Psychological Theories of Hyperactivity:

A Behaviour Genetic Approach

Jonna Pauliina Kuntsi

Thesis submitted for the Degree of Doctor of Philosophy

September 1998
Institute of Child Health, University College London Medical School
To Markus
Abstract

This study was an attempt to combine two research literatures on hyperactivity: the behaviour genetic research and the studies testing psychological theories of hyperactivity. We obtained behavioural ratings from the teachers of 1316 twin pairs, aged 7-12, from the general population. For a subsample of 268 twin pairs we obtained ratings also from their parents. Forty-six hyperactive twin pairs (pairs in which at least one twin was pervasively hyperactive) and 47 control twin pairs were then assessed on tests relating to three theories of hyperactivity, those of response inhibition deficit, working memory impairment and delay aversion.

Confirming previous findings, genetic factors accounted for 50-70% of the variance in hyperactivity when considered as a continuous dimension. There was also significant evidence of genetic effects on extreme hyperactivity, although the present group heritability estimates were somewhat lower than previous estimates. The hyperactive group performed worse than the control group on the delay aversion measure and some of the working memory tasks. Controlling for IQ removed the significant group differences on the working memory measures, however. Although there were no significant group differences on the inhibition variables, the inhibition measure, stop task, produced evidence of a pattern of responding that was strongly characteristic of hyperactivity: hyperactive children were variable in their speed, generally slow and inaccurate. This pattern of responding may indicate a non-optimal effort/activation state.

To investigate the possibility that the cognitive impairments or task engagement factors associated with hyperactivity mediate the genetic effects on the condition, bivariate group heritability analyses were carried out. There was significant evidence of shared genetic effects only on extreme hyperactivity and the variability of speed. The findings are interpreted as supporting the state regulation theory of hyperactivity. Although delay aversion is a characteristic of hyperactivity, it seems to have an environmental rather than a genetic origin.
Acknowledgements

Many thanks to

All the children, parents and teachers who took part in this study. Your helpfulness and enthusiasm about the research inspired us and made the study possible.

Professor Jim Stevenson for thoroughly expert supervision, for introducing me to the field of behaviour genetics and for an excellent training in research methods. Thank you for your patience even when my email queries exceeded the average seven a day and for replying ‘it is your thesis, you decide!’ when it was my turn to do the thinking.

Doug Barrett, Emma Canning and Nisha Karia for invaluable help during the screening and data collection phases of the study. Your dedication, great sense of humour and ability to manage each unpredictable situation kept me and the whole project going. It was a less lonely road working from within our little team.

Professor David Skuse for encouragement and many thought-provoking theoretical discussions.

Dr Jaap Oosterlaan for help with the stop task.

Colleagues at the Behavioural Sciences Unit for sharing the joys and frustrations of carrying out research.

Drs Bettina Hohnen, Thalia Eley and Jane Gilmour for telling me ‘what it’s all about’.

The Wellcome Trust for funding the study, for providing training opportunities and for a refreshingly fair and modern attitude towards PhD-students.

My parents, Leena and Pentti - kiitos tuesta ja kannustuksesta näiden pitkien opiskeluvuosien aikana.

Markus for your love and support and for reminding me that there is more to life than work. The title never became ‘Child Development: Behaviour Problems Approach’, but thanks for the suggestion.
Table of contents

Abstract 3
Acknowledgements 4
Table of contents 5
List of tables 13
List of figures 16

Chapter 1 Childhood hyperactivity

1.1 Introduction 17
1.2 Cardinal symptoms 18
1.3 Historical perspective 23
1.4 Prevalence 25
1.5 Dimensions or categories? 26
1.6 Developmental progression 28
1.7 Subgroups 31
 1.7.1 Pervasive vs situational hyperactivity 31
 1.7.2 Hyperactivity-impulsivity vs inattentiveness 33
 1.7.3 Girls with hyperactivity 34
1.8 Co-occurrence of other disorders 36
 1.8.1 Hyperactivity and learning disabilities 38
 1.8.2 Hyperactivity and anxiety disorders 41
1.9 Family-environmental factors 43
1.10 Toxic factors and diet 45
1.11 Neurological aspects 47
 1.11.1 Neurological damage 47
 1.11.2 Neuroanatomical studies 48
 1.11.3 Neurochemical studies 51
 1.11.4 Neurophysiological studies 54
Chapter 2 Cognitive and task engagement factors in hyperactivity

2.1 Attention deficit
 2.1.1 Aspects of attention
 2.1.2 A deficit in sustained attention?

2.2 Response inhibition
 2.2.1 Quay's theory
 2.2.2 The race model and the stop task paradigm
 2.2.3 Studies using the stop task
 Meta-analysis of studies
 Criticisms of the meta-analysis
 Further studies
 Factors influencing stop task performance
 2.2.4 Response inhibition and brain anatomy
 2.2.5 Barkley's theory

2.3 Executive functions
 2.3.1 The frontal metaphor
 2.3.2 Working memory
 2.3.3 Executive functions and ADHD
 Pennington and Ozonoff's review
 Studies on working memory
 Other studies on executive functions in ADHD
 2.3.4 Criticisms of research on executive functions

2.4 Delay aversion
 2.4.1 Performance on the MFFT - delay aversion?
 2.4.2 An inhibition deficit, maximising rewards or delay aversion?
 2.4.3 Further evidence of delay aversion
2.5 Theories of state-regulation dysfunction
2.5.1 The optimal stimulation theory
2.5.2 The state-regulation theory
 Van der Meere's approach
 Effects of rewards on performance on reaction time tasks
 Effects of medication on state mechanisms
2.6 Chapter summary

Chapter 3 Behaviour genetics

3.1 Quantitative genetics
 3.1.1 Quantitative genetic theory
 3.1.2 Family and adoption studies
 3.1.3 Twin studies
 Assumption of representativeness
 Equal environments assumption
 Zygosity determination
3.2 Molecular genetics
3.3 Criticisms of behaviour genetics
3.4 Behaviour genetic studies on hyperactivity
 3.4.1 Family studies
 3.4.2 Adoption studies
 3.4.3 Twin studies
 General population samples
 Sibling interaction or rater bias?
 Extreme hyperactivity
 Summary of findings from twin studies
 3.4.4 Animal models
 3.4.5 Molecular genetic studies
 Human homolog of the Snap gene?
 The thyroid gene
 Three dopaminergic genes
 The dopamine D4 receptor gene polymorphism
3.5 Chapter summary

7
Chapter 4 Co-occurrence of hyperactivity and conduct problems

4.1 Conduct problems 142
 4.1.1 Defining features 142
 4.1.2 Subtypes 146
 4.1.3 Etiology 147
 Environmental factors 147
 Genetic effects 148
 4.1.4 Cognitive impairments? 150

4.2 Co-occurrence of conduct problems and hyperactivity 152
 4.2.1 Prevalence 152
 4.2.2 Reasons for the co-occurrence 154

4.3 Chapter summary 156

Chapter 5 Aims of the study

5.1 Integration of the literature 158

5.2 Aims and hypotheses 161

Chapter 6 Design and Methodology

6.1 Analysis of twin data 164
 6.1.1 Twin correlations 164
 6.1.2 Model fitting 165
 6.1.3 Model fitting with twin data 167
 The univariate model 167
 The multivariate model 169
 6.1.4 Group heritability analyses 170

6.2 Statistical power 172

6.3 Design of the study 173

6.4 Ethical consideration 173
6.5 Participants
6.5.1 Recruitment of sample
 Contacting LEAs and schools
 Contacting parents
6.5.2 Twin characteristics
6.5.3 Family demographics
6.5.4 Zygosity determination

6.6 Procedure

6.7 Measures
6.7.1 Delay aversion task
6.7.2 Delayed Response Alternation task
6.7.3 Stop task
6.7.4 Sentence Span and Counting Span tasks
6.7.5 Wechsler Intelligence Scales for Children
6.7.6 Revised Conners' Parent and Teacher Rating Scales
6.7.7 Interview with parents
6.7.8. Ratings of behaviour during testing

6.8 The reliability studies
6.8.1 Reliability study I
6.8.2 Reliability study II
6.8.3 Reliability study III

Chapter 7 Results

7.1 Exploration of the data
7.1.1 Missing data
7.1.2 Cases excluded from analyses
7.1.3 Parametric vs non-parametric methods
7.1.4 Should IQ or age be controlled for?

7.2 Group comparisons on task variables and rating scale data
7.2.1 Delay aversion and working memory tasks
7.2.2 Stop task
 Time-on-task
 Speed accuracy trade-off
7.2.3 Ratings of behaviour during testing
7.2.4 Sex effects
Chapter 8 Discussion

8.1 Introduction to discussion 262
8.2 Summary of main findings 263
8.3 Which theory do the data support? 265
 8.3.1 Delay aversion 266
 8.3.2 Impaired working memory 268
 8.3.3 Response inhibition deficit 271
 8.3.4 Evidence for a different hypothesis? 275
8.4 Heritability of hyperactivity 276
 8.4.1 Heritability of individual differences in hyperactivity 276
 8.4.2 Heritability of extreme hyperactivity 279
8.5 Mediators of genetic effects on hyperactivity 281
8.6 Further insight into hyperactivity 284
 8.6.1 Association with lower IQ 284
 8.6.2 Co-occurring conduct problems 286
 8.6.3 Cross-informant consistency 288
 8.6.4 Sex effects 289
 8.6.5 Co-occurrence of other problem behaviours 289
8.7 Further findings 290
 8.7.1 Developmental effects 290
 8.7.2 Heritability of other problem behaviours 292
 8.7.3 Heritability of IQ 293
8.8 Limitations and comments 294
 8.8.1 Statistical power 294
 8.8.2 Representativeness of the sample 295
 Representativeness of twins 295
 Representativeness within the geographical location 296
 Representativeness of the population of hyperactive children 296
 Appropriateness of the screening procedure 298
 8.8.3 Adequacy of measures 299
 Reliability 299
 Measurement of inhibition 299
 Inferences about state regulation 300
8.9 Towards a more comprehensive account of hyperactivity 300
 8.9.1 Cognitive impairment or a state-regulation deficit 300
 8.9.2 Delay aversion or a state-regulation deficit 304
 8.9.3 A schematic representation of possible links 305
8.10 Challenges for future research 309
8.11 Practical implications 311

References 313
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>UK norms for the Revised Conners’ Teacher Scale</td>
<td>349</td>
</tr>
<tr>
<td>A.1</td>
<td>Introduction</td>
<td>350</td>
</tr>
<tr>
<td>A.2</td>
<td>Method</td>
<td>353</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Recruitment of the sample</td>
<td>353</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Measures</td>
<td>355</td>
</tr>
<tr>
<td>A.3</td>
<td>Results</td>
<td>356</td>
</tr>
<tr>
<td>A.4</td>
<td>Discussion</td>
<td>362</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Results from Kolmogorov-Smirnov tests</td>
<td>367</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Model fitting results for testing data: Age-adjusted scores</td>
<td>371</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Twin Similarity Questionnaire</td>
<td>374</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Instructions for the delay aversion task</td>
<td>376</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Instructions for the DRA task</td>
<td>380</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Instructions for the stop task</td>
<td>386</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Sentence span and counting span tasks</td>
<td>392</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Revised Teacher and Parent Conners’ Scales</td>
<td>396</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Interview with parents</td>
<td>399</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Tester’s form</td>
<td>404</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Stop task inhibition variables</td>
<td>409</td>
</tr>
</tbody>
</table>
List of tables

Table 1.2a DSM-IV symptom list for ADHD 19
Table 1.2b ICD-10 symptom list for hyperkinetic disorder 22
Table 2.3.3 Consistency of differences and average effect sizes of EF measures in ADHD (taken from Pennington & Ozonoff, 1996) 84
Table 3.4.3a Twin studies of hyperactivity/ADHD: individual differences heritability estimates 125
Table 3.4.3b Twin studies of hyperactivity/ADHD: group heritability estimates 131
Table 4.1.1a DSM-IV symptom list for conduct disorder 144
Table 4.1.1b ICD-10 symptom list for conduct disorders 145
Table 6.1.2 Fit indices used in present thesis 167
Table 6.5.2 Group characteristics 180
Table 6.5.3 Parents' educational qualifications 181
Table 6.7.3 Temporal stability results for the stop task (Kindlon et al., 1995) 188
Table 6.8.1a Test-retest reliability results for the total sample: paper-and-pencil measures 195
Table 6.8.1b Test-retest reliability results for children with IQs above 65: paper-and-pencil measures 196
Table 6.8.1c Study 1: Comparison of mean values between two testers, Emma and Jonna 197
Table 6.8.1d Study 1: Comparisons of mean values between two testers, Doug and Jonna 198
Table 6.8.1e Study 1: Comparisons of mean values between two testers, Doug and Emma 199
Table 6.8.2a Reliability results for the computer tasks 202
Table 6.8.2b Study 2: Comparisons of mean values between two testers, Emma and Jonna 203
Table 6.8.2c Study 2: Comparisons of mean values between two testers, Doug and Jonna 204
Table 6.8.2d	Study 2: Comparisons of mean values between two testers, Emma and Doug	205
Table 6.8.3a	Results from the third reliability study: paper-and-pencil measures	207
Table 6.8.3b	Results from the third reliability study: computer measures	208
Table 7.1.4a	Group comparisons for performance and verbal IQ scores: MANOVA results	214
Table 7.1.4b	Correlations between main task variables and IQ scores	215
Table 7.1.4c	Correlations between main task variables and age	216
Table 7.2.1a	Group comparisons for delay aversion, sentence span and counting span tasks	218
Table 7.2.1b	Group comparisons for DRA scores	219
Table 7.2.1c	Frequencies (and percentages) of children who found or did not find out the DRA rule on their own	220
Table 7.2.1d	Reasons for making choices on the delay aversion task	221
Table 7.2.1e	Testers' rating of children's delay aversion during the task	221
Table 7.2.2.a	Group comparisons for stop task variables (including the high error cases)	225
Table 7.2.2b	Group comparisons for stop task variables (excluding the high error cases)	227
Table 7.2.2c	Time-on-task effects: mean reaction time (MRT) and standard deviation of reaction times (SD)	229
Table 7.2.4	ANOVA results: sex effects on task variables	232
Table 7.2.5	Results from the discriminant function analysis: linear classification functions (LCFs) and linear discriminant functions (LDFs)	233
Table 7.2.6	Group comparisons on the subscales of the Conners'	234
Table 7.3.1	Correlations between main task variables	236
Table 7.3.2a	Correlations between main task variables and hyperactivity dimensions	237
Table 7.3.2b	Partial correlations between main task variables and hyperactivity dimensions, controlling for conduct problems	238
Table 7.3.3	Correlations between observational ratings and hyperactivity ratings by parents and teachers	239
Table 7.5.1	Model fitting results for ratings on hyperactivity	245
Table 7.5.2	Model fitting results for other dimensions on Parent Conners'	246
Table 7.5.3	Model fitting results for other dimensions on Teacher Conners'	248
Table 7.6.1a	Model fitting results: delay aversion, sentence span and counting span tasks	249
Table 7.6.1b	Model fitting results: DRA	250
Table 7.6.2	Model fitting results: stop task variables	251
Table 7.6.3	Model fitting results: summary score of observational ratings of hyperactive behaviour	252
Table 7.6.4a	Model fitting results: IQ	253
Table 7.6.4b	Phenotypic correlations for IQ variables: Hyperactive group	254
Table 7.6.5	Model fitting results: Discriminant score	254
Table 7.8	Results from univariate DF analyses on hyperactivity ratings	256
Table 7.9a	Results from t-tests comparing means on the task variables between MZ and DZ probands	258
Table 7.9b	Results from bivariate DF analyses	259
Table 7.9c	Results from bivariate DF analyses for IQ-adjusted scores	261
Table 7.9d	Results from bivariate DF analyses for scores adjusted for conduct problems	261
List of figures

Figure 6.1.3a Univariate analysis of twin data 168
Figure 6.1.3b Univariate analysis of twin data with dominance effects 169
Figure 6.1.3c Cholesky decomposition for the bivariate model 170
Figure 6.5.1 Recruitment of sample 177
Figure 6.5.3 Social class distribution of the families 182
Figure 7.1.2a A scatterplot of mental age (MA) and DRA after teaching scores (total sample) 211
Figure 7.1.2b A scatterplot of mental age (MA) and DRA after teaching scores (excluding children with low MA) 212
Figure 7.2.1 Testers’ rating of children’s delay aversion during the task 222
Figure 7.2.2 Inhibition functions: probability of inhibition as a function of the stop signal interval 223
Figure 7.2.3 Distributions of observational rating scores of hyperactive behaviour 230
Figure 8.9.3 A schematic representation of possible links 306
Chapter 1

Childhood hyperactivity

1.1 Introduction

"Consider this: Suppose your child had no friends. ... Supposing yours was the child who always had to work alone at school because the other children did not want him in their group... Supposing you were unable to take your child to all the places that a child would normally go because his behaviour was inappropriate. Living with an ADD child is like living with a caged wild animal. Would you not seek a way to help your child be 'normal'?"

(M. Johnson, The Times Magazine 26/10/1996)

The above quotation is a parent’s reply to a newspaper article which disapproved the use of medication in the treatment of hyperactivity. The parent points out that the aim of such treatment is not just to keep teachers and parents happy: it is the children themselves who ultimately suffer the consequences of their impulsive, thoughtless actions.

The quotation highlights the seriousness of the condition. Hyperactive children are not only overactive, impulsive and inattentive, but they frequently suffer from other
problems too. In addition to rejection from peers, hyperactivity is associated with antisocial behaviours and academic underachievement. The outcome for most of these children is not encouraging either: their problems tend to persist, although the particular symptoms they show may change across development. As researchers have become increasingly aware of the seriousness of the disorder, hyperactivity has become one of the most investigated topics in developmental psychopathology.

In the letter, an extract of which is quoted above, the parent goes on to describe the immediate benefits of stimulant medication. Behaviour modification techniques have also proved beneficial in the short-term (Yule, 1986). However, it remains an enormously difficult task to achieve long-term gains in the treatment of hyperactive children (Hinshaw, 1994). To provide theory to guide the intervention efforts is a major challenge for investigators. From another perspective, research on developmental disorders will also provide insight into normal development (Sroufe & Rutter, 1984). In particular if the view of hyperactivity as a continuous dimension rather than a discrete category is correct (see section 1.5), an understanding of the underlying processes has much wider implications than those relevant only for individuals showing extreme hyperactivity.

1.2 Cardinal symptoms

The core features of hyperactivity are overactivity, inattention and impulsivity. The DSM-IV (American Psychiatric Association, 1994) diagnosis of attention deficit hyperactivity disorder (ADHD) requires that the child has shown at least six symptoms from a list of inattention symptoms or at least six symptoms of hyperactivity-impulsivity. Table 1.2a lists all the symptoms specified in DSM-IV. Children who meet the criteria both with regard to the inattention and the hyperactivity-impulsivity symptoms are classified as ‘combined type’. Those who
meet only either the inattention or the hyperactivity-impulsivity criteria are classified as 'predominantly inattentive type' or 'predominantly hyperactive-impulsive type', respectively.

Table 1.2a DSM-IV symptom list for ADHD

<table>
<thead>
<tr>
<th>Inattention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. often fails to give close attention to details or makes careless mistakes in schoolwork, work, or other activities</td>
</tr>
<tr>
<td>2. often has difficulty sustaining attention in tasks or play activities</td>
</tr>
<tr>
<td>3. often does not seem to listen when spoken to directly</td>
</tr>
<tr>
<td>4. often does not follow through on instructions and fails to finish schoolwork, chores, or duties in the workplace (not due to oppositional behavior or failure to understand instructions)</td>
</tr>
<tr>
<td>5. often has difficulty organising tasks and activities</td>
</tr>
<tr>
<td>6. often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort (such as schoolwork or homework)</td>
</tr>
<tr>
<td>7. often loses things necessary for tasks or activities (e.g. toys, school assignments, pencils, books, or tools)</td>
</tr>
<tr>
<td>8. is often easily distracted by extraneous stimuli</td>
</tr>
<tr>
<td>9. is often forgetful in daily activities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyperactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. often fidgets with hands or feet or squirms in seat</td>
</tr>
<tr>
<td>2. often leaves seat in classroom or in other situations in which remaining seated is expected</td>
</tr>
<tr>
<td>3. often runs about or climbs excessively in situations in which it is inappropriate (in adolescents or adults, may be limited to subjective feelings of restlessness)</td>
</tr>
<tr>
<td>4. often has difficulty playing or engaging in leisure activities quietly</td>
</tr>
<tr>
<td>5. is often “on the go” or often acts as if “driven by a motor”</td>
</tr>
<tr>
<td>6. often talks excessively</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impulsivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. often blurts out answers before questions have been completed</td>
</tr>
<tr>
<td>8. often has difficulty awaiting turn</td>
</tr>
<tr>
<td>9. often interrupts or intrudes on others (e.g. butts into conversations or games)</td>
</tr>
</tbody>
</table>

19
The DSM-IV ADHD diagnosis also requires that some of the symptoms were present before age 7 years and that the symptoms have persisted for at least six months. The symptoms must be shown to a degree that is 'maladaptive and inconsistent with developmental level' (p. 83). Unlike the earlier versions of the DSM classification, but in agreement with the ICD classification, it is also required that some impairment is present in two or more settings.

