UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Numerical study of flow through and around a circular array of cylinders

Nicolle, A; Eames, I; (2011) Numerical study of flow through and around a circular array of cylinders. J FLUID MECH , 679 1 - 31. 10.1017/jfm.2011.77. Green open access

[thumbnail of download3.pdf]
Preview
PDF
download3.pdf
Available under License : See the attached licence file.

Download (2MB)

Abstract

This paper describes a study of the local and global effect of an isolated group of cylinders on an incident uniform flow. Using high resolution two-dimensional computations, we analysed the flow through and around a localised circular array of cylinders, where the ratio of array diameter (D-G) to cylinder diameter (D) is 21. The number of cylinders varied from N-C = 7 to 133, and they were arranged in a series of concentric rings to allow even distribution within the array with an average void fraction phi = N-C(D/DG)(2), which varied from 0.016 to 0.30. The characteristic Reynolds number of the array was Re-G = 2100. A range of diagnostic tools were applied, including the lift/drag forces on each cylinder (and the whole array), Eulerian and Lagrangian average velocity within the array, and the decay of maximum vorticity with distance downstream. To interpret the flow field, we used vorticity and the dimensionless form of the second invariant of the velocity gradient tensor. A mathematical model, based on representing the bodies as point forces, sources and dipoles, was applied to interpret the results. Three distinct flow regimes were identified. For low void fractions (phi < 0.05), the cylinders have uncoupled individual wake patterns, where the vorticity is rapidly annihilated by wake intermingling downstream and the forces are similar to that of an isolated cylinder. At intermediate void fractions (0.05< phi < 0.15), a shear layer is generated at the shoulders of the array and the force acting on the cylinders is steady. For high void fractions (phi > 0.15), the array generates a wake in a similar way to a solid body of the same scale. For low void fraction arrays, the mathematical model provides a reasonable assessment of the forces on individual bodies within the array, the Eulerian mean velocity and the upstream velocity field. While it broadly captures the change in the rate of decay of the maximum vorticity magnitude Omega(max) downstream, the magnitude is underpredicted.

Type: Article
Title: Numerical study of flow through and around a circular array of cylinders
Open access status: An open access version is available from UCL Discovery
DOI: 10.1017/jfm.2011.77
Publisher version: http://dx.doi.org/10.1017/jfm.2011.77
Language: English
Additional information: © 2011 Cambridge University Press
Keywords: computational methods, general fluid mechanics, wakes, NAVIER-STOKES EQUATIONS, INCOMPRESSIBLE FLOWS, WAKE, EVOLUTION, SCHEME, BODIES, BODY
URI: https://discovery.ucl.ac.uk/id/eprint/1320170
Downloads since deposit
1,128Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item