UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

An endoscopic structured lighting probe using spectral encoding

Clancy, NT; Stoyanov, D; Yang, GZ; Elson, DS; (2011) An endoscopic structured lighting probe using spectral encoding. In: Sterenborg, HJCM and Vitkin, IA, (eds.) NOVEL BIOPHOTONIC TECHNIQUES AND APPLICATIONS. (pp. ? - ?). SPIE-INT SOC OPTICAL ENGINEERING

Full text not available from this repository.

Abstract

Recovering the three dimensional (3D) surface shape of tissues in minimally invasive surgery (MIS) is important for developing advanced image-guidance and navigation systems. Passive techniques for 3D reconstruction based on computational stereo are limited by the saliency of tissue texture and the view-dependent reflectance characteristics of the scene. Structured lighting provides a viable alternative by projecting known features onto the tissue surface. However, the correspondence problem (distinguishing individual projected features computationally) becomes difficult in tissue due to the presence of occlusions. Furthermore, miniaturisation of a light projection system for use in MIS, while maintaining the required light intensity, is a significant challenge.In this paper, a fibre-based probe is described that projects a spectrally-encoded pattern onto the target surface from its distal end. A dispersed broadband light source is used to project features of varying spectral content. The dominant wavelengths of imaged spots may be deduced from the RGB values of a standard colour camera using an algorithm that locates each colour on a chromaticity diagram. The results show that individual spots of a specified wavelength may be segmented and their centres of mass calculated, despite varying background colour. The probe has also been demonstrated on ex vivo tissue.

Type:Proceedings paper
Title:An endoscopic structured lighting probe using spectral encoding
Event:Conference on Novel Biophotonic Techniques and Applications
Location:Munich, GERMANY
Dates:2011-05-22 - 2011-05-24
ISBN-13:978-0-81948-687-5
DOI:10.1117/12.889981
Keywords:Structured light, 3D reconstruction, minimally-invasive surgery, spectral encoding
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record