The ICD-10 (WHO, 1993) diagnosis of hyperkinetic disorder differs from the DSM-IV diagnosis of ADHD in that it requires that the child has shown symptoms in each of the three areas: at least six symptoms of inattention, at least three hyperactivity symptoms and at least one impulsivity symptom (see Table 1.2b). The other requirements are rather similar to those of the DSM-IV. Swanson, Sergeant et al. (1998) point out that the ICD-10 criteria in fact identify a phenotype which is a subset of the DSM-IV diagnosis of ADHD.

Apart from differences between the DSM and ICD classification systems, the changes in the diagnostic criteria within a classification system have obvious implications for research: the groups of children studied may differ between studies that have used different versions of the same classification system. For example, DSM-IV criteria for ADHD are 'less tight' than DSM-III-R (American Psychiatric Association, 1987) criteria, in the sense that children who are only inattentive can now receive the diagnosis too. The DSM-IV criteria also identify fewer children with comorbid oppositional and conduct disorders (Biederman et al., 1997). Nevertheless, Biederman et al. (1997) showed that, in a sample of 405 clinic-referred children, 93% of those who received a DSM-III-R diagnosis of ADHD also received a DSM-IV ADHD diagnosis.

The DSM-IV criteria for ADHD reflect findings from factor analytic studies of parent and teacher ratings of the core symptoms which suggest that there are two major dimensions rather than three (Bauermaister, Alegria, Bird, Rudic-Stipuric &
Canino, 1992; Lahey, Pelham et al., 1988). The first factor, Inattention-Disorganisation, encompasses items describing distractibility, difficulties in concentration and other deficits in attention. Items describing excessive motor activity and impulsivity load on the second factor, hence called Hyperactivity-Impulsivity. (Subtypes in hyperactivity/ADHD will be discussed in section 1.7.)

Inattentiveness, impulsivity and overactivity are the core behavioural features of hyperactivity, but are they truly the ‘core’ symptoms? Despite the emphasis on attention deficits in the DSM terminology, recent research questions this view of hyperactivity being associated with an attention deficit. Chapter two reviews the research evidence, as well as the research exploring the issue of whether hyperactive children are truly impulsive.

In contrast to views prevalent in the 1970s, motoric overactivity per se is now considered to be a crucial feature in hyperactivity or ADHD (see Hinshaw, 1994). Porrino et al. (1983) measured activity in hyperactive and control boys continuously for a one-week period with a portable solid-state monitor. Hyperactive boys were more active than control boys during each period of the day and a situation-by-situation analysis showed that the difference between the groups was most pronounced during structured school activities. The change in emphasis with regard to the importance of overactivity was also reflected in the DSM classification, as attention deficit disorder (ADD; American Psychiatric Association, 1980) became attention deficit hyperactivity disorder (ADHD; American Psychiatric Association, 1987).

More recent studies, both using observational measures (Roberts, 1990) and actigraph measures (Halperin, Matier, Bedi, Sharma & Newcorn, 1992), have confirmed the specificity of overactivity to ADHD. For a discussion of how various psychological theories of hyperactivity would explain the motoric overactivity, see chapter two.
Table 1.2b ICD-10 symptom list for hyperkinetic disorder

<table>
<thead>
<tr>
<th>Inattention</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>often fails to give close attention to details, or makes careless errors in schoolwork, work, or other activities</td>
</tr>
<tr>
<td>2.</td>
<td>often fails to sustain attention in tasks or play activities</td>
</tr>
<tr>
<td>3.</td>
<td>often appears not to listen to what is being said to him or her</td>
</tr>
<tr>
<td>4.</td>
<td>often fails to follow through on instructions or to finish schoolwork, chores, or duties in the workplace (not because of oppositional behaviour or failure to understand instructions)</td>
</tr>
<tr>
<td>5.</td>
<td>is often impaired in organising tasks and activities</td>
</tr>
<tr>
<td>6.</td>
<td>often avoids or strongly dislikes tasks, such as homework, that require sustained mental effort</td>
</tr>
<tr>
<td>7.</td>
<td>often loses things necessary for certain tasks or activities, such as school assignments, pencils, books, toys, or tools</td>
</tr>
<tr>
<td>8.</td>
<td>is often easily distracted by external stimuli</td>
</tr>
<tr>
<td>9.</td>
<td>is often forgetful in the course of daily activities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hyperactivity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>often fidgets with hands or feet or squirms on seat</td>
</tr>
<tr>
<td>2.</td>
<td>leaves seat in classroom or in other situations in which remaining seated is expected</td>
</tr>
<tr>
<td>3.</td>
<td>often runs about or climbs excessively in situations in which it is inappropriate (in adolescents or adults, only feelings of restlessness may be present)</td>
</tr>
<tr>
<td>4.</td>
<td>is often unduly noisy in playing or has difficulty in engaging quietly in leisure activities</td>
</tr>
<tr>
<td>5.</td>
<td>exhibits a persistent pattern of excessive motor activity that is not substantially modified by social context or demands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impulsivity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>often blurts out answers before questions have been completed</td>
</tr>
<tr>
<td>2.</td>
<td>often fails to wait in lines or await turns in games or group situations</td>
</tr>
<tr>
<td>3.</td>
<td>often interrupts or intrudes on others (e.g. butts into others’ conversations or games)</td>
</tr>
<tr>
<td>4.</td>
<td>often talks excessively without appropriate response to social constraints</td>
</tr>
</tbody>
</table>
1.3 Historical perspective

The hyperactivity literature gives the impression of a field in a state of constant disagreements. A look at the historical development of the concept of hyperactivity or ADHD will help to appreciate how much has in fact been achieved. Sandberg and Barton (1996) have recently written a comprehensive review of the roots of the current concept of hyperactivity; this review forms the basis for this brief summary of the literature.

In the beginning of the century, Still (1902) and Tredgold (1908) wrote descriptions of children we would most likely now call hyperactive. Still explained the behaviour the children exhibited as a ‘defect of moral control’, whereas Tredgold is thought to be the first to provide an account of ‘minimal brain damage’. The term minimal brain damage refers to the idea that the hyperactivity would be due to brain damage the child has suffered, although in many cases such brain damage could not be substantiated. Further interest in minimal brain damage resulted from the encephalitis epidemic in 1917-1918 which brought children to clinicians’ attention who showed symptoms resembling hyperactivity.

The term ‘hyperkinetic disease’ surfaced in the early 1930s, in Kramer and Polnow’s (1932) description of 15 children who presented with extreme restlessness. Another description of cases referred to the central behaviour abnormality of hyperactivity, which was explained as ‘organic drivenness, or a surplus of inner impulsion’ (Kahn & Cohen, 1934). Associations between symptoms of hyperactivity and factors such as epilepsy or lead poisoning were considered as further evidence of brain damage. Throughout the first half of the twentieth century, the emphasis was on the association between presumed brain damage and hyperactivity.
The 1930s were also the time of the ‘discovery’ of the efficacy of amphetamines in the treatment of children showing symptoms of hyperactivity. Use of the medication was not common until the 1950s, however. Laufer (1975) attributes this reluctance to use medication to the prevailing psychoanalytic climate, which saw poor parenting as the cause of hyperactivity.

The work by Strauss and his colleagues (e.g. Strauss & Lehtinen, 1947) further promoted the idea of minimal brain damage. One of the first signs of a challenge to this assumption of a causal link between brain damage and symptoms of hyperactivity was the renaming of minimal brain damage as ‘minimal brain dysfunction’ (MBD). However, later this term, MBD, became to be viewed as overinclusive. The terms ‘hyperkinetic behaviour syndrome’ and ‘hyperkinetic impulse disorder’ were introduced in the late 1950s and early 1960s. Chess (1960) emphasised particularly the role of motoric overactivity in the condition, referring to ‘physiologic hyperactivity’. Chess suggested that the prognosis would be good, with many hyperactive children outgrowing their problems by puberty. In the 1960s the American and European views on the condition started to grow apart, with the Americans viewing the condition as more common and less likely to be associated with overt signs of brain damage.

Two new trends emerged in the 1970s. First, the emphasis moved from motoric overactivity to inattention. Second, environmental explanations were gaining popularity. The idea that hyperactivity would result from an allergic reaction to food, and food additives in particular, became widely known (see section 1.10).

During the last two decades hyperactivity has generated a vast amount of research interest. Improved research methodology has led to the current understanding of the disorder, which is discussed in the other sections of this literature review.
1.4 Prevalence

Recent epidemiological studies in Germany and Tennessee (Baumgaertel, Wolraich & Dietrich, 1995; Wolraich, Hannah, Pinnock, Baumgaertel & Brown, 1996) show how prevalence estimates vary depending on particular classification criteria and cultural factors. In the German population of 5-12-year-old children the prevalence figures for the DSM-IV ADHD subtype classifications of primarily inattentive type, primarily hyperactive-impulsive type and the combined subtype were 9.0%, 3.9% and 4.8%, respectively. The same figures were 5.4%, 2.4% and 3.6%, respectively, in the Tennessee population of 5 to 11 year olds.

Prevalence rates were lower in both populations when DSM-III or DSM-III-R criteria were used. For example, the same German population had a prevalence rate of 10.9% for the DSM-III-R diagnosis of ADHD and 9.6% for the DSM-III diagnosis of ADD (6.4% for ADD with hyperactivity and 3.2% for ADD without hyperactivity). The DSM-IV ADHD combined subtype is most similar to the DSM-III ADDH diagnosis (Wolraich et al., 1996). More boys than girls were classified as having ADHD: the gender ratios varied from 5:1 (German sample) and 4:1 (Tennessee sample) for ADHD hyperactive-impulsive subtype to 2:1 for ADHD inattentive subtype. Both the German and the Tennessee studies relied on teacher ratings only and no data was obtained on the pervasiveness of symptoms. These are serious limitations, given the requirement in DSM-IV of some impairment in two or more settings for a diagnosis of ADHD. Nevertheless, these studies are useful in indicating reasons which may account for differences in prevalence rates across studies.

Anderson et al. (Anderson, Williams, McGee & Silva, 1987) in New Zealand found an overall prevalence rate of 6.7% for the DSM-III diagnosis of ADD (with and without hyperactivity) in 11-year-old children and a males-to-females ratio of 5:1.
This study used child interviews in addition to parent and teacher questionnaires. The Ontario Child Health Study found a prevalence rate of 9.0% in 4-16-year-old boys and 3.3% in girls for ADDH (Szatmari, Offord & Boyle, 1989b).

If only children who show severe and pervasive hyperactivity are included, prevalence rates drop sharply. In the UK, Taylor and colleagues (Taylor, Sandberg, Thorley & Giles, 1991) reported a prevalence of 1.7% in a population of primary school boys for the narrowly defined ICD-10 category of hyperkinesis. Other studies in the ICD tradition similarly suggest low prevalence rates of between 1% and 2% (see Swanson, Sergeant et al., 1998).

Overall, excluding the recent German and Tennessee studies that relied on teacher ratings only, it may be concluded that between 2% and 7% of children are hyperactive. The finding of hyperactivity being much more common among boys than girls echoes the findings of many other early-onset disorders, such as developmental learning and language disorders, and pervasive developmental disorders (Lord & Schopler, 1985; Robinson, 1987).

1.5 Dimensions or categories?

In the research literature hyperactivity may refer either to a continuously measured dimension or to a categorical classification. The DSM and ICD classification systems exemplify the categorical psychiatric tradition, which assumes qualitative differences between individuals with and without a particular disorder, such as ADHD. Whereas such qualitative differences may indeed exist, in the absence of strong research evidence this should not automatically be assumed to be the case.
Hyperactivity is commonly measured quantitatively, using measures such as parent or teacher rating scales or interviews, or direct observations of behaviour. To classify children as hyperactive or not hyperactive, a decision has to be made regarding the cut-off point on the scales. Unless there are true discontinuities between cases and non-cases, this may be an arbitrary decision.

Achenbach (1993) has pointed out that the dimensional approach is not intrinsically incompatible with the categorical approach: for example, blood pressure is measured quantitatively, whereas hypertension is diagnosed only when a specified threshold in blood pressure is crossed. In fact, in their epidemiological investigations Taylor et al. (1991) found support both for the view that there is 'a continuum of hyperactive behaviour shading into normality' (p. 119) and for the view that the extreme of the dimension may be qualitatively different. Only children with hyperkinetic disorder (i.e. the severe cases) were more likely to have lower IQs, be clumsy and have a history of perinatal adversity. However, other studies suggest that the more general definition of hyperactivity or ADHD is also associated with lower IQs (see section 1.8.1).

Behaviour genetic studies may provide further insight into the issue of dimensions versus categories, as it is possible to compare heritability differences between a general population sample and a clinical or 'extreme' sample (for a further discussion of behaviour genetics, see chapter three). Goodman and Stevenson (1989b) carried out a twin study of hyperactivity and found the heritabilities to be similar for the total general population sample and a clinically relevant sample. Two recent large-scale twin studies have similarly found no change in the relative genetic influence on attention problems (Gjone, Stevenson & Sundet, 1996) and ADHD (Levy, Hay, McStephen, Wood & Waldman, 1997) with increasing severity. These findings are suggestive of a continuously distributed genetic liability to hyperactivity and attention problems.
1.6 Developmental progression

The overall picture of the developmental course of hyperactivity is one of continuity and persisting problems. With regard to early signs of hyperactivity, Richman, Stevenson and Graham (1982) found that, in a representative sample of children, a third of those who had been overactive and restless at age 3 still had such problems at age 8.

A peak ‘age of onset’ for hyperactivity is between the ages of 3 and 4 (Palfrey, Levine, Walker & Sullivan, 1985) and children usually present to health services between the ages of 3 and 7 (Graham, 1991). Whether a particular child is referred to health services undoubtedly depends on many factors apart from the actual symptoms the child shows: the tolerance and management capacities of the caregivers, the availability of services and mental health system politics (Buitelaar & van England, 1996).

Most follow-up studies have examined the period from diagnosis of hyperactivity to adolescence, with a few studies extending to early adulthood. With regard to outcome in adolescence, studies have consistently found that over two thirds of children diagnosed with hyperactivity or ADHD in childhood still receive the diagnosis in mid- to late adolescence (e.g. Barkley, Fischer, Edelbrock & Smallish, 1990; Gittelman, Mannuzza, Shenker & Bonagura, 1985; Hart, Lahey, Loeber, Applegate & Frick, 1995; Mannuzza et al., 1991).

The symptom dimensions of hyperactivity-impulsivity and inattention may show different patterns of change over time. In a longitudinal study of boys with ADHD, Hart et al. (1995) found that only symptoms of hyperactivity-impulsivity declined consistently with increasing age. At the start of the study the boys were 7 to 12 years of age (mean age 9.4 years) and they were assessed annually for 4 years. Inattention
symptoms declined from the first year of the study to the next, but then remained stable during the last two years of the study. Hart et al. suggest that the decline in hyperactivity-impulsivity symptoms is likely to be truly developmental (older children show fewer symptoms), whereas the change in the frequency of inattention symptoms may be due to other factors, such as regression to the mean on repeated measurement.

Not only is there continuity of hyperactivity symptoms from childhood to adolescence, but childhood hyperactivity also predicts later antisocial behaviour. Between 25% and 50% of hyperactive children show conduct problems by adolescence and substance abuse is also common (e.g. Barkley, Fischer et al., 1990; Eiraldi, Power & Maguth Nezu, 1997; Gittelman et al., 1985; Loney, Whaley-Klahn, Kosier & Conboy, 1983; Mannuzza et al., 1991). In addition, there is a strong association between childhood hyperactivity and academic underachievement in adolescence (e.g. Fischer, Barkley, Edelbrock & Smallish, 1990).

However, a significant minority of children who have been diagnosed as hyperactive in childhood do not continue to show the symptoms into adolescence. It is not known whether these children simply do not cross the diagnostic threshold, having perhaps learnt to control the symptoms of their 'underlying' hyperactivity to some extent. The concept of heterotypic continuity (Kagan, 1969) is relevant here: the manifestations of the underlying behavioural patterns or traits may change over time. It is not at all improbable, perhaps given a relatively stable home background and the absence of learning difficulties, that a child who has high levels of energy and is impulsive could also benefit from these very characteristics later on in life. Studies which have investigated predictors of outcome in hyperactivity have not provided unequivocal results, however; methodologically strong studies are needed to specify such factors (see Klein & Mannuzza, 1991; Hinshaw, 1994).
Studies which have followed up hyperactive children into adulthood show that, whereas there is some overall improvement in functioning, these individuals are still at risk for continuing ADHD symptomatology, antisocial behaviour and, in some cases, substance abuse (e.g. Gittelman et al., 1985; Mannuzza, Klein, Bessler, Malloy & LaPadula, 1998; Mannuzza et al., 1991). There is also an elevated risk for a criminal outcome (Mannuzza, Klein, Konig, & Giampino, 1989; Satterfield & Schell, 1997).

The link between childhood hyperactivity and adulthood antisocial behaviour or criminality may be mostly accounted for by conduct problems in childhood. In a prospective study of 89 hyperactive and 87 normal controls, Satterfield and Schell (1997) found that hyperactive children who did not have conduct problems were not at an increased risk for later criminality. Although the hyperactive group was in general at risk for adult criminality, this was associated with conduct problems in childhood and serious antisocial behaviour in adolescence.

Childhood hyperactivity also predicts compromised academic achievement and educational history still in early adulthood (Mannuzza, Klein, Bessler, Malloy & Hynes, 1997; Mannuzza, Klein, Bessler, Malloy & LaPadula, 1993; Weiss, Hechtman, Milroy & Perlman, 1985).

There is very little evidence regarding the outcome for hyperactive girls, as most of the follow-up studies have included boys only. One study that did include a small group of girls in their sample did not find significant sex-related differences in terms of the developmental course of the disorder (Mannuzza & Gittelman, 1984).
1.7 Subgroups

1.7.1 Pervasive vs situational hyperactivity

In the hyperactivity literature, a distinction is frequently made between pervasive hyperactivity (symptoms shown in more than one context) and situational hyperactivity (symptoms shown in either school or home setting only). As was already noted in the section on cardinal symptoms of hyperactivity, the DSM requirements for the pervasiveness of ADHD symptoms have varied in different versions of the classification system, whereas the ICD classification of hyperkinesis has consistently required that the symptoms must be shown in more than one situation.

When hyperactivity has been considered as a continuous dimension, it has become clear that the agreement between parents and teachers is not high (see section 1.12 for a further discussion). Taylor (1994) has pointed out that an underlying dimension of hyperactivity, source error (imperfect reporting of parents and teachers), bias and situational effects (child behaves differently in different settings) can all contribute to any single measure of hyperactivity. The evidence for rater bias is discussed in section 3.4.3.

The pervasively hyperactive children seem to be a more severely affected group than the situationally hyperactive children (see Hinshaw, 1994). For example, in a representative sample of 13-year-old twins situational hyperactivity had similar, but weaker, correlates as pervasive hyperactivity: both types of hyperactivity were associated with male sex, social disadvantage, low IQ and psychiatric disorder (mainly antisocial) (Goodman & Stevenson, 1989a). There is no strong evidence to suggest that the differences between the situational and pervasive groups would be
qualitative rather than quantitative. However, the view that the situational group may not comprise a valid disorder has also been expressed (Schachar, 1991).

The data from the twin study (Goodman & Stevenson, 1989a) suggest that an additional distinction may be necessary between hyperactivity confined to the home context and that confined to the school setting: the correlations with the various factors were weaker for home hyperactivity than for school hyperactivity. Further evidence for this distinction comes from a study in which hyperactive children were followed up to investigate rates of psychiatric diagnoses in adulthood (Klein, 1990; reviewed in Klein & Mannuzza, 1991). Teacher-identified hyperactive children had similar rates of diagnoses in early adulthood as pervasively hyperactive children, whereas parent-identified hyperactive children had much lower rates of ADHD and conduct disorder at follow up.

With regard to possible cognitive deficits in hyperactivity, Schachar and colleagues (Schachar, Tannock, Marriott & Logan, 1995) examined the performance of children with pervasive, school-only and home-only ADHD on an inhibition task (see also section 2.2.3). Whereas the poorest performance on the task was observed in the pervasive group, the differences between the pervasive and the school-only groups were small. In contrast, the home-only ADHD group showed no deficit on this task. However, as the sample sizes were small, these findings await replication. Schachar et al. (1995) concluded that it is not clear whether the three groups differ in kind or in degree in their performance on the inhibition task.

