination with the Dual-Luciferase® Reporter assay 
system. DNA sequences upstream of the FMO1 transcriptional start sites were cloned adjacent to the (A) pGL3-Basic vector. (B) 
The pGL3-Control vector containing the SV40 promoter sequence and was used as a positive control within the reporter gene 
assay. The pGL3 plasmids contain a luciferase gene sequence which codes for luciferase from the firefly Photinus pyralis. The third 
plasmid (C) pRL-TK contains a luciferase gene sequence which codes for the luciferase protein from the Renilla reniformis. The 
pRL-TK plasmid is used to normalise the expression of firefly luciferase to control for transfection efficiency. The plasmid images 
are taken from the Promega catalogue.
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Figure 2.3 Cloning of the FMO1 P2 leader sequence into the pSP-luc+NF fusion vector 
(A)The pSP-luc vector is shown containing a multiple cloning site upstream of the start site of luciferase and at the end of the 

luciferase gene. The vector contains a site for the SP6 bacterial polymerase to bind. (B) The sequence directly upstream of the 
SP6 binding region and the start of the luciferase gene. (C) Illustration of primers used to amplify the P2 leader sequence. The 
plasmid image and sequence is taken from the Promega catalogue. 
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2.21 Protein concentration determination 
 
 
Materials 

-DC Protein Assay (BioRad). This is a colorimetric assay for protein 

concentration. The reaction is based on the Lowry assay (Lowry et al., 1951). 

The kit is supplied as two reagents, Reagent A (alkaline copper tartrate 

solution) and Reagent B (Folin reagent). 

-BSA (1.4 mg/mL) (BioRad). 

 

Method 

BSA was used as a standard. Various amounts of BSA, ranging from 2 µg to 

20 µg, were pipetted into test tubes. The volume of each sample was adjusted 

to 100µL with water. At the same time 10 µL of mouse nuclear protein or cell-

line protein was placed in a test tube and adjusted to 100 µL.  

 

Five-hundred microlitres of reagent A was added to each test tube and 

vortexed. Four millilitres of reagent B was added to the tube and the sample 

vortexed immediately. The tubes were incubated at room temperature for 30 

min. During this time the samples turned blue. The absorbance of each 

sample at 750 nm was measured in a spectrophotometer. The standards 

were measured to produce a standard curve. The protein concentration of the 

sample was determined from the standard curve. 
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2.22 Protein Gel Electrophoresis (SDS/PAGE)  
 

Materials 

-Protogel solution (30% w/v acrylamide, 0.8% bisacrylamide (National 

Diagnostics). The amount of protogel used determines the acrylamide 

concentration of the gel. 

-TEMED (BioRad) 

-Ammonium Persulfate (10%) 

-SDS (0.1%, w/v) 

-Tris-HCl (1.5 M, pH8.8) 

-Stacking solution (0.5 M Tris-HCl, 0.4% (w/v) SDS, pH 6.8). 

-Running buffer (0.025 M Trizma base, 0.192 M Glycine, 0.1% w/v SDS) 

-Protein loading buffer (30% v/v glycerol, 0.2% w/v Bromophenol blue, 0.2% 

w/v xylene cyanol) (10x) 

-SDS PAGE broad range markers (BioRad) 

-β-mercaptoethanol 

-Coomassie staining solution (0.25% w/v Coomassie brilliant blue dye, 45% 

methanol, 10% glacial acetic acid) 

-De-staining solution (45% methanol, 10% glacial acetic acid) 

 

Method 

The integrity of the proteins from cell-line and tissue nuclear extracts was 

assessed by electrophoresis of the extracts on a 10% denaturing SDS-

polyacrylamide gel. 50mL of gel mixture contained 16.65 mL protogel, 12.5mL 

Tris-HCl (pH 8.8), 0.1% (v/v) SDS and 19.8 mL water. This solution was 

supplemented with 0.5mL of ammonium persulfate and 50 µL TEMED and 
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was poured into a gel mould and overlaid with 0.1% SDS. The gel was 

allowed to set overnight.  

 

The resolving gel was overlaid by 10 mL of 3% stacking gel (1.3mL Protogel, 

2.5 mL stacking buffer, 6.1 mL water, 50 µL ammonium persulphate and 10 

µL TEMED). The stacking gel was left to set for 1 hr. 

 

The protein samples were mixed with an equal volume of loading buffer and 

boiled for 3 min. β-mercaptoethanol was added to each sample to a final 

concentration of 20% (v/v). The samples were centrifuged for 2 min and 

loaded on a gel. The gel was electrophoresed with running buffer at 25 mA 

until the proteins stacked and then at 35 mA for separation. 

 

After electrophoresis the gel was stained overnight with Coomassie blue 

staining solution.  

2.23 Electrophoretic Mobility Shift assay 
 
Materials 

-Infra-red labelled forward and unlabelled reverse primers (10ng/µl) 

-Binding buffer (50 mM hepes (pH 7.6), 2.5 mM DTT, 60% glycerol (v/v), 250 

mM NaCl, 0.25% NP40 (Sigma)). Aliquots of buffer were stored at -20ºC. 

-Annealing buffer (10x) (0.1 M Tris-HCl (pH 8), 0.1 M MgCl2, 0.5 M NaCl) 

-Poly dI/dC (dissolved in 5 mM NaCl to a final concentration of 4µg/µL and 

stored in aliquots at -20ºC) (Sigma). 
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-Protogel solution (30% w/v acrylamide, 0.8% bisacrylamide) (National 

Diagnostics) 

-Tris borate-EDTA buffer (TBE) (10X) (0.89 M Tris-base, 0.09 M Boric acid, 

20 mM EDTA (pH 8)). 

-TEMED (BioRad) 

-Ammonium persulfate (10%) (National Diagnostics) 

-60% glycerol 

-Proteinase K (1.5 mg/mL) (Qiagen) 

-SP1 competitive oligonucleotides (Eurofins MWG) 

 

Method 

A 4% non-denaturing polyacrylamide gel was made. 50mL of the gel solution 

contained 6.66 mL of protogel, 2.5 mL of TBE (10x), 40.29 mL water, 50µl 

TEMED, 50 µL ammonium persulfate. The mixture was poured into a mould 

with a comb and the gel was allowed to set at 4ºC overnight. 

Nuclear extracts were thawed on ice. 10 µg of extract was mixed with 4 µL of 

binding buffer and 1 µL of Poly dI/dC. The volume of the binding reaction was 

adjusted to 20 µL with water and incubated on ice for 10 min. 

10 ng of an appropriate DNA fragment, which has been labelled at the 5′end 

with an IR-700 dye, was added to the binding reaction. The binding reaction 

was incubated for a further 30 min to allow nuclear proteins to bind to the 

DNA. A binding reaction, without the labelled DNA, was also set-up. Also, in 

further reactions proteinase K (5 µg) was added to the binding reaction after 

the 30 min incubation. These reactions were further incubated at 37ºC for 15 

min, before loading on to the gel. 
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The samples were mixed with 2 µL of 60% glycerol. This is to allow the 

sample to enter the wells efficiently. The samples were loaded on to a gel that 

had been pre-run for 30 min. This is to allow for the correct flow of charged 

ions. The gel was electrophoresed at 150V at 4ºC in 0.5x TBE in a PROTEAN 

II xi cell-electrophoresisapparatus (Bio-Rad) for 4 hours. After electrophoresis 

the gel was removed with gel plates attached and imaged using an Odyssey® 

Infrared Imaging System. 

 

In some instances, 100-fold molar excess of an unlabelled competitor oligo 

was added to the binding reaction. The competitor DNA used contained 

consensus binding sites for transcription factors predicted to bind within the 

FMO1 promoters. Competition oligonucleotides were made by annealing 

single stranded oligos to create a double stranded oligo. The oligos were 

annealed by adding equimolar amounts of each oligo in 1x annealing buffer. 

The oligos were annealed by heating to 95ºC in a heat block for 5 minutes. 

The heat block was switched off and cooled to room temperature to allow the 

annealing of oligos.  

2.24 Real-time PCR 
 
Real-time PCR was used to quantify different mouse Fmo1 transcripts. The 

cDNA used for real-time PCR experiments were synthesized as described 

previously. The Bio-Rad iCycler iQ5 Real-time PCR instrument was used to 

carry out all real-time PCR experiments. 
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Materials 

-mastermix (PrimerDesign) 

-Forward and reverse primers at 10 ng/µL (PrimerDesign) 

-cDNA (see section 2.12) 

 

Method 

Real-time PCR reactions were made up of 2x master mix, 0.5µM forward and 

reverse primers, RNase free water, and cDNA template. A mastermix was 

made for each gene to be quantified. This contained 2x mastermix, 0.5 µM 

forward and reverse primers, and RNase free water. The mastermix was 

added to wells of a 96-well plate. The cDNA to be used was diluted by 10-fold 

prior to its production. Five microlitres of the diluted cDNA was individually 

added to each well. The plates were centrifuged briefly in a 5804 Eppendorf 

centrifuge at a speed of 1000 rpm. The samples were analysed using the Bio-

Rad iCycler iQ5 Real-time PCR instrument. Amplification parameters are 

shown in table 2.2. The annealing temperature was set at 60ºC as all primers 

used are designed to amplify most efficiently at this temperature. After 

amplification, a melt curve was undertaken to determine the number of 

products being formed within the PCR reaction. 
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Programme Cycle and temperature Time 

Programme 1 1 cycle 
 

 
95°C 10 min 

 
annealing temp/extension 1 min 

Programme 2 40 cycles 
 

 
95°C 15 sec 

 
annealing temp/extension 1 min 

Programme 3 80 cycles 
 

 
60°+0.5°C 10 sec 

 

Table 2.2 PCR cycling used for quantitative real time PCR 
Cycling reactions shown above were used for all real-time PCR experiments. 
Cycling conditions for a DNA melt curve are shown as Programme 3. 
 

 

 

 

 

 

 

 

 

 



 115 

2.24.1 Calculation of relative amounts of FMO1 transcripts 
within and between tissues 
 
The quantities obtained from the Bio-Rad iCycler iQ5 Real-time PCR 

instrument are ct values. A ct value is the cycle number at which the 

exponential phase of the amplified product is observed. The point at which the 

Ctvalue is taken is manually determined. The ΔΔCtmethod was used to 

calculate fold differences between samples and relative differences in 

amount. The ΔΔCt makes the assumption that the number of amplicons 

doubles after each cycle. This assumption can be made in these real-time 

PCR experiments as the primers have been pre-determined to be close to 

100% efficient. The data can be expressed in fold difference or relative 

quantities. I have used both throughout my research.  

 

To determine fold difference between samples, the ct value is normalised to 

the reference gene ct value for that sample. This gives a relative Ct value. 

This Ct value is then converted from a logarithmic function to a linear function. 

This value will represent the relative number of molecules of the transcript 

within the sample. This value, which comparisons would be made to, is 

converted to 1 and all other values will be relative to this. 

 

To determine the relative difference the Ct value is linearly converted before 

being normalised to the reference gene. The linear function of the sample is 

normalised by the linear function of the reference gene by dividing the sample 

into the reference value. This gives a sample value relative to the reference 

gene.  
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2.25 3T3-L1 differentiation  

 
Materials 

-3T3-L1 cells were purchased from the ECACC™ and ATCC™® 

-3T3-L1 pre-adipocyte medium -DMEM with 4 mM L-glutamine adjusted to contain 

1.5 g/L sodium bicarbonate and 4.5 g/L glucose [ATCC™®; Cat. No. 30-2002], 90%; 

calf bovine serum, and 10% [ATCC™®; Cat. No. 30-2030] 

-3T3-L1 Differentiation medium (ZenBio) (cat# DM-2-L1) – DMEM / Ham‟s F – 12 

medium (1:1, v/v), HEPES pH 7.4, Foetal bovine serum (FBS), biotin, pantothenate, 

human Insulin, dexamethasone, penicillin, streptomycin, amphotericin B, 

isobutylmethylxanthine, PPARγ agonist. 

-3T3-L1 Adipocyte medium (ZenBio) (cat# AM-1-L1) - DMEM / Ham‟s F – 12 

medium (1:1, v/v), HEPES pH 7.4, foetal bovine serum (FBS), biotin, pantothenate, 

human insulin, dexamethasone, penicillin, streptomycin, amphotericin B. 

Method 

Upon arrival from the supplier, 3T3-L1 cells were plated and grown in 3T3-L1 pre-

adipocyte medium to a low density (30-50%) and then were stored in DMSO within 

liquid nitrogen. This is to ensure the cells do not contact each other, as this will result 

in differentiation being compromised. A new stock of cells was used every time a 

differentiation experiment was undertaken. Cells were seeded into Nunclone T75 

tissue culture flasks (MG scientific) and grown in a Heraeus incubator at 37ºC. At 

50% confluency, cells were washed twice with PBS, detached with 0.25% trypsin- 

EDTA in 1x PBS and pelleted by centrifugation at 1900 rpm for 2 min, at room 

temperature, in a bench top centrifuge (Tube). The pellet was resuspended in pre-

adipocyte medium and seeded into either Nunc T75 flasks or 24-well tissue culture 
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plates depending on the amount of adipocytes required. Cells were grown to 100% 

confluency in 1mL of pre-adipocyte media (24-well plate) or 20mL (T75 flask) and left 

for a further two days. The pre-adipocyte media was removed and replaced with 

3T3-L1 differentiation media. This remained on the cells for 3 days. A percentage of 

the 3T3-L1 differentiation media was removed (0.6 mL for 24-well format, 12 mL for 

T75 format) and replaced with 3T3-L1 maintenance media (0.8 mL for 24-well 

format, and 16 mL for T75 format). The cells were left for at least a further seven 

days before cells were used for experiments. The media was changed every 2-3 

days depending on media coloration. 

2.26 3T3-L1 adipocyte nucleofection 
 
Materials 

-3T3-L1 adipocytes (see section 1.20) 

-Nuceleofector solution L (Lonza) 

-DMEM [ATCC™®; Cat. No.30-2002], 10% foetal bovine serum [ATCC™®; Cat. No. 

30-2020] 

-Plasmid DNA 

 
Method 
 
3T3-L1 adipocytes were differentiated as described previously. Cell-culture medium 

was removed from the adipocytes. The cells were washed once with PBS and 

subsequently trypsinised using 0.25% Trypsin-EDTA. Cells were incubated for 10 

minutes at 37ºC. Cells were removed and the solution within the flask moved around 

the cell to help cells to become detached. Once cells were detached, the trypsin was 

neutralised using post-differentiation medium. The cells were pipetted up and down 

to remove clumps of cells. The culture media was pipetted into Falcon tubes and 
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centrifuged at 90 g for 10 minutes at room temp. Cell media was removed 

completely. 100 µL of nucleofector solution L was added to the cell pellet and pellets 

gently resuspended by pipetting up and down. Once resuspended, the DNA for 

transfection was added to the cell/solution L sample and mixed gently by pipetting. 

This solution was then transferred to a cuvette and placed in the nucleofector. The 

nucleofection conditions have been pre-optimised; by the manufacturer, for 3T3-L1 

adipocytes and the program used is A-033. After nucleofection the cells were 

transferred directly into an 18 mm gelatin-coated culture dish, which had been pre-

incubated at 37ºC, and contained post-differentiation media. The cells were gently 

placed into the incubator and left overnight. The next day the media was changed to 

remove dead cells (caused as a result of the nucleofection). Reporter gene assays 

were carried out after 48 hr using the dual reporter luciferase assay (described in 

section 2.18). 

 
 

2.27In-vitro RNA production 
 
Materials 

-Plasmid template 

-mMESSAGE mMACHINE® kit (Ambion) containing: 

-SP6 Enzyme mix – buffered 50% glycerol containing RNA polymerase, RNase 

inhibitor, and other components 

-10x Reaction buffer 

-2xNTP/CAP – neutralised buffer solution containing 10 mM ATP, CTP, UTP and 2 

mM GTP and 8 mM cap analogue 

-TURBO DNase I (2U/µl) 
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-Ammonium acetate stop solution – 5 M ammonium acetate solution, 100 mM EDTA 

-Lithium chloride precipitation solution - 7.5 M lithium chloride, 50 mM EDTA 

 

Method 

RNA was transcribed in vitro from the pSP-luc plasmid containing the FMO1 P2 

leader sequence (see section 2.20.2 for cloning protocol). The plasmid was first 

linearised with restriction digest (see section 2.7) and was purified by being passed 

through a Qiagen silica based column (see section 2.9.1). The DNA was quantified 

spectrophetomically (see section 2.4).  

 

1 µg of DNA was added to a microfuge tube. 10 µl of 2xNTP/CAP, 2 µL 10x reaction 

buffer and 2 µL of enzyme mix was added to this and made up to a total reaction 

volume of 20 µL. The reaction mixture was incubated for 2h at 37ºC. 1 µL of turbo 

DNase I was added and the reaction was incubated for a further 15 min to digest the 

template DNA. The RNA produced from the reaction was purified by lithium chloride 

precipitation. Thirty microlitres of nuclease free water and 30µl of lithium chloride 

precipitation solution. This solution is chilled for 1 hour at -20oC. The solution is 

centrifuged at 13,000 rpm in a benchtop centrifuge for 15 min. The solution was 

decanted and ~1.4 mL of 70% ethanol added to the RNA pellet. The solution was 

centrifuged for 1 min at 13,000 rpm. The RNA pellet was air dried and resuspended 

in 20 µL of nuclease free water. 

 

2.28 Phusion® site-directed mutagenesis 
 
Method 
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The Phusion describes the enzyme used in the mutagenesis protocol. It is a highly 

efficient, accurate, hot-start DNA polymerase. Site-directed mutagenesis occurs 

through replication of the template DNA. Primers were designed to replicate the 

plasmid template and to introduce the desired mutation in the replicated products. 

The primers are designed back to back so to replicate the whole plasmid template 

resulting in linear PCR products representing the whole plasmid sequence. 

 

To introduce a single point mutation the middle of the forward primer contains the 

desired point mutation. The reverse primer is designed back to back to this primer. 

To create deletions, primers are designed back to back surrounding the DNA 

sequence that you wish to delete. This results in the amplified products of the 

template containing the desired point mutation or removing the sequence which is 

not amplified. 

 

2.28.1 FMO1 promoter mutation constructs 
 
The FMO1 pGL3 reporter constructs pGL-255_-128 and pGL-858_-343 was used as 

templates to create mutant reporter constructs. Two reporter gene constructs, 

containing point mutations within the pGL-255_-128, were made. Three reporter 

gene constructs, two of which contained point mutations and a third with a deletion 

was created (see results chapter 4.7 for location). 

 

The site-directed mutagenesis reaction was set-up with 5x Phusion high fidelity 

buffer (10µL), 10 mM dNTPs, forward and reverse primers (0.5 µM) and the template 

DNA (1 ng). The reaction was made up to 50 µL with nuclease free water. 
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Amplification parameters are shown in table 2.3. The annealing temperature is 

recommended from 65-72ºC and was arbitrarily chosen at 65ºC. This was successful 

for all mutagenesis reactions. 

 

The products of the replication are linear. The primers used were 5′ phosphorylated. 

The two linear strands were ligated to form circular DNA. The ligation reaction 

contained 25 ng of the mutagenesis product, 5 µL of 2x T4 Quick-stick ligation buffer 

mix. 0.5µl of quick T4 DNA ligase, and the reaction was made up to 5 µL. The 

reaction was left at room temperature for 5 minutes then transformed into competent 

cells (see section 2.5 for transformation protocol). 

 

 

Programme Temperature Time 

Programme 1 1 cycle 
 

 
95°C 10 min 

 
65°C 30 sec 

 
72°C 10 min 

Programme 2 25 cycles 
 

 
95°C 10 sec 

 
annealing temp 30 sec 

 
72°C 10 min 

Programme 3 1 cycle 
 

 
72°C 10min 

 

Table 2.3 PCR cycling conditions for site-directed mutagenesis 
 

2.29 DNA sequencing 
 
Materials 

-ABI BigDye Terminator v3.1 Cycle Sequencing Kit (cat no. 4336917) 
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-2/3rds HM-MC (40% PEG-8000), 1 M NaCl, 2 mM Tris-HCl pH9, 0.2mM EDTA, 3.5 

mM MgCl2). 

-HM Better Buffer, 200 mM Tris-HCl pH9, 5 mM MgCl2  

 

Method 

2.29.1 PCR for sequencing 
 
DNA was first amplified by PCR in 96-well plates (see 2.11). The PCR products were 

cleaned within the 96-well plate. 3x volume (30 µL) HM-MC was added to each PCR 

reaction (10 µL), a lid applied to each plate, and the contents were thoroughly mixed. 

