UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

Wilson, K; Das, M; Wahl, KJ; Colton, RJ; Hickman, J; (2010) Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement. PLOS ONE , 5 (6) , Article e11042. 10.1371/journal.pone.0011042. Green open access

[thumbnail of 1321906.pdf]
Preview
PDF
1321906.pdf

Download (1MB)

Abstract

Background: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications.Methodology/Principal Findings: We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (KRT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and KRT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine.Conclusions/Significance: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications.

Type: Article
Title: Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0011042
Publisher version: http://dx.doi.org/10.1371/journal.pone.0011042
Language: English
Additional information: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The authors acknowledge funding support from NIH grant 5RO1-NS050452 and DARPA F30602-02-2-0541. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Keywords: SKELETAL-MUSCLE, DEFINED SYSTEM, IN-VITRO, FILMS, INTEGRATION, DEVICES, DIFFERENTIATION, MICROSTRUCTURES, FABRICATION, IMPROVEMENT
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/1321906
Downloads since deposit
107Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item