The evidence on the situational versus pervasive issue emphasises the need to make explicit decisions regarding the informants chosen to rate children's hyperactive behaviour. Children identified as hyperactive by parents only may differ, quantitatively if not qualitatively, from those identified by parents and teachers, or by teachers only.
1.7.2 Hyperactivity-impulsivity vs inattentiveness

Hyperactive children have also been categorised into subgroups based on the presence or absence of hyperactivity-impulsivity. The group of children who show only symptoms of inattentiveness differ from the other children with ADHD with regard to several features. Compared to 'hyperactive-impulsive' children or children showing symptoms of both hyperactivity-impulsivity and inattentiveness, 'inattentive' children show lower rates of comorbidity with conduct problems (Eiraldi et al., 1997; Goodyear & Hynd, 1992) and a smaller proportion of them are boys (Lahey, Applegate, McBurnett et al., 1994; Lahey, Pelham et al., 1988).

Barkley, DuPaul and McMurray (1990) found that the 'pure' ADD group responded to lower stimulant dosages than the ADDH children and a greater percentage of them also showed a negative response to medication. The family histories of psychopathology also differ: high rates of externalising problems characterise the biological relatives of the hyperactive-impulsive children, whereas internalising problems and learning disabilities characterise the relatives of the inattentive children (Barkley et al., 1990). The inattentive children are often characterised as sluggish, drowsy and prone to daydreaming; the 'pure' attention deficit disorder may indeed be a form of internalising disorder (see Hinshaw, 1994).

Because of these differences between the inattentive group and other children with ADHD, it is possible that the groups differ also at the cognitive and motivational level. In the sections that follow, the discussion will mostly focus on those children who show symptoms of hyperactivity-impulsivity, with or without symptoms of inattentiveness.
1.7.3 Girls with hyperactivity

Much of the hyperactivity literature has focused on boys only and the gender issue has largely been brushed to the side. A recent review by Heptinstall and Taylor (1996) addresses this neglected issue. The authors point out that sex differences in hyperactivity are important and may give clues to the etiology of the disorder.

The reported sex difference in the prevalence of hyperactivity vary between studies (see also section 1.4), but the figure of 3 boys to 1 girl is often quoted (Heptinstall & Taylor, 1996). Could under-recognition by parents and teachers explain the lower prevalence figures for girls? Recent data from a two-stage epidemiological study of 6-8-year-old girls (Taylor, Sandberg, Sonuga-Barke & Bowyer, unpublished; reviewed in Heptinstall & Taylor, 1996) suggests that this is not the case: hyperactive girls were less active than hyperactive boys (Taylor et al., 1991), whether their movements were measured physically, directly observed or recorded through interviews. As the same cut-off points on the same questionnaires were used for both girls and boys to define hyperactivity, this finding suggests that parents and teachers tend to overestimate hyperactivity in girls. That is, both the girls and boys obtained ratings above the hyperactivity cut-off point, but the girls were less active on objective measures. However, it is possible that high levels of hyperactivity in girls less frequently lead to referrals to clinics, than is the case for boys (Heptinstall and Taylor, 1996).

If rater bias cannot explain the male predominance, could it be due to other co-occurring conditions? Heptinstall and Taylor (1996) conclude that it cannot be attributed to antisocial behaviour, as the sex ratios are similar for ‘pure’ hyperactivity and for comorbid hyperactivity-conduct disorder. Learning disorders are also unlikely candidates, as they are more common in hyperactive girls than hyperactive boys (Berry, Shaywitz & Shaywitz, 1985; James & Taylor, 1990).
The step-by-step exclusion of possible explanations leads to the possibility that girls are protected against hyperactivity. As a sex difference on hyperactivity ratings exists also among children who score below a cut-off point for hyperactivity (Taylor et al., unpublished; reviewed in Heptinstall & Taylor, 1996), this suggests that the protection extends to the whole population of girls.

An obvious next step is to attempt to provide an explanation for this protection. A review of the relevant research (Heptinstall & Taylor, 1996) shows the inconclusive nature of the findings. Evidence for environmental causes, such as those emphasising socialisation practices or greater male vulnerability to stress, is scarce. Biological explanations frequently refer to relative male immaturity, but there is no strong support for such hypotheses. A genetic hypothesis, the two-threshold model, predicts that girls need a higher dosage of the ‘hyperactivity genes’ than boys to show hyperactive behaviour. Findings from methodologically strong studies fail to support this hypothesis (e.g. Goodman & Stevenson, 1989b).

Another genetic hypothesis, that of X-linked inheritance, is incompatible with father-son transmission. However, a hypothesis of an imprinted gene on the X-chromosome would be compatible with father-son transmission. Imprinting is a phenomenon in which the expression of an allele depends on its parental origin; imprinted genes control the actions of other genes (see Skuse, in press). Skuse (in press) has hypothesised that an imprinted X-linked locus could explain the male predominance in disorders such as autism. This could theoretically also explain the greater vulnerability of males to hyperactivity.

In sum, hyperactivity is less common among girls than boys. Rather than reflecting a rater bias, many studies may overestimate the numbers of hyperactive girls due to adults’ tendency to emphasise hyperactive behaviour more easily in girls. The preliminary conclusion is that females are protected against the development of hyperactivity, although the reason for this remains poorly understood. Few studies
have investigated possible sex effects on cognitive skills among hyperactive children and the results have been inconsistent (see Heptinstall & Taylor, 1996).

1.8 Co-occurrence of other disorders

Research on both child and adult psychopathology shows that various disorders frequently co-occur in the same individuals (Anderson, Williams, McGee & Silva, 1987; Boyd et al., 1984; Flament et al., 1988; Kashani et al., 1987; Szatmari, Boyle & Offord, 1989; Weissman et al., 1987). Despite the intuitive appeal of the comorbidity concept, researchers have only relatively recently started to investigate this important issue. In the past, the psychiatric classification tradition has tended to discourage multiple diagnoses (Caron & Rutter, 1991).

Caron and Rutter (1991), in a review of the topic, point out two main reasons why comorbidity should receive more attention in research studies. First, factors that are found to be associated with a particular disorder may in fact be correlates of a co-occurring condition. For example, before the field made the distinction between ADHD and conduct disorder, ADHD was thought to be associated with parental psychopathology in the antisocial spectrum; only later was it discovered that this association holds for conduct disorder only (see section 1.9). Second, it is possible that the meaning of a disorder is different in its ‘pure’ form and comorbid form. From the viewpoint of planning effective treatment, a better understanding of the comorbidity between disorders would be crucial.

An apparent co-occurrence of two or more disorders may also be artifactual. Caron and Rutter (1991) discuss several possibilities, including: one disorder representing an early manifestation of the other; artificial subdivisions of disorders; use of overlapping diagnostic criteria; and one condition being part of a secondary
manifestation of the other condition. It is also possible, as discussed earlier and also raised in Caron and Rutter's review, that the categorical approach to psychopathology is misconceived and instead researchers should study how individuals vary on behavioural dimensions. The extent to which two 'disorders' would seem to co-occur would then be related to the particular cut-off points that were used to define cases. The behavioural dimensions related to a diagnostic category could also function as risk factors for the other condition at levels below the diagnostic threshold.

If the apparently comorbid conditions are indeed separate and independent from one another, several explanations are possible: the disorders may share the same risk factors; one disorder may increase the risk for the other; or the comorbid condition may be a separate condition from either of the 'pure' conditions (Caron & Rutter, 1991). A further possibility - that the risk factors for the disorders would themselves be associated - cannot, as Stevenson (1996) argues, be logically differentiated from the possibility of the disorders sharing the same risk factors. If the risk factors are correlated, there must be some shared cause, however distant.

Behavior genetic designs are particularly well suited for the study of co-occurrence of disorders. Neale and Kendler (1995) developed several models for comorbidity between multifactorial disorders. Their models are based on the idea that there is a normal distribution of disease liability which arises from the action of a large number of factors, each of which has a small effect. Neale and Kendler (1995) point out that 'given cross-sectional data collected from unrelated individuals, there is almost no information to discriminate between different models of comorbidity... When we extend these models to data from relatives, the information on comorbidity rates across family members may resolve the different origins of comorbidity' (p. 941).

Hyperactivity frequently co-occurs with antisocial behaviour/conduct problems, learning disabilities and underachievement, and with anxiety disorders. The strongest
and most investigated association is that between hyperactivity and antisocial behaviour; this topic will be discussed in chapter four.

1.8.1 Hyperactivity and learning disabilities

The association between hyperactivity and academic underachievement or learning disabilities is well documented. However, researchers have defined learning disabilities or underachievement in several ways. The term learning disability in the American research literature often refers to poor reading achievement (reading age significantly below that expected based on chronological age and IQ), whereas in the UK the term commonly refers to generally low intelligence (the term specific learning disability may be used to denote reading difficulty).

Estimates of the strength of the association between hyperactivity and underachievement have varied widely. McGee and Share (1988) argued for an overlap of greater than 50%. After a careful consideration of the literature, Hinshaw (1992) concluded that the overlap between hyperactivity and marked achievement deficits (defined by IQ-achievement discrepancies) does not exceed 20%. However, the figure is notably higher when more general indicators of underachievement (e.g. grade retention, low grades) are used.

A few studies have investigated whether subgroups of hyperactive children differ in the degree of association with reading disability, but the evidence has been inconclusive (see Stevenson, 1996). A recent investigation, using the DSM-IV framework, suggests that children with predominantly inattentive type or combined type ADHD are more likely to have academic problems than children with predominantly hyperactive-impulsive type ADHD (Lamminmäki, Ahonen, Närhi, Lyytinen & Todd de Barra, 1995).
Hinshaw (1992) found little support for the view that the association would be specific to IQ-discrepant achievement deficits: hyperactivity seems to be related both to lower general intelligence and to reading delay. The research literature similarly does not support the conclusion of some earlier reports that hyperactivity and aggressive behaviour would be equally strongly associated with academic underachievement. In childhood the link is stronger for hyperactivity (Frick et al., 1991; Sonuga-Barke, Lamparelli, Stevenson, Thompson & Henry, 1994), though by adolescence there is a clear association between antisocial behaviour and underachievement (see Hinshaw, 1992).

Goodman, Simonoff and Stevenson (1995) discussed different causal pathways which could explain the association between lower IQ and high rates of problem behaviours in general. The ‘rater bias’ hypothesis suggests that teachers and parents overreport behaviour problems in children with lower IQs. The ‘IQ as a cause’ explanation suggests that low IQ leads to behavioural deviance. The opposite is also possible: behavioural deviance, as it would affect learning in the classroom and compliance during testing, could lead to lower IQ scores. A fourth alternative explanation the authors considered is that of ‘IQ as a marker’: some antecedent, ‘third’ factor (e.g. genes or motivation to succeed) could cause both low IQ and behaviour problems. Analyses on teachers’ and parents’ ratings of 13-year-old twins’ behaviour provided more support for the ‘IQ is a marker’ and ‘IQ is a cause’ hypotheses than the other two possible explanations. However, the study did not focus on hyperactivity per se.

With regard to reading disability, the evidence is strongest for the existence of shared influences on both hyperactivity and reading disability (Hinshaw, 1992; Stevenson, 1996). Possible candidates that have been suggested to explain the co-occurrence of these disorders include language deficits and neurodevelopmental delay (Hinshaw, 1992; Stevenson, 1996). Stevenson (1996) reviewed the genetic literature which shows that both conditions have genetic etiologies and that there is indeed evidence of shared genetic effects on hyperactivity and literacy. For example, Stevenson,
Pennington, Gilger, DeFries and Gillis (1993) carried out a twin study on hyperactivity and spelling ability which suggests that the co-occurrence between the disorders is mostly (75%) due to shared genetic influences. More recently, Light, Pennington, Gilger and DeFries (1995) obtained highly similar findings from their twin data on the association between reading disability and hyperactivity.

Some evidence suggests that hyperactivity may lead to reading disability. Fergusson and Horwood (1992) studied attention deficits and reading achievement in a sample of 777 New Zealand children at ages 10 and 12 years. Model estimates suggested that the causal pathway was from attention deficits to reading achievement, whereas there was no evidence for a causal pathway in the opposite direction. Rowe and Rowe (1992) similarly found evidence of inattentiveness having a negative influence on reading achievement in a general population sample. In contrast to the findings of the New Zealand study, their study provided support for a reciprocal model too. Reading achievement, which was mediated by attitudes and reading activity at home, had a positive effect on attentiveness at school.

Despite some inconsistencies in the literature (see Stevenson, 1996), a few studies suggest that a separate subgroup of hyperactive children may exist whose ADHD-type symptoms are secondary to reading disability (e.g. Duffy & McAnulty, 1990; McGee, Williams & Feehan, 1992; Pennington, Grosiss & Welsh, 1993). Pennington et al. (1993), for example, found a double dissociation between ADHD and reading disability: only ADHD was associated with poor performance on executive function measures and only reading disability was related to deficits in phonological processing. The comorbid group had the same cognitive deficits as the reading disability group, which suggests that the ADHD characteristics of these children were a behavioural consequence of their reading disability.

Overall, the evidence is strongest for shared, common influences on hyperactivity and reading disability. Although there may indeed be common genetic effects on the
two disorders, an alternative explanation for what appears to be shared genetic etiology is also plausible. As Stevenson (1996) points out, genetic factors could influence reading disability, which could then lead to hyperactivity. Together with the evidence reviewed above, this raises the issue of the possible heterogeneity of hyperactivity (see also Hinshaw, 1994).

1.8.2 Hyperactivity and anxiety disorders

Compared to the other disorders that tend to co-occur with hyperactivity, anxiety and depression have not attracted quite the same amount of research interest. In part, this may be due to a reluctance to accept that internalising and externalising problems are not ‘opposing poles’ but rather co-occur in the same individuals more often than would be expected by chance.

Taylor et al. (1991) found hyperactivity to carry a relative risk of 1.3 for a high ‘emotional symptoms’ score in a general population sample of 7- and 8-year-old boys. Epidemiological studies suggest that between one-fourth and half of children who are diagnosed as having ADHD or ADD also meet the diagnostic criteria for an anxiety disorder (Anderson et al., 1987; Bird, Canino & Rubio-Stipec, 1988; Bird, Gould & Staghezza, 1993). The New Zealand birth cohort study (Fergusson & Horwood, 1993) found correlations of around .3 between ADHD symptoms and symptoms of anxiety-withdrawal at ages 8, 10 and 12 years. The rate of co-occurrence with anxiety disorders may be higher in children with the ‘inattentive’ form of ADHD than in children who show hyperactive-impulsive symptoms (e.g. Lahey, Schaufhceny, Hynd, Carlson & Nieves, 1987), although the evidence is not consistent (Eiraldi et al., 1997).

There is some evidence that children who have both ADHD and anxiety disorder may differ from children with ADHD only (Livingston, Dykman & Ackerman, 1990; Pliszka, 1989, 1992; Tannock, Ickowicz & Schachar, 1995). Pliszka (1992)
found that children in the comorbid group (ADHD + overanxious disorder) were less hyperactive during a behavioural observation than were children with ADHD only, and they also made fewer commission errors on the continuous performance task (for an explanation of the task, see section 2.1.2). This is an intriguing finding, which awaits replication.

Research on the effects of medication suggests that the presence of comorbid anxiety in children with ADHD is associated with a poorer response to stimulant treatment (see Tannock et al., 1995, for a summary of the findings). Whereas most studies have relied on behavioural outcomes, Tannock et al. (1995) showed that stimulant medication improved performance on a working memory task only in the ‘pure’ ADHD group and not in the comorbid (ADHD + anxiety) group. Apart from this difference in response to medication, the two ADHD groups did not differ in their performance on the working memory task.

A few studies have focused on the possibility of shared, common influences on hyperactivity and anxiety disorder. Relatives of children with ADHD have a higher risk for anxiety disorders than do relatives of non-ADHD children (Biederman et al., 1992; Biederman et al., 1991; Perrin & Last, 1996). However, relatives of children with anxiety disorder do not seem to be at an increased risk for ADHD (Perrin & Last, 1996). The evidence is most consistent with the view that ADHD and anxiety share common risk factors, but are independently transmitted in families (Perrin & Last, 1996). A limitation of this type of familial risk analysis is that shared environmental effects cannot be separated from genetic effects.

In sum, the rather limited literature on the co-occurrence of hyperactivity and anxiety disorders suggests that the two disorders may share common risk factors. Even less is currently known about the co-occurrence of hyperactivity and depressive disorders, which is seen in up to 27% of cases (Bird, Gould & Staghezza, 1993).
1.9 Family-environmental factors

Several early studies which did not control for conduct disorder suggested that parents of hyperactive children would be characterised by psychopathology in the ‘antisocial spectrum’ (Cantwell, 1972; Morrison, 1980; Morrison & Stewart, 1971). More recent investigations have found that there is no association between hyperactivity, independent of conduct problems, and parental antisocial disorders (Biederman, Munir & Knee, 1987; Faraone, Biederman, Keenan & Tsuang, 1991b; Lahey, Piacentini et al., 1988; Reeves, Werry, Elkind & Zametkin, 1987; Stewart, deBlois & Cummings, 1980).

Rather, parents and other biological relatives of non-aggressive hyperactive children show higher than expected rates of attentional problems and learning problems (Biederman et al., 1987; Faraone et al., 1991; Frick, Lahey, Christ, Loeber & Green, 1991; Lahey, Piacentini et al., 1988; Schachar & Wachsmuth, 1990).

Early research investigating the links between parenting behaviour and hyperactivity similarly did not distinguish between ‘pure’ hyperactivity or ADHD and comorbid hyperactivity-conduct problems (see Frick, 1994). Some more recent investigations have also failed to make this distinction (e.g. Biederman et al., 1995). Some studies which have considered the comorbidity issue suggest that hyperactivity per se is not associated with parenting and other measures of the quality of the home environment (Loeber, Brinhalten, & Green, 1990; Paternite & Loney, 1980; Szatmari, Offord & Boyle, 1989a; Taylor, Schachar, Thorley & Wieselberg, 1986).

Other studies report positive findings, however. Taylor et al. (1991) found that hyperactivity was associated with poor coping and expressed criticism from parents even when conduct disorder was controlled for. Woodward, Taylor and Dowdney (1998) also found an association between hyperactivity and poor parent coping and...
the use of aggressive discipline methods, after adjustment for the effects of conduct
disorder and parental mental health.

Frick's (1994) review of the literature highlights an important issue: parenting
measures may in fact be picking up parents’ responses to the hyperactive behaviour
of their child. That is, the correlational nature of the findings leaves open the
possibility that the parenting difficulties would be a consequence of the child’s
difficult behaviour rather than a causal factor. Indeed, Barkley and colleagues
(Barkley, Karlsson, Strzelecki & Murphy, 1984) found that stimulant medication not
only improved the hyperactive children's behaviour but that it also improved mother-
child interactions in an observational setting.

In general, reviewers of the literature agree that while family-environmental factors
do not seem to be directly implicated in the etiology of hyperactivity, they may play
a role in the maintenance and even eventual course of the disorder (Hinshaw, 1994;
directly causing it, the environment mainly influences the expression of overactivity,
acting as a stressor or trigger mechanism in pre-disposed vulnerable children’ (p.
318). The importance of factors related to the family environment becomes clear
when the issue of the co-occurrence of hyperactivity and conduct problems is
considered (chapter four).

Although similarly not implicated in the etiology of the disorder, peer rejection is a
salient accompanying feature of hyperactivity (see Hinshaw, 1994, for a review).
Both aggressive and non-aggressive children with ADHD seem to be negatively
appraised by their peers (Pelham & Bender, 1982).

Above the levels of peer and family factors, cross-cultural aspects are also important
for understanding hyperactivity. A recent review (Luk, 1996) concludes that cultural
factors influence how hyperactivity is manifested, perceived, tolerated, referred and managed.

1.10 Toxic factors and diet

In the search for etiological factors in hyperactivity, environmental toxins have been put forward as possible candidates. Lead is one such candidate, as it affects the brain. A high concentration of body lead is associated with low IQ and behaviour disturbances (see Kado & Takagi, 1996). However, evidence for a specific link from high lead concentrations to hyperactivity is less strong. In their review of the literature, Kado and Takagi (1996) conclude: ‘The tentative conclusion is that lead exposure is not the major cause of hyperactivity, that it is neither a necessary nor (except at very high doses) a sufficient cause, and that its weak contributory effect is probably not specific to hyperactivity disorders’ (p. 266) (see also Taylor, 1986).

Another hypothesis is that there is a causal relationship between food substances and hyperactivity. Of all the variations of this hypothesis, Feingold’s (1975a,b) proposal of an association between food additives and hyperactivity is the best known. Food additives refer to synthetic colourings, flavourings and preservatives, but Feingold put the blame on naturally occurring salicylates in fruits too. The research that followed Feingold’s proposal was of mixed quality methodologically and provided inconsistent results (see Kado & Takagi, 1996). On the whole, controlled studies failed to support Feingold’s hypothesis (Taylor, 1991). Single case control studies, however, suggested that artificial colours can have an effect on the behaviour of individual children (see Taylor, 1991).