The plates were centrifuged at 4000 rpm within a Centra 4b centrifuge to pellet the 

DNA. The lids were removed, and the plates inverted on tissue paper and placed 

back into the centrifuge. The plates were centrifuged at 20 g for 30 s and inverted on 

tissue paper to remove the HM-MC along with free nucleotides and other reagents 

from the PCR reaction. One-hundred and fifty microlitres of ethanol was added to the 

pelleted DNA, the lid replaced, and the samples centrifuged for 25 min at 4000 rpm 

in the Centra 4b centrifuge. The plates were removed from the centrifuge, inverted 

on to tissue paper, and centrifuged at 20 g for 30 sec. This removes salts from the 

DNA. The lids were removed and the plate left to stand for the pellets to dry. 10 µL of 

nuclease-free water was added to the DNA pellets and samples were left for 15 min 

to allow DNA to resuspend.  
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2.29.2 Sequencing reaction 
 
The amount of DNA to be used within the sequencing reaction was determined by 

electrophoresis of 1 µL of cleaned PCR product. If a strong band was visualised, 2 

µL of the PCR product would be used in the sequencing reaction. Two separate 

master mixes were made, one for a forward sequencing reaction, and one for a 

reverse sequencing reaction. These reactions were made up of 5 x ABI buffer (2 µL 

per reaction), Big Dye v3.1 (0.5 µL), primers (1 µL each at 1.6 µM), The reaction is 

made up to 8 µL with water. For a 96-well plate this was scaled up to 100 reactions 

per sequencing reaction. 8 µL of the mastermix is added to each PCR product. The 

sequencing reactions are carried out with the conditions set out in table 4. 

 

2.29.3 Cleaning the sequencing reaction 
 
The sequence reactions are mixed with 2.5 µL of 125 µM EDTA and then 30 µL of 

100% ethanol was added to each well. The contents of the wells are thoroughly 

mixed and centrifuged at 4000 rpm for 60 min. The plates were removed and 

inverted on tissue paper and centrifuged at 100 rpm for 1 min. 30 µL of 70% of 

ethanol was added to the wells and the samples centrifuged for 20 min at 4000 rpm. 

The plates were inverted on to tissue paper and centrifuged at 100 rpm for 1 min. 

The lids of the plate were removed and the samples air-dried for 15 min at room 

temperature. The samples were analysed using the Applied Biosystems Genetic 

Analyzer 3730. 
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2.29.4 Phase haplotype reconstruction 
 
The programme Sequencher was used to identify genetic polymorphism in 

individuals within the sequenced promoter regions. A database was created in 

Microsoft Excel of genotype data of the individuals sequenced. The genotypes of 

each individual were ordered as they appear along the chromosome in a text 

document. Haplotypes were constructed for each population studied (see chapter 5 

for populations and analysis) using PHASE software (Stephens et al., 2001). 

2.30DNaseI capillary footprinting 
 
The development of a method for analysing regulatory polymorphism is described in 

chapter 6. The method describes the use of capillary DNase I footprinting to test the 

effects of regulatory polymorphism. The main method is set out within this chapter. 

The method for DNase I digestion, the binding reaction and dideoxy termination 

sequencing is set out below. 

2.30.1 Labelling DNA 
 

The template used for footprinting was labelled using PCR. The 5′ primer contained 

a fluorescent protein FAM.  The amplified products from the PCR therefore 

contained the 5‟ FAM label. The PCR method is set out in section 2.11. 

 

2.30.2 Binding reaction 
 

Materials 

-FAM labelled forward and unlabelled reverse primers (10 ng/µl) 
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-Binding buffer (50 mM hepes (pH 7.6), 2.5 mM DTT, 60% glycerol (v/v), 250 mM 

NaCl, 0.25% NP40 (Sigma)). Aliquots of buffer were stored at -20ºC. 

-Poly dI/dC (dissolved in 5 mM NaCl to a final concentration of 4 µg/µl and stored in 

aliquots at -20ºC) (Sigma). 

Method 

- A 50 µL total reaction volume was used. The Binding buffer (5x), primers (1 µL of 

each), 1 µL of poly dI-dC and dH2O was added to a chilled tube on ice for 5 minutes. 

Fifty ng of template DNA was added and the mixture was gently mixed using a 

pipette tip. The binding reaction was left for 30 min to allow for DNA-Protein binding 

to take place. 

 

2.30.3 DNase I digestion 
 

Materials  

DNase I, 2000U/ µl (NEB)  

1X DNase I Reaction Buffer: 10 mM Tris-HCl, 2.5 mM MgCl20.5 mM CaCl2 (NEB) 

 

Method 

After 30 minutes of the binding reaction 50 µL of DNase1 reaction buffer is gently 

added. 0.005 U of DNase I enzyme is added and the sample is left for 5 min at room 

temperature. The reaction is terminated by the addition of 100 µL of 0.5 M EDTA. 

Once terminated the DNA is purified as described in section 2.9. 
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2.30.4 Capillary electrophoresis and data analysis 
 

The materials and methods are set out in section 6.2.5. 

2.30.5 Dye terminator sequencing 
 
Materials 

-Plasmid DNA (template). 

-Thermo Sequenase Dye Primer Manual Cycle Sequencing Kit (USB CORP) 

containing: 

-Reaction Buffer (concentrate): 150mM Tris-HCl pH9.5, 35mM MgCl2 

-ddA Term Mix: 300 μM each of dATP, dCTP, dTTP & 7-deaza-dGTP, 3 μM ddATP 

-ddC Term Mix: 300 μM each of dATP, dCTP, dTTP & 7-deaza-dGTP, 3 μM ddCTP 

-ddG Term Mix: 300 μM each of dATP, dCTP, dTTP & 7-deaza-dGTP, 3 μM ddGTP 

-ddC Term Mix: 300 μM each of dATP, dCTP, dTTP & 7-deaza-dGTP, 3 μM ddTTP 

-Thermo Sequenase DNA polymerase: 20 U/μL with 0.03 U/μL Thermoplasma 

Acidophilum inorganic pyrophosphatase in 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 

1 mM DTT, 0.5% Tween-20, 0.5% Nonidet™ P-40, 50% glycerol. 

 

Method 

The Dye termination sequencing reactions were setup as follows: A mastermix was 

made containing 200 ng plasmid DNA (template), 2.2 µL of reaction buffer, 1µL 

labelled primer (FAM), this is made up to a volume of 19 µL with nuclease free water. 

1 µL of the Thermosequenase enzyme is added to the mastermix. 4 µL of the mix is 

aliquoted into 4 tubes (kept on ice), one tube for each of the terminating nucleotides. 

Each nucleotide termination mix is added to the appropriate tube. The tubes are 
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mixed and dye terminator sequencing reactions are carried out using the 

amplification procedure shown in the table below. 

 

 

 

Programme Temperature Time 

Programme 1 40 cycles   

  95°C 30 sec 

  55°C 30 sec 

  72°C 60 sec 

 

Table 2.4 Amplification parameters used for dye-terminator 
sequencing reactions 

 

2.31 Software Packages 
 
Transcription factor binding prediction tools   

-PROMO v3.0 (Messeguer et al., 2002), 

http://alggen.lsi.upc.es/recerca/menu_recerca.htmL 

A virtual laboratory for the study of transcription factor binding sites in DNA 

sequences 

-Ali Baba v2.1, http://www.gene-regulation.com/pub/programs/alibaba2/index.htmL 

-MatInspector 8.0 (Cartharius et al., 2005), 

http://www.genomatix.de/online_help/help_matinspector/matinspector_help.htmL 

-ApE plasmid editor v2.0 

Sequence alignment and primer design 

-ApE plasmid editor v2.0 

Haplotype phase construction 

http://www.gene-regulation.com/pub/programs/alibaba2/index.html


 128 

-PHASE (Stephens et al., 2001) 

Di-deoxy sequence analysis 

-Sequencher® v4.10.1 

-geNORM http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf 
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Chapter 3 

Profiling of Fmo1 gene expression in 

mouse tissues and cell-lines 
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Chapter 3: Profiling of Fmo1 gene expression in mouse 
tissues and cell-lines 
 

Introduction 

Several studies have shown an inter-individual variation of FMO1 protein and mRNA 

levels of between 10-20 fold (Koukouritaki et al., 2002). The expression of FMO1 

differs in different tissues of both human (Koukouritaki et al., 2002; Yeung et al., 

2000; Zhang and Cashman, 2006) and mouse (Janmohamed et al., 2004).  FMO1 

mRNA and protein levels are not known to be affected in response to exogenous 

agents and therefore differences in FMO1 expression are likely to be due to genetic 

variation. The genetic variations that cause changes in FMO1 expression will 

potentially be good indicators of an individual‟s response to drugs metabolized by 

FMO1. Locations of SNPs in regions of DNA that are critical for gene expression are 

predicted to alter the amount of FMO1 available for drug metabolism.  

 

Previously it has been shown that the gene encoding FMO1 in human and mouse 

has three promoters and transcriptional start sites, resulting in three distinct 

transcripts (Figure 3.1). The promoters have been defined as P0 (upstream of exon 

0), P1 (upstream of exon 1) and P2 (starting within intron 1, upstream exon 2). The 

transcripts differ in their 5′ untranslated leader sequences. Exon 0 splices to exon 2; 

exon 1 splices to exon 2; or, part of intron 1 forms the leader sequence when 

transcription begins from P2 upstream of exon 2. For each transcript, translation 

initiation begins at the ATG located in exon 2. 

 

An examination of the region upstream of the three transcriptional start sites shows a 

number of SNPs in the human gene (see chapter 5: Sequencing of human FMO1 
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promoters). This variation suggests that differences in promoter base sequence may 

be a source of the variability, observed in the amount of FMO1, in different 

individuals. A number of studies have shown the effect of polymorphisms within 

promoter regions that affect mRNA production of genes for other drug metabolizing 

enzymes (Johnson et al., 2005). 

 

As mentioned above, the expression of the gene for FMO1 is different in different 

tissues. We would therefore like to know which of the three promoters is used in 

different tissues. SNPs shown to affect a tissue-specific promoter may influence 

expression of the protein in a single tissue or a limited number of tissues. This 

chapter describes promoter usage of the Fmo1 gene in different tissues of the 

mouse and in selected cell lines. 

 

Fmo1 (-/-), Fmo2 (-/-), Fmo4 (-/-) mice show a phenotype of altered energy 

homeostasis (Omar, 2009; Veeravalli et al., Unpublished). The knockout mice have 

less fat than age-matched, wild-type mice and the ratio of pre-adipocytes to 

adipocytes is altered. To further understand the role of FMO1 in fat, and to 

understand the regulation of the gene in this tissue, we have used 3T3-L1 fibroblast 

cells that have been differentiated in vitro into adipocytes (see Chapter 1: 

Introduction). Each of the three Fmo1 transcripts has been quantified at different 

stages of 3T3-L1 cell differentiation.  

 

 

 



 132 

3.1 Quantification of the expression of Fmo1 in different mouse 
tissues by real-time PCR 
 
Figure 3.1 shows the different splicing events that produce the three different 

transcripts of the FMO1 gene. The same splicing events occur in both human and 

mouse. Previously P0 has been shown to be active in mouse liver, and P1 and P2 in 

mouse kidney (Shephard et al., 2007). Primer pairs were designed to amplify regions 

specific to each of the three alternatively spliced transcripts (see Figure 1.4). In 

addition to the quantification of each individual transcript in a tissue, the total FMO1 

transcript was also quantified using primers designed to amplify the protein-coding 

region. The primers used are given in the appendix. Quantifying each individual 

transcript and the total FMO1 transcript amounts in a tissue/cell line will reveal, for 

example, if there are additional, unknown transcripts or if there is attenuation of 

transcription from different promoters. 

 

3.1.1 Selection of reference genes to normalise Fmo1 expression 
 
To normalise the quantity of Fmo1 transcripts produced in different tissues, 

reference genes were co-amplified in the PCR reaction. The reference gene is one 

that is expressed at the same level in the different tissues tested, and controls for 

differences in the amount of RNA in each sample to be amplified.  There are a 

number of reference genes that are classically chosen for this purpose. However, the 

expression of these traditionally chosen genes can vary between samples depending 

on the tissue or biological context. Because FMO1 mRNA expression levels were to 

be quantified in six different tissues, a selection of reference genes was tested for 

their expression variability between the different mouse tissues to be analysed. This 
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would ensure accurate quantification of Fmo1 expression within the different mouse 

tissues. 

 

A published algorithm called geNorm was used to choose the most stably expressed 

genes in each tissue (Vandesompele et al., 2002). The geNorm algorithm functions 

by comparing the expression profile of each reference gene with all other reference 

genes tested. The reference genes with the most similar profile to the other 

reference genes will be those whose expression is most constant in a tissue.  

The algorithm ranks the stability of the reference genes. This is achieved by 

calculating the standard deviation between the logarithmically transformed 

expression ratios (Figure 3.1A). The average standard deviation (M) is calculated for 

each reference gene compared to the other reference genes. The lower the value of 

M, the more stable the expression of the gene between different tissues. The most 

stably expressed genes between the different mouse tissues were found to be β-

actin and calnexin (CANX), a gene that encodes a member of the calnexin family of 

molecular chaperones (Figure 3.1B). 

 

The geNorm algorithm calculates the pairwise variation between the reference genes 

in different tissues. The number of reference genes to use to normalise gene 

expression is dependent on the amount of variation observed between the different 

reference genes. The amount of pairwise variation between the reference genes 

analysed in different mouse tissues is high (Figure 3.1C). This is to be expected as a 

number of diverse tissues were tested. Thus, to define gene expression accurately, 

between the different tissues, a number of reference genes need to be analysed. 

This will ensure accurate gene expression comparisons between different tissues. 
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The algorithm predicts higher accuracy of gene expression when three reference 

genes are used compared to two. The three most stably expressed reference genes 

were elf4e, CANX, and β-actin. These genes were chosen to normalise Fmo1 gene 

expression in the different mouse tissues. The data given throughout the thesis has 

been normalised to CANX. 

 

The primers for quantifying Fmo1 transcripts were designed by the company Primer 

Design (http://www.primerdesign.co.uk/) to be 100% efficient in their amplification 

and therefore the quantity of each Fmo1 transcript can be compared to each-other. 

When primer efficiencies are not comparable it can lead to differences in 

amplification and therefore the amounts of different mRNAs cannot be compared 

accurately.  

 

The tissues analysed for Fmo1 expression by quantitative real-time PCR were 

kidney, liver, white and brown fat, brain, lung and muscle. Kidney and liver were 

chosen as these tissues are known to express Fmo1 and are key tissues in drug 

detoxification. The other extra-hepatic tissues which were examined play roles in 

energy homeostasis. In mouse kidney, FMO1 cDNAs have been observed starting 

from the P0, P1 and P2 transcriptional start site. Only the P0 transcript is observed in 

the liver. It has not yet been determined which transcripts are produced in the other 

tissues to be investigated. 
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Figure 3.1 Selection of suitable reference genes for the normalisation of Fmo1 expression in different mouse 
tissues 
(A) The table shows the expression of each reference gene relative to each other in different mouse tissues. (B) The average 
expression stability of each reference gene. This is calculated from the pairwise variation of each reference gene when compared 
to other reference genes. (C) The optimal number of reference genes to be used to accurately define gene expression. CANX and 
β-actin are shown to be equally stable. The data throughout the thesis is normalised to CANX. 
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3.1.2 Quantification of the FMO1 global transcript in different mouse 
tissues 

 
Using primers designed within the protein-coding region the total transcript amount 

for FMO1 was determined (Figure 3.2). This is referred to as the global expression. 

Fmo1 expression is highest in the kidney, where global expression in this tissue, 

relative to the reference gene CANX, is 6.2 ± 4.4. Global expression was measured 

in lung (3.7 ± 0.71), brown fat (3.7 ± 1.59), white fat (1.6 ± 0.44) muscle (0.55 ± 0.15) 

and brain (0.06 ± 0.01). The high standard error shown in kidney was due to the 

variation in expression between triplicate mice. 

 

 It has previously been shown by protein and mRNA quantification methods that 

Fmo1 is expressed highly in the kidney. This validates the data obtained by RT-PCR. 

It has previously been shown that FMO1 is expressed in brown and white fat. The 

RT-PCR data confirms and extends this data. Because Fmo1 is highly expressed 

within these tissues it seems probable that the enzyme plays some role in fat. FMO1 

is known to be expressed in lung, and the RT-PCR data show that the amount is 

high and similar to that found in white and brown fat. Fmo1 is expressed in muscle at 

about 10% of the amount present in kidney. In brain, the Fmo1 global transcript is 

expressed at a low level compared to the reference gene.  
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Figure 3.2 Global Fmo1 expression in different mouse tissues 
The bar graph shows Fmo1 global expression levels relative to the CANX reference 
gene in different tissues. From left to right: white fat (WF), lung, muscle (MUS), brain, 
brown fat (BF), kidney (KID) and liver. All experiments were done in triplicate and the 
error bars represent the standard error. 
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3.1.3 Quantification in different mouse tissues of the P0, P1 and P2 

FMO1 mRNA transcripts (Figure 3.3). 

In kidney the P1 transcript is the most highly expressed, while the transcripts from 

P0 and P2 are both low and only represent about 1% of the transcript produced from 

the P1 promoter (Figure 3.3). Therefore the P1 transcript constitutes the majority of 

FMO1 transcripts in mouse kidney. P1 is also the predominant transcript found in 

brown fat, brain and muscle (Figure 3.3). In brown fat the P1 transcript is about 80% 

higher than the P0 and P2 transcripts. In brain, the P1 transcript is about 95% more 

abundant than each of the P0 and P2 transcripts. In white fat and muscle the P1 

transcript is about 90% more abundant than the P0 and P2 transcripts. In contrast, in 

the lung, both P0 and P1 transcripts are abundantly expressed at similar levels 

(Figure 3.3). The P2 transcript makes up only about 1% of the FMO1 transcripts in 

the lung. The P0 transcript is the only transcript present within the liver.  

 

3.1.4 The relative expression of the P0, P1 and P2 transcripts 

combined to that of the global expression of FMO1 mRNA (Figure 3.4) 

The P0, P1 and P2 transcripts were each quantified by amplification of transcript 

specific sequences. This was achieved by using an upstream, leader-specific, 

forward primer. The global FMO1 transcript was quantified using primers located 

within the protein-coding region that is present within transcripts that are expected to 

be translated into FMO1 protein.  

 

In brown fat, kidney, and liver the global transcript amount is similar to that of the 

combined P0, P1, P2 transcripts. The expression of the P0, P1 and P2 transcripts in  
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Figure 3.3 Relative gene expression of Fmo1 mouse transcripts within different mouse tissues 

P0, P1 and P2 and global (shown as GLO) relative expression in (A) Kidney (B) Liver (C) Muscle (D) Brain (E) Lung (F) Brown fat 
(G) White fat. Fmo1 expression is normalised to the mRNA levels of CANX. All experiments were done in triplicate and the error 
bars represent the standard error. The P1 transcript is significantly more highly expressed than the P0 and P2 transcript in the 
kidney (p<0.01), brain, brown fat, white fat and muscle (p<0.02). In liver, the P0 transcript is significantly higher than the P1 and P2 
transcript (p<0.02). In lung the P0 and P1 transcript is significantly higher than the P2 transcript (p<0.05).
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kidney is 1.65 ± 0.64 higher than the global expression. In brown fat, the expression 

of P0, P1 and P2 added together is 1.27 ± 0.58 times higher than the global 

expression. In liver, the expression of P0, P1 and P2 added together is 1.32 ± 0.2 

higher than the global expression. These differences are not significant and therefore 

it is likely that the P0, P1 and P2 transcripts account for the overall Fmo1 global 

expression within these tissues.  

 

In the lung, white fat, brain, and muscle, the expression of P0, P1 and P2 added 

together is significantly different from the global expression. In the lung the P0, P1 

and P2 transcripts added together are 4.13 ± 0.29 times higher than the global 

expression. These differences are significant (p<0.02). In white fat, the expression of 

P0, P1 and P2 added together is 3.07 ± 0.27 times higher than the global 

expression. This expression difference is significant (p<0.03). In brain, the 

expression of P0, P1 and P2 added together is 116.9 ± 21.42 times higher than the 

global expression. This expression difference is significant (p<0.006). In muscle, the 

expression of P0, P1 and P2 added together is 16.1 ± 4.4 times higher than the 

global expression. This expression difference is not significant (p<0.08). 

 

It seems likely that these differences are due to the production of shorter, attenuated 

transcripts. These transcripts may contain only the 5′ region of the mRNA and would 

be detected only when primers are used that amplify from within the 5′ leader 

sequence. The relative expression data of P0, P1 and P2 transcripts (Figure 3.4) 

indicate that attenuated transcription is most likely from the P1 promoter.  

In whole brain, Fmo1 global expression is 0.06 ± 0.01 fold higher than the reference 

gene and shows very little variation between mice. This is a relatively low amount of 
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expression relative to the other mouse tissues quantified for Fmo1 expression. 

However, the brain is a complex tissue and the expression of Fmo1 is localised to 

neurons of the cerebrum and in the choroid plexus (Janmohamed et al., 2004). The 

combined P0, P1 and P2 transcript amount in brain is about 100-fold higher than that 

of the global FMO1 mRNA amount. Each individual transcript is present in amounts 

greater than that of the global transcript. Therefore, it seems that in the brain, 

transcription is attenuated from each of the three promoters. FMO1 protein is, 

however, present in mouse brain (Hernandez et al., 2009; Itoh et al., 1997). The 

results suggest that the amounts of protein produced might be tightly regulated via 

an as yet unknown mechanism of transcription attenuation.  

 

In muscle Fmo1 global expression is 0.55 ± 0.15 relative to the reference gene. The 

total, combined, relative expression of the P0, P1 and P2 transcripts is 8.1 ± 0.98. 