Other studies widened the focus from food additives to include also foods such as milk and wheat. Egger et al. (Egger, Carter, Graham, Gumley & Soothill, 1985), in
a double-blind controlled study, obtained some evidence suggesting that foods and additives could have an adverse effect on hyperactive behaviour. This effect only emerged in parental ratings of behaviour and not in objective psychological testing. However, the study suffered from methodological limitations (see Carter et al., 1993). Several subsequent studies obtained contradictory results and have been criticised, like the Egger et al. (1985) study, of having atypical samples (see Carter et al., 1993; Kado & Takagi, 1996).

In an attempt to improve the methodology of the Egger et al. (1985) study, Carter et al. (1993) carried out another study involving a ‘few foods’ diet. The children (N=78), aged between 3 and 12 years, had been referred to a special diet and behaviour clinic in a hospital and were diagnosed as having ADDH using DSM-III criteria. In the first phase of the study, the children were put on a ‘few foods’ diet for three to four weeks. Those children whose behaviour improved during this first phase (N=59), entered the second phase of open introduction: food and additives were reintroduced, at the rate of one a week. Where possible, the children completed the third phase of the study (N=19) - a double blind, crossover, placebo controlled trial. This involved the reintroduction of one or more provoking items. The battery of outcome measures included the following: Conners’ Parent Rating Scale, a parental global rating of severity, an observational rating of behaviour by a psychologist, a paired associate learning test and the Matching Familiar Figures Test (MFFT).

The active versus placebo phase comparisons for the 19 children showed significant effects for the Conners’ hyperactivity rating, the psychologist’s observation score and the MFFT measures. Thus, children whose behaviour was ‘diet-responsive’ on an open trial maintained this pattern of responding in a double blind, placebo controlled trial with objective tests. The authors point out that there was some suggestion that the effect of diet would be on irritability rather than on the ‘core’ symptoms of
hyperactivity as such. With regard to how broad the diet should be, the data suggested that an additive-free diet by itself would be of little benefit.

The conclusion from the research on the effects of diet on hyperactivity seems to be that a small subgroup of hyperactive children may exist who respond favourably to a ‘few foods’ elimination diet. It is not clear how the diet works or specifically which behaviours it affects and which it does not.

1.11 Neurological aspects

1.11.1 Neurological damage

The great majority of hyperactive children do not show any obvious signs of neurological damage. However, various neurological problems can sometimes be associated with ADHD-type symptomatology (for a review, see British Psychological Society, 1996). Head injury, cerebral vascular accident, epilepsy, infection (meningitis and encephalitis), phenylketonuria and certain other conditions can all lead to symptoms resembling those observed in children with ADHD.

Studies which have investigated the association between low birthweight and hyperactivity have obtained contradictory results. The twin study by Goodman and Stevenson (1989b; see section 3.4.3), for example, found no evidence for such a link. A birthweight of 2000 grams or less was not a predictor of hyperactivity or inattentiveness in their sample. Within-pair comparisons provided further support for this conclusion: lighter born twins were not more likely to be hyperactive or inattentive than their co-twins. Taylor et al. (1991) found that their measure of perinatal insult, which included low birthweight, was not associated with milder
degrees of hyperactive behaviour or ADDH but was associated with the more severe hyperkinetic syndrome.

Studies which have followed up children who were born with very low birthweights suggest that the prevalence of ADHD may be higher than expected among these children. In a cohort study of 137 children with birthweights below 1501 grams (Botting, Powls, Cooke & Marlow, 1997), 23% of these children met the clinical criteria for ADHD at age 12 years, compared to 6% of matched control children. Szatmari et al. (Szatmari, Saigal, Rosenbaum & Campbell, 1993) similarly found an increased incidence for ADHD at age 8 years among children born with very low birthweights.

One possible interpretation of the research findings on the links between neurological damage and hyperactivity relates to the concept of heterogeneity: a small subgroup of all the children who meet the criteria for hyperactivity or ADHD could show the symptoms because of underlying brain damage. These children may or may not share the ‘specific associations of hyperactivity’ with the majority of the hyperactive children at the neurochemical and the cognitive-motivational level. This would depend on whether the neurological damage would disrupt the same ‘critical pathway’ which would be disrupted in the ‘mainstream’ hyperactive group.

1.11.2 Neuroanatomical studies

Although in the great majority of cases there is no evidence of obvious neurological damage, unusual brain functioning could nevertheless be a factor in hyperactivity. Neurological evidence comes from three sources - from neuroanatomical, neurochemical and neurophysiological studies. Neuroanatomical studies involve scanning of the brain. Structural imaging, such as magnetic resonance imaging (MRI), may show subtle abnormalities in brain structure.
Studies using MRI scanning have implicated the *caudate nucleus*, which is part of basal ganglia, in ADHD. (Basal ganglia are part of the motor system.) Hynd and colleagues (Hynd et al., 1993) reported a reversal of the left-larger-than-right caudate asymmetry, which 73% of the control children demonstrated, in children with ADHD. This was due to a significantly smaller left caudate area in the ADHD group. The boys with ADHD also had total brain volume 5% smaller than the control boys. In contrast to the findings of Hynd et al. (1993), Castellanos et al. (1994) found no asymmetry in caudate volume in their sample of boys with ADHD, but the mean right caudate volume was smaller in the ADHD group than in the matched comparison boys. The control children showed a right-larger-than-left asymmetry.

Other studies have focused on the *corpus callosum*, which connects homotopic regions of the cerebral hemispheres. Semrud-Clikeman et al. (1994) reported that the splenial area of the corpus callosum was smaller in children with ADHD than in comparison children. Another investigation (Baumgardner et al., 1996) found ADHD to be associated with a reduction in the rostral body region of the corpus callosum.

Recently Filipek et al. (1997) reported localised hemispheric structural anomalies in ADHD. The boys with ADHD had similar hemispheric volumes with matched controls, but had smaller volumes of the right anterior-superior (frontal) hemispheric region, bilateral anterior-inferior (peri-basal ganglia) hemispheric regions, and bilateral retrocallosal (posterior parietal-occipital) hemispheric regions. The authors suggest that the findings are not consistent with an explanation involving degeneration or atrophy. Rather, the results implicate a neurodevelopmental process that alters neural system configuration in children with ADHD.

The boys with ADHD also had smaller left caudate and caudate head volumes, with reversed asymmetry. This finding is in line with the results from the Hynd et al. (1993) study, but not with those from the Castellanos et al. (1994) study. Filipek et
al. (1997) discuss several possible explanations for these discrepancies in the results. For example, the ADHD group in the Castellanos et al. study had a high rate of comorbid diagnoses, whereas the boys with ADHD in the Filipek et al. study were free of comorbid disorders.

Filipek et al. (1997) conclude that the results of their study 'potentially suggest that predominantly hyperactive-impulsive symptoms may be due to right frontal/bilateral striatal dopamine dysfunction, leading to underactivation of the right hemisphere' (p. 599). The striatum, which includes the caudate nucleus, putamen and ventral striatum, is a brain region implicated in the control of motivation and reward.

Functional imaging techniques, positron emission tomography (PET) and single photon emission computed tomography (SPECT), measure cerebral blood flow. A few studies on ADHD have utilised such techniques. Lou, Henriksen and Bruhn (1984) found that all the 11 children with ADD in their sample had hypoperfusion (reduced blood flow) in the white matter of the frontal lobes and seven of the children also in the caudate nuclei region. Methylphenidate increased blood flow in the central regions, including basal ganglia and mesencephalon, but decreased blood flow in the motor and primary sensory cortical areas.

In subsequent studies Lou and colleagues (Lou, Henriksen & Bruhn, 1990; Lou, Henriksen, Bruhn, Borner & Nielsen, 1989) found hypoperfusion in striatal (particularly right striatal) and posterior periventricular regions in ADHD subjects, whereas regional cerebral activity was abnormally high in occipital regions and in some cases also in the left primary auditory and sensorimotor regions.

Zametkin et al. (1990) investigated cerebral glucose metabolism in 25 adults who had been hyperactive since childhood (they were also biological parents of a child with diagnosed ADHD) and 50 control adults. In the adults with hyperactivity global cerebral glucose metabolism was reduced by 8%. The reduction was greatest in the
premotor cortex and the superior prefrontal cortex. Similar investigation with adolescents with ADHD, some of whom had also learning difficulties, found reduced cerebral glucose metabolism in the left frontal region, left thalamus, right temporal region and hippocampus (Zametkin et al., 1993).

To summarise, the studies which have used brain imaging techniques provide some support for the suggestion that hyperactivity would be associated with abnormalities in frontal-striatal circuits. The evidence with regard to left versus right hemispheric dysfunction is contradictory, but more often the right hemisphere has been implicated than the left. Interpretation of the results is somewhat difficult, however, due to limitations of the current studies and differences in methodologies across studies (see Tannock, 1998).

1.11.3 Neurochemical studies

At the neurochemical level the focus is on how different neural systems communicate. Research evidence implicates several transmitter substances in hyperactivity: dopamine, norepinephrine (also known as noradrenalin), epinephrine (adrenalin) and serotonin. These neurotransmitters belong to a family of compounds called monoamines. A subclass of monoamines, to which dopamine, norepinephrine and epinephrine belong, is called catecholamines. General research in the field of neurochemistry shows how these neurotransmitters play a role in different functions (see, for example, Carlson, 1986). Norepinephrine is involved in arousal and alertness. Dopamine has been implicated in several important functions, including movement, attention and learning. Serotonin plays a role in the regulation of mood and pain and in the control of eating, sleep and arousal.

The fact that stimulants, which act as dopaminergic and noradrenergic agonists, are efficient in the treatment of children with ADHD supports a 'catecholamine hypothesis' of ADHD. Pliszka, McCracken and Maas (1996) recently reviewed the
literature on the role of catecholamines in ADHD. They point out that the literature on the relationship of stress-induced catecholamine release to personality and performance may be relevant to understanding ADHD. This research has shown that stress tolerance and good performance on tasks are related both to low basal levels of catecholamines and to higher acute releases of catecholamine during mental stress. Thus, catecholamine release in response to events may be particularly informative.

With regard to the literature on the role of norepinephrine (NE) and epinephrine (EPI) in ADHD, Pliszka et al. (1996) conclude that children with ADHD may show higher levels of NE activity but lower levels of EPI activity than other children. An interesting finding emerged in a study with healthy adult males (van Zijderveld et al., 1993). Compared to a placebo infusion, an EPI infusion led to shorter reaction times and fewer errors on a mental arithmetic task, and the participants also reached a higher level of difficulty. Chapter three, which summarises the research on cognitive and task engagement factors in hyperactivity, shows that hyperactive children’s performance on cognitive tasks is characterised by longer reaction times and a high number of errors. Studies also show that stimulants increase urinary EPI (see Pliszka et al., 1996). Another interesting finding, given the results from the brain imaging studies, is that NE inputs to the right cerebral cortex are more dense than to the left cortex (Tucker & Williamson, 1984).

Pliszka et al. (1996) suggest that ‘NE primes the posterior attention system, which orients to and engages new stimuli. It is clear that for efficient attentional functioning, there must then be a clean “hand off” to the anterior system, which coordinates the frontal lobe functions necessary to analyse the data, then selects and initiates a response. Dopaminergic inputs to the prefrontal cortex serve to “lock out” new information and ready the individual for response’ (pp. 268-269).

The dopamine hypothesis of ADHD has, in general, been widely endorsed (see, for example, Levy, 1991). Research shows that dopamine is involved in frontal lobe
functioning and has been implicated in the functioning of working memory (Goldman-Rakic, 1992). Not all data have been consistent with the dopamine hypothesis, however. Pliszka et al. (1996) conclude that the evidence does not provide strong support for a simple ‘hypofunctioning of the dopamine system’ account of ADHD. Distinguishing between the various dopamine subtypes may be important. For example, D1 agonists disrupt working memory in nonhuman primates, whereas D3 receptors may relate to responding to rewards. Pliszka et al. (1996) suggest that ADHD could be related to hyperfunctioning of the mesolimbic dopamine system (the D3 subtype is found in these areas). The mesolimbic dopamine system is the dopaminergic innervation of the nucleus accumbens, which is part of the ventral striatum. It has been implicated in activation and locomotor behaviour, as well as in psychostimulant-induced locomotor behaviour (see Koob, 1996).

Koob (1996) reviewed the literature on the association between dopamine and motivational processes. Whereas research has long suggested a role for the mesolimbic dopamine system in reward and motivational processes, recent neuropharmacological and electrophysiological data, as well as results from modelling studies, have advanced our understanding of these processes. Based on these new data, Koob (1996) concludes that ‘midbrain dopamine neurons may be part of the process by which rewards motivate or guide behaviour (incentive motivation). Under this formulation, changes in positive incentives would, through an activation of the mesolimbic dopamine system, allow or actually release species-specific approach responses or changes in direction toward these larger incentives. The mechanism for this enabling function could be through additional activation of the central motive state (in addition to primary drives) or by feeding directly to motor routines in the extrapyramidal motor system or both’ (p. 188).

The research on the catecholamine hypothesis of ADHD points to the following conclusion (Pliszka et al., 1996): an explanation in terms of ‘too much’ or ‘too little’ of a single neurotransmitter is too simplistic. An account emphasising the interactions
between the different catecholamines holds more promise. Other reviewers of the literature agree that a single transmitter defect hypothesis cannot be correct (Hechtman, 1994; Kado & Takagi, 1996). In addition to the catecholamines, there is some, although limited, evidence supporting the role of serotonin in ADHD (for reviews, see Hechtman, 1994; Kado & Takagi, 1996).

Research on the personality factor of sensation seeking, which refers to behaviours rather similar to those observed in ADHD (see section 2.5.2), similarly points to interactions between these neurotransmitters - serotonin, dopamine and norepinephrine. Zuckerman (1996) suggests that impulsive unsocialized sensation seeking is based on 'a highly reactive dopaminergic system and a weakly reactive serotonergic and noradrenergic systems producing strong approach and weak inhibition and arousal reactions to novel situations or situations containing possibilities of both primary reward and punishment' (pp. 125-126).

1.11.4 Neurophysiological studies

Earlier studies on ADHD using electroencephalogram (EEG) measures reported inconclusive findings (see Chabot & Serfontein, 1996; Kado & Takagi, 1996). A methodologically stronger study is a recent study by Chabot and Serfontein (1996), which used neurometric quantitative EEG (QEEG). The study sample consisted of 407 children with ADD and 310 comparison children. The ADD diagnosis was based on a DSM-III Symptom List rating scale which the child's teacher, or a parent if the child was not in school, completed. The ADD group was divided into low-IQ (IQ < 85; N = 88) and normal-IQ (N = 319) groups. Within these two groups, the children were further divided into the following subgroups: ADHD, ADD (i.e. without hyperactivity) and an attention problem group (ATT; children not reaching DSM-III criteria for ADD or ADHD but showing inattentive behaviour). The children were between aged between 6 and 16 years.
A discriminant analysis showed that the QEEG distinguished well control children from those with attention deficit disorder: the specificity was 88.0% (control children called controls) and sensitivity 93.7% (ADHD, ADD and ATT children called cases). Of the children in these three clinical groups, 92.6% had an abnormal QEEG. The patterns of QEEG abnormality varied in degree rather than in the type of abnormality. The children with ADHD showed more generalised and extreme QEEG abnormality than the children with ADD, with the children with ATT showing the least extreme abnormality. The children in the low-IQ group similarly showed more extreme QEEG abnormality than the children in the normal-IQ group. A previous study with children with learning disorders but without ADD/ADHD (John et al., 1983) found abnormal QEEG features which differ in the type of abnormality from those observed in Chabot and Serfontein's sample.

The investigators identified two primary neurophysiological subtypes based on the QEEG findings showing abnormality. The first subtype, which involved an increase in EEG activity, especially in frontal regions, included 46.4% of the children. In contrast, EEG slowing, again especially in frontal regions, was characteristic of the second subtype (29.8% of the children). The results were not consistent with the view that children with ADHD show immature EEG patterns, but rather suggest that ADHD is associated with deviations from normal development.

A third of the children in the ADHD, ADD and ATT groups showed signs of disturbed interhemispheric function. Interhemispheric power asymmetry was common, particularly excess right hemisphere power, which was eight times as common as excess left hemisphere power. Interhemispheric incoherence was frequently observed too. (Significant incoherence represents decreased synchronisation of the EEG across cortical regions, relative to the normal population.) The authors point out that this indicates disturbed cortical-cortical relationships that are modulated by subcortical interconnection via the thalamus or basal ganglia or both. Taken together, the findings from this study provide further
support for frontal-striatal and corpus callosum dysfunction in ADHD, and implicate the right hemisphere in particular. The results support models of both hypo- and hyperarousal of these structures.

1.12 Measurement issues

How best to measure hyperactivity or ADHD depends obviously on whether the aim is to obtain a clinical diagnosis for an individual child or to study a large population of children for research purposes. In research studies the approach can either be categorical or dimensional, or a combination of the two.

Another important issue is who should report on the child’s behaviour. As child self-reports are rather unreliable for ADHD symptomatology (Loeber, Green, Lahey & Stouthamer-Loeber, 1991), parents and teachers are usually the preferred informants. Some studies have also used independent observers.

Studies on undercontrolled (externalising) problems have revealed a degree of cross-informant inconsistency when rating the same child: whereas correlations between the ratings of two teachers (.74) or two parents (.62) are moderately high, correlations between the ratings of different types of informants are lower (e.g. teacher vs parent .32) (Achenbach, McConaughy & Howell, 1987). The meta-analysis by Achenbach et al. (1987) also showed that consistency between different raters is higher for ratings of 6-11-year-olds than for ratings of adolescents.

Rather than despairing about the modest correlations between different types of informants, Achenbach et al. (1987) emphasise the need to consider the situation-specificity of children’s behaviour. Teachers and parents, for example, observe a child’s behaviour in very different contexts. As there is no ‘gold standard’ for
hyperactivity, it is best to obtain information about a child’s behaviour from several sources. (See section 3.4.3 for evidence from twin studies regarding possible bias in ratings by parents and teachers.)

In research studies on hyperactivity and attention deficits, rating scales or questionnaires are perhaps used more often than any other assessment tools (Hinshaw, 1994). They are easy to use, tap the child’s behaviour in natural settings and enable comparisons between the reports of different informants. Rating scales that cover a broad range of childhood problem behaviours can provide a useful profile of the child’s strengths and weaknesses.

Perhaps the most widely used of such broad scales of childhood psychopathology is the Child Behaviour Checklist, CBCL, (Achenbach, 1991a) and its teacher form, the TRF (Achenbach, 1991b). The psychometric properties of the Achenbach scales have been thoroughly investigated and extensive norms exist for the scales. Whilst very useful for studying aggression and delinquency, their weakness from the viewpoint of studying hyperactivity-impulsivity is the lack of a clear separate dimension.

The Conners’ parent and teacher forms (Goyette, Conners & Ulrich, 1978) provide a good measure of hyperactivity-impulsivity (Scott, 1996). The revised forms of the scales are short, containing only 28 and 48 items, which is an obvious advantage over the rather lengthy Achenbach scales. In studies which involve screening, a shorter length of questionnaires is probably the easiest method of ensuring as high a response rate as possible. The revised forms of the Conners’ scales should not be confused with the Conners’ Abbreviated Symptom Questionnaire (also known as the ‘Hyperkinesis Index’), which contains a mixture of hyperactivity and oppositionality or aggression items.

Several other rating scales for measuring hyperactivity exist too. For example, Pelham and colleagues (Pelham, Gnagy, Greenslade & Milich, 1992) transformed the
DSM-III-R diagnostic criteria for the disruptive behaviour disorders (ADHD, CD and ODD) into a rating scale format for teachers.

For diagnostic purposes in particular, interviews with parents or other significant adults provide more in-depth information than that obtained from rating scales. Widely used structured interviews for child psychopathology include the Diagnostic Interview Schedule for Children (DISC; NIMH, 1992) and the Schedule for Affective Disorders and Schizophrenia for School-aged Children (K-SADS; Puig-Antich & Chambers, 1978). Observational methods have the advantage of being less susceptible for rater bias, but they are costly and time-consuming. As a hyperactive child’s behaviour in a clinic is unlikely to be representative of the child’s general behaviour at home or at school (Sleator & Ullmann, 1981), the observations should ideally be carried out in natural settings. Peer sociometric evaluations may provide useful additional information about the child’s popularity at school, although their diagnostic value is limited. (Laboratory measures are discussed in chapter two.)

Variations across studies in how hyperactivity has been measured make the interpretation of the results often a difficult task. Few studies have investigated the convergence between the questionnaire-based approach and the diagnostic approach. In studies by Kasius et al. (Kasius, Ferdinand, van den Berg & Verhulst, 1997) and Biederman et al. (1993), high scores on the Attention problems subscale of the CBCL strongly predicted DSM-III-R diagnosis of ADHD.