This represents a 15-fold higher expression of the individual transcripts than that of 

the global transcript. This increase is mostly due to the abundance of P1 transcripts. 

As with other tissues, transcription from P1 seems highly active, but transcription 

seems to be attenuated.   
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Figure 3.4 Comparison of the total relative expression of the Fmo1 P0, 
P1, and P2 transcripts with the relative expression of the Fmo1 global 
transcript 
(A) Relative expression of the P0, P1 and P2 transcripts next to the Fmo1 global 
expression for ease of comparison in brain and muscle.(B)Relative expression of the 
P0, P1 and P2 transcripts next to the Fmo1 global expression for ease of 
comparison in brown fat, white fat, kidney, liver and lung.  All transcript expression 
was normalised to the expression of the CANX gene. All values shown are relative to 
CANX gene expression within each tissue. All experiments were done in triplicate 
and the error bars represent the standard error. 
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3.2 Expression of Fmo1 in 3T3-L1 cells undergoing differentiation to 
adipocytes 
 
A Fmo1 mouse knock-out line has led to advances in understanding an endogenous 

role for FMO1. The phenotype of the mouse indicates that FMO1 plays a role in the 

regulation of energy homeostasis. The mice have decreased body weight and 

decreased amounts of white adipose tissue. The mouse transcriptome microarray 

(Su et al., 2002) and quantitative real-time data generated in our laboratory confirm 

the expression of FMO1 mRNA within white adipose tissue. Initial experiments 

carried out in undifferentiated 3T3-L1 cells show no expression of FMO1 mRNA. 

However, when differentiated into adipocytes, Fmo1 expression is switched on. The 

results are described in the next section. The rationale for examining Fmo1 

expression in differentiated cells is several-fold. 1. We will be able to identify the 

Fmo1 promoter used and activated in this cell type. 2. This will provide an 

experimental model for determining the transcription factors involved in regulating 

Fmo1 expression in adipocytes. 3. Any SNPs identified within the promoter region 

used in adipocytes can be introduced by site-directed mutagenesis and their 

influence on transcription tested using a reporter gene assay.  

 

3.2.1 Fmo1 expression during differentiation of the EACC™, 3T3-L1 
mouse fibroblast cell line 
 
The cell line that was used for our initial analysis of Fmo1 expression was obtained 

from the EACC™. The cell line is able to differentiate into adipocytes, but we 

encountered some problems with this line. The cells are able to differentiate into 

adipocytes but the efficiency is low. Only 30-40% of the cells differentiate due to the 

cells‟ loss of ability to be contact inhibited (Figure 3.5). Contact inhibition of cells is a 
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key process in the differentiation process. The cells that did differentiate required 

more than ten days to appear visually as adipocyte-like cells. Quantification of 

adipocyte markers by RT-PCR was carried out to ensure adipocyte differentiation 

had occurred. GAPDH was chosen as the house-keeping gene as it was previously 

shown to be one of the most stable genes during adipocyte differentiation 

(Gorzelniak et al., 2001). The 3T3-L1 cells did express Lipoprotein Lipase, PPAR-γ, 

and FABP which are markers of mature adipocytes (Figure 3.6). The adipocyte 

markers PPAR-γ and LPL expression is 200-fold higher in 3T3-L1 adipocytes 

compared to 3T3-L1 pre-adipocyte expression. The adipocyte marker FABP 

expression is 800-fold higher in 3T3-L1 adipocytes compared to 3T3-L1 pre-

adipocytes. Fmo1 expression is 200 fold higher in 3T3-L1 adipocytes compared to 

3T3-L1 fibroblasts. Experiments on Fmo1 transcript expression during differentiation 

was initially carried out within these cells. However, because the differentiation of 

these cells was not consistent, a 3T3-L1 cell line was purchased from the 

ATCC™™. This cell line is able to be contact inhibited when differentiated. These 

cells were very consistently and efficiently differentiated with 95-100% efficiency 

(Figure 3.7). The experiments on the quantification of Fmo1 mRNA transcripts during 

differentiation were repeated in this cell line and are described below. 

 

 

 

 

 

 



 145 

 

 

Figure 3.5 Images of (A) EACC™ 3T3-L1 fibroblasts and (B) 
differentiated EACC™ 3T3-L1 adipocytes 
The round vesicles are fat globules within the cells. Note that 3T3-L1 fibroblasts can 
still be visualised within the background of panel B. 
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Figure 3.6 Fmo1 and adipocyte markers, LPL, FABP, and PPAR-γ 
expression in 3T3-L1 (ECACC™ cell line) pre-adipocyte and mature 
adipocytes 
Markers of adipocytes and 3T3-L1 adipocytes were quantified to test the 
differentiated state of the 3T3-L1 cells. Differences are shown in fold difference. The 
data was obtained from triplicate wells of 3T3-L1 cells. The markers tested are 
PPAR-γ (peroxisome proliferator-activated receptor), LPL (lipoprotein lipase), and 
FABP (fatty-acid binding protein). Fibroblast = 3T3-L1 fibroblast, ADIP = 3T3-L1 
adipocyte. 
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3.2.2 Fmo1 expression during differentiation of the ATCC™ 3T3-L1 cell 
line 
 
When grown to full confluency, the 3T3-L1 ATCC™ cells stop growing. This is 

because the cells are contact inhibited. This is a requirement for efficient 

differentiation. Differentiation of 3T3-L1 ATCC™ cells as explained previously, is 95-

100% efficient compared to 30-40% for the European cell line. The morphology of 

the 3T3-L1 ATCC™ cells is different from the 3T3-L1 European cell line (Figure 3.7).  

Fmo1 and three adipocyte markers (PPAR-γ, FABP and LPL) expression was 

measured in the 3T3-L1 pre-adipocytes and at a number of time-points after the 

addition of the media that allows the cells to differentiate into adipocytes. RNA was 

isolated from the cells at confluency and 3 hours, 1 day, 3 days, and 10 days after 

the addition of differentiation media.  FMO1, LPL, PPAR-γ, and FABP mRNAs were 

quantified at each of these time-points. 

 

FMO1 mRNA is 200-fold higher in the ATCC™ 3T3-L1 adipocytes compared to the 

pre-adipocytes (Figure 3.8). This is comparable to the FMO1 mRNA fold difference 

seen when the EACC 3T3-L1 cells are differentiated. Fmo1 expression is increased 

10-fold, 1 day after the addition of differentiation media (Figure 3.8) and is reduced at 

day 3 back to pre-adipocyte levels. This may be due to a direct response to one of 

the hormones within the differentiation media. The majority of the increase in Fmo1 

expression is seen after 10 days and it is therefore defined as a late marker of 

adipocyte differentiation. The LPL adipocyte marker in the ATCC™ 3T3-L1 cell line 

is expressed in 3T3-L1 pre-adipocytes and throughout the time-points measured 

after addition of differentiation media. In comparison the LPL adipocyte marker is not 

expressed in the EACC 3T3-L1 pre-adipocyte and is only expressed after 3T3-L1 
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adipocyte differentiation. PPAR-γ and FABP are increased through the period of 

3T3-L1 differentiation. This is comparable to the observations in the 3T3-L1 EACC 

cell line. 
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Figure 3.7 Comparison of the EACC 3T3-L1 differentiated cell line with 
the ATCC™ 3T3-L1 differentiated cell line 
(A) Differentiated EACC 3T3-L1 cells imaged at 10 days post addition of 
differentiation media. (B) Differentiated ATCC™ 3T3-L1 cells. 
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Figure 3.8 Expression profiling of  (A)FMO1, (B) LPL (C) PPAR-γ (D) 
FABP mRNAs during 3T3-L1 differentiation 
Each graph shows the expression of the gene relative to the expression of GAPDH. 
Each bar represents a different time-point through 3T3-L1 differentiation. From left to 
right, in each graph, the time points are 3T3-L1 cells at 100% confluent, 3 hours, 1 
day, 3 days, and 10 days after the addition of differentiation media. All experiments 
were done in triplicate and the error bars represent the standard error. 
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3.2.3 Fmo1 P0, P1 and P2 transcript expression during 3T3-L1 
differentiation 
 
In 3T3-L1 fibroblasts the three Fmo1 transcripts (P0, P1, and P2) are expressed at a 

low amount relative to GAPDH. The P0 transcript is expressed at background levels. 

The P1 transcript is expressed at 0.00000036 the level of GAPDH. The P2 transcript 

is expressed at 0.000000077 the level of GAPDH. The global FMO1 transcript is 

expressed at 0.000006 the level of GAPDH. 

 

Fmo1 transcripts were quantified at a number of time points throughout the 

differentiation period of the 3T3 cells into adipocytes (Figure 3.9). We decided to 

measure transcripts at day 6, as opposed to day 3, to identify the earliest time point 

when Fmo1 transcripts are significantly increased. The global Fmo1 transcript was 

measured at the same time points as the individual transcripts. The P1 and P2 Fmo1 

transcripts are increased significantly (9 -fold) after 1 day post addition of 

differentiation media. At day 6 post differentiation the P1 transcript was increased a 

further 9-fold and the P2 transcript a further 15-fold. At day 10, the P1 transcript 

increased a further 3-fold and the P2 transcript increased a further 4-fold. 

 

3.2.4 Fmo1 global expression during differentiation of the ATCC™. 
3T3-L1 mouse fibroblast cell line 
 
The global Fmo1 transcript is expressed at 0.000003 relative to the reference gene 

(GAPDH) within undifferentiated 3T3-L1 fibroblasts. On day 1, post addition of 

differentiation media, the Fmo1 transcript increases to 0.000025 relative to GAPDH. 

This is an 8-fold increase in the amount of Fmo1 transcript. After 6 days post 

addition of differentiation media the Fmo1 transcript increases to 0.000082. This is a 
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further 3-fold increase from 3 hours post addition of differentiation media. After 10 

days, when the cells are visibly differentiated and express adipocyte markers. Fmo1 

expression relative to GAPDH is 0.0015. 

 

When compared to the P1 and P2 transcripts the global Fmo1-transcriptis on 

average 10-fold higher throughout the differentiation process. Within fibroblasts the 

total relative expression of the P1 and P2 transcripts are present at 8% of the global 

transcript. After 1 day post differentiation, P0 and P2 transcripts constitute 6% of the 

global Fmo1 transcript. At day 6, the P1 and P2 transcripts are expressed at 20% of 

the global Fmo1 transcript. At day 10, the P1 and P2 transcripts are expressed at 

11% of the global Fmo1 transcript (Figure 3.9C). 

 

The global transcript is present in greater abundance than the combined P1 and P2 

transcripts. It is possible that there is another promoter active in the 3T3-L1 cells and 

we are measuring the mRNA from this promoter in the global transcript expression. 

In the mouse the combined expression of P0, P1 and P2 in white adipose tissue is 

greater than that of the global transcript amount. As the 3T3-L1 cells are a cell line, 

there may be different mechanisms of Fmo1 regulation than seen within adipose 

tissue. Mouse adipose tissue contains other cell types e.g. those of the immune 

system including macrophages. The non-fat cell types may have an increase in P0, 

P1 and P2 transcripts over the global transcript. This could obscure the true 

transcript ratio of adipocytes. 
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Figure 3.9 Quantification of Fmo1 global gene expression during 3T3-
L1 differentiation (ATCC) 
Relative expression of (A) the Fmo1 P1 transcript (B) Fmo1 P2 transcript and (C) 
global Fmo1 transcript at different stages of 3T3-L differentiation. The different 
stages are undifferentiated cells at 100% confluency (100% CONF) and at 1 day, 6 
days and 10 days post addition of differentiation media. Fmo1 gene expression is 
normalised to the reference gene GAPDH. All experiments were done in triplicate 
and the error bars represent the standard error. (D) The relative amount of P1+P2 
Fmo1 transcript as a percentage of relative global Fmo1 transcript.
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Discussion 

The work described above is the first report of the quantification of global Fmo1 

expression in white fat, muscle, brain and brown fat. Global FMO1 mRNA amounts 

in white and brown fat is comparable to that found in kidney and liver, where Fmo1 is 

expressed at a high level. These data provide support for a role for FMO1 in 

additional tissues previously not known to express the mRNA (or protein). Fmo1 

expression level in muscle is low relative to other tissues, but expression is high 

when compared to the reference gene. There may be a role for FMO1in this tissue.  

Previously it was not known to what extent each of the alternatively spliced 

transcripts of Fmo1, the P0, the P1, and P2 transcript are produced in different 

tissues. The experimental data presented within this chapter show the relative 

amounts of each transcript produced within different tissues. The expression of each 

transcript has been compared to each of the other transcripts and to the global 

FMO1 mRNA. This has identified promoter usage in the different tissues and 

indicated that attenuation of transcription may take place from some promoters in 

some tissues. The expression of the P1 and P2 Fmo1 transcripts were quantified 

during 3T3-L1 differentiation and demonstrate that the mRNAs are increased as cells 

differentiate from fibroblasts into adipocytes. 

 

The results show that, in the mouse, the P1 promoter is used in all extra-hepatic 

tissues and that the P1 transcript is abundant in all tissues analysed. The P0 and P2 

promoters are active to a similar level in kidney, muscle, brain, brown fat, and white 

fat.  This suggests a common regulatory mechanism between these two promoters 

within these tissues.  In the liver however, only the P0 promoter is used.  
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In some tissues, the combined amount of the three transcripts does not always equal 

that of the global Fmo1. This suggests that transcription from, in particular, the P1 

promoter, is attenuated and that shorter transcripts might be produced. These 

shorter transcripts would not be detected using the primers designed in the protein-

coding region of the mRNA. In the differentiated 3T3-L1 cells, global Fmo1 

expression is much greater than that of the individual transcripts. This may represent 

the presence of a promoter that is switched on only during the differentiation process 

and that we have yet to identify. Both the P1 and P2 promoters are used in 3T3-L1 

cell differentiation. 
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Chapter 4: Characterisation of different FMO1 
promoters 
 

Introduction  

The human FMO1 gene has three known transcriptional start sites (Hernandez et al., 

2004). These start sites are homologous to those used in the mouse Fmo1 gene 

(Hernandez et al., 2004). In both species three different transcripts are produced, 

P0, P1 and P2. Previous work has shown that promoter P0 is used predominantly in 

the human foetal liver. The human P0 promoter has previously been characterized 

using reporter gene assays (Shephard et al., 2007). The reporter gene construct was 

transfected into HepG2 cells, which were derived from an adult human hepatoma 

cell line. The P1 and P2 promoters have yet to be characterised. This chapter will 

outline the defining of the human FMO1 P1 and P2 promoters.  

 

A number of genetic polymorphisms are present upstream of both the P1 and P2 

transcriptional start sites. These polymorphisms may be present within regulatory 

sequences and therefore affect the amount of transcript produced. It is desirable to 

identify polymorphisms that influence transcription. These could be used as markers 

to identify individuals for whom drug metabolism of FMO1 substrates might be 

altered because of production of lower or higher amounts of the protein. 

The P1 and P2 promoters have previously not been defined, and the factors that 

regulate transcription from each, is not known. This chapter describes the 

experiments carried out to define the regions that comprise the FMO1 P1 and P2 

promoters in different cell types.  Subsequently, a bioinformatics approach was used 

to predict factors that may regulate the activity of the promoters.  
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Recent advances in genome wide epigenetic analysis has given rise to a large public 

resource of epigenetic data. We have reviewed these resources which identify open 

chromatin regions within the FMO1 gene and identify binding locations of regulatory 

factors. These data have been used to further justify the experimental data of 

defining the P1 and P2 promoters.    

4.1 Definition of human FMO1 promoters in COS-7, HK-2, and 3T3-L1 
cells 
 
The FMO1 promoters have been defined by quantifying the activity of a reporter 

gene under the control of upstream sequences of each transcriptional start site. 

Sequences of increasing size, each starting from the transcriptional start site, are 

introduced to a vector where they act as the promoter responsible for the expression 

of a luciferase reporter gene (Figure 4.1). The FMO1 transcripts are known to be 

expressed at different levels in different tissues (Dolphin et al., 1996; Yeung et al., 

2000; Zhang and Cashman, 2006). Therefore I have transfected a number of 

different cell lines to allow for the tissue-specificity of FMO1 expression. COS-7 is a 

monkey kidney fibroblast, HK-2 is a human kidney proximal tubule cell line, and 3T3-

L1 is a fibroblast which can be differentiated into adipocytes in culture.  

4.1.1 Reporter gene assay controls 
 

To determine the amount of background activity in the transfected cells, the parent 

plasmid, used to prepare the reporter gene constructs, is used as a negative control. 

The negative control is the pGL3-Basic vector, which contains the luciferase gene 

from the firefly Photinus pyralis. The vector is identical to the plasmid containing 

FMO1 sequences except that it does not contain a promoter sequence upstream of  

http://en.wikipedia.org/wiki/Photinus_pyralis
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Figure 4.1 Illustration of the sequences upstream of each of the FMO1 transcriptional start sites cloned 
within the pGL3-Basic plasmid 
The figure shows the three regulatory exons of FMO1. These are exon 0, exon 1, and exon 2. Within exon 2 translation begins. The 
location of FMO1 DNA sequences cloned into luciferase constructs are outlined by the open boxes. The numbers designate the 
location of the DNA region inserted into the plasmid. The numbers are relative to the A of the ATG translation initiation codon. 
Constructs were designed from the P2 transcriptional start site which is at location -128 and upstream of the P1 transcriptional start 
site which starts at position -343.   
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the transcriptional start site. Therefore any activity detected from the pGL3-Basic 

vector can be considered as the background activity. A positive control is required to 

assess the experimental conditions. The positive control used for the reporter gene 

assays is the pGL-SV40 plasmid, which also contains the luciferase gene from the 

firefly Photinus pyralis. This plasmid contains the SV40 viral promoter and produces 

high luciferase reporter gene activity within transfected mammalian cells. A third 

control is required to control for the transfection efficiency of mammalian cells by 

each plasmid construct. A plasmid is used that contains a coding sequence and is 

capable of expressing a luciferase protein from a different organism to the firefly 

Photinus pyralis. The plasmid pRL-TK contains a luciferase gene from the sea pansy 

Renilla reniformis and is co-transfected along with the experimental plasmids. The 

reporter gene activity of the pRL-TK plasmid can be measured separately from the 

firefly luciferase and is used to normalise the firefly luciferase expression.  

 

4.1.2 Optimisation of transfection for COS-7, HK-2 and 3T3-L1 cell 
lines 
 
DNA and lipofectamine reagent (LTX) amounts were optimised for reporter gene 

activity within COS-7 and HK-2 cell lines. The optimised conditions for 3T3-L1 cell 

transfection were obtained from the supplier, Invitrogen. Transfection was optimised 

using a reporter gene construct under the control of the SV40 promoter, pGL-SV40. 

The SV40 promoter is used as this is a highly efficient viral promoter and will 

produce a high reporter gene activity within mammalian cell lines. COS-7 and HK-2 

cell lines were transfected with 0.6 µg, 0.8 µg and 1 µg of reporter plasmid. Each 

pGL-SV40 concentration was transfected into the cells using 1 µL, 1.5µL or 2 µL of 

LTX reagent to determine the amount of lipid required for optimal transfection. 

http://en.wikipedia.org/wiki/Photinus_pyralis
http://en.wikipedia.org/wiki/Photinus_pyralis
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COS-7 (Figure 4.2A) cells transfected with 0.6 µg PGL3-SV40 reporter gene activity 

using 1 µL, 1.5 µL and 2 µL produced reporter gene activity of about 20 RLU. 

Transfection of COS-7 cells with 0.8 µg DNA using 1 µL, 1.5 µL or 2 µL showed no 

significant improvement in RLU. When the amount of pGL3-SV40 DNA was 

increased to 1 µg and 2 µL of LTX was used, reporter gene activity increased to 60 

RLU. 

 

HK-2 cells (Figure 4.2B) transfected with 0.6 µg, 0.8 µg, and 1 µg of pGL-SV40 DNA 

using 1 or 1.5 µL of LTX reagent all produced activity averaging 20 RLU. When 0.8 

µg and 1 µg of pGL-SV40 DNA was transfected into the HK-2 cells using an 

increased amount of LTX of 2 µL, reporter gene activity was increased to about 80 

RLU. As reporter gene activity of the pGL3-SV40 construct was slightly higher when 

transfecting 1 µg of reporter plasmid and 2 µL of LTX it was decided these conditions 

would be used for transfection of FMO1 reporter constructs into HK-2 cells.  
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Figure 4.2 Determination of DNA/LIPID ratios for optimal transfection 
of (A) COS-7 and (B) HK-2 cells 
The pGL-SV40 plasmid was transfected into both cell types at different DNA 
concentrations. These were 0.6 µg, 0.8 µg and 1 µg. Each DNA concentration was 
transfected using 1 µL, 1.5 µL and 2 µL of lipid reagent. The conditions used are 
shown in the figure. Cells were transfected with pRL-TK vector to control for 
transfection efficiency.  The RLU values are pGL-SV40 light units relative to the pRL-
TK light units. All experiments were done in triplicate and the error bars represent the 
standard deviation. 
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4.1.3 COS-7 cell transfection (Figure 4.3) 

 
The construct pGL-255_-128 which contains the sequence directly upstream of the 

FMO1 P2 transcriptional start site produces an average of 37±13.7 RLU of reporter 

gene activity within COS-7 cells.  The construct pGL-858_-128 containing additional 

further sequence upstream of the P2 transcriptional start and continuing through the 

P1 transcriptional start site produces 87±22.4 RLU. This is a nearly 3-fold increase in 

reporter gene activity from the pGL-255_-128 construct. The construct pGL-858_-

343 containing sequence directly upstream of the P1 transcriptional start site 

produces an average of 217±63.3 RLU. This is about 4-fold higher than the pGL-

255_-128 construct and over 2-fold higher than the pGL-858_-128 construct. The 

constructs pGL-1243_-128 and pGL-1243_-343, which contains additional upstream 

sequence produce only 1 RLU. The sequence -1243_-858 must contain a sequence 

that negatively regulates the reporter gene activity. Reducing the length of the pGL-

858_-343 construct to contain the sequence between -600_-343 results in loss of 

reporter gene activity to 1 RLU. Therefore the sequence -858_-600 of the FMO1 

gene upstream of the P1 promoter is responsible for the reporter gene activity 

observed within COS-7 cells. The reporter gene construct (Pgl-521_+50) which 

defines the P0 promoter was transfected into COS-7 cells but showed low reporter 

gene activity. 