In the present study we used the Revised Parent and Teacher Conners’ Rating Scales as the measures of hyperactivity. This allowed us to focus on the symptoms of hyperactivity-impulsivity and, as we obtained ratings from both teachers and parents, allowed us to focus on pervasive hyperactivity; both of these are important theoretical issues.
1.13 Chapter summary

Hyperactivity, or Attention Deficit Hyperactivity Disorder, refers to three types of behaviour: overactivity, impulsivity and inattentiveness. The prevalence of hyperactivity is estimated to be between 2% and 7%; it is more common among boys than girls. Longitudinal studies show that the symptoms of hyperactivity tend to persist over time. Hyperactivity also frequently co-occurs with other conditions, such as conduct problems, learning disabilities and anxiety disorders. In addition to the categorical approach of the psychiatric classification systems, hyperactivity can also be considered as a continuous dimension. The most common measures of hyperactivity are rating scales and interviews; parents and teachers are the preferred informants.

Several studies have investigated whether subgroups exist within hyperactivity. The distinction between pervasive and situational hyperactivity seems important, and indeed both the DSM-IV and ICD-10 require pervasiveness of symptoms for the diagnosis of ADHD or hyperkinetic disorder. Another important distinction is that between the ‘inattentive’ subtype and the ‘hyperactive-impulsive’ or ‘combined’ subtypes. Children who show only symptoms of inattentiveness differ from the other children with hyperactivity or ADHD with regard to several features. (This thesis focuses on children who show symptoms of hyperactivity and impulsivity.) Because of the male predominance in hyperactivity, few studies have investigated whether girls with hyperactivity differ from boys with the condition.

The consensus from research on family-environmental factors is that these ‘act’ on pre-disposed vulnerable children, rather than directly cause hyperactivity. There is less consensus on the effects of diet on hyperactivity. Even if a small subgroup of hyperactive children exists who respond to a ‘few foods’ elimination diet, it is unclear which behaviours show improvement.
Neurological studies point to frontal-striatal and possible corpus callosum dysfunction in hyperactivity. At the neurochemical level, the neurotransmitters of dopamine, norepinephrine and serotonin have been implicated. These neurological findings link both to the cognitive/motivational findings (chapter two), as well as to the findings from molecular genetic studies (chapter three).
Chapter 2

Cognitive and task engagement factors in hyperactivity

This section which focuses on the cognitive and task engagement factors associated with hyperactivity is unavoidably a selective rather than exhaustive review of the relevant literature. The amount of research articles published on the topic is astounding. The main aim in writing this review was to provide an up-to-date summary of what appears to be the most pertinent issues.

2.1 Attention deficit

2.1.1 Aspects of attention

Despite the deterministic-sounding term attention deficit hyperactivity disorder, investigators have long questioned whether attention deficit is truly the core problem in the condition. A definition of attention is a good starting point. Sergeant and van der Meere (1989) defined attention as ‘the rate at which controlled information processing occurs in human short term memory’ (p. 154). Barkley (1996) referred to attention as ‘describing the conditional or functional relations between environmental events and the behavior of an organism, in this
Attention is a multidimensional construct; for example, a distinction can be made between divided, focused and sustained attention (see Sergeant & van der Meere, 1994). Van der Meere, Sergeant and their colleagues in the Netherlands have carried out a series of studies to investigate which aspect of attention, if any, is impaired in hyperactivity. The findings from their research, conducted from an information processing approach, as well as the findings from other studies, show that early (encoding) and middle (memory search, decision) stages of information processing are intact in children with ADHD (see Sergeant & van der Meere, 1994; van der Meere, 1996). This leads to the conclusion that ADHD is not associated with a divided or a focused attention deficit (together called selective attention).

2.1.2 A deficit in sustained attention?

The crucial question then is whether children with ADHD show a deficit in sustained attention, the ability to maintain performance over time. Hyperactive children's performance on the continuous performance task (CPT) is frequently cited as evidence for such a deficit.

Several variations of the CPT exist, but in short, the task involves responding to stimuli (usually letters or digits) that are presented on a computer screen. The child is asked to respond to target stimuli (e.g. a particular letter or a sequence of two letters) but to refrain from responding to nontarget stimuli. Several studies have shown that children with ADHD, compared to controls, commit more commission (responding to incorrect stimuli) and omission (failing to respond to correct stimuli) errors on the CPT (for reviews, see Corkum & Siegel, 1993; Losier, McGrath & Klein, 1996). The meta-analytic review of 26 studies by Losier et al.
(1996) also showed that methylphenidate reduces the numbers of commission and omission errors that children with ADHD make on the task.

Van der Meere and Sergeant (1988) point out, however, that a group difference in the ‘overall’ CPT performance is not evidence for a sustained attention deficit. To demonstrate such a deficit in hyperactive children, there has to be a decline in performance over time and this decline in performance has to be greater in the hyperactive than in the control group. The majority of studies have failed to find evidence for a sustained attention deficit, when properly defined, in children with ADHD (see van der Meere, 1996). Studies which have employed self-paced paper and pencil tasks have similarly failed to differentiate between hyperactive and control children in performance decline over time (van der Meere, Wekking & Sergeant, 1991).

The picture is somewhat more complex, however. In contrast to the majority of CPT studies which have used a fast presentation rate of stimuli, van der Meere and his colleagues have carried out studies also using a slow event rate of stimuli. Twelve boys with ADHD and 12 control boys (mean age 10 years) participated in a study which also examined the effects of stimulant medication and the presence/absence of experimenter (van der Meere, Shalev, Börger & Gross-Tsur, 1995). The diagnosis of ADHD was made clinically, using DSM-III-R criteria, and the children also had to obtain a score of 16 or higher on both teacher and parent ratings on the Conners’ abbreviated questionnaire. The experimental design was a double-blind placebo crossover. The children were told to respond when the letter ‘O’, continuously presented in the middle of a computer screen, changed into the letter ‘Q’.

The authors obtained support for their hypothesis that a slow presentation rate of stimuli elicits a sustained attention deficit in children with ADHD. This was found whether or not the experimenter was present during task administration, although the effect was more marked in the experimenter-absent condition. Methylphenidate
(MPH) completely erased the sustained attention deficit, as well as slowness of responding, in the ADHD group.

In a second study the participants were three groups of boys: 13 with ADHD and conduct disorder, 13 with ADHD only and 13 controls (mean age 10 years) (van der Meere, Hughes, Börger & Sallee, 1995). Diagnoses were based on DSM-III-R criteria. The CPT task was the same as in the study described above, with slow presentation rate of stimuli, but the children performed the task under both reward and non-reward conditions. Both ADHD groups were on medication: MPH was the most common medication in the ADHD-only group, whereas the comorbid group received a variety of medications, including lithium, carbemazepine and tricyclic antidepressant.

In the non-reward condition only the comorbid group showed a sustained attention deficit; the ADHD-only group was no different from the control group, which could be attributed to the effects of MPH (the medication the children in the comorbid group received may not have had the same effect). Reward had an immediate effect of improving the performance of boys in the control and ADHD-only groups. In contrast, the ‘ADHD and conduct disorder’ group’s performance improved only midway through the task when the reward was increased to one dollar, although this improvement in performance was short-lived. A limitation of this study, as it did not include children with ADHD who were free of medication, is that it is difficult to disentangle the effects of MPH from the effects of rewards and group status (ADHD with or without conduct disorder).

Taken together, the evidence does not support the assumption that children with ADHD have a deficit in sustained attention. The findings that factors such as presentation rate of stimuli, rewards and the presence or absence of experimenter (see also Draeger, Prior & Sanson, 1986) influence their performance on vigilance tasks provide clues to alternative interpretations of the results. These are discussed in later sections of this chapter.
In situations where children with ADHD show an apparent sustained attention deficit, methylphenidate erases this ‘deficit’. A recent study (Levy & Hobbes, 1996) showed that this effect is blocked when MPH is preceded by haloperidol, suggesting a blockade of dopaminergic mechanisms.

2.2 Response inhibition

2.2.1 Quay’s theory

If the core deficit in hyperactivity is not sustained attention, what could it then be? Many investigators have argued it is an impairment in response inhibition, in the ability to withhold a prepotent response.

Quay (1988; 1997) proposed a hypothesis of the underlying deficit in ADHD which was based on Gray’s (1982; 1987) theory of brain function. The hypothesis is that ADHD is due to an underactive behavioural inhibitory system (BIS). The anatomical location of the BIS is assumed to be in the septo-hippocampal system, with connections to the frontal cortex. Quay (1997) suggests it receives noradrenergic inputs from the locus coeruleus and serotonergic inputs from the raphe nucleus.

With regard to the function of the BIS, it ‘responds to conditioned stimuli for punishment and nonreward as well as novelty and innate fear stimuli, to bring about passive avoidance and extinction. Its output causes the cessation of ongoing behaviour, an increase in nonspecific arousal, and a focusing of attention on relevant environmental cues’ (Quay, 1997, p. 8). In a recent update of his theory, Quay (1997) points out that it does not apply to those children with ADHD who could be classified as predominantly inattentive type. The empirical evidence cited in support of his model comes mainly from studies using the stop task paradigm (see section 2.2.3).
The model also attempts to explain the core deficits in two other childhood disorders - in conduct disorder and anxiety disorders. The hypothesis is that conduct disorder results from an overactive behavioural activation system (sensitive to signals of reward), which predominates over the BIS (sensitive to signals of punishment), and that an overactive BIS explains anxiety disorders.

2.2.2 The race model and the stop task paradigm

Response inhibition could easily remain a vaguely specified term. An explicit model of response inhibition does, however, exist - it is known as the race model (see Logan, 1994; Logan & Cowan, 1984). In the race model, stopping performance depends on the outcome of the race between two processes: the stop process and the go process. If the stopping process finishes first, the response is inhibited. If the go process wins (is faster than the stop process), the ongoing action is completed. Cues, such as an error, which indicate that the current course of action should be discontinued or changed, trigger the stopping process. The proportion of trials on which the response will be inhibited depends on the distributions of finishing times for the stop and go processes and on the delay between the onsets of the stop and go stimuli.

A laboratory analogue, called the stop signal paradigm, provides an empirical measure of the ability to interrupt an ongoing response (Logan & Cowan, 1984; Logan, Cowan & Davis, 1984). The primary task in the stop signal paradigm is a simple reaction time task: the child responds as fast and accurately as possible to stimuli presented on a computer screen. On some of the trials an auditory stop signal is presented, in which case the child should withhold responding.

The stop signals are presented at different intervals and many investigators compensate for differences in the primary (go) task reaction times by presenting the stop signals relative to the child's mean reaction time. The longer the delay between the onset of the primary task stimulus and the onset of the stop signal, the
more difficult it becomes to withhold responding. It is common practice to set up the stop signal delays so that the probability of inhibition is close to 0 with the longest delay and close to 1 with the shortest delay. Plotting the probability of inhibition against the stop signal delay generates an 'inhibition function'. The slope of the inhibition function is calculated by fitting a regression line to the inhibition functions.

The stop task has several advantages over other measures of inhibition. First, it is based on an explicit model of the inhibitory process. Second, it allows a distinction between inhibitory control and the processes involved in the execution of the primary task. Although successful inhibition of the ongoing action is not observable, the stop task provides a way to measure stop signal reaction time.

2.2.3 Studies using the stop task

Meta-analysis of studies

Several studies have used the stop task to investigate response inhibition in children with ADHD. Oosterlaan, Logan and Sergeant (1998) recently carried out a meta-analysis of studies, conducted between 1990 and 1997, which fulfilled the following criteria: the study included a control group and one or more of the groups of interest - ADHD, conduct disorder and anxiety disorder. Eight independent studies fulfilled these criteria (Aman, Roberts & Pennington, in press; Daugherty, Quay & Ramos, 1993; Jennings, van der Molen, Pelham, Debski & Hoza, 1997; Oosterlaan & Sergeant, 1996; Pliszka & Borscherding, unpublished; Schachar & Logan, 1990; Schachar & Tannock, 1995; Schachar, Tannock, Marriot & Logan, 1995).

The children who participated in these studies were aged between 6 and 12 years (N=456 in total). Five of the studies included boys only and the remaining three studies included children of both sexes. In five of the studies the diagnoses were
based on DSM-III-R criteria, with parents or teachers, or both, as informants. In the remaining three studies the diagnoses were based on: teacher ratings only; parent, teacher and child ratings (agreement between two informants required); and parent interview and teacher ratings (ADHD), parent interview only (CD) and child interview only (anxiety disorders). Four of the studies included only children with pervasive ADHD.

With one exception (Daugherty et al., 1993) the samples were obtained from children referred to clinics or special educational services. The children classified as ‘ADHD only’ in the meta-analysis indeed included, from most studies, ADHD children who were free of comorbid ODD/CD symptomatology. The samples from two of the studies (Oosterlaan & Sergeant, 1996; Pliszka & Borcherding, unpublished), however, included some children who showed associated ‘aggressive or delinquent’ or ODD symptoms, respectively.

The studies differed in terms of the stimuli used (letters X and O; white squares; red and green lights). Two of the studies (Schachar & Tannock, 1995; Schachar et al., 1995) used a modification of the stop task, known as the change task (De Jong, Coles & Logan, 1995; Logan & Burkell, 1986). The change task is similar to the stop task but has the additional requirement of a response to the stop signal (pressing a third button). Due to this additional feature of response re-engagement, the change task seems to exert higher cognitive processing demands than the stop task. For further details of the studies, see Oosterlaan et al. (1998).

The results of the meta-analysis showed that there was a group difference on the inhibition slope, with children with ADHD having ‘flatter’ inhibition functions than the control group. To examine whether this was due to the ADHD group being less likely to trigger the inhibitory process or to their inhibitory process being more variable, Oosterlaan et al. (1998) investigated whether the group difference would disappear after correction for the so-called ZRFT. This transformation removes the effects of stop signal reaction time and variability of
speed on the inhibition function (see Logan, 1994). The meta-analysis showed that the children with ADHD did not differ significantly from the control children on the ZRFT-slope. That is, children with ADHD are neither less likely to trigger the inhibitory process nor is their inhibitory process more variable on the stop task.

Another possible explanation for the flatter inhibition function associated with ADHD is that it could be due to a slower inhibitory process. The meta-analysis indeed found a significant group difference on the stop signal reaction time (SSRT; for an explanation of how this is calculated, see Appendix L), with the ADHD group being slower than the control group. The children with ADHD were also slower in their responses on the primary task (the reaction time task). The children with ADHD therefore seem to differ from other children in the speed of their responses - both speed on the primary task and, once this has been controlled for, speed on the stopping task.

The results for the conduct disorder group were less consistent, but led the authors to conclude that this group was indistinguishable from the ADHD group. As the children with ADHD, the children with conduct disorder had flatter inhibition slopes than the control children. There was some suggestion that this could have resulted from a slow inhibitory process, but as the findings were inconsistent across studies, this conclusion is, at best, preliminary. (Note that, due to the young age of the children who participated in these studies, the findings are only relevant for the CD subgroup called childhood-onset conduct disorder - see chapter four.) Children with comorbid ADHD and conduct disorder did not seem to differ from those with ADHD only, but again these findings need to be interpreted with caution due to the inconsistent findings across studies. Contrary to Quay's prediction (1988a,b), the anxious group did not show enhanced response inhibition.

Considering the studies included in the meta-analysis individually, the only study which did not report differences between ADHD and control groups on the slope of the inhibition function was that by Daugherty et al. (1993). This study differed
from the other studies in how the children were selected, as they were chosen from a general population sample. The slight possibility therefore remains that the stop task results from the other studies would be an artifact of selection. This is one of the issues the present study aimed to investigate.

Criticisms of the meta-analysis

Oosterlaan et al. (1998) concluded that the meta-analysis supported the hypothesis of a response inhibition deficit in ADHD. They based this conclusion on the finding of a slower inhibitory process in children with ADHD; the groups did not differ in the likelihood of triggering the inhibitory process or in the variability of the inhibitory process. It is worth considering the results in some more detail, however.

When a group difference is found on the inhibition slope on the stop task, there are three possible explanations for this. Oosterlaan et al. (1998) considered two possibilities - that the inhibitory process would be slower in children with ADHD, or that they would be less likely to trigger the inhibitory process or their inhibitory process would be more variable.

The third possibility is that of greater variability of responding on the primary task. The authors do not present data in the meta-analysis on the standard deviations of the primary task reaction times. However, the standard deviations were greater for the ADHD group (Oosterlaan, personal communication, November 1997). The conclusion in the meta-analysis that the poorer performance of children with ADHD on the stop task, compared to control children, relates only to their slower inhibitory process may be premature. Instead, the data show that it may be due, not only to their slower inhibitory process, but also to greater variability of responding on the primary task.
This suggestion that the presumed response inhibition deficit in ADHD is due, in part, to their higher variability in the latency of responding is theoretically important. One possible interpretation of such a finding is that motivational factors may be important determinants of ADHD children's performance on the stop task. In their earlier publication, Oosterlaan and Sergeant (1996) write: 'high variability in reaction times [could] reflect a lack of motivation or effort on some trials' (p. 33). Rather than supporting the notion of a response inhibition deficit in ADHD, the results may be more in line with the predictions of other theories, for example the state-regulation theory (van der Meere, 1996; see section 2.5.2). Oosterlaan et al. (1998) mention the state-regulation and other theories in their discussion, but they nevertheless conclude that 'consistent and robust evidence was found for a response inhibition deficit in AD/HD' (p. 411).

An additional problem with the meta-analysis relates to the selection of the groups included in the analyses. First, the authors decided to exclude home-only ADHD and school-only ADHD children from the Schachar et al. (1995) study. The authors admit that this was done, in part, 'to maximise the chance of finding group differences' (Oosterlaan et al., 1998, p. 413). This does not seem justified, as children with situational ADHD were included from other studies (i.e. pervasiveness of the symptoms was not a selection criterion). Second, the authors excluded those ADHD children from the Jennings et al. (1997) study who did not show comorbid ODD/CD symptomatology. The reasons for this are not clear, except that Jennings et al. (1997) did not find group differences between the ADHD group without codiagnoses and controls. This selective inclusion of groups is inappropriate, as is inclusion in the ADHD-only group of some children who showed comorbid aggressive/ODD symptomatology (from two studies: Oosterlaan & Sergeant, 1996; Pliszka & Borcherding, unpublished). The authors had aimed to investigate possible differences between ADHD-only, comorbid ADHD and CD and CD-only groups.
Further studies

A recent study by Oosterlaan and Sergeant (1998a) provides further evidence for this 'new' interpretation of the stop and change task results. Four groups of 8-12-year-old children participated in the study: 10 children with ADHD, 11 disruptive children, 11 anxious children and 21 comparison children. With the exception of the children in the control group, they were recruited from special schools. The modification of the stop task, the change task, was used in the study.

The children were classified as having ADHD if they obtained: a) a score at or above the 95th percentile on the CBCL (Child Behaviour Checklist; parent ratings) Attention Problem scale, and b) a score at or above the 95th percentile on the TRF (Teacher Report Form) Attention Problem scale or a score above the age-appropriate cut-off on the IOWA Conners' Teacher Rating Scale Inattention-Overactivity scale. Similar criteria were used to classify children as disruptive (showing aggressive and/or delinquent problems) or anxious. The investigators excluded those children from the study who fulfilled the criteria for more than one psychopathological group. However, both the ADHD and disruptive groups scored high on the TRF Aggressive Behaviour scale (indeed the ADHD group scored slightly higher on this scale than the disruptive group).

The results showed that, compared to the control group, both the ADHD and disruptive groups had flatter inhibition slopes. As in previous research, the groups did not differ on the ZRFT-slope. Compared to the control and anxious children, the children with ADHD had slower inhibitory processes. The disruptive group was not significantly different either from the ADHD or the control groups in the speed of the inhibitory process. On the primary task, the ADHD and disruptive children had more variable reaction times and they were also generally slower and less accurate than the comparison children. In terms of the response re-engagement process, both ADHD and disruptive children were more variable in the speed of their responses and were less accurate than the children in the control group.
These findings provide further support for the conclusion that the task performance of children with ADHD is characterised by slow and inaccurate responding, and high variability in the speed of responding. As the children with ADHD were more variable in the speed of their responding and less accurate also on response re-engagement compared to control children, this shows that the ADHD children's pattern of responding is not limited to response inhibition tasks.

These same groups of children also participated in another study by Oosterlaan and Sergeant (1998b), which investigated the effects of reward and response cost on stop task performance. Several investigators (e.g. Douglas, 1983) have suggested that the performance of children with ADHD is particularly sensitive to response contingencies. Both in the reward and response cost conditions, when the children either won one point for each successful inhibition or lost a point for failing to inhibit, the children with ADHD showed their 'typical' pattern of responding: they were slower and more variable in the speed of response execution, and they also had marginally slower inhibitory processes, compared to the control children. The task was set up so that all the children inhibited on approximately 50% of the trials. The authors argue that these results show that the 'response inhibition deficit' in ADHD is not due to motivational factors.