 

4.1.4 Ratio of FMO1 promoter usage in COS-7 cells 
 
COS-7 cell transfection results defined the P1 promoter region as the sequence 

between -858_-343 upstream of the FMO1 translation initiation start site. This is 

because the pGL-858_-343 construct when transfected into COS-7 cells gave the 

highest luciferase activity. The activity was reduced when additional upstream 
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sequence was included (pGL-1243_-343 construct). The P2 promoter region active 

within COS-7 cells was defined as the region between -255_-128. This is because 

the construct, pGL-255_-128 (upstream of the P2 transcriptional start site) produced 

the highest reporter gene activity. The promoter was not defined further upstream as 

these sequences would overlap with the P1 transcriptional start site. 

 

Comparison of reporter gene activity from P1 and P2 was made by normalising 

reporter gene construct activity to the activity of the P2 promoter construct. The 

activity of pGL-255_-128 is set to 1. The reporter gene activity of the P1 promoter 

construct shows a significant 5-fold increase in reporter gene activity compared with 

the P2 promoter. The P1 promoter is therefore a stronger promoter in COS-7 cells 

than is P2. To understand the ratio of promoter usage between the P1 and P2 

construct the reporter gene activity of the pGL-858_-128 needs to be considered. 

The reporter gene activity of this construct will identify in which ratio the promoters 

are being used. When reporter gene activities are normalised to the P2 construct the 

pGL-858_-128 construct is, significantly, 2.35-fold more active than this. When the 

pGL-858_-128 and the P1 promoter construct relative activity to P2 are compared 

the pGL-858_-128 construct is significantly 2.5-fold lower than the P1 promoter 

construct. Therefore the reporter gene activity of the construct containing both P1 

and P2 shows intermediate activity between the P1 and P2 constructs alone. It is 

likely that within COS-7 cells the two promoters are being used equally but that the 

P1 promoter is the stronger promoter.         
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Figure 4.3 Reporter gene activity of PGL3-Basic constructs containing 
DNA sequences upstream of the three FMO1 transcriptional start sites 
transfected into COS-7 cells 
COS-7 cells were transfected with pGL3 constructs containing FMO1 sequences 
upstream of each of the three FMO1 transcriptional start sites. The sequence 
location is shown next to each bar and the co-ordinates are relative to the FMO1 
mRNA translation start codon. The constructs are grouped based on which 
transcriptional start site they are directly upstream of. The P0 construct is labelled 
red. Constructs upstream of P1 are labelled blue and constructs upstream of P2 are 
labelled green. The pGL3 basic plasmid was transfected as a negative control. All 
experiments were done in triplicate and the error bars indicate the standard 
deviation. The construct pGL-858_-128 is significantly different from pGL-255_-128 
and pGL-858_-343(p<0.03,*). The construct pGL-1243_-343 and pGL-600_343 are 
significantly different from pGL-858_-343, (P<0.009**).  
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4.1.5 Transfection of HK-2 cells with FMO1 promoter constructs 
(Figure 4.4)  
 
The HK-2 cell line was derived from human proximal tubule kidney cells and was 

used to test reporter gene activity because FMO1 mRNA has been localised to these 

cells in the mouse kidney using in-situ hybridization experiments (Janmohamed et 

al., 2004).  

 

The P0 promoter construct (pGL-521_+50) produces reporter gene activity of 

4.5±0.9 RLU. The construct pGL-255_-128 which contains the sequence directly 

upstream of the P2 transcriptional start site produces an average of 3±0.1RLU of 

reporter gene activity. The construct pGL-858_-128, containing additional further 

sequence upstream of the P2 transcriptional start and continuing through the P1 

transcriptional start site produces 2.7±0.4RLU. This is similar to that of the activity of 

the P2 reporter gene construct. The construct pGL-858_-343 containing sequence 

directly upstream of the P1 transcriptional start site produces an average of 

8±1.1RLU, which is higher than obtained with both the P2 and P0 reporter gene 

constructs. The constructs pGL-1243_-128 and pGL-1243_-343 which contain 

additional upstream sequence produce 1±0.1RLU. The sequence -1243_-858 within 

the construct is negatively regulating the reporter gene activity as was seen also in 

COS-7 and 3T3 cells (see below). Reducing the length of the pGL-858_-343 

construct to -600_-343 results in loss of reporter gene activity to 1±0.3 RLU. The 

FMO1 sequence between -858_-600 is therefore responsible for the reporter gene 

activity within HK-2 cells upstream of the P1 promoter. 
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4.1.6 Ratio of FMO1 promoter usage in HK-2 cells (Figure 4.4) 
 
Transfection of HK-2 cells with the series of FMO1 promoter constructs define the P1 

promoter region in these cells as the sequence -858_-343 upstream of the FMO1 

translational start site. As within COS-7 cells, but in contrast to 3T3-L1 cells (see 

below), the sequence -1243_-858 significantly reduces reporter gene activity.  The 

P2 promoter region within HK-2 is defined as the region -255_-128 as was the case 

for transfected COS-7 cells. The construct, pGL-255_-128 (upstream of the P2 

transcriptional start site) produces the highest reporter gene activity. The promoter is 

not defined further as upstream sequence as this overlaps with the P1 transcriptional 

start site. The ratio of promoter activity was determined as previously explained for 

COS-7 cell transfections. The activity of the pGL-255_-128 is set to 1. The reporter 

gene activity of the P1 promoter is significantly higher, 3-fold, than the P2 promoter. 

The P1 promoter is therefore a stronger promoter within HK-2 cells than the P1 

promoter. The reporter gene activity of the construct containing the P1 and P2 

promoter (pGL-858_-128) is equal to the P2 promoter construct. Within HK-2 cells it 

is likely that the P2 promoter is favoured over the P1 promoter. 
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Figure 4.4 Reporter gene activity of PGL3-Basic constructs containing 
DNA sequences upstream of the three FMO1 transcriptional start sites 
transfected in HK-2 cells 
HK-2 cells were transfected with pGL3 constructs containing FMO1 sequences 
upstream of each of the three FMO1 transcriptional start sites. The sequence 
location is shown next to each bar and the co-ordinates are relative to the FMO1 
mRNA translation start codon. The constructs are grouped based on which 
transcriptional start site they are directly upstream of. The P0 construct is labelled 
red. Constructs upstream of P1 are labelled blue and constructs upstream of P2 are 
labelled green. The pGL3 basic plasmid was transfected as a negative control. All 
experiments were done in triplicate and the error bars indicate the standard 
deviation. The construct pGL-858_-343 is significantly different from pGL-255_-128, 
pGL-858_-128, pGL-1243_-343 and pGL-858_-600 (p<0.002, **). The construct 
pGL-+50/521 is significantly different from the pGL-255_-128 and the construct pGL-
858_-343 (p<0.03, *) and pGL-600_-343 are significantly different from pGL-858_-
343, P<0.009.  
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4.1.7 FMO1 promoter usage in 3T3-L1 fibroblast cells (Figure 4.5) 

The 3T3-L1 cell line is a mouse fibroblast cell line. It is possible to differentiate these 

cells into white adipocytes. The reporter construct pGL-255_-128, which contains the 

sequence directly upstream of the P2 transcriptional start site produces an average 

of 11±2.2 RLU of reporter gene activity in transfected 3T3-1 cells. The pGL-521_+50 

construct containing the previously defined P0 promoter shows an average reporter 

gene activity of 14±0.33RLU. This is comparable to the P2 reporter gene activity. 

The construct pGL-858_-128 containing additional further sequence upstream of the 

P2 transcriptional start and continuing through the P1 transcriptional start site 

produces a reduced amount of reporter gene activity of 7±0.4 RLU. The construct 

pGL-858_-343 containing sequence directly upstream of the P1 transcriptional start 

site produces an average of 7±0.16 RLU. The constructs pGL-1243_-128 and pGL-

1243_-343, which both contain additional upstream sequence, produce 4±0.16 RLU. 

As seen in COS-7 cells the sequence -1243_-858 also reduces reporter gene activity 

in 3T3-L1 cells, although the reduction is not as great as that observed in transfected 

COS-7 cells.  When the pGL-858_-343 construct length is reduced to -600_-343 

reporter gene activity is reduced further, to 2 RLU. Therefore, as was observed in 

transfected COS-7 cells the FMO1 sequence between -858_-600, upstream of the 

P1 promoter, is responsible for the reporter gene activity observed in 3T3-L1 cells. 

4.1.8 Ratio of FMO1 promoter usage in 3T3-L1 cells 
 
Transfection of 3T3-L1 cells with various FMO1 promoter constructs define the P1 

promoter region as the sequence -858_-343 upstream of the FMO1 translational 

start site. In comparison to the results obtained from transfected COS-7 cells the 

sequence -1243_-858 does not reduce reporter gene activity as much in 3T3-L1 
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cells. This sequence region does not however increase reporter gene activity and 

can therefore be disregarded as contributing to the P1 promoter.  The P2 promoter 

region within 3T3-L1 cells is defined as the region -255_-128 as was the case in 

transfected COS-7 cells. The ratio of FMO1 promoter activity in 3T3-L1 cells was 

determined as explained above for COS-7 cells. Comparison of reporter gene 

activity was made by normalising reporter gene construct activity to the activity of the 

P2 promoter construct for ease of comparison with other cell lines tested for 

promoter activity. The activity of the pGL-255_-128 is set to 1. The reporter gene 

activity of the P2 promoter is 1.6-fold higher than that of the P1 promoter and it is 

significantly stronger (p<0.03). The reporter gene activity of pGL-858_-128 

containing the P1 and P2 promoters is 6.75 fold higher than the P2 promoter. It is not 

significantly different from the P1 promoter reporter gene activity. Extension of the 

promoter from -255_-128 to -858_-128 shows that the P1 promoter, when present 

with the P2 promoter, is favoured.   
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Figure 4.5 Reporter gene activity of PGL3-Basic constructs containing 
DNA sequences upstream of the three FMO1 transcriptional start sites 
transfected in 3T3-L1 cells 
 3T3-L1 cells were transfected with pGL3 constructs containing FMO1 sequences 
upstream of each of the three FMO1 transcriptional start sites. The sequence 
location is shown next to each bar which is relative to the FMO1 translation start 
codon. The constructs are grouped based on which transcriptional start site they are 
directly upstream of. The P0 construct is labelled red. Constructs upstream of P1 are 
labelled blue and constructs upstream of P2 are labelled green. The pGL3 basic 
plasmid was transfected as a negative control. All experiments were done in 
triplicate and the error bars indicate the standard deviation. The construct pGL-255_-
128 is significantly different from pGL-858_-128 and pGL-858_-343 (p<0.03). The 
construct pGL-858_-343 is significantly different from the pGL-1243_-343 and pGL-
600_-343 constructs (p<0.0006, **). The construct pGL-521_+50) is significantly 
different from the pGL-858_-343 (p<0.00002, **).  
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4.2 Transfection using nucleofection of 3T3-L1 differentiated into 
adipocytes 
 
We now know that FMO1 is highly expressed in white adipose tissue (Omar, Ph D 

thesis, 2009; Veeravalli et al., Unpublished). In the previous section I described the 

poor expression of FMO1 promoter constructs in undifferentiated 3T3-L1 cells. In this 

section the transfection of 3T3-L1 cells differentiated into adipocytes is described. 

3T3-L1 cells differentiated into adipocytes are notoriously difficult to transfect. 

Transfection has been achieved previously using lenti-viruses (Inoue et al., 2010) 

and electroporation (Rolland et al., 1995; Rolland et al., 1996). Lenti-viral methods 

have safety implications and require a dedicated category 3 laboratory. 

Electroporation methods require high amounts of optimisation and yield a very 

limited transfection efficiency of 10-20%. Cationic-lipid methods of transfection which 

were used to transfect cell lines previously to a high efficiency are not effective at 

transfecting 3T3-L1 adipocytes. 

 

Recent advances in electroporation have resulted in companies producing 

electroporation units with optimised conditions for different cell lines. This includes 

optimisations for 3T3-L1 adipocytes. To test the transfection efficiency of 3T3-L1 

adipocytes a plasmid encoding the enhanced green fluorescent protein eGFP was 

nucleofected into the adipocytes and the percentage of GFP expressing cells was 

determined. Transfection efficiency was observed to be 30-40% (Figure 4.6). The 

PGL-SV40 construct which was used in previous experiments as a positive control 

was nucleofected into 3T3-L1 adipocytes. This plasmid produced luciferase activity 

of between 50-100000 RLU. Therefore the 3T3-L1 adipocytes could be used to test 
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human FMO1 promoters in the context of expression of the gene in white fat. The 

FMO1 P2 promoter was transfected into the 3T3-L1 adipocytes and showed a high  

 
 

Figure 4.6 GFP Nucleofection of 3T3-L1 adipocytes 
2 µg of pmaxGFP® Vector (Lonza) was nucleofected using 1x107  3T3-L1 
adipocytes. Cells were plated onto 18mm dishes and imaged using fluorescence 
microscopy. Transfection efficiency was predicted to be 30%. 
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activity of between 20-30000 RLU. This data is not normalised as the pRL-TK 

construct used to normalise the transfection efficiency shows low or no activity in the 

differentiated cells. Therefore this activity could not be compared to the results 

obtained for undifferentiated 3T3-L1 cells described in the previous section. 

However, the increase in firefly luciferase activity is orders of magnitude greater than 

that obtained in undifferentiated 3T3-L1 cells.  It seems reasonable to assume that 

FMO1 promoter activity has increased due to differentiation of the cells into 

adipocytes. This conclusion is supported by our findings that FMO1 mRNA is not 

expressed in 3T3-L1 fibroblasts, but is expressed in the differentiated cells (see 

chapter 1). 

 

In future these promoter sequences identified as being responsible for the increase 

in transcription of FMO1 P1 and P2 transcripts can be used to observe any 

differences in transcription amounts caused by SNPs. 
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Figure 4.7 Illustration of human FMO1 promoters defined by reporter gene assays 
The numbered grey boxes above represent exons within human FMO1. The P0 transcriptional start site begins at the start of exon 
0. Upstream of this represents the previously defined promoter within HepG2 cells. The P2 promoter is represented between exon 
1 and exon 2 which is active in all 3 cell lines (shown in blue). The P1 promoter has a positive promoter element directly upstream 
of P1 (shown in blue). Increasing the length of this construct results in repressed luciferase activity (shown in red). This repression 
is seen in both primate cell lines (COS-7 and HK-2) but less repression is seen within the mouse cell line (3T3-L1).
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4.3 The FMO1 P2 promoter region and prediction of transcription 
factor binding 
 
The human P2 promoter has been defined as the region of DNA between exon 1 

and exon 2, which is located between -255_-128 upstream of the ATG translation 

start site. Different bioinformatics programs were used to predict binding of 

transcription factors to the P1 and P2 promoter regions including Matinspector, 

PROMO, and AliBaba. The human P2 promoter region was aligned with the mouse 

sequence directly upstream of the P2 transcriptional start site (Figure 4.8). This 

revealed large regions of sequence conservation. The human promoter region was 

then examined for transcription factor binding motifs. The mouse sequence was also 

examined in this way. This is to account for conservation in transcription factor 

binding between mouse and human as well as for sequence homology. 

A number of different factors were predicted to bind to the P2 promoter.  The 

promoter contains no TATA box which is a common motif found within the core 

promoter of several genes. The human FMO1 P2 promoter can therefore be 

described as TATA-less promoters. The most conserved transcription factor binding 

motif within the P2 promoter is a GC box binding motif which is predicted to bind 

SP1, a constitutively expressed transcription factor (Figure 4.8). This is within a 

conserved region with the mouse, however the mouse does not contain a GC box as 

there is a C>T transition within this motif (Figure 4.8). The transcription factor E2F is 

predicted to bind upstream of SP1 but does not show conservation when aligned to 

the mouse sequence (Figure 4.8). Further downstream there is a large region of 

conservation and contains a sequence which is predicted to bind a nuclear hormone 

receptor. It could be a potential binding site for a number of proteins including the 
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estrogen, thyroid, progesterone, or vitamin D receptors, PPAR-γ or RXR-alpha 

(Figure 4.8). 

 

Previous observations (described in chapter 3) showed an increase in P2 transcripts 

when 3T3-L1 fibroblasts are differentiated into adipocytes. The factors predicted to 

bind to the P2 promoter which could be responsible for this effect are RXR-alpha and 

PPAR-γ or the thyroid hormone receptor (T3R alpha). PPAR-γ and RXR-alpha form 

a heterodimer to regulate genes during adipocyte differentiation. PGC1-alpha, a 

transcriptional co-activator also interacts with both RXR-alpha and PPAR-γ to 

activate transcription. PGC1-alpha‟s possible role in the regulation of FMO1 will be 

discussed later.   
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Figure 4.8 Annotation of the FMO1 P2 promoter 
 (A) Predicted binding locations of transcription factors within the defined FMO1 P2 promoter. (B) Alignment of the FMO1 human 
and mouse P2 promoter regions and predicted transcription factor binding regions. E2F and SP1 transcription factor binding 
predictions are shown. The mouse sequence contains one variation within the SP1 consensus binding sequence of GGGGCGGG. 
Further downstream a sequence predicted to bind a hormone receptor (Vitamin D receptor, Progesterone receptor, estrogen 
receptor, retinoid x receptor, thyroid hormone receptor, Peroxisome proliferator-activated receptor – γ). Within the same region 
HNF-1α is predicted to bind. The region containing the hormone receptor sites are conserved with the mouse sequence. 
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4.4 The defined P1 promoter region and potential protein binding 
sites 
 
Transfection experiments of three different cell lines cell lines have identified a 

region in the human FMO1 gene between -858_-343 that positively regulates 

reporter gene transcription. A number of transcription factor binding sites are 

predicted in this region and correlate with the expression profiles revealed for FMO1. 

The muscle specific transcription factors, HEB, MyoD, and myogenin are predicted 

to bind within the P1 promoter within conserved regions with mouse (Figure 4.9). 

Previously, it was shown by RT-PCR that the predomininant FMO1 transcript in 

muscle is from the P1 promoter (see chapter 3). Expression data from microarrays 

show mouse Fmo1 being upregulated during C2C12 myotube differentiation (Cam et 

al., 2006). When treated with a p73 inhibitor the myoblast cell line increases the 

expression of FMO1 to the level observed within the differentiated myotubes (Cam et 

al., 2006). Additional expression profiles suggest this is due to direct or indirect 

regulation by the transcription factor MyoD (a transcription factor required for muscle 

cell differentiation). When MyoD is overexpressed within a fibroblast cell line FMO1 

mRNA is significantly upregulated (Di Padova et al., 2007).  When a mutant form of 

MyoD is overexpressed the amount of FMO1 mRNA upregulation is reduced by 50% 

(Di Padova et al., 2007). 

 

Additional expression profiles give clues that Fmo1 may be regulated by PGC1- 

alpha, a co-activator of many factors including PPAR-gamma. Palmitate treatment 

which inhibits PGC1-alpha also knocks down Fmo1 expression in muscle. In 

comparison in mouse brown fat, when PGC1-alpha is knocked down, Fmo1 

expression is increased. It therefore seems that the effect of PGC1-alpha on 
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Fmo1expression may be tissue specific and may be involved in the use of multiple 

promoters for Fmo1.  

 

A number of consensus DNA binding sites for the thyroid hormone receptor are 

predicted by Matinspector, Ali baba, and Promo transcription factor prediction tools. 

This hormone receptor has been shown to interact with the co-factor PGC1-alpha 

and subsequently activate transcription (Wu et al., 2002). This could be responsible 

for Fmo1 activation in brown fat and muscle. PGC1 alpha is not expressed in white 

fat and therefore the thyroid hormone receptor may be upregulating Fmo1 

independently within this tissue. Other transcription factors that may be responsible 

for the increase in Fmo1 P1 transcript are PPAR-gamma and CCAAT binding 

proteins. There are 3 predicted sites for CCAAT transcription factor binding within 

the P1 promoter (Figure 4.9). 

 

The CCAAT binding protein and PPAR-gamma transcription factors are predicted to 

bind within the P1 promoter. These transcription factors are responsible for the 

increase in transcription of many genes during adipocyte differentiation and may be 

involved in Fmo1 upregulation during 3T3-L1 differentiation.  

 

A number of sites for a neuro-developmental factor (hen-1) are predicted within the 

P1 promoter region. This transcription factor was observed to be significantly over-

represented in the promoter of genes which are upregulated during adipocyte 

differentiation. The same study also showed the upregulation of Fmo3 during 

adipocyte differentiation (Kim et al., 2007).  
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Figure 4.9 Annotation of FMO1 P1 promoter 
(A) Predicted binding locations of transcription factors within the defined FMO1 P1 
promoter. (B) Alignment of the FMO1 human and mouse P1 promoters. Three 
CCAAT protein binding regions are outlined in the above figure. Their conservation 
with mouse is shown below. The figure outlines further predictions for binding sites 
for muscle specific factors myogenin and myoD. Within the same region Hen1, AP-4, 
and HEB are predicted to bind. Downstream of these sites a half-site for a nuclear 
hormone receptor is illustrated. 
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4.5 Epigenetic analysis of the human FMO1 promoters 
 
Recent advances in epigenomics have led to genome-wide studies of chromatin 

analysis becoming available to the researcher. Two sources of data could tell us 

more about potential regulatory regions of FMO1. These are epigenetic studies 

undertaken in different human tissues and genome-wide DNase I hypersensitive 

(HR) assays undertaken in both cell lines and tissues. The data are obtained from 

The University of California, Santa Cruz (UCSC) genome browser (Kent et al., 2002) 

using the UCSC Genome Browser database (Rhead et al., 2010) 

http://genome.ucsc.edu/. This is an open resource which provides genome 

annotation for examining and comparing the genomes of organisms, aligning 

sequence to genomes, and displaying and sharing users' own annotation data. The 

data showing DNase I-seq data from different human tissues were obtained from the 

Epigenomics Data Analysis and Coordinating Centre (EDACC) 

http://nihroadmap.nih.gov/epigenomics/.   Chip-seq data was produced within the 

UCSC genome browser from data obtained from the Myers Lab at the Hudson Alpha 

Institute for Biotechnology and by the labs of Michael Snyder, Mark Gerstein and 

Sherman Weissman at Yale University; Peggy Farnham at UC Davis; and Kevin 

Struhl at Harvard. 

 

4.5.1 DNase I hypersensitive regions (HRs) located within and 
surrounding the FMO1 gene (Fig. 4.10) 
 
The Figure (Figure 4.10) shows a schematic diagram of DNase I HR sites in multiple 

human foetal tissues. These tissues are adrenal gland, brain, heart, kidney and lung. 

A DNase I hypersensitive region (HR) is present roughly -2000 bp upstream of the 

http://nihroadmap.nih.gov/epigenomics/
http://myers.hudsonalpha.org/
http://www.hudsonalpha.org/
http://www.hudsonalpha.org/
http://snyderlab.stanford.edu/#_blank
http://bioinfo.mbb.yale.edu/#_blank
http://info.med.yale.edu/bcmm/SMW/SMWhome2.html#_blank
http://www.genomecenter.ucdavis.edu/farnham/#_blank
http://struhl.med.harvard.edu/#_blank
http://struhl.med.harvard.edu/#_blank
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P0 transcriptional start site (Figure 4.10). This HR is present within the adrenal gland 

and heart but not present within the kidney, brain, and lung. A second DNase I HR is 

present 3500 bp downstream of the P0 transcriptional start site (Figure 4.10). This 

HR is seen in all tissues analyzed. The tissue-specific HR is highlighted within Figure 

4.10(*). In all tissues analysed DNase I HRs are present within the P1 and P2 

promoter regions defined earlier within this chapter. However, differences are seen 

in the size and signal of these HRs between different tissues. 
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Figure 4.10 Genome wide DNase I chromatin assays outlining DNase I 
sensitive sites upstream of the FMO1 P0, P1 and P2 promoter. 
DNase I sensitivity assay in human tissue (A) foetal adrenal (B) foetal brain (C) 
foetal heart (D) foetal kidney (E) foetal lung and (F) Location of the defined FMO1 
P0, P1 and P2 promoters. DNase I hypersensitivity sites occur within the different 
human tissues for the previously defined P0, P1 and P2 promoters further validating 
their existence. The asterisk represents DNase I hypersensitive sites that change 
dramatically between different tissues. The above figure shows data obtained from 
the UCSC genome browser. The individuals who contributed to this work are cited at 
the beginning of this section (4.5). 
 
 



 185 

 

4.5.2 DNase I Hypersensitivity regions in different tissues 

surrounding the P1 and P2 promoters (Figure 4.11) 

As discussed in the introduction DNase I-seq is a technique which identifies regions 

of DNA susceptible to DNase I digestion. These regions are good predictors of 

regulatory regions as the chromatin is in an open conformational state. When whole 

genomic DNA is treated with DNase I and fragments are sequenced, the DNase I 

sensitive regions will be enriched. This is illustrated as a peak within the schematic 

diagrams shown below. The stronger the peak the more sensitive that region is to 

DNase I digestion.  

 

There are two prominent DNase I HRs within the P1 and P2 promoter region. The 

HR region closest to the start of FMO1 translation is present between the start of 

exon 1 and ends at the start of exon 2. This region overlaps the P2 promoter -255_-

128 defined previously (Figure 4.7). The second DNase I HR is present 500/600bp 

upstream of exon 1 and ends at the beginning of exon 1. This region overlaps the P1 

promoter -858_-343 defined previously (Figure 4.7). The sequence upstream of this 

region is not sensitive to DNase I digestion. This indicates that the DNA within this 

region is conformationally not available for transcription factors to bind. It is therefore 

likely that the sequence within this region shown to reduce reporter gene activity 

within the pGL-1243_-343 (Figure 4.7) would not have this effect within a cellular 

context. The DNase I HRs overlapping the promoter regions defined previously gives 

further evidence for their existence.  
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Figure 4.11 Illustration of DNase I hypersensitivity sites within the 
defined FMO1 P1 and P2 promoter regions 
The FMO1 transcripts are shown at the top of the illustration, the first being the P0 
transcript, the next being the P1 transcript and below this the P2 transcript. Below 
are the DNase I Hypersensitivity regions present within human (A) foetal adrenal (B) 
foetal brain (C) foetal heart (D) foetal kidney (E) foetal lung. (F) The regions of the 
P1 and P2 promoter are outlined in blue. The region shown to reduce reporter gene 
activity is highlighted in red. The above figure shows data obtained from the UCSC 
genome browser. The individuals who contributed to this work are cited at the 
beginning of this section (4.5). 
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4.5.3 The CTCF insulator binds upstream of the P0 promoter and may 

play a role in FMO1 repression within the human liver (Figure 

4.114.11) 

Chip-seq experiments on the whole genome are carried out by first fixing proteins to 

DNA within the cells or tissue. A specific antibody is used to isolate regions of DNA 

that are bound to specific proteins. The DNA attached to this complex is then 

sequenced. The sequences will be enriched where a protein has been bound. These 

enriched regions are illustrated as peaks in the following figures.  

 

Chip-seq experiments in HepG2 cells show binding of the CCCTC-binding factor 

(CTCF) to the DNase I sensitive regions. CTCF is an 11 zinc-finger protein which 

has a diverse regulatory function. It has been shown to be involved in the 

activation/repression of transcription, insulation, imprinting and X-chromosome 

inactivation (Phillips and Corces, 2009). The two CTCF-binding regions align to 

previously described sequences that are sensitive to DNase I digestion within the 

human tissues analysed.  

 

The sequence containing the CTCF-binding factor present -2000 bp upstream of the 

P0 transcriptional start site shows tissue-specific DNase I sensitivity. The sequence 

is sensitive to DNase I digestion in heart and adrenal gland. It is not sensitive in 

kidney and brain. There is low sensitivity in lung. The tissue-specific differences in 

chromatin confirmation may result in tissue-specific differences in CTCF binding. The 

sequence containing the CTCF binding region located further downstream shows 

sensitivity to DNase I digestion within all tissues analysed. 
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In human liver the FMO1 mRNA and protein is not expressed after birth (Dolphin et 

al., 1996). Reporter gene assays have shown sequences upstream from the 

promoter that negatively regulate reporter gene activity (Shephard et al., 2007). The 

construct which negatively regulates the human P0 minimal promoter contains the 

CTCF binding region. The CTCF binding may be responsible for the loss of FMO1 

expression within the human adult liver.  
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Figure 4.12 Schematic representation of CTCF binding upstream and 
downstream of the P0 promoter, as well as DNase I hypersensitive 
sites within human tissues 
The P0 transcript is located at the top of the page. (A) CTCF chip-seq experiment 
showing the location of CTCF binding within the FMO1 gene. (B) DNase I-seq 
experiment within HepG2 cells. (C-G) represent DNase I-seq experiments within (C) 
adrenal gland, (D) brain, (E) heart, (F) kidney and (G) lung. The asterisks represent 
the tissues where regions of DNase I sensitivity are lowered. The above figure 
shows data obtained from the UCSC genome browser. The individuals who 
contributed to this work are cited at the beginning of this section (4.5). 
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4.5.4 Chip-seq experiments identifying transcription factor binding 

within P0, P1 and P2 promoters (Figure 4.13 and Figure 4.14) 

Genome-wide chip-seq experiments have identified transcription factors binding 

within the P0, P1 and P2 promoters. The transcription factors CEBP-β and Ini1 bind 

within the defined P1 promoter. CEBP-β bound to the P1 promoter within HepG2 

cells. The Ini1 factor was bound to the P1 promoter within Hela cells.  

 

Ini1 is a component of the SW1/SNF chromatin remodelling complex. It is present 

within this complex as a core sub-unit defined as SNF5/INI1 (Ae et al., 2002). This 

complex physically and functionally interacts with transcriptional activators and 

repressors (Sullivan et al., 2001). The complex is involved in a variety of cellular 

processes by regulating cell growth and differentiation specifically myeloid, 

erythropoietic, adipogenic, neuronal or myogenic differentiation pathways (Caramel 

et al., 2008). The SNF5/Ini1 sub-unit is a tumor suppressor gene. It is observed to 

always be inactivated in a group of highly aggressive cancers of unknown cellular 

origin termed malignant rhabdoid tumours (MRT) (Muchardt and Yaniv, 1999). When 

the SNF5/INI1 complex is re-expressed within these cancerous cells the cells show 

adipocyte characteristics (Caramel et al., 2008). Knock down experiments using 

shRNA has shown the SNF5/Ini1 is required for the differentiation of 3T3-L1 

adipocytes (Caramel et al., 2008). 

 

The second transcription factor binding within the FMO1 P1 promoter, CEBP-β, is a 

critical regulator of adipocyte differentiation (Lane et al., 1999). Bioinformatic 

analysis has shown a number of CCAAT binding sequences within the P1 promoter.  
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CEBP-β is able to activate transcription through binding to these sequences. The 

FMO1 P1 transcript is also increased during differentiation. It is therefore possible 

that CEBP-β could be activating the expression of the FMO1 P1 transcript. CEBP-β 

and Ini1 have been shown to synergistically regulate PPAR-γ. Transient transfection 

assays have shown upregulation of the PPAR- γ promoter dependent on both the 

upregulation of CEBP-β and the SNF5/INI1 (Caramel et al., 2008). Chip-seq has 

confirmed the presence of both factors within the promoter (Caramel et al., 2008).  

 

It has therefore been observed that the SNF/INI1 complex upregulates genes during 

adipocyte differentiation and it is this mechanism that could be responsible for the 

upregulation of FMO1 mRNA during adipocyte differentiation. 

 

Chip-seq experiments within HepG2 cells have shown the insulating factor CTCF 

binding within the P0 extended promoter region. Within the P0 extended region Chip-

seq experiments carried out in multiple cell lines have revealed other transcription 

factor binding events. These are a second insulating factor, Rad21, which can co-

regulate genes with the CTCF factor and NFκB also binds within a region of the P0 

extended promoter. 
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Figure 4.13 Illustration of transcription factor binding within the 
FMO1 P1 and P2 promoter regions 
The FMO1 transcripts are shown at the top of the illustration, the first being the P0 
transcript, the next being the P1 transcript and below this the P2 transcript. Below 
are the DNase I Hypersensitivity regions for human (A) foetal adrenal (B) foetal brain 
(C) foetal heart (D) foetal kidney (E) foetal lung, (F) Illustration of the chip-seq signal 
for the binding of the transcription factors Ini1 and C/EBP-β (grey bars), (G) The 
regions of the P1 and P2 promoter are outlined in blue. The above figure shows data 
obtained from the UCSC genome browser. The individuals who contributed to this 
work are cited at the beginning of this section (4.5). 
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Figure 4.14 Schematic representation of transcription factors that 
bind to the P0 promoter 
A-E represent DNase I-seq experiments within (A) adrenal gland, (B) brain, (C) 
heart, (D) kidney and (E) lung, (F) Illustration of Chip-seq signals showing binding of 
transcription factors to the P0 extended promoter region and a downstream DNase I 
hypersensitive region. The above figure shows data obtained from the UCSC 
genome browser. The individuals who contributed to this work are cited at the 
beginning of this section (4.5). 
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The region downstream shown to be sensitive to DNase I digestion in all tissues 

examined and HepG2 cells binds the CTCF factor. In addition chip-seq experiments 

in multiple cell lines has shown the binding of additional transcription factors 

including Ini1, c-myc, POU2F2, PAX5-N19, TCF12, EBF and PU.1 (Figure 4.14). 

4.6 FMO1 P2 promoter mutations and their influence on promoter 
activity 
 
FMO1 sequences with mutations were created to help define protein factors that 

regulate the expression of the gene. Mutations were created within protein-binding 

regions predicted by bioinformatics and conserved between human and mouse.  

Two independent mutations were created within the defined human FMO1 P2 

promoter (-255_-128) (Figure 4.15). The first mutation to be examined lies within the 

GC-box sequence predicted to bind SP1 (Figure 4.8). Site-directed mutagenesis was 

used to change the sequence from GGGGCGGG to GGGTTGGG. This mutant 

plasmid is defined as pGL3-255_128* in section 4.6.2.  This change is known to 

inhibit SP1 binding (Santa Cruz Biotechnology). The second mutant sequence was 

created by mutating a predicted half site for a nuclear receptor. In this case the 

sequence was changed from AGGTCA to AGCACA. This change is known to inhibit 

nuclear-receptors which bind to this motif (Santa Cruz Biotechnology). This mutant 

plasmid is defined as pGL3-255_128** in section 4.6.2. 

 

4.6.1 Mutations in the FMO1 P1 promoter 
 
A natural variation, -809G>A, is observed within the P1 promoter active region which 

was defined as the region -858_-600 (see chapter 3). A second natural variation, -

338_-337CTdel occurs at the start of exon 1. The -809G>A is not predicted to be 
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present within a DNA-Protein binding region. However, it has been shown that that 

polymorphism can effect gene expression from further distances than directly to the 

DNA sequence to which the transcription factor binds. Separate PGL3 reporter gene 

constructs were made containing the two natural variations using site-directed 

mutagenesis.   

4.6.2 A mutation introduced into the FMO1 P2 promoter reduces 
reporter gene activity 
 
Luciferase activity driven by the P2 promoter GC box mutant (pGL-255_-128)* 

sequence was reduced to that of the negative control indicating that the mutation 

abolishes P2 promoter activity (Figure 4.16). However, when the mutant pGL3-255_-

128**, which is present further downstream was transfected into COS-7 cells there 

was no significant change in reporter activity compared with that of the wild-type 

sequence.  

 

The P1 mutants were unable to be tested as when COS-7 cells were transfected 

with the P1 promoter the activity of the promoter was severely reduced. Therefore 

comparisons to the mutants would not be as informative. 

 

Many variables had been tested to find the reason for this loss of activity. The 

construct containing both the P1 and P2 promoter sequences also lost reporter gene 

activity which is suggestive of a transcriptional response within the cells rather than 

the DNA being the cause of the loss of activity. Even though, DNA was remade on 

independent occasions and tested for subsequent activity. New cell stocks were 

grown to test if the cells had biochemically changed due to increased numbers of 

passages. The promoter activity still remained low.  
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Figure 4.15 Illustration of mutations introduced to the P2 promoter reporter gene construct and the natural 
variations occurring within the P1 promoter 
(A) The P2 promoter showing factors predicted to bind. The red asterisks represent mutations made. (B) The P1 promoter 
sequence showing the location of natural variants (blue asterisk) that were introduced into the P1 reporter gene vector.
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Figure 4.16 Reporter gene activity of the pGL3-255_128 P2 promoter 
construct and the pGL3-255_128* GC box mutant within COS-7 cells 
 COS-7 cells were transfected with pGL3 constructs. The sequence location is 

shown within the legend. The co-ordinates are relative to the FMO1 translation start 
codon. The pGL3 basic plasmid was transfected as a negative control. All 
experiments were done in triplicate and the error bars indicate the standard 
deviation. 
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Bioinformatic analysis was undertaken and heat shock factor was predicted to bind 

within the P1 promoter. This factor has been shown to regulate genes in combination 

with the insulating factor lin1. Lin1 has been shown to bind within the FMO1 P1 

promoter through chip-seq experiments (Figure 4.14).  

 

Therefore media were and incubation conditions were changed (incase of stress or 

oxygen changes in regulation). This did not result in a change in reporter gene 

activity. Future experiments could produce a second shorter construct to identify the 

possible negative transcriptional regulator. Activity has currently not been achieved 

again for the P1 promoter within COS-7 cells. 

 

4.6.3 Loss of protein binding due to a mutation within the GC box 
protein binding region of the P2 promoter is detected by a gel shift 
assay 
 
To determine whether protein binding had been affected, a gel-shift assay was 

undertaken. The probe which contained the P2 promoter (-255_-128) was amplified 

from the PGL3-BASIC (-255_-128) vector and the PGL3-BASIC (-255_-128)* vector. 

This probe was incubated with 10 µg of COS-7 protein and subsequently passed 

through a 4% native polyacrylamide gel. 

 

The wild-type probe (-255_-128) resulted in a number of shifted bands representing 

different DNA-protein binding events. When the mutant form of the probe (-255_-

128)* is analysed with the same conditions, two of these bands are removed. 

Therefore mutation of the GC box binding region of the FMO1 P2 promoter removes 

binding of a protein within this region in addition to reducing reporter gene activity 

(Figure 4.17).  
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Figure 4.17 Gel shift assay showing loss of protein binding at the 
FMO1 P2 promoter due to a mutation within the GC binding box 
The lowest band represents the unbound (free) DNA, and above this, bands 
represent DNA-protein complexes. Comparing the GC box sequence wild-type 
(255_-128) and mutant (-255/-128*) shows the loss of a DNA-protein complex. The 
asterisk shows the loss of protein-DNA complexes with -255_-128 DNA compared 
with the complexes formed with -255_-128*. 
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4.7 The significance of a polymorphism, -11C>T, which potentially 
reduces the translational efficiency of the FMO1 protein 
 
The effect of polymorphism on translational efficiency was discussed in chapter 1.18 

and several examples were discussed where secondary ATG translation initiation 

sites exist, and have affected translational efficiency, and as a result play roles in 

disease. 

 

 In the course of the work described in this thesis, a common polymorphism was 

identified within the FMO1 gene. This results in a second ATG upstream of the 

defined translational start site. This polymorphism, a C>T transition, occurs in-frame, 

12 base pairs upstream of the accepted ATG for FMO1. This is the same distance as 

seen between the ATG initiation sites in the vitamin D receptor gene (Zysow et al., 

1995).   

 

Two constructs were made using the vector pSP-luc, containing the FMO1 P2 5′UTR 

sequence. The making of this vector is outlined in the methods section (2.20.2 FMO1 

P2 leader sequence construct). This vector contains an SP6 bacterial RNA 

polymerase binding site which allows RNA to be made in-vitro using a viral vector as 

a template. The RNA contains the luciferase gene, the upstream FMO1 P2 5′UTR 

sequence, and the FMO1 3′UTR. RNA can be made in-vitro and translational 

efficiency of different constructs can be observed in cells using the dual luciferase 

reporter gene assay. 

 

As with the pGL3 reporter gene constructs, the pSP-luc vector contains the 

luciferase reporter gene and therefore expression of the protein product can be 
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monitored. Both constructs to be tested for translational efficiency contain the 

accepted FMO1 translational start codon. Within the upstream ATG region a 

polymorphism is observed. Some individuals contain an ATG, and others an ACG 

(see chapter 3 for frequencies). One of the constructs contains the ATG form and the 

other the ACG form. The variation was introduced using PCR site-directed 

mutagenesis (2.28). 

 

The amount of lipid was optimised for 1µg of RNA. The lipid ratios of 1:1 and 2:1 

were tested. Transfection of RNA produced from the ATG plasmid was transfected 

with a RNA:lipid ratio of 1:1 and 2:1. The RNA lipid ratio of 2:1 produced significantly 

higher reporter gene activity. 

 

Preliminary data (Figure 4.18) suggest that the construct containing the ATG/ATG 

form produces a significantly larger amount of protein than the ACG/ATG construct. 