However, the study was not really a strong test of the effects of rewards and response costs on the presumed response inhibition deficit in children with ADHD. First, the investigators did not compare the children’s performance on a baseline (no rewards or response costs) condition to their performance on the reward and response cost conditions. Rewards or response costs could have improved the ADHD group’s performance more than they improved the control children’s performance. Second, the study was limited by the small sample sizes (only 10 children in the ADHD group). Third, it is unclear to what extent the rewards and response costs succeeded in motivating the children to perform better on the task. The children rated their 'motivation to complete the task' on a visual analogue scale, but no data is reported regarding the validity and reliability of this scale.
Factors influencing stop task performance

Neither gender (Daugherty et al., 1993; Pliszka & Borcherding, unpublished) nor IQ (Oosterlaan & Sergeant, 1996; Schachar & Logan, 1990; Schachar et al., 1995) seem to influence children's performance on the stop task. Age also does not seem to be related to all stop task measures, at least in the 8-12 age range: both Schachar and Logan (1990) and Oosterlaan and Sergeant (1996) found no significant age-related differences on the slope of the inhibition function or on error rates. The latter study also found no developmental effects on the speed of the inhibitory process, whereas Schachar and Logan (1990) found a moderate negative correlation between SSRT and age. With regard to the primary task processes, speed significantly improves with age.

Stimulant medication improves performance on the stop and change tasks (Tannock, Schachar, Carr, Chajczyk & Logan, 1989; Tannock, Schachar & Logan, 1995). The Tannock et al. (1995) study was a randomised, double-blind, placebo-controlled trial which assessed the effects of methylphenidate (MPH) on change task performance in 28 children with DSM-III-R-based clinical diagnoses of ADHD. The stimulant medication accelerated the inhibitory process. MPH also accelerated both the primary- and secondary-task responses and made these less variable, and improved the children's error rates. Although there were some MPH-related effects on the inhibition slope, Tannock et al. (1995) showed that these resulted from the beneficial effects of the medication on the variability of the primary-task execution process and on the speed of the inhibitory process.

These findings provide further support for the notion that the poorer performance of children with ADHD on the stop task, compared to controls, relates to the speed and variability of their primary-task performance and the speed of their inhibitory process, rather than to their inhibitory process being more variable or being triggered less often.
2.2.4 Response inhibition and brain anatomy

A recent study (Casey et al., 1997) explored the relationship between response inhibition and brain structures in children with ADHD. The participants were 26 boys with ADHD (mean age = 9.7 years) and 26 control boys matched on age, weight, height, Tanner stage and handedness. The ADHD diagnoses were based on DSM-III-R criteria; the information was obtained from both interviews and parent and teacher ratings. Three tasks involving inhibitory control were used. The first task assessed inhibition of attention to the sensory attribute just attended, the second task assessed the ability to select responses to specific stimuli that were based on compatible or incompatible mappings. The third task required the children to respond every time they heard a single tone and to refrain from responding when hearing a double tone.

Confirming the results from previous studies, the boys with ADHD had longer and more variable reaction times on both control and inhibitory trials than the control boys. During the inhibitory trials they were also less accurate. The results from the magnetic resonance imaging (MRI) showed that performance on these tasks correlated with prefrontal cortex (the inhibitory conditions of the tasks), caudate nucleus and globus pallidus volumetric measures (both inhibitory and control conditions), but not with putamen volumetric measures. These findings provide further support to the authors' previous findings of fronto-striatal involvement in ADHD (Castellanos et al., 1994, 1996). The MRI-scanning results also showed that the correlations between task performance and prefrontal and caudate volume were mainly within the right hemisphere.

These findings implicating right fronto-striatal circuitry in ADHD, though interesting, are based on rather crude MRI-based anatomical measures of structure size. As the authors note, the next step would be to carry out studies using functional imaging techniques which provide information about brain activation.
2.2.5 Barkley's theory

Another theory of ADHD which emphasises the role of inhibition is that of Barkley's (1994; 1997). Barkley criticises other theories and models of ADHD of being limited in their approach, in that they do not attempt to explain all the various cognitive deficits these children seem to have. Like the recent revision of Quay's (1997) theory, Barkley's (1997) most recent revision of his theory does not refer to the subgroup of ADHD children called predominantly inattentive type. Unlike investigators in the 'stop task tradition' (e.g. Quay, 1988; Schachar & Logan, 1990), who focus on momentary inhibition, Barkley emphasises also the role of ongoing inhibition. Momentary inhibition refers to the ability to suppress a particular response when it is signalled, whereas ongoing inhibition refers to the ability to suppress responding over a period of delay (see Sonuga-Barke, 1995, for a further discussion).

In Barkley's (1997) theory behavioural inhibition refers to three processes: inhibition of the initial prepotent response to an event, stopping of an ongoing response and interference control. The evidence Barkley (1997) cites in support of an inhibition deficit comes from various sources (see his review for the references). In terms of their observable behaviour, Barkley (1997) suggests evidence for an inhibition deficit comes from findings that children with ADHD talk more than other children and they also make more vocal noises. With regard to their performance on cognitive tasks, children with ADHD show poorer performance, compared to controls, on the stop task (as reviewed above) and other motor inhibition tasks, such as the go no-go paradigm and delayed response tasks. They are also reported to have some difficulties on, for example, the Wisconsin Card Sorting Test, which tests response perseverance (see section 2.3.3 below) and, as discussed earlier in this chapter, make more errors on the CPT. Barkley (1997) suggests that the findings of children with ADHD performing relatively poorly on tasks such as the Stroop Colour-Word Interference Test indicate difficulties with interference control.
A weakness of Barkley's theory is the use of the term inhibition deficit at a very general, descriptive level. The previous sections on sustained attention and stop task studies showed that finding a difference between ADHD and control groups in the overall performance tells little about any actual 'deficit'. A more fine-grained approach is needed to understand the processes involved in task performance.

In contrast to models which only focus on inhibition deficits in ADHD, Barkley's (1997) model predicts that the core deficit in behavioural inhibition leads to secondary deficits in four types of executive functions: working memory, self-regulation of affect-motivation-arousal, internalisation of speech and reconstitution (behavioural analysis and synthesis). These abilities are called executive functions because they are 'critical for self-regulation and goal-directed persistence'; they depend on inhibition for their efficient execution because 'the first executive, self-regulatory act must be inhibition of responding' (Barkley, 1997, p. 68). (For a further discussion of executive functions, see section 2.3 below.)

As evidence of working memory deficits in ADHD, Barkley (1997) cites research showing ADHD children's relative weaknesses in mental arithmetic, repetition of digit spans, memory for spatial location, memory for finger-pointing or hand-movement sequences and on tasks such as the Tower of Hanoi and Tower of London and the freedom from distractibility of the WISC. However, it is very likely that such tasks tap onto several other mental functions too, apart from working memory.

The second executive function in the model is the self-regulation of affect-motivation-arousal. For a discussion of self-regulation of motivation/effort, and of arousal/activation in ADHD, see section 2.5 below. Little direct evidence exists as yet for the other two executive functions in the model, internalisation of speech and reconstitution. Barkley (1997) suggests that some evidence for the latter comes from studies which show that children with ADHD may be less competent than
non-ADHD children on tasks measuring complex language fluency and discourse organisation.

In the model these four executive functions in turn influence what is labelled motor control-fluency-syntax (the control of motor behaviour by internally represented information). Some studies suggest a link between ADHD and fine motor coordination difficulties. The strongest evidence for a motor control deficit in ADHD, Barkley (1997) argues, is the research of Sergeant, van der Meere and their colleagues in the Netherlands. Their research shows that hyperactive children's difficulties relate to the motor control (output) stage rather than the earlier stages of information processing.

Although Barkley (1997) is aware that his theory might be criticised of being a 'theory of everything', it is difficult not to make this criticism. If the model's attempt to provide a comprehensive account of the cognitive deficits in ADHD is its strength, it could also be the model's weakness. The theory does not provide specific, easily testable hypotheses regarding the links proposed in the model.

2.3 Executive functions

As reviewed above, the evidence suggests that a deficit in response inhibition may not be quite enough as an explanation for the core deficit in ADHD. Barkley (1997) is not alone in suggesting that a more general deficit in executive functions may be involved. Not everyone agrees that an inhibition deficit would cause the other executive function impairments, however.

2.3.1 The frontal metaphor

Pennington and Ozonoff (1996) note, in their review of executive function deficits in childhood disorders, that such research has been guided by the 'frontal
metaphor'. This term refers to the idea that an individual may perform like patients with frontal lobe damage on a neuropsychological test battery, although there may not be any evidence of frontal lobe damage in this individual.

The role of the prefrontal cortices in human cognition has been the subject of much debate. Pennington and Ozonoff (1996) argue for a more central and pervasive role than is often acknowledged. The current view is that the frontal lobes are important for the 'executive' or 'supervisory' aspects of task performance which is involved in goal-directed behaviour. They may also be important for 'fluid' intelligence, the aspect of intelligence which is seen as 'innate', as opposed to accumulated information or 'crystallised' intelligence (Pennington & Ozonoff, 1996).

Welsh and Pennington (1988, pp. 201-202) defined executive function as

"the ability to maintain an appropriate problem-solving set for attainment of a future goal (Bianchi, 1922; Luria, 1966). This set can involve one or more of the following: (a) an intention to inhibit a response or to defer it to a later more appropriate time, (b) a strategic plan of action sequences, and (c) a mental representation of the task, including the relevant stimulus information encoded into memory and the desired future goal-state. In cognitive psychology, the concept of executive function is closely related to the notion of a limited-capacity central processing system."

The following is a list of abilities frequently subsumed under the heading executive function (EF): set-shifting and set maintenance, interference control, inhibition, integration across space and time, planning and working memory. Several investigators have argued that in fact only two of the components are crucial for understanding what various EF tasks have in common: inhibition and working memory (e.g. Cohen & Servan-Schreiber, 1992; Goldman-Rakic, 1987a,b; Roberts, Hager & Heron, 1994).
Pennington and Ozonoff (1996) argue that the correspondence between prefrontal lesions and EF deficits is convincing. However, it is undoubtedly not perfect: damage to brain systems such as basal ganglia, which have close connections to the frontal lobes, can also cause EF deficits (see Pennington & Ozonoff, 1996).

Performance on EF tasks shows developmental effects, but the age at which children achieve adult-level performance varies across measures (Levin et al., 1991; Welsh, Pennington & Groisser, 1991). On some tasks (e.g. 3-disk Tower of Hanoi) the performance of children as young as 6 years is indistinguishable from adults, whereas on other tasks (e.g. verbal fluency efficiency) performance continues to improve into adolescence.

2.3.2 Working memory

Instead of the two-factor (inhibition and working memory) model of EF, Pennington and colleagues (Pennington, Bennetto, McAleer & Roberts, 1996) now argue for a single-factor construct. In this model, working memory is seen as the critical factor that underlies performance on EF tasks. Inhibition is seen as intrinsic to the operation of the working memory. Computer simulations provide some support for this view (see, for example, Kimberg & Farah, 1993). Pennington (1994) refers to working memory as 'a limited capacity computational arena' (p. 248). Working memory maintains representations of past, present and future briefly over time, 'in a common system so they can interact' (p. 248). It is future oriented and transient.

This working memory model of EF emphasises the reciprocal connections between the prefrontal cortex and other parts of the brain. Arousal also plays a part in the model: too high or too low levels of arousal can have an adverse effect on the working memory system. Pennington et al. (1996) point out that dopaminergic fibers, which originate in brain stem nuclei, seem to modulate the arousal level of the prefrontal cortex.
Using PET scanning, Gold and colleagues (Gold, Faith Berman, Randolph, Goldberg & Weinberger, 1996) validated a novel working memory task as a prefrontal task. They developed a hybrid computerised version of the delayed response and delayed alternation paradigms. Although patients with frontal lesions have been shown to perform poorly on these tasks (Freedman & Oscar-Berman, 1986), Gold et al. (1996) argue that the processing demands of these paradigms may not be ‘high enough’ for humans.

In the hybrid task, which the authors called the delayed response alternation (DRA) task, two boxes, one coloured and the other uncoloured, are first presented on the screen for one second. After a two-second presentation of an empty screen, two uncoloured boxes appear on the screen and the subject has to choose one of these boxes. The computer gives feedback as to whether the choice was correct or incorrect after each choice. The task for the subject is to find out the rule that the computer uses to decide which box is the correct one each time. The rule involves choosing the coloured and the uncoloured box (whatever side they appear on) on alternate trials.

With a sample of 18 adults, Gold et al. (1996) found that during initial task performance there were significant activations in a network of frontal, parietal, occipital and temporal regions. Half of the participants subsequently performed the task again, after a training session. The purpose of the training session was to ensure that the participants knew the rule and could respond correctly. The activations which were observed during the second task performance were similar to those observed during the initial task performance, although they were of a lesser magnitude. These results support the notion that frontal lobes contribute to performance on working memory tasks.

Like other executive function measures, working memory tasks show developmental effects. For example, studies report developmental increases on the counting span and sentence span tasks. In the sentence span task the tester reads out sentences to the subject who has to supply the missing last word in each
sentence. In the end of each set, the child is asked to repeat all the words that he or she had supplied, in the correct order. The counting span task is similar to the sentence span task, except that the child is asked to count yellow dots on cards rather than to supply words.

In a study with 1266 individuals between the ages of 6 and 49 years, Siegel (1994) found that performance on the sentence span task improved up to the age of 19 years, gradually declining thereafter. Case, Kurland and Goldberg (1982) similarly found developmental increases on the counting span task between the ages of 6 and 12 years. Case et al. (1982) concluded that with development processing speed increases and processing becomes more efficient, which then results in more processing space becoming available for storage.

2.3.3 Executive functions and ADHD

Pennington and Ozonoff's review

The idea that individuals with ADHD would show deficits on executive function measures seems, at first sight, appealing. Research suggests a link between frontal lesions and hyperactive, distractible or impulsive types of behaviours, both in humans and in animals (e.g. Fuster, 1989; Levin, Eisenberg & Benton, 1991; Stuss & Benson, 1986).

Pennington and Ozonoff (1996) put forward one possible theory of brain mechanisms in ADHD:

"The executive function deficit of ADHD children is caused by functional hypofrontality, which in turn is caused by either structural and/or biochemical changes in the prefrontal lobes, and is detectable as reduced frontal blood flow. Biochemically, the cause would be low dopamine levels, which Ritalin treatment reverses, at least in part." (p. 63)
Such a hypothesis may in fact reflect an oversimplification, as was discussed in the section on neurological aspects in hyperactivity (chapter one). Nevertheless, this does not undermine the plausibility of the EF hypothesis. The research evidence does implicate the frontal lobes, as well as dopamine, in hyperactivity, even if other brain structures and neurotransmitters seem to be involved too.

What is then the evidence for an executive function deficit in children with ADHD? Pennington and Ozonoff (1996) reviewed studies which fulfilled the following criteria: (1) an explicit test of the frontal hypothesis of ADHD using cognitive measures; and/or (2) use of commonly-accepted EF measures in a study of ADHD; and (3) publication in a refereed journal; and (4) inclusion of a control group.

The following studies were included in the review: Aman, Roberts & Pennington (in press); Boucugnani & Jones, 1989; Breen, 1989; Chelune, Ferguson, Koon & Dickey, 1986; Cohen, Weiss & Minde, 1972; Dykman & Ackerman, 1991; Fischer, Barkley, Edelbrock & Smallish, 1990; Gorenstein, Mammatto & Sandy, 1989; Grodzinsky & Diamond, 1992; Hopkins, Perlman, Hechtman & Weiss, 1979; Korkman & Pesonen, 1994; Loge, Staton & Beatty, 1990; McGee, Williams, Moffitt & Anderson, 1989; Pennington, Groisser & Welsh, 1993; Robins, 1992; Shue & Douglas, 1992; Trommer, Hoeppner, Lorber & Armstrong, 1988; and Weyandt & Willis, 1994. In the majority of the studies the ADHD group was ascertained from a clinic. The exceptions were five studies in which the ADHD group was obtained from schools and one study which consisted of a population sample of ADHD children. The ages of the children participating in the studies varied widely, from 6 to 24 years.

Out of the 18 studies, 15 studies found a significant group difference on one or more EF measures between ADHD and control children. Looking at the results from another perspective, 40 (67%) out of 60 different EF measures showed worse performance in the ADHD group. To compare the sensitivity of the various
measures to ADHD, the authors also calculated average effect sizes and consistencies of the group differences for the tasks. See Table 2.3.3 for the results.

Table 2.3.3 Consistency of differences and average effect sizes of EF measures in ADHD (taken from Pennington & Ozonoff, 1996)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Consistency†</th>
<th>Average d*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin Card Sorting Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perseverations</td>
<td>4/10</td>
<td>0.45</td>
</tr>
<tr>
<td>Trailmaking Test part B</td>
<td>4/6</td>
<td>0.75</td>
</tr>
<tr>
<td>Matching Familiar Figures Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>4/6</td>
<td>0.44</td>
</tr>
<tr>
<td>errors</td>
<td>5/5</td>
<td>0.87</td>
</tr>
<tr>
<td>Stroop time</td>
<td>4/5</td>
<td>0.69</td>
</tr>
<tr>
<td>Mazes</td>
<td>3/4</td>
<td>0.43</td>
</tr>
<tr>
<td>Letter fluency</td>
<td>1/4</td>
<td>0.27</td>
</tr>
<tr>
<td>Category fluency</td>
<td>0/3</td>
<td>-</td>
</tr>
<tr>
<td>Tower of Hanoi</td>
<td>3/3</td>
<td>1.08</td>
</tr>
<tr>
<td>Motor inhibition tasks</td>
<td>6/6</td>
<td>0.85</td>
</tr>
</tbody>
</table>

† Number of studies finding a significant group difference/number of studies employing the measure
* Effect size $d =$ difference in the means for the two groups/their average SD

The different EF measures clearly vary in their sensitivity to ADHD. The tasks which most consistently find group differences between ADHD and control children are motor inhibition tasks (stop task, go no-go, anti-saccade, conflict motor task and NEPSY inhibition), the Tower of Hanoi and the Matching Familiar Figures Test (errors). The least consistent tasks in this respect were the letter and category fluency tasks. The Wisconsin Card Sorting Task was also less consistent in finding group differences than most of the other measures. The tasks which obtained the highest effect sizes were the Tower of Hanoi, the Matching Familiar Figures Test (errors) and the motor inhibition tasks. The Trailmaking Test part B and the Stroop seem sensitive to ADHD too.

Pennington and Ozonoff (1996) conclude that, although ADHD seems strongly associated with poor performance on motor inhibition tasks, this would not seem to
be the exclusive area of difficulty. Two of the studies included in the review found significant group differences between controls and children with ADHD also on working memory measures (see below).

The majority of the studies included in the review used non-EF measures in addition to the EF measures. Most of these tasks (65%) did not find differences between ADHD and control children. Verbal and visuo-spatial measures were particularly unlikely to find group differences. In contrast, measures of vigilance (Gordon Diagnostic System) and perceptual speed (coding and symbol digit) showed poorer performance in the ADHD group.

The authors point out that potential confounding variables, such as age, sex, IQ, SES, ethnicity or comorbid reading disability or conduct disorder, cannot explain the findings. The studies which carefully matched ADHD and control groups still found differences on the EF measures. However, they note that the possibility of the results being an artifact of selection cannot be completely ruled out. The children with ADHD in all studies except one consisted of referred samples from clinics and schools. The only study which had a population sample of ADHD children (McGee et al., 1989) did not find the presumed EF deficit.

The idea that ADHD may be a rather heterogeneous disorder receives support from the studies, included in the review, which used discriminant function analysis to investigate how accurately EF measures would classify ADHD children. The sensitivity (confirming ADHD in those classified as having the disorder) of the tasks seemed to be lower than their specificity (excluding control children from the ADHD category). These results suggest that, although the majority of children with ADHD show poor performance on EF tasks, a noticeable minority of them do not. There are several possible explanations for this finding. For example, the ‘EF deficit’ might be so subtle in some of the ADHD children that the EF tasks would not detect it. Alternatively, some ADHD children could show the behavioural symptoms of the disorder, but the underlying cause could be different and the
children would not have the same cognitive deficit as the majority of the ADHD children.

Could the findings be due to the EF tasks, which find group differences, being more complex or more difficult than the tasks not finding group differences? A proper test of this would compare the children's performance on two versions, an EF and a non-EF version, of the same task. Three studies of those included in the review used such a within-task design (Aman et al., in press; Gorenstein et al., 1989; Shue & Douglas, 1992). The findings from these studies led Pennington and Ozonoff (1996) to conclude that 'more rigorous tests of a differential deficit do not strongly support [the EF] hypothesis, and it may be that ADHD children have a mix of specific and general deficits: a core deficit, perhaps in motor inhibition, and some general cognitive inefficiency' (p. 65).