This polymorphism would only have an effect within P2 transcripts as it occurs within 

the P2 leader sequence for translation. Individuals containing the upstream ATG 

may therefore produce more protein and, as a result, may process drugs at an 

increased rate.  
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Figure 4.18 Reporter gene activities of RNA produced from the pSP-ATG/ATG and the pSP-ACG/ATG vectors 
(A) The amount of lipid-reagent (LTX) used to transfect RNA was optimised. (B) The relative reporter gene activity of the RNA 
produced from the pSP-ATG/ATG and the pSP-ACG/ATG vectors. The asterisk indicates that RNA produced from the pSP-
ATG/ATG produces significantly more reporter protein than RNA produced from the pSP-ACG/ATG vector. (C) The FMO1 5′UTR of 
the P2 transcript illustrating the two ATG translation sites and the location of the -11T>C polymorphism.
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Discussion 

Chapter 1 describes the quantification of Fmo1 expression in multiple mouse tissues. 

The results reveal the high expression of the gene in extra-hepatic tissues and in 

particular in tissues that are fundamental in energy homeostasis. This gives support 

for a role for FMO1 in energy homeostasis.  This chapter aim was to identify the 

regulatory regions controlling the transcription of the different FMO1 transcripts. 

These regions could then be used to identify and test genetic variation for effects on 

transcription. 

 

Transfection of the three different cell lines with reporter gene constructs has 

identified novel promoter regions upstream of the P1 and P2 transcriptional start 

sites. Chromatin analysis within multiple human tissues gives evidence for both 

promoters also being within open chromatin regions. Selective use for the P1 and P2 

promoter has been observed in the three cell lines. In the human kidney cell line HK-

2 the P2 promoter is favoured and within the mouse cell line 3T3-L1 the P1 promoter 

is favoured. Several cDNA clones have been isolated from mouse that correspond to 

P1 transcripts. However, only a single cDNA clone has been reported that arises 

from the P1 promoter in humans (Shephard et al., 2007). In contrast, several cDNAs 

corresponding to transcripts from the P2 promoter have been reported in humans. 

The real-time quantitative PCR data from mouse tissues shows a preference for the 

P1 promoter over the P2 promoter. The data suggests the P2 promoter is favoured 

within human and the P1 promoter is favoured within mice. This would explain the 

lack of polymorphism within the human P2 promoter and the presence of a number 

of SNPs for the human P1 promoter. The mouse contains polymorphism within the 

homologous P2 promoter region. 
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Analysing the FMO1 P1 and P2 promoters reveals transcription factor binding sites 

that could be responsible for increases in both transcripts. CCAAT binding regions 

are predicted within the P1 promoter. Chip-seq data also gives evidence for CCAAT 

binding protein (CEBP-β) binding within the defined promoter. As the P1 and P2 

transcripts are both elevated when 3T3-L1 cells undergo differentiation to adipocytes 

it is possible that CEBP-β binding could responsible. The thyroid hormone receptor is 

also predicted to bind within the P1 and P2 promoter. This is a good candidate in the 

future to analyse its effect on Fmo1 expression due to its role in energy homeostasis 

in the mouse. 

 

Transfection of differentiated 3T3-L1 adipocytes was successful and reporter gene 

activity was high. In future experiments, regulatory polymorphism could be analysed 

in the context of these cells with further optimisation of controls. Protein extracts can 

also be isolated and gene expression analysis can be analysed using these extracts 

to further understand Fmo1 gene regulation within brown and white adipose tissue. 

The insulating factor CCTF has been shown to bind in two locations surrounding the 

FMO1 P0 transcriptional start site. One site is -2700 bp upstream of the human P0 

promoter. This region has been shown to down regulate reporter gene activity when 

attached to either the human or mouse P0 minimal promoter. Comparative analysis 

between mouse and human sequences show the binding regions of CCTF are not 

conserved between mouse and human. Down regulation of the human P0 promoter 

in the liver shortly after birth could be due to CTCF binding within the P0 promoter. 

 

A second CCTF binding region is present downstream of exon 0. This could play a 

role in the regulation of the downstream P1 and P2 promoters, although this is purely 
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speculative without experimental evidence. Further experiments to repress the CTCF 

binding factor and development of an assay to measure FMO1 expression would 

determine the effects of the CTCF binding. 

 

Observing Fmo1 expression increasing in 3T3-L1 adipocyte differentiation (see 

chapter 1) gives an opportunity to understand Fmo1 regulation in fat. Transcription- 

factor binding consensus sites are present within the P1 and P2 promoter regions 

that are good candidates for upregulating FMO1 during 3T3-L1 differentiation.   
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Chapter 5: Dideoxy sequence analysis of the human 
FMO1 P0, P1, and P2 promoters 
 
 
Introduction 

In the previous chapter, two FMO1 promoters, P1 and P2 were defined using 

reporter gene assays. Genetic polymorphism located within these promoter regions 

may alter the binding of cis-acting regulatory elements and influence transcription 

efficiency. Therefore it is desirable to identify polymorphism present within these 

regions as well as the previously defined P0 promoter (Shephard et al., 2007). In 

addition to the sequence analysis of the two novel FMO1 promoters carried out as 

part of this thesis, the NIEHS (National Institute of Environmental Health Sciences) 

based in Washington University has sequenced these regions from 90 individuals of 

unknown origin (Zaitlen et al., 2005). The SNPs discovered in the NIEHS study have 

subsequently been genotyped by investigators within the HapMap consortium using 

samples obtained from the Coriel repository (2003). These individuals were originally 

genotyped within 4 populations and subsequently genotyped for a percentage of the 

SNPs within additional populations. The original populations genotyped are the CEU: 

Utah residents with Northern and Western European ancestry from the CEPH 

collection, CHB: Han Chinese in Beijing, China, CHD: Chinese in Metropolitan and 

the YRI: Yoruban in Ibadan, Nigeria, The additional populations genotyped for only a 

limited number of SNPs are the GIH: Gujarati Indians in Houston, Texas, JPT: 

Japanese in Tokyo, Japan, LWK: Luhya in Webuye, Kenya, MEX: Mexican ancestry 

in Los Angeles, California, MKK: Masai in Kinyawa, Kenya, TSI: Tuscan in 

Italy,ASW: African ancestry in Southwest USA, Denver, Colorado. It was decided 

that re-sequencing of these regions may reveal new genetic polymorphism in the 

FMO1 promoter regions as DNA from only 90 individuals, of unknown origin, had 
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been sequenced by NIEHS. In addition, SNPs found at low frequency by the NIEHS 

have not been genotyped by the HapMap consortium. The project described in this 

thesis can confirm the existence of these polymorphisms and extend our knowledge 

on FMO1 variation. The four populations with the most complete genotype data were 

available to us to be re-sequenced for the P1 and P2 FMO1 promoter regions.  

5.1 Experimental design: Number of individuals and regions to be 
sequenced 
 
Once genetic polymorphisms within the FMO1 promoter regions are identified they 

subsequently need to be tested for functional consequences and for association with 

drug response to FMO1 substrates. If FMO1 genetic polymorphism is to be used as 

an indicator for drug response it is desirable that the polymorphisms are common. A 

common polymorphism will have a frequency of more than 5% within the population. 

This would be predicted to occur within 1 in 20 chromosomes. Individuals contain 

two alleles of the gene. Therefore the genetic variation should be apparent on 

average by sequencing 10 individuals. 

 

The availability of individual DNA samples from the different populations is a limiting 

factor. We had available to us only 11 individuals from the YRI population and 11 

from each of the JPT and HAN populations. Therefore all available YRI, JPT and 

HAN population DNA samples were chosen for sequencing. The JPT and HAN 

populations were combined as the populations have shown similar haplotypes in 

previous studies. There were many CEPH samples to choose from and these initially 

were all sequenced in 40 individuals within one region of the FMO1 5′ flanking 

sequence, +53 and -629. The number of samples was then reduced to 19 individuals 

when subsequent regions of the upstream FMO1 gene were sequenced. The 
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regions to be analysed were the P0, P1 and P2 promoter regions. The human P0 

promoter was defined as between -521_+50 upstream and downstream of the P0 

transcriptional start site (Shephard et al., 2007) and P0 SNPs are throughout this 

chapter SNPs and sequenced regions are defined from the P0 transcriptional start 

site. The P1 and P2 promoter regions are located at -255_-128 and -858_-128 as 

defined in chapter 2. In the case of the P1 and P2 promoters the sequence is 

numbered from the „A‟ of the ATG translation initiation codon. For the P0 promoter, 

primers were designed to encompass the -521 to +50 region, which would 

encompass the currently known SNPs within this region (Fig.5.1A). The region of 

sequence which encompassed the P1 and P2 promoter regions was too large to be 

sequenced within one sequencing run. As a result primer pairs were designed for 

two overlapping regions (Fig.5.1). The first region was between -629 and +53 and 

the second region was between -1158 and -527 (see Fig.5.1B). The first region was 

amplified to include the nucleotide at +53. This was to ensure the SNP -11T>C 

would be genotyped. This SNP introduces a potential upstream ATG translation 

initiation codon. The region between the P1 and P2 promoters was also sequenced 

as this contains an exon, defined as exon 1, which contains the 5′UTR sequence of 

the P1 transcript.  
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Figure 5.1 Location of primers used to amplify DNA from individuals 
for subsequent dideoxy sequence analysis 
(A) The P0 promoter region. The sequence in red defines exon 0. The primer 
locations are in bold and underlined. (B) The P1 and P2 promoter region. The 
sequence in red defines the exons 1 and 2. The black primers represent the primer 
pairs used to amplify the first region (-629_+53) for sequencing. The blue primers 
represent the primer pairs used to amplify the second region for sequencing (-1158_-
527). 
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5.2 Identification of novel polymorphism within the FMO1 P1 and P2 
promoter regions (Fig.5.2) 
 
Sequencing of the FMO1 P0, P1 and P2 promoters has revealed two novel 

polymorphisms. A 2 base pair deletion was observed at the start of exon 1 (-338_-

337delCT.The two bases deleted were CT and are identified within Fig.5.5. This 

SNP is situated at the start of transcription for the P1 transcript. It therefore could 

affect the binding of the RNA polymerase at this site. The SNP was observed only 

within the European population (CEU). It is not present within the YRI and JPT and 

HAN populations. It was observed within 4 individuals in a heterozygote state. This 

meant that the individuals had one copy of the deletion and one copy with no 

deletion. The frequency of this variant within the European population is calculated to 

be 5%. The chances of an individual being homozygous for the polymorphism are 

0.0025 or 1/400. This is therefore defined by the original criteria as a common 

polymorphism within the European population. 

 

A second novel polymorphism was observed at position -497C>T and was observed 

within one European individual. The SNP was observed in the heterozygote state. 

The SNP allele frequency was 1.25%. The chances of an individual being 

homozygote are 0.0001% or 1/6400. The -497C>T is therefore a low frequency 

polymorphism.   
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5.3 Confirmation of the -515G>A and -503C>T SNPs and genotyping in 
CEU, YRI and JPT/HAN populations 
 
The HapMap project selectively genotyped SNPs within the FMO1 gene and 

surrounding non-coding region. SNPs previously defined at low frequency by the 

NIEHS were not chosen for genotyping. Therefore the SNP -515G>A was not 

chosen for genotyping. Using HapMap samples, a second SNP -503C>T was 

genotyped, within the CEU, JPT and HAN populations, by the Sanger Centre, UK. 

The YRI population was not genotyped. The P1 and P2 sequence with the HapMap 

genotyped SNPs are illustrated in Fig.5.3. The figure also shows the HapMap 

frequencies of the SNPs genotyped within this study and their resulting haplotypes 

within the three populations. 

 

The polymorphism -515G>A had only previously been identified to be heterozygous 

within 1 out of 90 individuals (180 haplotypes) sequenced. This individual was 

identified from the NIEHS sequencing of 90 individuals with an unknown identity. The 

SNP has not been genotyped by HapMap or any other gentoyping project. Within the 

European population (CEU) the genotype frequency of the common G/G genotype 

was 0.83 and the frequency of heterozygotes was 0.17 (Fig.5.2). This frequency is 

higher than that of 0.01 previously observed from the NIEHS sequencing project. 

Within the YRI population, the A allele has a much higher frequency than in 

Europeans. The frequency of G/G homozygotes is 0.45 and the frequency of 

heterozygotes was 0.55. There were no observed A/A homozygotes (Fig.5.2). This is 

due likely to only 11 individuals being sequenced from within this population group. 

Within the JPT and HAN populations the SNP is not polymorphic from the 19 
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samples sequenced. We have therefore shown that the -515G>A SNP is at a higher 

frequency than previously observed and is common within the YRI population. 

A SNP located at -503C>T, 12 base pairs downstream of -515G>A, is present within 

the samples sequenced. This SNP has been observed within the samples 

sequenced by the NIEHS project. The frequency of the C/C genotype is 0.644. The 

heterozygote frequency is 0.267 and the T/T genotype frequency is 0.089. This SNP 

is recorded as being genotyped within the Ensembl database (www.ensembl.org) in 

individuals used within the HapMap project. The populations genotyped are CEPH 

and JPT and HAN. No variation is observed within these individuals and all 

individuals have the genotype C/C. This seems to be a reporting error. The C/C data 

was obtained outside of the HapMap consortium by the Sanger Institute, UK. The 

error may be due to the automated analysis of the sequence data. Within the CEPH 

population, the genotype frequencies are 0.72 for the C/C genotype and 0.28 are 

heterozygote for this SNP (Fig.5.2). There are no T/T homozygotes within the CEPH 

individuals sequenced. In the YRI population the frequency of the C/C genotype is 

0.18, the C/T genotype is 0.45, and the T/T genotype is 0.36 (Fig.5.2). This is very 

different from the CEPH individual genotypes as the T allele is common in the YRI. 

In the JPT and HAN populations sequenced, there was no variation at this locus and 

all individuals had the C/C genotype. 

 

The SNPs -809G>A, -513G>A, -312A>T and -11T>C were genotyped within this 

study in the CEU, YRI and JPT/HAN populations. The frequencies obtained from this 

study are given in Fig.5.2. Individuals from these populations have also been 

genotyped by the HapMap consortium. The SNPs from the HapMap consortium  
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Figure 5.2 The frequency of alleles and genotypes within (A) the FMO1 P1 and P2 promoter and (B) the FMO1 
P0 promoter 
From left to right: The first column shows the polymorphism (SNP) identifier which can be found within the dbSNP database 
(www.ncbi.nlm.nih.gov/projects/SNP/). The second column shows the position of the SNP relative to the A of the ATG translation 
initiation codon. The third column shows the base change for the polymorphism. The fourth column shows in order, the frequencies 
of the two alleles and subsequently the frequency of the genotypes within the CEU population. The fifth column shows the allele 
and genotype frequencies within the YRI population. The last column shows the allele and genotype frequencies within the 
HAN/JPT populations.
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show similar allele and genotype frequencies (see figure 5.3C for HapMap SNP 

frequencies) and therefore the frequencies are not discussed here. 
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Figure 5.3 Illustration of the HapMap consortium genotyped SNPs within the FMO1 P1 and P2 promoter 
region 
(A) The P1 and P2 promoter region with the HapMap genotyped SNPs highlighted in blue. The red blocks illustrate exon 1 and 
exon 2 of the FMO1 gene. (B) The haplotypes constructed by the HapMap consortium and their frequencies within the YRI 
(Yoruban), CEU (European) and CHB/JPT (Japanese and Han Chinese) populations. (C) The original frequencies of the alleles 
and genotypes are shown for each SNP in the order they appear along the gene. 
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5.4 Construction and analysis of FMO1 P1, P2 haplotypes in CEU, YRI 
and JPT/HAN populations 
 
Within the following section the terms linkage and linkage disequilibria will be used. 

The term linkage is used to define loci that are present on the same chromosome. 

The term linkage disequilibrium is used to define the non-random association of 

alleles.  

 

Haplotypes, which are how polymorphisms occur along the chromosome, give a 

profile of how polymorphism is inherited and physically linked. This gives the 

researcher an ability to study the effect of multiple SNPs and how they might act 

together. As I have previously defined the FMO1 P1 and P2 promoters it would be 

desirable to study the SNPs within this region as they appear within the individuals 

sequenced as part of this project and by the sequence consortia. This analysis 

allows us to identify the highest frequency haplotypes. These could then be tested 

for their functional effect in downstream experiments. Studying haplotypes also gives 

us the opportunity to identify the inherited genetic unit, and differences in this unit, 

between different populations. 

 

Sequencing data does not tell us on which of the two chromosomes the variation 

occurs. Therefore to determine the phase of the haplotypes (which chromosome 

they lie on) the genotypes have to be reconstructed. An alternative to haplotype 

reconstruction is to phase haplotypes from family pedigrees. In this study phasing 

haplotypes is achieved through haplotype reconstruction using statistical methods. 

The haplotype reconstruction was undertaken using the software Phase (Stephens 

and Donnelly, 2003). Phase software uses a Bayesian statistical method to 
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determine predicted haplotype frequencies and recombination rates. The method 

identifies known haplotypes (homozygous loci) and uses the assumption that the 

unknown haplotypes (due to heterozygosity) will be similar to the known haplotypes. 

The predicted haplotype frequencies and their standard deviations within the 

different populations are shown in Fig.5.4 and the most highly frequent haplotypes 

and their standard deviations are shown within Fig.5.5. The haplotypes are written in 

order of how the SNPs are observed along the chromosome (see Fig5.5 for 

annotation). The first SNP will be the most 5′ and the last SNP the most 3′. Some 

populations are not polymorphic for some of the SNPs. The locus will still be present 

within the haplotype shown for ease of comparison.  

 

The YRI population has a larger number of predicted haplotypes compared to the 

other two populations. This is due to the larger variability seen between the 

individuals within this population. For example for the SNPs, -809G>A and -513C>A, 

the YRI population contain homozygote individuals for both alleles. This is not seen 

in the other population groups. Therefore there is more variability within the YRI 

population and as a result a larger number of predicted haplotypes is seen. The 

CEPH haplotypes are more variable than the JPT and HAN population due to a 

number of loci not being polymorphic within the JPT and HAN populations. The 

SNPs that are not polymorphic within the JPT and HAN population are -515G>A, -

513G>A and -503C>T. 

 

Examining the frequency of common haplotypes within the different populations 

identifies large differences between the populations. The predominant haplotype 

within the CEPH population is the GGGCC(CT)AT haplotype and occurs at a 
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predicted frequency of 53% within this population (Fig.5.5). Each SNP within the 

haplotype string is identified within the sequence annotation in Fig.5.5. The second 

most predominant haplotype is GGGCC(CT)AC and occurs at a frequency of 17% 

(Fig.5.5). The rest of the predicted haplotypes are of very low frequency. Therefore 

70% of individuals have the same first seven 5′ to 3′ polymorphisms within the FMO1 

P1 and P2 promoter region (GGGCC(CT)A) and only the last SNP location is 

polymorphic. This polymorphism is -11T>C. The polymorphism introduces a potential 

second ATG initiation codon in those individuals with the T allele. The P1 and P2 

polymorphisms upstream of this may have occurred on the background of this 

polymorphism.  

 

The highest frequency haplotype within the YRI population is the AGATC(CT)AC 

haplotype which has a predicted frequency of 18% (Fig.5.5). The second most 

frequent haplotype is GGGCC(CT)AC at a frequency of 10% (Fig.5.5). This 

haplotype is also seen at a high frequency within the CEPH population. The most 

frequent predicted haplotype within the YRI population contains 4 out of 9 variations 

different from the two most frequent CEPH haplotypes. The high frequency YRI 

haplotypes also do not contain the T allele of the polymorphism -11C>T.  

 

The most highly frequent haplotypes seen within the JPT and HAN populations are 

the GGGCC(CT)AT haplotype at a frequency of 67% and the GGGCC(CT)AC 

haplotype at 29% (Fig.5.5). These two haplotypes are also the highest frequent 

haplotypes within the European population. 
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Figure 5.4 Predicted haplotype frequencies of the FMO1 P1 and P2 
promoter regions in different populations 
The haplotypes are made up of the 8 known SNPs and the novel SNP identified in 
this study. They are shown in order of how they appear from the 5′ to the 3′end of the 
gene (see Fig.5.5 for annotation). The location of the SNPs can be visualised in 
Fig.5.3. Haplotype frequencies are shown for the (A) YRI (Yoruban) (B) CEU 
(European) (C) JPT/HAN (Japanese and Han Chinese). The haplotypes highlighted 
in red have higher standard deviations than there predicted frequency. They are 
therefore likely to be inaccurate.
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Figure 5.5 (A) Illustration of the polymorphisms that reside within the P1 and P2 promoter regions of FMO1 
and (B) the high frequency haplotypes within the populations analysed 
(A) Exon 1 and exon 2 are highlighted in red. The SNPs are highlighted in blue. The novel SNP identified within this study is 
highlighted at the start of exon 1 (CT/DEL). (B) The predominant haplotypes and their frequencies and standard deviation are 
shown for the YRI (Yoruban), CEU (European) and JPT/HAN (Japanese and Han Chinese) populations. The eight base pair string 
of the haplotype corresponds to the 8 SNPs shown in (A) ordered from the 5′ to 3′ of the sequence.
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5.5 Construction and analysis of FMO1 P0 haplotypes in CEU, YRI and 
JPT/HAN populations 
 
Sequencing of the P0 promoter has revealed no new novel variation. In total 3 SNPs 

have been identified which are -452G>A, -188C>T and +58C>A (Fig.5.2). The 

frequency of the SNPs can be observed in figure 5.2. The frequencies are similar to 

those shown for these SNPs by HapMap. A further 2 SNPs previously identified 

within the NIEHS project were not identified in the present study. These are 

rs28384812 located at position -10C>T and rs17515666 located at +22T>C. The two 

SNPs were identified within the NIEHS project and are at low frequency. The C allele 

of the -10C>T SNP occurs at a frequency of 0.994 and the T allele 0.006. The T 

allele of the +22T>C SNP occurs at a frequency of 0.994 and the C allele at a 

frequency of 0.006. The two SNPs are low frequency polymorphism. 