Studies on working memory

The two studies included in Pennington and Ozonoff's review, which found a significant difference between ADHD and control groups on a working memory measure, were those of Gorenstein et al. (1989) and Shue and Douglas (1992). In the Gorenstein et al. (1989) study, the children in the 'Inattentive-Overactive' group (N=21) had been referred for disruptive behaviour problems and they also had to obtain a score of 7 or above on the Inattention-Overactivity subscale of the IOWA Conners' Teachers' Rating Scale. The children in the control group (N=26) were from ordinary classrooms of the same school. All the children were aged between 8 and 12 years.

The working memory measure was the sequential matching memory task. In this task the tester shows the child cards, one by one, each of which has either a minus or a plus sign on them. When the tester presents each card, the child has to say the sign which had appeared on the card which the tester had shown two cards prior to
the present card. The children in the Inattentive-Overactive group made more errors on this task than the control children.

In the study by Shue and Douglas (1992), the ADHD group consisted of 24 children, aged between 8 and 12 years, who met both the DSM-III diagnostic criteria for ADDH and the DSM-III-R criteria for ADHD. In addition, they had to receive ratings of 1.5 or greater on the Hyperactivity Index of both the Revised Conners' Teacher and Parent Scales. The control group consisted of 24 children who were matched on sex, age and IQ.

The working memory measure, the self-ordered pointing task, involved showing the children large cards with pictures on them. The pictures in each set were the same, but the spatial arrangement of the pictures varied randomly. The children had to touch one picture on each card, but a different one on all subsequent cards. They were not allowed to repeatedly touch the picture in the same location. The task began with a 6-item set and progressed to a 12-item set. When the pictures were *representation*, children with ADHD made more errors and broke the rule more often than control children. For *abstract* pictures, there were no significant group differences - both the ADHD and control children found the task difficult, making a high number of errors.

Siegel and Ryan (1989) reported, however, no differences on most comparisons between children with and without ADD on two working memory measures: the sentence and counting span tasks, which were described in section 2.3.2 above. The children were included in the ADD group if they obtained a score two standard deviations above the mean on the Conners' Parent Questionnaire and if teachers, parents and/or physicians had reported them having behaviour problems. There were 15 children in the ADD group and 74 in the control group; they were aged between 7 and 13 years. The only comparison on which children with ADD performed worse than the control children was that for the younger age group (7-8-year-olds) on the sentence span task.
Stimulant medication may have positive effects on the performance of children with ADHD on working memory measures. Tannock, Ickowicz and Schachar (1995) found that methylphenidate improved working memory in nonanxious children with ADHD, but not in the ADHD group who had comorbid anxiety.

In sum, the studies on hyperactive children's performance on working memory measures have obtained conflicting results. It was one of the aims of the present study to investigate this further, by including three different working memory measures in the test battery. Pennington (personal communication, 1996) is also currently carrying out research on working memory performance in children with ADHD and other disorders. Interestingly, Pennington (1994) argues that the underlying deficits in working memory explain the association between ADHD and slightly lower IQ scores. That is, the argument is that working memory and intelligence are partially overlapping constructs.

Other studies on executive functions in ADHD

A few studies investigating ADHD children's performance on EF tasks have been published recently which were not included in Pennington and Ozonoff's (1996) review. Mariani and Barkley (1997) compared the performance of 34 boys with ADHD and 30 control boys on a range of EF and non-EF tasks. This is one of the few studies focusing on preschool children - the boys were aged 4 and 5 years. The ADHD group consisted of clinic-referred boys who had been diagnosed using DSM-III-R criteria. An additional requirement was that they had to obtain a score of at least 1.5 standard deviations above the mean on the Impulsive-Hyperactive factor on either the Teacher or Parent Conners' Rating Scale.

Owing to the large number of dependent (response) variables, the authors performed a factor analysis on the data. The results suggested that the ADHD group showed deficits on 'motor control' and 'working memory-persistence', but not on 'verbal learning-memory' or 'picture identification-factual knowledge'. As
the tasks included in each dimension are quite diverse, these findings are rather difficult to interpret. This is especially true for the dimension called working memory-persistence, the authors noting that ‘its validity and content are in need of more research’ (p. 122). With respect to the EF-type tasks, there was a significant group difference on the Porteus Mazes but not on MFFT latency or errors or on colour forms - errors (this latter task is similar to the Trailmaking Test).

Carte, Nigg and Hinshaw (1996) similarly found that boys diagnosed with ADHD (N=51), aged 6 to 12 years, performed worse than comparison boys (N=31) on the Porteus Mazes. On the Rey-Osterreith Complex Figure Task there was no significant difference between the groups.

Other studies have failed to find any group differences between ADHD and control children. Seidman et al. (1997) reported that their sample of 43 girls with ADHD, aged 6 to 17 years, did not differ significantly from the comparison girls on EF tasks (the Stroop test, the Wisconsin Card Sorting Test and the Rey-Osterreith Complex Figure Task). A serious limitation of this study is that 84% of the girls in the ADHD group were on stimulant medication. In this light their conclusion that girls with ADHD might be less vulnerable than boys with the condition to EF deficits does not seem justified.

Närhi and Ahonen (1995) compared the performance of 17 boys with ‘pure’ ADHD (without comorbid reading disability), 25 boys with ADHD and comorbid reading disability, 21 boys with ‘pure’ reading disability and 10 control boys. There were no significant differences between the groups on an executive function score which was based on performance on the Wisconsin Card Sorting Test and the trailmaking test part B. The children were classified as having ADHD if they obtained a score of 18 or more on the Attention scale of the Teacher Report Form.

Like the studies included in Pennington and Ozonoff’s (1996) review, these studies show that, although some EF tasks rather consistently find group differences
between children with and without ADHD, such results are not always replicated. Differences between studies, for example in the selection of subjects, may account for the inconsistencies across studies.

2.3.4 Criticisms of research on executive functions

In general, the research literature on executive functions is frequently criticised of vague definitions and imprecise measures. It undoubtedly reflects how little we know as yet about this area of cognition. For many of the existing EF measures it is difficult to know which aspects of EF, and perhaps which aspects of non-EF functioning, they tap onto. For example, performance on the Tower of Hanoi may to some extent reflect spatial cognitive abilities (Pennington & Ozonoff, 1996).

Another issue is the discriminant validity problem: EF deficits are not only observed in ADHD but also in other disorders, such as autism. There is some evidence for differences in EF profiles and severity of the deficits, however (see Pennington & Ozonoff, 1996). At the level of brain mechanisms, Pennington and Ozonoff (1996) list six different possibilities of how different brain changes across disorders can all lead to EF deficits.

First, different disorders may differ in the severity of a change in brain development which causes EF deficits. Second, the timing of the change in brain development could lead to different disorders which, nonetheless, all share EF deficits. Third, different areas of the prefrontal cortex could be involved. Fourth, the brain changes that cause EF deficits could also take place outside the prefrontal cortex in areas closely connected to it (e.g. the basal ganglia, the limbic system, the thalamus and posterior cortex). Thus, different disorders could be due to localised brain changes in different areas, either within the prefrontal cortex or in structures closely connected to it. Fifth, each disorder could involve brain changes in two areas, one of which would cause EF deficits and the other the behavioural symptoms specific to the disorder. Finally, instead of localised brain changes, the
changes could be *diffuse* - either structural or metabolic. At present, these remain hypothetical possibilities.

2.4 Delay aversion

2.4.1 Performance on the MFFT - delay aversion?

Sonuga-Barke and his colleagues have carried out a systematic series of studies on hyperactivity, the results of which challenge the notion that the core deficit would be one of response inhibition or a more general executive function deficit. By manipulating variables which influence task performance, they have obtained evidence in favour of an alternative hypothesis: hyperactive children could be *delay averse*.

The Matching Familiar Figures Test (MFFT) is one of the EF measures which Pennington and Ozonoff (1996) identified as sensitive to ADHD. Sonuga-Barke, Houlberg and Hall (1994) carried out a study investigating whether hyperactive children's poorer performance on this task could in fact be due to them simply trying to finish the task more quickly. The children who took part in the study were recruited from schools. The hyperactive group consisted of nine children, aged between 8 and 12 years, who scored 3 or more on the hyperactivity factors on both Rutter's teacher (B2) and parent (A2) scales. The nine children in the control group were matched for age and intellectual ability.

All the children performed the task under two conditions: a standard condition and a revised condition. In the standard condition, the children had to select the target from amongst the foils, continuing to select the next choice until they made a correct response. The stimuli then disappeared from the screen and the next trial was presented immediately. In the revised condition the children were told that,
however quickly they identified the target, each trial would last 45 seconds. In most cases this meant that there was a delay period before the next trial began.

The standard condition replicated the result from previous studies: hyperactive children responded more quickly than control children and they also made more errors. In the revised condition the group difference for speed of responding disappeared. One possible explanation for this finding is that hyperactive children are not ‘impulsive’ in the sense that they would not be able to wait, but rather they don’t want to wait - they are delay averse. If faster responding does not reduce the overall session length, hyperactive children can wait.

The finding which makes the results harder to interpret is that the hyperactive group still made more errors than the control group in the revised condition. Sonuga-Barke et al. (1994) suggest that this could be due to them not being motivated to reduce errors as such. It is possible that the hyperactive children were attempting to maximise the level of stimulation (see section 2.5 below) or to reduce the perceived length of the session by spending the ‘extra’ time off-task. This would result in them making more errors than the children in the control group. These findings still do not rule out the alternative explanation that the hyperactive children were unable to use the extra time associated with slower responding to reduce the number of errors made.

In a subsequent study Sonuga-Barke and colleagues (Sonuga-Barke, Williams, Hall & Saxton, 1996) investigated further the group difference between hyperactive and control children on the number of errors on the MFFT. They explored the possibility that the group difference would disappear when each error would lead to a delay period before the next trial. Ten children with pervasive hyperactivity and ten control children took part in the study. The children were selected as in the study above and they were aged between 8 and 12 years. The first of the two task conditions was similar to the standard condition in the earlier study, with one exception: the children were given only one chance at identifying the target. In the
second condition, incorrect responses led to a fixed trial length of 45 seconds, whereas a correct response led immediately to the next trial.

The standard condition again replicated the finding that children in the hyperactive group gave shorter latencies and made more errors than children in the control group. In the second condition the group difference on speed of responding disappeared. Contrary to the prediction, and despite a significant drop in error rates from the first to the second condition, hyperactive children still made more errors than control children in the second condition. This was because the number or errors made decreased in the control group too. Hyperactive children did not seem to be able to use the ‘extra’ time as efficiently as control children. Sonuga-Barke et al. (1996) suggest several possible explanations for this finding. For example, the inability to use time efficiently could be a developmental consequence of delay aversion. Because of their aversion to delay, hyperactive children may not have learned the strategies needed to use time efficiently in such learning situations. Alternatively, this inability to use time efficiently could cause delay aversion. Difficulties in processing temporal stimuli could mean that tasks involving delay would be particularly difficult, which could then make such situations aversive.

2.4.2 An inhibition deficit, maximising rewards or delay aversion?

Sonuga-Barke, Taylor, Sembi and Smith (1992) carried out two studies to explicitly contrast the predictions of an inhibition deficit/impulsivity, reward maximising and delay aversion hypotheses. The participants in the first study were 31 boys, aged 6 and 7 years: 15 boys with pervasive hyperactivity (chosen as in the studies above) and 16 control boys. All children who scored 5 or higher on the emotional disorder subscales on either of the questionnaires were excluded from the study.
The task was a computer task in which the children had to choose, by pressing the appropriate button, either a small reward (1 point) or a large reward (2 points). In the no post delay condition, if the children chose the small reward, they received it after 2 seconds. If they chose the large reward, they received it after 30 seconds. Whichever reward they chose, the children could make another choice immediately after receiving the previous reward. In the post delay condition choosing the small reward led to a delay period of 30 seconds and choosing the large reward to a delay period of 2 seconds before the next trial. In both conditions the game stopped when the child had scored 30 points. The child then received a prize of 20 pence.

In the no post delay condition the best strategy was to consistently choose the small reward; in the post delay condition it was obviously to choose the larger one.

The results did not support the ‘impulsivity’ hypothesis: hyperactive children waited as well as control children for the larger reward when it was the most efficient strategy (the post delay condition). They were not simply attempting to minimise levels of pre-reward delay. The groups were also indistinguishable in the no post delay condition: both groups of children preferred the smaller reward. Two explanations could account for these findings. First, hyperactive children could be reward maximisers, using the strategy which brings the greatest number of rewards overall. The second possible explanation is that of delay aversion: the levels of overall delay would determine the choices hyperactive children make. They would only give preference to an immediate reward if it reduced the overall delay period.

The second study contrasted these two competing hypotheses. The participants were the same children as in the first study, except for four hyperactive boys who were unable to take part in this second study. The basic task was the same as in the first study, with a pre-reward delay of 2 seconds for the small reward and 30 seconds for the large reward and no post-reward delay. However, now the investigators contrasted two different conditions. In the time constraint condition the children had 10 minutes to continue to choose between the small immediate and the large delayed reward. The best strategy would be consistently to choose the
small reward. In the *trials constraint condition* the children could make a choice between the rewards 20 times, in which case choosing the large reward 20 times would be the best strategy. For each point earned, the children received 1 penny.

Both groups of children preferred the small immediate reward in the time constraint condition. The hyperactive boys differed from the control boys only in the trials constraint condition, choosing the larger reward less often. These results suggest that hyperactive children are delay averse rather than reward maximisers. In the trials constraint condition they earned less money than control boys, as they were less willing to wait for the large delayed reward. However, as the hyperactive children had also conduct problems, it was not possible to investigate whether hyperactivity *per se* is associated with delay aversion, independent of co-occurring conduct problems.

Schweitzer and Sulzer-Azanoff (1995) also studied the preference for smaller immediate versus larger delayed rewards in 5- and 6-year-old boys with ADHD (N=10) and control boys (N=8). The diagnosis of ADHD was based on DSM-III-R criteria and on ratings on questionnaires. Six of the children with ADHD received an additional diagnosis of oppositional defiant disorder. The task involved the children making a choice between a small immediate reward (one nickel) and a large delayed reward (three nickels), which was delivered after a 16 second delay. Choosing the small reward resulted in a post-reward delay of either 12 seconds or 20 seconds. On average, therefore, the overall delay period was the same for the small and large rewards.

Under these conditions, the boys with ADHD chose the large delayed reward less often than the control boys. Schweitzer and Sulzer-Azanoff (1995) concluded that this study failed to support the delay aversion hypothesis. Sonuga-Barke (1996a), in a reply to the authors, suggests that the pattern of choices the children with ADHD made shows indifference between the two choices: instead of preferring the larger reward, they showed no preference. An alternative explanation for the
results relates to the fact that the delay period after the small reward was not constant (it was either 12 or 20 seconds, averaging at 16 seconds). This 'unpredictable' delay period could have led the children with ADHD to 'try their luck' with the small reward, as this choice might have led to a shorter delay period.

2.4.3 Further evidence of delay aversion

Sonuga-Barke and his colleagues have also carried out other studies which provide further support for the delay aversion hypothesis. In a study with 6-8-year-old hyperactive girls (Sonuga-Barke, Taylor and Heptinstall, 1992), hyperactivity was associated with poorer performance on a recognition memory task, but only when the girls set their own limits on presentation time (they chose shorter presentation times). When the presentation time was fixed, the hyperactive girls performed as well as the control girls. This pattern of results was observed in the hyperactive and comorbid hyperactive and conduct problem groups, but not in the conduct problem -only group. The delay aversion hypothesis would suggest that, in the self-imposed presentation condition, the hyperactive girls were unwilling to sustain their inspection, as they were attempting to minimise any delay.

In another study (Sonuga-Barke & Taylor, 1992) the task for the children was to focus on a stimulus on a computer screen and to respond as quickly as possible to the disappearance of the stimulus. Control children performed equally well under different pre-response delays. Hyperactive children, in contrast, were sensitive to pre-reward delays: their reaction times were slower with longer delays. Sonuga-Barke and Taylor (1992) suggest that this shows how a difficulty with tasks incorporating delays can sometimes manifest as a sustained attention deficit. All of this evidence suggests that the cognitive 'deficits' hyperactive children are thought to show could in fact be more motivational in nature: they could be due to an aversion to delay. Sonuga-Barke (1994) suggests that the delay aversion hypothesis could not only explain hyperactive children's impulsivity, but also their
inattentiveness and overactivity. In situations where a delay cannot be avoided, hyperactive children may tend to focus on aspects of the environment which reduce the subjective experience of delay. This could explain why these children appear inattentive. Another strategy to reduce the subjective experience of delay would be to increase the level of stimulation by fidgeting and moving around.

Descriptions of hyperactive children's behaviour during a testing session illuminate this. Mischel (1983, quoted in Sonuga-Barke, 1994) describes how some children in their study 'converted the aversive waiting situation into a non-aversive waiting situation... [by using] elaborate self distraction techniques through which they spent their time doing almost anything but waiting' (p. 152). Similarly, Schweitzer and Sulzer-Azaroff (1995) observed that 'children with ADHD frequently dived under the table that held the apparatus, danced while watching their reflection in the observation window; and twirled in their chairs. The typical children, however, sat in their chairs waiting for each trial to begin.' (p. 682).

The delay aversion theory differs from most theories of hyperactivity in that it does not consider hyperactive children to have a deficit as such. Sonuga-Barke (1994) is critical of the research tradition which considers difficult behaviours certain groups of children exhibit as evidence of psychological dysfunction. The alternative approach is to consider whether these children simply have aims (e.g. avoiding delay) which differ from the aims of the majority of children.

2.5 Theories of state-regulation dysfunction

The delay aversion theory is not the only theory of hyperactivity which, instead of focusing on cognitive deficits, emphasises more motivational, or state-related (see below), aspects of task performance. The term 'task engagement factors' in the title of this chapter refers to such factors. This is not a new trend in hyperactivity.
research either: Barkley, for example, gave a more central role to motivational factors in his earlier publications (e.g. Barkley, 1989).

2.5.1 The optimal stimulation theory

Zentall and Zentall (1983) suggested that a state of underarousal underlies hyperactivity. The effects of stimulants and extraneous distraction, and the sensation seeking behaviours, could be seen as helping to normalise hyperactive children's levels of arousal. In support of the theory, Zentall and Zentall (1983) cite research suggesting that hyperactive children are indistinguishable from control children in relatively high-stimulation settings (e.g. novel, game or playground settings). There is also evidence supporting the idea that reduced levels of environmental stimulation or reduced task novelty can increase overactivity and inattentiveness in hyperactive children, whereas increased external stimulation can improve their behaviour (see Zentall & Zentall, 1983).

2.5.2 The state-regulation theory

Van der Meere's approach

Van der Meere (1996) criticises the 'unitary state' concept of arousal. Based on the work of several investigators, he and his colleague Sergeant (e.g. Sergeant & van der Meere, 1990a,b) argue for a multi-state model. First, a distinction between arousal and activation seems important. With regard to neurotransmitters, the important ones in the arousal system are noradrenaline and serotonin, whereas the primary neurotransmitters in the activation system are dopamine and acetylcholine (Tucker & Williamson, 1984). The two systems are also located in different parts of the brain: arousal in the fronto-limbic forebrain and activation in the basal ganglia (Pribram & McGuinness, 1975). Different medications affect the two systems, for example barbiturates affecting arousal and amphetamine affecting activation (see van der Meere, 1996).
Another addition to the model is a third energetic system, the effort system. In Sander’s (1983) model an evaluation system controls the effort system and ‘scans’ the individual’s arousal and activation state. If the arousal level is non-optimal, the effort system can compensate for this. The hippocampus is postulated as the location of this system. Van der Meere (1996) argues that motivational factors, such as knowledge of results, absence-presence of the experimenter and pay-off, influence the effort mechanism.

How does this model explain the task performance of hyperactive children? The evidence from information processing studies suggests that the deficit hyperactive children show relates to the motor processing stage rather than the earlier stages of information processing. Instead of showing a pattern of fast-inaccurate responding, however, hyperactive children show a pattern of slow-inaccurate responding. Van der Meere (1996) argues that what appears to be a motor processing deficit could in fact involve an activation/effort dysfunction: ‘the engine is intact (i.e. the basic information processing capacity is intact), but there is a problem with the supply of petrol (i.e. the utilisation of the cognitive capacity depends on state factors such as incentives, event rate and presence/absence of the experimenter, etc.)’ (p. 133).

Some of the evidence in support of the state-regulation hypothesis has been reviewed in earlier sections (e.g. the CPT-studies). Evidence from studies on reorienting and dual task performance shows that hyperactive children have no problems switching from one course of action to another. Studies using psychophysiological measures, such as evoked potentials, provide further support for the theory. (See van der Meere, 1996, for a review of these studies.)