 

Haplotypes were constructed from the three genotyped SNPs using the phase 

software. The CEPH and JPT/HAN populations show a higher number of haplotypes 

than the YRI population (Fig.5.6). This is due to the -452G>A A allele being fixed 

within the YRI population. In both the CEPH and JPT/HAN populations this is 

polymorphic. 

 

The most frequent haplotype within the YRI population is the ATC haplotype at a 

frequency of 54% (Fig.5.6). The second most frequent haplotype is the ACC 

haplotype at a frequency of 26% and the third is ATA at a frequency of 16% 

(Fig.5.6). Within the CEU and JPT/HAN populations the highest frequency haplotype 

is GCC at a frequency of 53% and 33% respectively (Fig.5.6). Therefore the most 

frequent haplotype within these populations contains the G allele of the -452G>A 



 223 

which is in contrast to the YRI individuals which contain the A allele. The second 

most frequent haplotype within the CEU and JPT/HAN populations is the ATC  

 

Figure 5.6 Predicted haplotype frequencies of the FMO1  P0 promoter 
region in different populations 
The predominant haplotypes and their frequencies and standard variation are shown 
for (A) the YRI (Yoruban), (B) CEU (European) and (C) JPT/HAN (Japanese and 
Han Chinese) populations. The three SNPs used in the haplotype string are -
452G>A, -188C>T and +58C>A. 
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haplotype at a frequency of 23% and 24% respectively (Fig.5.6). The third most 

frequent haplotype in the CEU is ACC at 11% and the third most frequent haplotype 

within the JPT/HAN population is the ATA haplotype at a frequency of 20% (Fig.5.6). 

This reflects the higher frequency of the A allele at the +58C>A locus.  

 

Discussion 

The identification of regulatory variation within human FMO1 gene is important as it 

may be linked to the efficiency of drug metabolism. These SNPs could therefore act 

as indicators of drug metabolism efficiency within individuals. Re-sequencing of the 

defined promoter regions is therefore desirable in identifying SNPs within the wider 

population. Upon discovery of SNPs, they can be tested functionally for their effects 

on transcription or cis-acting regulatory binding.  

 

Re-sequencing the FMO1 promoters has yielded two newly identified 

polymorphisms. One of which occurs at a relatively high allele frequency of 5%. This 

polymorphism, -337_338CTdel is a deletion that occurs at the start of exon 1. This is 

the transcripitional start site for the P1 transcript. The P1 transcript, as shown in 

chapter 1, is the predominant transcript in most extra-hepatic tissues. The 

polymorphism could have an effect on transcription as it is a 2 base pair deletion 

within the start region of transcription. This could affect the binding efficiency of RNA 

polymerase II and therefore influence the amount of the P1 transcript produced. The 

second identified SNP, -497A>T is predicted to occur in 1/6400 individuals. This is a 

low frequency polymorphism and as such is not useful as a diagnostic of drug 

metabolism. 
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Haplotype construction within the three different populations has revealed 

differences in the abundance of haplotypes and revealed high frequency haplotypes 

within each population for both the P0, P1 and P2 promoters. This haplotype 

construction will be useful in further in-vitro analysis of promoter activity or protein 

binding. Instead of testing each individual SNP for effects on transcription, the 

haplotype can be tested. This will reduce the number of SNPs to analyse and also 

the effects of SNPs will be studied as they appear on the chromosome. 

 

Analysing haplotypes of the P1 and P2 promoter regions indicate the C and T allele 

of the -11C>T variation have distinct haplotypes. Seventy-percent of the predicted 

haplotypes for the CEU population and 95% for the JPT and HAN population only 

vary at this polymorphism. The most frequent haplotype contains the T allele and the 

second most frequent contains the C allele. Within the YRI population the -11C>T 

allele has a more predictable haplotype than the other two populations. The two 

most frequent haplotypes contain the C allele. The variation between the two most 

common YRI haplotypes occur further upstream at the -809G>A and -513G>A. The 

most frequent being the haplotype with the A alleles.  

 

These data suggest the P1 and P2 promoter haplotypes containing the T allele of the 

-11C>T variation originated within Africa and became more frequent as individuals 

migrated out of Africa. This may be due to the haplotypes conferring an advantage to 

those individuals. FMO1 is a drug-metabolising enzyme and it may have given the 

individual an advantage in metabolising new compounds found outside of Africa. 

Alternatively, the T allele may also be more frequent in other African populations and 

the CEPH and JPT/HAN may have similar ancestry to these populations.  It would 
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therefore be desirable to test the effect of the -11C>T SNP functionally as it may 

confer a selective advantage. 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 227 

 

 

 

Chapter 6 

Optimisation and development of 

capillary DNase I footprinting for the 

detection of regulatory polymorphisms 

that alter DNA-protein binding events 



 228 

Chapter 6: Optimisation and development of capillary 
DNase I footprinting for the detection of regulatory 
polymorphisms that alter DNA-protein binding events 
 

Introduction 

This chapter describes the optimisation of a high-throughput DNase I footprinting 

method for identifying the sequence of DNA bound to protein, and the affect of 

genetic polymorphism/mutation on protein-DNA interactions.  

 

Recent advances in the methodology of DNase I footprinting allow capillaries to be 

used to analyze DNA fragments as opposed to the traditional method of using gel 

electrophoresis (Wilson et al., 2001; Zianni et al., 2006). This makes the technique 

safer and more reproducible as fragments to be analysed are labelled fluorescently, 

compared to traditional DNase I footprinting where DNA is radio-labelled.  

 

With the use of capillary technology the DNase I footprint can be used for high-

throughput applications as the DNA fragments are analyzed using the ABI prism 

genetic analyzer 3730, which allows 96 samples to be analyzed in a single run as 

opposed to a few samples traditionally analysed on a single polyacrylamide gel. The 

machine can analyse a maximum of 12 plates simultaneously.  

 

We chose to incorporate this new methodology for a novel application in which 

human FMO1 promoter polymorphisms could be screened for their affect on DNA-

protein binding.  As the FMO1 promoters are tissue-specific (see chapter 1) it is 

desirable to analyse the influence of polymorphism in different tissues through the 

use of extracts from different tissue types. As the method allows a large number of 
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samples to be analysed this would be possible. Any change in DNA-protein binding 

observed is likely to change the amount of transcript produced and subsequently the 

amount of protein. Genetic polymorphisms shown to change DNA-protein binding by 

this method could then be used in association studies to determine polymorphisms 

that are associated with drug response.   

 

For the proposed method to be applicable to the screening of promoter 

polymorphism it would have to identify DNA-protein binding events using an extract 

of proteins which represented a situation within a cell line or tissue. It would also 

have to be able to detect the affect of regulatory polymorphism on DNA-protein 

binding.  

6.1 Labelling and detection of DNA fragments for capillary DNase I 
footprinting 
 
The DNA to be analysed is labelled with a suitable fluorescent dye that can then be 

detected within the capillaries during fragment analysis using the genetic analyzer 

3730. DNA is labelled by PCR using a labelled oligonucleotide (see section 2.11 for 

method). The DNA template for the PCR can either be plasmid or genomic DNA. 

Screening a large number of genetic variations using a large number of individuals 

would ideally be carried out by directly amplifying the desired region of an 

individual‟s DNA. This would remove the need for cloning. 

 

The dye that is incorporated on to the DNA during the PCR is quantified using the 

ABI PRISM 3730 Genetic Analyzer. The dye chosen to label DNA fragments was 

FAM. FAM is a fluorescein amidit, commonly used as 5′ fluorophore for qPCR 

probes or as 5′ labelled primer for different DNA sequencing approaches on ABI 
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instruments. To analyse the FAM-labelled fragments we used a genotyping program 

capable of analysing 5 separate dyes. This is known as the G5 dye set. The 5 dyes 

are FAM/VIC/NED/PET/LIZ. It has been shown previously that the dye FAM gives 

the strongest and most robust signal. As a small amount of DNA (50ng-200ng) is to 

be used the FAM label is the most appropriate.  

6.2 Footprinting analysis of the Simian Virus 40 promoter (SV40) 
 

The SV40 promoter has previously been analysed using traditional DNase I 

footprinting. The promoter is well characterised and the DNA sequences to which 

various transcription factors bind are known (Dynan and Tjian, 1983). The SV40 

promoter was therefore chosen as a positive control for the optimisation of DNase I 

capillary footprinting. 

 

The SV40 DNA was obtained in a linear form from the Promega corefootprinting kit. 

To label the SV40 promoter DNA with FAM it was necessary to clone the promoter 

into a TOPO vector (see section 2.13 for method). This was to ensure the template 

could be produced in large quantities and used for future experiments. It also 

allowed the promoter to be amplified upstream of the start of the SV40 promoter 

allowing the full promoter sequence to be analysed for DNA-protein binding. To 

ensure effective TA cloning the SV40 DNA was incubated at 72o C for 10 minutes 

with dATP and Taq polymerase. The Taq polymerase adds adenine nucleotides to 

the end of the linear DNA which is a requirement for TA cloning to be successful. 

Once cloned, the vector could be transformed (see section 2.5) and DNA prepared in 

a large quantity (see section 2.3). 
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The cloned SV40 DNA was then used as the template to produce a FAM-labelled 

fragment for capillary electrophoresis. PCR was carried out with a 5′ FAM-labelled 

forward primer located at the start of the SV40 promoter and an unlabelled 3′ reverse 

primer located just downstream of the SV40 promoter in the TOPO vector (Figure 

6.1).  The PCR product was separated through an agarose gel by electrophoresis 

(section 2.8). It is important that no DNA detection dye e.g. ethidium bromide or Sybr 

green be included in the gel. The gel was viewed with a fluorescent imager at the 

wavelength of FAM excitation and a single band representing the labelled promoter 

was visible (Figure 6.1). The DNA ladder was visualised by mixing with Sybr green 

prior to electrophoresis.  The DNA was purified as described in section 2.9.1. 



 232 

 

 

Figure 6.1 Annotation of the SV40 promoter sequence and PCR FAM labelling of the sequence 
(A) SV40 positive control DNA sequence. The primers used to amplify and label the SV40 promoter sequence are indicated in red. 
The 5′ primer is FAM labelled and the 3′ primer is unlabelled. The blue and yellow regions highlight the AP1 and SP1 transcription 
factor binding consensus sites respectively. (B) The image of the labelled PCR product in lane 2, using an excitation filter for 
reading FAM, is shown. Lane 1 contains the BioLine hyperladder marker 4.
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6.2.1 Optimisation of the SV40 promoter nuclear protein binding 
reaction 
 
The labelled DNA is incubated with a nuclear protein extract to allow the proteins to 

bind to the DNA. COS-7 (a cell line derived from African green monkey kidney 

fibroblasts) nuclear extract was used as this has been shown to have endogenous 

levels of the SP1 protein. The SV40 promoter contains several SP1 consensus 

binding sites for (Figure 6.1). For the binding reaction conditions see method 2.30.2 

The COS-7 nuclear protein was analysed by SDS-PAGE to check protein integrity. 

This showed that the extracted proteins are intact and suitable for use in the 

footprinting experiments.  

6.2.2 DNase I digestion 
 
The DNA is digested using DNase I (Section 2.30.3 for method). The concentration 

of the enzyme needs to be optimised so that each phosphodiester bond along the 

length of the fragment is cleaved. However, the conditions should be such that each 

fragment in the population of DNAs is ideally cleaved just once. As these cleavages 

occur randomly, the population of DNA strands produced by enzymatic digestion 

should represent all possible DNA lengths. If too much enzyme is used then a higher 

percentage of DNA fragments will be shorter, likewise if too little enzyme is used a 

higher percentage of fragments will be too long. To be able to analyse the whole 

promoter sequence the enzyme needs to digest randomly and evenly along the 

length of the fragment. Therefore a number of enzyme concentrations need to be 

tested. The optimal range of DNase I concentration was shown to be large (Figure 

6.2). 0.05U (A) and 0.005U (B) both give an acceptable size range of DNA 

fragments. Footprints could be observed throughout the 350bp sequence. The 

higher DNase I concentration (A) does show a slight skew towards smaller DNA 
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fragments. I therefore chose to use 0.005U for my subsequent experiments. The 

result of this optimisation shows that the DNase I capillary technique could be 

flexible in the amount of DNase I enzyme used and would not, in most 

circumstances, require optimisation. This would make the technique more conducive 

to screening a number of different promoters. This makes the technique more 

applicable for high-throughput screening as a wider enzyme concentration range will 

make it easier to analyse a number of different promoter fragments of different length 

at the same time. 

 

It was observed initially that when different nuclear protein concentrations were used 

that DNase I digestion would happen at different efficiencies. It was concluded that 

the reason for this was that as more nuclear protein was added the buffer conditions 

were changing and that this affected the efficiency of the DNase I enzyme. This 

problem was partially overcome by adding BSA to equalise the total protein content 

in each reaction and increasing the volume of the digestion reaction (from 20 µL to 

100 µL). The increase in volume would help to dilute any differences in buffer 

conditions between samples. The DNA digestion reaction was terminated using 0.5 

M EDTA which inhibits the enzyme reaction and heating to 75oC for 10 min to 

denature the enzyme.  

 

Before analysing the digested DNA, it is necessary to remove the bound protein. 

Different methods were tested to extract the DNA from the protein. Initially the 

method of phenol/chloroform extraction was used. When using columns which 

contain a gel separating the phenol organic phase and the aqueous phase 

containing the DNA, the DNA extraction was shown to be much more efficient. This 
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was subsequently compared to the use of ion-exchange columns. Both methods 

were shown to work equally well, however more DNA was recovered using ion-

exchange columns (see method 2.9).  
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Figure 6.2 0.005U of DNase I is optimal to produce an evenly size-distributed set of DNA fragments 
The chromatic traces of the SV40 promoter above show the effect of different DNase I concentrations. The chromatograms show 
the DNase I digested fragments from the 5′ FAM labelled SV40 promoter after incubation with COS-7 nuclear protein extract. The 
fragments were separated through capillaries and each peak on the chromatogram represents cleavage at a phosphodiester bond 
by DNase 1. The x-axis represents the number of base pairs from the 5′ label and the y-axis is the intensity of the peak.
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6.2.3 Increasing the binding competitor does not affect the DNA-
protein binding profile of the promoter 
 

The binding reaction was optimised by varying the components of the reaction. The 

incubation buffer used had previously been optimised within the lab for use as a 

general buffer which promotes binding of a high percentage of proteins to DNA (Dell 

et al,. 1998). This buffer was also used in gel shift assays and binding was shown to 

be efficient (see chapter 4.19).   

 

The amount of non-specific nucleic acid competitor was also optimised. The non-

specific competitor used was Poly (deoxyinosinic-deoxycytidylic) acid sodium salt. 

This is a double-stranded alternating copolymer consisting of a chain of 

deoxyinosinic acid bound to a chain of deoxycytidylic acid. The competitor functions 

by mopping up nuclear protein that binds non-specifically to DNA and thus removing 

proteins that could interfere with proteins that bind specifically to the promoter region 

being analysed. By increasing the competititor concentration we can identify if 

proteins are binding non-specifically to the DNA being analysed. When the amount 

of poly (dI-dC) was increased from 4 µg to 10 µg there was no difference in the 

footprinting profile of the SV40 promoter when different amounts of COS-7 protein 

were used (Figure 6.3). We therefore decided that 4µg of competitor was sufficient to 

remove non-specific DNA-protein binding. 

6.2.4 Increasing DNA amount increases the FAM signal and DNA-
Protein binding is less specific 

 
The total amount of DNA is varied to observe how much DNA is required to visualise 

the labelled DNA and to test for a saturation effect which could occur if too much 
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DNA was added. Too much DNA may result in protein binding being undetected due 

to too much unbound DNA being present. Increasing the DNA template 

concentration from 50 ng to 200 ng resulted in the loss of DNA-protein binding 

specificity. The SV40 binding region is footprinted using 50 ng of template. When 

200ng DNA template is used the signal is reduced non-specifically along the whole 

trace (Figure 6.4). A template concentration of 50ng was therefore chosen for future 

experiments. 

6.2.5 Confirmation of DNA-protein binding events 
 

To further determine if the DNA-protein binding is specific, proteinase K was added 

to the incubation samples after DNA-protein binding had been allowed to proceed to 

completion. Proteinase K is a protease and thus digests proteins. The presence of 

this enzyme eliminated DNA-protein binding (Figure 6.5). This shows that the DNA-

protein interactions observed are specific. 



 239 

 

Figure 6.3 Increasing the amount of competitor DNA does not affect the DNase I footprinting trace of the 
SV40 promoter 
The chromatograms above show the DNase I digested fragments from the 5′FAM labelled SV40 promoter. The fragments are 
separated through capillaries and each peak represents a phosphodiester bond cleavage. The x-axis represents the number of 
base pairs from the 5′ FAM label and the y-axis represents the intensity of the peak.  A to C binding reactions contained 10 µg of 
competitor DNA. D to F contained 4µg of competitor DNA. The total COS-7 nuclear protein is (A) 0 µg (B) 20 µg (C) 40 µg and (D) 
0 µg (E) 20 µg (F) 40 µg. The traces shown adjacent to each other contain the same amount of nuclear protein. 
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Figure 6.4 Capillary DNase I footprinting of the SV40 promoter with increased amounts of SV40 DNA 
template 
The chromatograms above show the DNase I digested fragments from the 5′FAM labelled SV40 promoter after incubation with 
COS-7 nuclear protein extract. The fragments have been separated through capillaries and each peak represents a phosphodiester 
cleavage event. The x-axis represents the number of base pairs from the 5′ label and the y-axis is the intensity of the peak. A to C 
binding reactions contained 200ng of template DNA. D to F contained 50ng of template DNA. The total COS-7 nuclear protein is 
(A) 0 µg (B) 20 µg (C) 40 µg and (D) 0 µg (E) 20 µg (F) 40 µg. The traces shown adjacent to each other contain the same amount 
of nuclear protein. 
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Figure 6.5 Treatment of DNA-protein binding reaction with proteinase K removes DNase I footprints within 
the SV40 promoter 

The chromatograms above show the DNase I digested fragments from the 5′FAM labelled SV40 promoter. The fragments are 
separated through capillaries and each peak represents a phosphodiester bond cleavage. The x-axis represents the number of 
base pairs from the 5′ FAM label and the y-axis represents the intensity of the peak. Proteinase K was added to A to C. D to F 
contained no Proteinase K. The total COS-7 nuclear protein is (A) 0 µg (B) 20 µg (C) 40 µg and (D) 0 µg (E) 20 µg (F) 40 µg. The 
traces shown adjacent to each other contain the same amount of nuclear protein.
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6.2.6 The optimised conditions for capillary DNase I footprinting 
 
It was observed that the optimal DNA template concentration, competitor DNA 

concentration, and DNase I concentration was 50 ng, 4 µg, and 0.0005 U 

respectively. DNase I capillary footprinting using these conditions was carried out for 

the complete SV40 promoter. The results are shown in figure 6.6. The first 1-200 bp 

show significant loss of signal as more protein is added. The remaining sequence 

shows minimal reduction in signal. The area with reduced signal corresponds to the 

SV40 promoter where SP1, AP1 and AP2 transcription factors bind. The sequence 

further downstream shows minimal signal reduction. The technique with these 

optimised conditions therefore detects true DNA-protein binding events.  

6.2.6 Analysis of digested DNA fragments 
 

DNase I digested DNA was eluted was recovered in a total volume of 50 µL. From 

this, 5µl was taken and loaded into a well of a 96-well plate. In addition samples 

were also diluted ten-fold and placed on the same plate. This was to ensure that any 

differences in protein concentration or buffer conditions would be minimal and so that 

signal intensities would not be affected.  

 

Subsequently 4.9 µL of HiDi Formamide (ABI Applied Biosystems) and 0.1 µL of LIZ 

standard (ABI applied biosystems) were added to each sample. The LIZ standard 

contains DNAs of known size and is used to align the sequence traces at the end of 

the DNA separation. The standard contains a LIZ dye which can be detected using 

the G5 dye set. The samples were separated using the G5 dye set genotyping 

module and a voltage of 10kv using an Applied Biosystems genetic analyzer 3730. 
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Figure 6.6 The chromatograms above show the DNase I digested fragments from the 5′FAM labelled SV40 
promoter after incubation with COS-7 nuclear protein extract 
The fragments have been separated through capillaries and each peak represents a phosphodiester bond cleavage. The x-axis 
gives the number of base pairs from the 5′ label and the y-axis is the intensity of the peak. From A to D the total COS-7 nuclear 
protein is increased: (A) 0 µg (B) 10 µg (C) 20 µg and (D) 40 µg. The traces were obtained using optimised conditions which were 
used for subsequent experiments.
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6.3 Dye terminator sequencing reactions to determine location of 
DNA-protein binding 
 

To identify the positioning of DNA-Protein interactions along the DNA fragment 

analysed it is necessary to also sequence the DNA fragment.  Therefore dye-

terminator sequencing reactions were carried out using a 5′ FAM labelled primer 

(see section 2.30.1 for method). The dye-terminators are not labelled and therefore 

the dye signal will come from the 5′ FAM label. The sequencing reactions were 

carried out with the same 5′ FAM primer used to amplify the DNA sequence to be 

footprinted. This is essential because this allows the sequence fragment traces to be 

aligned (based on size) correctly with the DNase I footprint traces. The inclusion of 

the LIZ standard ensures that the sequence and footprinting reactions can be 

aligned. The software Genemapper was used to align the individual dye-terminator 

sequencing reactions. A different colour was applied for each dye-terminator reaction 

for ease of comparison (Figure 6.7B). The dye terminator sequence alignment was 

subsequently aligned with the DNase I footprinting traces to identify the sequence 

location of the DNase I footprints (Figure 6.7). This resulted in the identification of the 

base pairs to which protein was bound.  

6.4 Description of the SV40 DNA-protein binding profile 
 
As shown in Fig.6.6 clear footprints are detected in the SV40 promoter analysed by 

the high throughput methodology. As a nuclear extract is used a large number of 

footprints are visible in the SV40 promoter DNA. The promoter region (1-200bp) is 

known to contain AP1, AP2 and SP1 binding consensus sites (Fig.6.1). This region 

of the promoter shows intense DNase I hypersensitive regions either side of the 
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AP1, AP2 and SP1 consensus sites. Further downstream the trace shows no 

footprinted regions. This area of sequence is known to contain no protein binding 

sites. Therefore the results of the high throughput method confirm the DNA-protein 

binding sites detected within the SV40 promoter by the traditional DNase I 

footprinting method. 
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Figure 6.7 Illustration of a section of the SV40 footprinted promoter aligned with dye-terminated sequencing 
reactions 
(A) A section of the footprinted SV40 promoter. (B) Dye-terminator sequencing reactions. The two chromatic traces were aligned 

using Genemapper software.  
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6.5 Normalisation of signal intensity to the LIZ marker 
 
Due to the differences in the signal intensity between samples when analyzed in the 

genetic analyzer 3730, the samples were normalised to the LIZ standard intensity. In 

a traditional footprint experiment using radioactivity and gel electrophoresis, the 

problem with different signal intensities between samples is solved by normalising to 

a region of the DNA which is predicted not to be footprinted. Using the capillary 

method allows us to improve the normalisation method. This is because markers 

which are independent of the FAM labelled DNA fragments are run within the same 

sample.  

 

To normalise the FAM signal between samples 5 LIZ marker signal values are taken 

for all traces. For each trace an average is calculated of the 5 LIZ marker values. 

The trace with the smallest LIZ marker average value is divided into each trace. The 

value obtained is used to alter the intensity of each trace (FAM signal). The traces 

improved greatly in their comparable intensities between different protein 

concentrations.  
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6.6 Footprinting analysis of the novel FMO1 P1 and P2 promoters 
 

The DNase I footprinting technique optimised using the SV40 promoter was next 

transferred to analyse the FMO1 P1 and P2 promoters. The areas footprinted are the 

P1 positive promoter region, and the P2 positive promoter region (see chapter 4 for 

details). Both strands of the DNA were footprinted. One strand was labelled using 

the 5′ FAM labelled primer as the forward primer in the PCR reaction. To footprint the 

other strand a 3′ HEX labelled reverse primer was used with an unlabelled 5′ primer 

to amplify the DNA. The use of this primer pair allows us to visualise footprints on 

both DNA strands. The HEX and FAM dyes can each be read using the G5 dye set 

reading on the Applied Biosystems genetic analyzer 3730. 

6.6.1 P1 Promoter (Figure 6.8) 
 

A large footprinted area between -858 and -758 was detected in the P1 promoter. 

After alignment of the footprinting and sequencing termination reaction traces the 

footprinted areas were examined.  The footprinted sequence motifs were compared 

to previous bioinformatic analysis used to predict the identity of transcription factors 

(see chapter 4). The P1 footprinted region is within sequence that is predicted to 

bind the CCAAT binding proteins. Having identified a footprinted region it is possible 

then to analyse SNPs that might change DNA-protein binding. 

 

In addition to analysing the regions to which proteins bind that might regulate FMO1; 

the capillary footprinting method allows a high-throughput method for analysing the 

consequences of a genetic polymorphism.   
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Figure 6.8 DNase I footprinting of the human FMO1 P1 promoter using COS-7 nuclear extract 
The chromatograms above show the DNase I digested fragments from the 5′ FAM labelled FMO1 P1 promoter. The fragments 
have been separated through capillaries and each peak represents a phosphodiester bond cleavage. The x-axis shows the number 
of base pairs from the 5′ label and the y-axis is the intensity of the peak. From A to D the total COS-7 nuclear protein is increased 
as shown.  The chromatogram shows the 5′ region of the promoter contains „footprints‟ as shown in the boxed region of the figure. 
There are also a number of smaller footprints further downstream.
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6.6.2 The FMO1 P2 promoter footprint analysis (Figure 6.9) 
 

The P2 promoter shows two predominant foot-printed regions (Figure 6.9). One 

footprint is within a GC box where the transcription factor SP1 is predicted to bind. 

The first region of DNA-protein binding overlaps with the region predicted to bind a 

hormone receptor between 65-100bp (see chapter 4).  The second footprint is within 

the GC box binding site between 45-65bp.   

 

The GC box motif was subsequently mutated to disrupt the binding of a transcription 

factor. This mutation was designed based on the consensus sequence for SP1 

binding give sequence (Santa Cruz biotechnology manual). This mutation was 

analysed for its effect on function in chapter 4. 
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Figure 6.9 DNase I footprinting of the human FMO1 P2 promoter using COS-7 nuclear extract 
The chromatograms above show the DNase I digested fragments from the 5′ FAM labelled FMO1 P1 promoter. The fragments 
have been separated through capillaries and each peak represents a phosphodiester bond cleavage. The x-axis shows the number 
of base pairs from the 5′ label and the y-axis is the intensity of the peak. From A to D the total COS-7 nuclear protein is increased 
as shown.  The chromatogram shows the 5′ region of the promoter contains footprints.
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6.7 Loss of protein binding at the P2 promoter was visualised by 
DNase I capillary footprinting and therefore validates this technique 
for screening regulatory polymorphism via this method 
 

The wild type (-255_-128) and mutant (-255_-128)*sequences of the FMO1 P2 

promoter were FAM labelled by PCR. These probes were then used in the DNase I 

capillary footprinting method using the conditions optimised previously. Protein 

concentrations used were 0 µg, 30 µg, and 60 µg. The chromatogram traces were 

aligned using Genemapper software. The termination sequencing reactions for the 

P2 promoter were carried out for each of the four DNA nucleotides. Each termination 

reaction sequencing trace was aligned and the base pair co-ordinates were noted. 

The co-ordinates for the FMO1 sequences were then located within the footprinted 

regions of the wild-type and mutant P2 promoter sequences. 

 

A footprint is present in the wild-type promoter and becomes more prominent as 

increasing amounts of COS-7 nuclear protein are added to the binding reaction. In 

contrast, the mutated form of the promoter shows no footprint and no loss of signal 

when increasing amounts of COS-7 nuclear extract is added (figure 6.7). Therefore 

the technique is able to identify polymorphism/ mutation that inhibit protein binding to 

DNA. 
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Figure 6.10 Detection of the loss of DNA-protein binding within 
the FMO1 P2 promoter 
The chromatograms above show the DNase I digested fragments of the wild 
type (-255_-128) and mutant (-255_-128)* 5′ FAM labelled FMO1 P2 
promoter. The fragments have been separated through capillaries and each 
peak represents a single base pair. The x-axis shows the number of base 
pairs from the 5′ label and the y-axis is the intensity of the peak. The amount 
of protein added to each reaction is given adjacent to the trace. The black box 
highlights the region that shows loss of protein binding in the mutant 
sequence. 
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Discussion 

Identifying DNA regulatory regions and analysing the effects of genetic 

variation within these regions is currently limited. Current molecular 

techniques only allow us to „easily‟ identify DNA regulatory regions that are 

proximal to the start of transcription. It is much harder to locate upstream and 

downstream regulatory regions that act further away from the promoter. Some 

DNA sequences have been shown to act tens of thousands of base pairs 

upstream and downstream of the promoter.  

 

The techniques currently applied to identify regulatory regions include reporter 

gene assays to measure the DNA‟s ability to drive expression, as used 

throughout my project. Other techniques such as the electrophoretic mobility 

shift assay examine the binding of proteins to DNA and DNase I footprinting 

assays localise the region of DNA-protein binding and, if used in conjunction 

with DNA sequencing, identify the base sequence with which the protein 

interacts. Genetic variations can then be introduced into DNA sequences and 

the variants tested for their effect on gene expression or protein binding. The 

main caveat of these techniques is that they cannot easily be used to screen 

large regions of DNA.  

 

The modification of the DNase I footprint method from polyacrylamide gels to 

capillary footprinting, I believe, allows the production of a technique which can 

be used to screen large regions of DNA. The novel application of this 

technique that I have shown is to screen for variations which influence DNA-

protein binding.  I now envisage the potential of this method to footprint tens 
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of thousands of base pairs upstream and downstream of a gene. Genetic 

variation within the regions that influence protein binding could then be 

analysed for their effects. Genetic variations which show a change in DNA-

protein binding could then be validated by use of a reporter assay. Therefore 

the advantage of this approach is that important regulatory regions of DNA will 

be much more easily discovered. 

 

The technique has a few caveats. The technique is being carried out in vitro 

and therefore the DNA-protein interactions observed may not be observed 

those observed in vivo. In addition, protein binding might change in different 

tissues or under different physiological conditions. The capillary footprint can 

however be carried out in a high-throughput way making it possible to 

examine DNA binding with different tissue tissues extracts and extracts 

isolated under different physiological conditions. This would not be possible 

using the traditional footprinting technique because of the labour-intensive 

nature of this method and the limited sample numbers that can easily be 

analysed. 

 

The second caveat is that when amplifying from genomic DNA an individual 

will need to be homozygote for a genetic variant. If the individual is 

heterozygote the footprint signal will not be as strong and may be 

undetectable. However as discussed later, with the increased number of 

individuals now having their DNA sequenced it is likely that homozygotes will 

be available for most SNPs. For drug prediction results (efficacy or adversity) 
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then common genetic variations within a population group have greater 

predictive value for a health service.  

 

 

The high-throughput technique will have greater application as the number of 

genetic variations discovered within the human genome increases. The 1000 

genome project, where 1000 individuals from around the globe will be 

sequenced, will undoubtedly produce many new novel genetic variants. As 

these individuals genotypes are identified individuals can be chosen which are 

homozygous for an allele that one wishes to test. This would then remove the 

need for the researcher to sequence the gene as I have done within this 

project. Regions of DNA where SNPs occur can be selected and a minimal 

number of individuals used to test these SNPs for DNA-protein binding.  

 

The technique also has the potential to be further developed for an in vivo 

system. The Hapmap consortium has produced cell-lines from individuals of 

known genotype. This therefore allows for the possibility of in vivo DNase I 

footprinting. By using a chemical reagent to digest the DNA and isolating the 

DNA fragments, footprinting profiles could be determined for different 

genotypes within in vivo conditions. This approach however is limited to the 

cellular environment and expression profile of the cell lines. 

 

Second-generation sequencing is currently a relatively new technology. I 

envisage the combination of this sequencing technology with a Protein-DNA 

binding assay in the same context as described here. This would then allow 
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whole genomes to be analysed for DNA-protein binding. Combining this with a 

genome wide chromatin analysis would allow regulatory SNPs to be identified 

which would be predicted to have a significant functional consequence on the 

transcription of DNA. 
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Chapter 7: General Discussion 

The aim of this thesis was to identify and give context to regulatory SNPs 

within the FMO1 gene. This work was considered important due to the large 

variation in expression seen between individuals in FMO1 expression. 

Regulatory SNPs which account for the large inter-individual variation could 

then be used in improving drug dosage for those drugs known to be 

metabolized by FMO1.  

 

Identification of regulatory SNPs, as described in chapter 1, requires a variety 

of methods. The context with which the SNP influences gene expression 

needs to be accounted for much more than for a coding polymorphism. This is 

due to the plasticity of gene regulation. Genes are regulated in a tissue-, cell-, 

and environmentally specific manner. Therefore in order to gauge the true 

influence of a regulatory polymorphism these different contexts need to be 

examined. To identify the nature and influence of regulatory polymorphism 

researchers use a wide variety of techniques to show the influence of 

regulatory polymorphism. The range of techniques used were discussed in 

chapter 1.  

 

Identification of regulatory polymorphism and its context is more difficult within 

genes that are regulated in a complex manner. FMO1 is an example of a 

gene regulated in a complex manner. It has multiple tissue-specific promoters 

for transcription of the gene. It is therefore crucial, it is understood which 

transcripts are produced in which tissues, in order to examine regulatory 

polymorphism in the correct context. We therefore decided that usage of the 
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three FMO1 promoters, P0, P1 and P2 should be examined within a number 

of different tissues (chapter 3). These tissues were liver, kidney, white and 

brown fat, brain, muscle and lung. This would allow us to study regulatory 

polymorphism within the correct context. It was decided a large number of 

extra-hepatic tissues should be included due to the identification of an 

endogenous role for FMO1 in energy homeostasis. The white and brown fat, 

muscle and brain had not previously been quantified for FMO1 expression. 

The endogenous role for FMO1 also influenced us to examine the regulation 

of FMO1 during the differentiation of fat (chapter 3). 

 

It was discovered in mice that FMO1 was expressed highly in white and 

brown fat, comparable to levels in the kidney. The P1 transcript was much 

higher in most of the extra-hepatic tissues than the other two promoters 

outlining the importance of the P1 transcript. Examining the expression of the 

FMO1 transcripts during differentiation we observed the upregulation of the 

P1 and P2 transcripts during 3T3-L1 differentiation into adipocytes. This 

observation allows the 3T3-L1 adipocyte model to further understand the 

regulation of FMO1 within fat and further understand the endogenous role of 

the enzyme. 

 

Prior to this study, promoter regions had not been defined for the P1 and P2 

transcripts. Promoters were defined in the context of different cell types to 

account for the tissue-specificity of the promoters seen previously and during 

this study (chapter 4). These promoter regions in addition to the previously 

defined P0 promoter would therefore be candidate regions for regulatory 
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polymorphism. The chromatin state of the DNA was examined and the region 

defining the P1 and P2 promoter region were shown to be an open 

conformational state (chapter 4). Further upstream of the defined positive 

regions, a negative region was defined using reporter gene assays. This 

region was shown to be in a closed conformational state. It is therefore likely 

this region does not factor in the regulation of FMO1.  

 

Once defined, sequences within these regions were examined for 

transcription factor binding. This was done by using a bioinformatics approach 

coupled with publicly available genome-wide gene regulation analysis data 

(chapter 4). This analysis showed that Chip-seq experiments undertaken 

within HepG2 cells showed the binding of C/EBP-β and the insulating factor 

lin1. The binding is predicted to occur within the defined positive promoter 

region of P1. The transcription factor C/EBP-β upregulates genes during 3T3-

L1 differentiation. This factor could therefore be responsible for the 

upregulation of FMO1 during 3T3-L1 differentiation. 

 

Following the defining of the P1 and P2 promoters the regions were 

sequenced within different populations (chapter 5). This revealed two novel 

SNPs. The first within the start of exon 1 which was a CT deletion, and the 

second downstream within the P1 promoter region. The frequency of the CT 

deletion was only present within the CEU (European) population. The allele 

frequency was 5%. This is frequent enough to be defined as a common 

polymorphism. Due to its location this SNP may influence the binding of RNA 

polymerase II. Further experiments using EMSA would confirm the changes in 
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DNA-protein binding within this region. Reporter gene assays would confirm 

its effect on transcription. 

 

The CT deletion as well as the polymorphism further upstream of the P1 

promoter were introduced and attempts were made to test their effect on 

reporter gene activity. The P1 promoter region reporter gene activity, when 

examined for comparison for mutants, showed a severely decreased activity. 

The reporter gene construct which contained the P1 and P2 promoter regions 

was also severely reduced. We deduced that as two constructs containing the 

same sequence had been severely down-regulated that something was now 

causing the repression of the reporter gene.  

 

Bioinformatic analysis predicts the binding of heat shock factor within this 

region which may be affecting the reporter gene activity. The heat shock 

factor is also predicted to bind with the insulating factor Lin1 shown by Chip-

seq to bind within the promoter region. Attempts were made to change the 

conditions of the cell culture to allow for the activity of the heat shock factor. 

Incubator and media conditions were varied and tested but the reporter gene 

activity did not increase. Therefore mutant activities could not be reliably 

examined due to the lack of a comparison. 

 

During the defining of the FMO1 promoters, and subsequent sequencing of 

these regions, a method was developed to allow the testing of regulatory 

polymorphism on DNA-protein binding events within regulatory sequences. As 

discussed in chapter 1, genome-wide methods are now common in analysing 
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regulatory regions. DNase I-seq can be used to a resolution that allows the 

sequences of DNA-protein binding to be defined. These techniques allow 

examination of gene regulatory sequences but do not allow regulatory SNPs 

to be examined for their effect. This is due to the expense of examining a 

large number of individuals for genome wide DNA-protein binding profiles. 

Therefore the researcher relies on reporter gene assays and EMSAs to 

examine the effect of regulatory polymorphism. These techniques can be 

used in different contexts and are very useful at testing the effects of 

regulatory SNPs. However, if the researcher wishes to test a large number of 

regulatory polymorphism, for example, multiple SNPs within multiple 

promoters, or multiple genes, then these techniques can be laborious. 

Advances in EMSA technology, used within this thesis, allows Infra-red dyes 

to be used for labelling increase ease of analysis, however gel technology is 

still relied upon. It was therefore observed that a technique would be desirable 

that could deal with the ever-growing information on regulatory regions at a 

relatively lower cost. The technique proposed, and optimised within this 

thesis, was developed to address this problem.  

 

DNase I capillary footprinting has been shown to detect the presence of DNA-

protein-binding events when using purified protein and DNA labelled from a 

vector. This thesis describes the development of DNase I capillary footprinting 

with the use of whole nuclear protein extracts. This technique was further 

developed to show differences in DNA-protein binding could be detected 

using the method. A mutation created within the P2 promoter was shown 

within this thesis to reduce reporter gene activity and remove DNA-protein 
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complexes. This mutation was tested within the newly optimised technique 

and was able to detect the loss of protein binding within this region. The 

technique functions with the use of capillaries and therefore can be high-

throughput. The technique is therefore validated and provides a technique for 

the researcher that can screen regulatory polymorphism for a large number of 

regulatory regions. 

 

This technique was transferred to analyse two FMO1 P1 natural 

polymorphisms. These polymorphisms were shown not to influence DNA-

protein binding. Further experiments would determine the influence of natural 

variation within the P0, P1 and P2 promoters. Ideally these SNPs can be 

verified within the reporter gene assay. 

 

During the course of this thesis a SNP was observed, -11C>T that could 

create a second upstream ATG translation initiation codon for those 

individuals that have the T allele. SNPs have been shown for other genes to 

influence translational efficiency by the introduction of a second ATG. The 

translational efficiency of the two alleles were tested using reporter gene 

assays. The FMO1 P2 leader sequence, containing either the T or C allele 

was cloned upstream of the pSP-luc vector. Cloning was undertaken to 

replace the ATG of the luciferase reporter gene with the FMO1 downstream 

ATG. RNA was made from this vector in-vitro and transfected into COS-7 

cells. The T allele was shown to produce more reporter gene protein than the 

C allele. This suggests that those individuals that have the T allele produce 

more FMO1 protein than individuals with the C allele. This SNP would be a 
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good candidate for association studies with patients with adverse drug 

reactions for drugs metabolized by FMO1. It could also be used in association 

studies with ALS patients or diseases resembling phenotypes observed within 

the FMO1 knock-out mice. 

 

In summary, this thesis has further increased our understanding of how the 

FMO1 P0, P1 and P2 transcripts are used within mice and during 3T3-L1 

differentiation. This has given context to polymorphisms found within 

regulatory sequences for the P1 and P2 promoter. Novel promoter sequences 

have been defined and characterised using different cell lines and regulatory 

data. These regions have been sequenced and novel SNPs identified. A novel 

approach and high-throughput method has been developed during this thesis 

and is able to screen for regulatory polymorphism in regulatory regions by 

detecting differences in DNA-protein binding. This approach was used to 

examine two FMO1 promoter polymorphisms but no differences were 

visualised. A regulatory SNP found -11C>T upstream of the known ATG 

translation initiation codon has been shown to effect translation efficiency and 

is a good candidate for future association studies. 
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