From the state-regulation perspective, there is no validity in the definition of impulsivity as fast-inaccurate responding. The emphasis is on the sensation-seeking component of impulsivity. Sensation seeking is a personality characteristic which, like hyperactivity, has been linked to the neurotransmitters serotonin, norepinephrine and dopamine (Zuckerman, 1996). The components of sensation
seeking are boredom susceptibility, experience seeking, thrill seeking and disinhibition (seeking sensation through social activities such as parties). (For a further discussion of the possible links between hyperactivity and sensation or novelty seeking, see section 3.4.5.)

Van der Meere (1996) concludes that, instead of attention deficit hyperactivity disorder, a more appropriate diagnostic term would be state regulation deficit. He emphasises the observations of many parents of hyperactive children that the 'deficit' seems only to be present during boring tasks. It disappears, when the child is well motivated.

Effects of rewards on performance on reaction time tasks

Research by Douglas and her colleagues illustrates how rewards can influence the task performance of children with hyperactivity. Douglas and Parry (1983) investigated the effects of rewards on hyperactive and control children's performance on a delayed reaction time task. There were 33 children in each group and they were further subdivided into three reward groups. The hyperactive and control groups were matched on age (mean age 9.6 years), IQ and socioeconomic status. The classification of hyperactivity was based on parent and teacher rating scales and interviews. The children were told to put their finger down on a key when hearing a bleep and to lift off the finger as fast as possible when a light came on. The rewards were simply positive verbal feedback. The criterion for a reward was a reaction time equal to or shorter than the child's median reaction time obtained during the baseline trials.

Overall, the reaction times of the hyperactive children were slower and more variable than those of the control children. Continuous reward (rewarding the children each time they reach the criterion) reduced mean reaction times and reaction-time variability in both the hyperactive and control groups. The authors did not directly contrast the results between the two groups. However, an
inspection of the means indicates that the improvement from the baseline to the reward condition was somewhat greater in the hyperactive group both for mean reaction times and standard deviations of reaction times. Despite this, the hyperactive children were still a little slower and more variable in their speed even in the reward condition (though the statistical significance of this was not tested). In contrast to the performance of the control children, the hyperactive children's performance did not improve significantly in the partial reward condition, and in fact deteriorated in the noncontingent ('random rewards') condition. A study using a serial reaction time task (Douglas & Parry, 1994) reported no difference in reaction times between hyperactive and control groups on a 100% reinforcement schedule.

These studies demonstrate how rewards even in the form of positive verbal feedback can at least reduce hyperactive children's slow and variable pattern of responding on reaction time tasks. This can be considered as further evidence of a state-regulation deficit in hyperactivity. Other types of incentives or other state factors could well have a stronger effect on hyperactive children's performance.

Effects of medication on state mechanisms

Milich, Carlson, Pelham and Licht (1991) investigated the effects of methylphenidate on the task persistence of 21 7-10-year-old boys with ADHD. The ADHD diagnoses were based on DSM-III-R criteria; the majority of the boys obtained an additional diagnosis of oppositional defiant or conduct disorder. This placebo-controlled, double-blind study involved the boys attempting to solve both soluble and insoluble find-a-word puzzles over four days (across two levels of medication, MPH vs placebo, and two task conditions, soluble vs insoluble).

Compared to placebo days, the boys did significantly better, while on medication, on the task following a failure experience (i.e. insoluble puzzles). That is, medication prevented the decrement in performance following the insoluble
problems, which was observed on placebo days. There was no difference in their performance between placebo and medication days following the soluble puzzles. This suggests that on medication the boys exerted more effort or were more willing to cooperate after experiencing failure. The authors concluded that this latter explanation is less likely 'because the boys were told that they could stop early if they could not find a word and, thus, it was socially acceptable to stop early' (p. 531). This finding of stimulant medication having an effect on the effort mechanism provides further evidence for the state regulation theory of hyperactivity.

2.6 Chapter summary

The 'core' deficit or difficulty underlying hyperactivity has proved very difficult to define. Owing to the efforts of several research groups, the picture is getting clearer, however. Hyperactivity does not seem to be associated with a divided, focused or sustained attention deficit.

Recent research suggests that the popular response inhibition hypothesis of ADHD is in need of a revision. First, it remains to be shown that the group differences between ADHD and control children on the inhibition tasks generalise to children chosen from a general population sample. Second, studies show that children with ADHD are not less likely to trigger the inhibitory process than other children, nor is their inhibitory process more variable. Rather, children with ADHD show a pattern of responding which is characterised by high variability in the speed of responding and generally slow responding.

Research on the wider area of executive functions has pointed to possible working memory deficits in hyperactivity. The small number of studies focusing on this issue, and the inconsistencies in findings across studies, emphasise the need for further research.
A potentially fruitful approach to integrating the research findings are the theories which emphasise the role of task engagement factors in hyperactive children’s performance on psychological tests and tasks. The findings from studies indicating the importance of factors such as presentation rate of stimuli, rewards and the presence or absence of experimenter, as well as the findings from inhibition studies, could all be explained from this ‘alternative’ perspective.

The delay aversion theory is one candidate for providing an explanation for the pattern of task performance that is characteristic of hyperactivity. Rather than having a cognitive deficit, such as a response inhibition deficit, hyperactive children could simply be aiming to reduce overall periods of delay. In situations where it is not possible to reduce the delay period, hyperactive children may be attempting to reduce the subjective experience of delay (by spending time off-task) or to increase the level of stimulation (by fidgeting and moving around).

The effects of stimulant medication on the performance of hyperactive children are in line with the other findings. In conditions which elicit a sustained attention deficit in hyperactive children, methylphenidate (MPH) erases it. MPH seems to improve hyperactive children’s performance on working memory measures too. On the stop task, MPH has several effects: it accelerates the inhibitory process and the primary-task responses, it makes the responses less variable, and it improves error rates. On medication hyperactive children also seem to exert more effort when attempting difficult tasks.
Chapter 3

Behaviour genetics

3.1 Quantitative genetics

3.1.1 Quantitative genetic theory

Behaviour genetics combines genetics and the behavioural sciences: it is the study of
genetic and environmental influences on individual differences in behaviour. As it
focuses on individual differences, behaviour genetics addresses the type of question
that is often of most interest from the society’s viewpoint: Why do people differ so
much in ability, personality and psychological adjustment?

Whereas there are several examples of the potentially devastating effects of single
genes (e.g. the phenylketonuria gene which causes learning difficulties), most aspects
of behaviour are likely to be influenced by multiple genes (see Plomin, DeFries,
McClearn & Rutter, 1997). Behaviour genetics therefore studies the theory
underlying quantitative inheritance. A distinction between the terms genotype and
phenotype is important: genotype refers to the actual genetic makeup of an
individual, phenotype is what we observe.
In quantitative genetics the variance in a phenotype is divided into that due to genetic factors and that due to environmental factors - shared and non-shared. Shared environmental influences are those that tend to make members of a family similar to one another and non-shared environmental influences those that tend to make family members different from one another. Environment in behaviour genetics refers to all non-genetic influences. Genetic influences can be additive or non-additive. Additive genetic influences - when the effects of alleles at a locus and across loci simply ‘add up’ - are responsible for genetic similarities between parents and offspring. Non-additive genetic effects refer to the interactions between alleles at a locus (called dominance) or across loci (called epistasis).

To estimate the genetic and environmental contributions to behaviour, behaviour geneticists compare individuals who vary in genetic or environmental relatedness. For example, siblings as well as parents and offspring share half of the additive genetic variance. Non-identical or dizygotic twins are simply siblings born at the same time and they share on average half of their genes, whereas identical or monozygotic twins share all their genes. If genetic factors are important for a given trait, individuals who are genetically more closely related should resemble each other more than individuals who are genetically further apart.

Comparisons of genetically related individuals provide estimates of heritability, which refers to ‘the proportion of phenotypic variance that can be accounted for by genetic differences among individuals’ (Plomin et al., 1997, p. 79). Heritability is an estimate of the size of the genetic influences in a given population at a given time. It can change from population to population and from time to time. A distinction can be made between broad-sense heritability, which includes all genetic variance, and narrow-sense heritability, which refers only to additive genetic variance.

A phenomenon that may influence the heritability estimates is that of assortative mating. Humans do not choose their partners randomly but, to some extent, choose
partners who are similar to themselves. For example, spouses correlate about .10 to .20 for personality traits, .25 for height and as high as .60 for education (see Plomin et al., 1997, for a review). Assortative mating increases the correlations for first-degree relatives, but can only lower the heritability estimate in a twin study (it raises the correlation for dizygotic twins and therefore lessens the difference between monozygotic and dizygotic twin pairs). It also increases genetic variance in a population.

Although behaviour geneticists have a particular interest in genetic inheritance, behaviour genetic research has also substantially increased our knowledge of the role of nurture in behaviour. A major discovery has been the realisation of the importance of the non-shared environment. The environmental influences that are often most important are not those that are shared by children growing up in the same family but those that are specific to each individual (see Plomin, Chipuer & Neiderhiser, 1994). However, Simonoff and colleagues (Simonoff et al., in press) point out that another explanation is possible too: both common environment and contrast effects (see section 3.4.3) could be present. Few studies have investigated possible contrast effects (sibling interaction and rater bias) and detecting both common environment and contrast would require large sample sizes and either extended genetic designs or multiple informants.

Another exciting finding has been the ‘nature of nurture’: many environmental measures show in fact genetic effects (see Plomin et al., 1997). This genotype-environment correlation means that there is some ‘genetic control of exposure to the environment’ (Kendler & Eaves, 1986). In a recent review of genetic factors in child psychiatric disorders, Rutter (1997) emphasises how the effects of nature and nurture are not simply additive: ‘Genetic factors (through gene-environment correlations) influence the probability that people will experience environmental stressors, and (through gene-environment interactions) they affect people’s susceptibility to such stressors.’ (p. 573).
In quantitative genetic research on human behaviour, the main methods are family, adoption and twin studies.

3.1.2 Family and adoption studies

Family studies investigate the degree to which genetically related individuals are similar phenotypically. If there is no resemblance between family members on a given trait, genetic factors do not influence the phenotypic variance on the trait. Family studies can therefore be useful in disconfirming the genetic hypothesis, but their limitation is that they cannot distinguish between genetic and shared environmental effects when there is family resemblance on a particular trait. The advantage of family studies over twin and adoption studies is that they can be more useful in providing information about the mode of genetic transmission (see Risch, 1990a,b).

Adoption studies can provide a powerful demonstration of genetic influences on behaviour. The logic of an adoption design is very straightforward: similarities between adopted-apart relatives suggest genetic influences, whereas similarities between adoptive relatives suggest environmental influences. Several different adoption designs exist. Two major strategies are the adoptees' study method and the adoptees' family method. The adoptees' study method starts with affected biological parents of adopted-away children. The incidence of the disorder is then investigated in the adopted-away children. In the adoptees' family method the rates of disorder are investigated in the biological and adoptive parents of affected and unaffected children adoptees. If the rate of the disorder is greater among biological relatives of the affected adoptees than among the unaffected adoptees, this suggests genetic influence. If the disorder is more common among the adoptive relatives of the affected adoptees than among the adoptive relatives of the control adoptees, this suggests environmental influence.
An obvious disadvantage of adoption studies is the difficulty in obtaining the sample. Two other issues that need to be considered are the representativeness of the sample and the possibility of selective placement.

It is a common presumption that the families who give up their children for adoption, and the adoptive parents, may not be representative of the general population. Evidence from the Colorado Adoption Project suggests that this need not be the case: both biological and adoptive parents in this study are quite representative of the general population for characteristics such as cognitive ability, educational and socio-economic level, personality and family environment (e.g. Plomin & DeFries, 1985). Some differences have been reported in other studies, however (see, for example, Bohman & Sigvardsson, 1980). Deutsch and colleagues (Deutsch et al., 1982) reported an unexpectedly high number of adoptees in their sample of 200 children with ADD. The reasons for this finding are not clear, but referral bias is one possible explanation.

Another issue is the possibility of selective placement. Adoption agencies often attempt to place adoptees in families that resemble their biological parents in some ways. The information the adoption agencies have is unavoidably limited, however. They may have information regarding the physical characteristics or education level of the parents but are unlikely to have any more detailed information about the parents’ behavioural characteristics. Although for most characteristics there is little evidence of selective placement, some adoption studies show such an effect for IQ (see Plomin et al., 1997). If selective placement takes place, it may increase the degree of resemblance between the individuals being studied and therefore inflate the estimate of environmental influences.
3.1.3 Twin studies

A popular method in quantitative genetics is the twin study. The relatively high rate of twinning might come as a surprise to many people: approximately 1 in every 85 births is a twin birth. One third of twins are monozygotic (MZ), one third are same-sex dizygotic (DZ) and the remaining third are opposite-sex DZ twins. However, due to the decreased viability of MZ twins, the rate of this type of twin drops to approximately one quarter after childhood. Opposite-sex DZ twins are often excluded from twin studies for two reasons: male and female twins may experience somewhat different environments and there are obviously sex-chromosome differences between males and females.

Several factors influence the rate of DZ twinning in a population (see Plomin et al., 1997). In recent years the increased use of fertility treatments has increased the rates of multiple births dramatically. The rate of DZ twinning varies geographically and may be inherited in some families. Maternal age and the number of previous offspring are other significant factors. None of these factors influences the rate of MZ births.

The twin method relies on the assumption that, as MZ twins are twice as similar genetically as DZ twins, a characteristic is genetically influenced if MZ twins are more alike on the characteristic than DZ twins. In other words, the additive genetic correlation between the twins of an MZ pair is 1.0, whereas for DZ twins it is 0.5. The within-pair correlation for genetic dominance is 1.0 for MZ twins and 0.25 for DZ twins. By definition, the within-pair correlation for the shared environment is 1.0 and for the non-shared environment 0, for both types of twins.

The first stage of analysis for twin data usually focuses on the MZ/DZ phenotypic correlations (for continuous variables) or concordance rates (for binary variables). Subtracting the DZ correlation from the MZ correlation and doubling this figure
gives a rough estimate of broad-sense heritability. Concordance rates can be calculated if at least one member of each twin pair is a ‘case’ (e.g. has hyperactivity/ADHD). Investigators can calculate either a pairwise concordance rate (the number of concordant pairs in a sample divided by the total number of pairs) or a probandwise concordance rate (the number of affected individuals in concordant pairs divided by the total number of affected individuals).

The second stage of analysing twin data usually involves model fitting techniques. Model fitting analyses provide estimates of heritability (h²), common or shared environmentality (c²) and specific or non-shared environmentality (e²). If the common environmental influences do not appear important, dominance effects (d²) can also be calculated. Model fitting analyses can also be used to answer more complex questions, such as whether the genes influencing one characteristic are the same as those influencing some other characteristic. The trend in behaviour genetics in general is to move towards the question of how - by which mechanisms do genes have their effect - rather than simply focusing on the extent of genetic effects per se (Plomin et al., 1997).

Another use of twin data is to calculate a group heritability. DeFries and Fulker (1985, 1988) developed a technique, now known as DF extreme analysis, which calculates the regression toward the mean for MZ and DZ co-twins of probands. If the probands have, say hyperactivity, which is heritable, the MZ co-twins would be expected to regress less towards the mean for the unselected population than the DZ co-twins. Group heritability is derived from the mean differences between groups and is different from the usual heritability estimate, which refers to differences between individuals. DF extreme analysis is also useful for studying the issue of disorders versus continuous dimensions, as it is possible to investigate differences in the magnitude of genetic and environmental effects across different definitions of caseness.
Variations of the classical twin method exist too. For example, some studies have included only twins reared apart (combining the twin and adoption methods), whereas other studies have focused on the families of identical twins.

An issue worth mentioning briefly, though rarely discussed with regard to twin studies, is that of X-chromosome inactivation. This refers to the process, taking place in females during fetal development, during which genes on one or the other of the X-chromosomes are switched off apparently randomly in each cell. This phenomenon could theoretically lead to differences between MZ twins, but could of course only be relevant for genes located on the X-chromosome.

Several assumptions underlie the twin design, including the assumption of representativeness and the equal environments assumption. Another important issue to consider is zygosity determination.

Assumption of representativeness

Are twins representative of the general population or are they in some ways different from singletons? Some small differences between twins and singletons do exist (see Plomin et al., 1997). Twins are more likely to have a low birthweight and to be born premature, and they therefore are more likely to suffer from the medical problems associated with prematurity. Twins are also slightly delayed in language development and in learning to read, compared to singletons, and they have a slightly lower average IQ (96). Simonoff (1992) reported slight twin-singleton differences for conduct disorder.

Very few studies have investigated whether the rates of hyperactivity differ between twins and singletons. Van den Oord, Koot, Boomsma, Verlhurst and Orlebeke (1995) compared the rates of behaviour problems in 2- and 3-year-old twins (N=1281 pairs) and singletons (N=420). Overall, maternal ratings on the Child
Behaviour Checklist (CBCL) showed that the level of behaviour problems, including the 'Overactive syndrome' (derived from the CBCL), were comparable between twins and singletons.

In contrast, Levy and colleagues (Levy, Hay, McLaughlin, Wood & Waldman, 1996) reported a higher rate of ADHD in twins than in non-twin siblings in their sample of 1938 families. However, once speech and reading problems were controlled for, the twin/sibling status did not explain any additional variance in ADHD. This study differed from the study by van den Oord et al. (1995) in several respects: the children were older (between 4 and 12 years), the singletons were siblings rather than unrelated children, and the mothers rated their children on a questionnaire which was based on DSM-III-R criteria for ADHD. Levy et al. (1996) conclude that, as there are no obvious differences in the degree of resemblance for ADHD symptomatology between sibling-sibling, twin-sibling and DZ twin pairs, the finding of higher rates of ADHD among twins does not invalidate genetic analyses. See Appendix A for a discussion of the relevance of the present findings for the representativeness issue.

The equal environments assumption

The equal environments assumption (EEA) states that the shared environments are equally similar for MZ and DZ twins. A common counter-argument is that MZ twins may be treated more alike because of their greater physical similarity. To test the EEA in twin studies, four main methods have been used. The first method has investigated whether, controlling for zygosity, twins who are rated as more similar in physical appearance are also rated as more alike for behavioural characteristics. The studies investigating this issue have found no such evidence for mood and anxiety disorders (Hettema, Neale & Kendler, 1995), schizophrenia (Kendler, 1983), intelligence and personality traits (Matheny, Wilson & Dolan, 1976; Plomin,
The second method involves direct observations and asks the following question: if parents treat MZ twins more alike than DZ twins, is this because MZ twins behave more alike? In a study with young twins and their parents, the behaviours observed were divided into those which were self-initiated and those which occurred in response to the twins' behaviour (Lytton, 1977). The parents did indeed treat MZ more similarly than DZ twins but this was, as predicted, in response to the twins' behaviour.

The third method to test the EEA focuses on the observations that the environments for MZ twins are somewhat more similar than the environments for DZ twins (for example, MZ twins are more likely to share friends and to share the same room - Kendler, Heath, Martin & Eaves, 1986; Kendler, Neale, Kessler, Heath & Eaves, 1992). The question is whether these environmental similarities influence twin similarity on the characteristics being measured. If they do, MZ (or DZ) twins whose environments are more similar should resemble each other more than MZ (or DZ) twins whose environments are less similar. Several studies have failed to find any such effects for measures of personality, intellectual ability or psychopathology in childhood (see Kendler, Neale, Kessler, Heath & Eaves, 1993, for a review). Similarly, Thapar, Hervas and McGuffin (1995; for a further discussion of the study, see section 3.4.3) found that, although there was a greater resemblance between MZ twins than DZ twins on an environmental sharing score, this score was not associated with MZ twin similarity for hyperactivity scores.

The fourth method relies on the findings that a proportion of twins are mistaken about their zygosity. If it is the expectation of greater similarity for MZ twins that also causes them to behave more alike than DZ twins, then the MZ/DZ differences in behaviour should be observed for the perceived rather than true zygosity. Kendler
et al. (1993), for example, interviewed 1030 female-female twin pairs. In 158 pairs (15.3%) one or both twins disagreed with the project-assigned zygosity. Model fitting analyses provided no evidence of such zygosity expectation effects for major depression, generalised anxiety disorder, phobia, bulimia or alcoholism.

Goodman and Stevenson (1989b), in a study on hyperactivity, also examined results separately for recognised and unrecognised MZ pairs. In their sample of 213 twins, the parents of 37 pairs were mistaken about their twins' zygosity. Both parents and teachers rated MZ twins more similarly for hyperactivity when they were perceived as 'identical', as opposed to 'non-identical'. However, the MZ twins who were perceived as non-identical still had correlations much greater than the true DZ twin pairs: true zygosity was clearly important and not just the parents’ perception of their twins’ zygosity. The direction of effect is also not clear. Although parents’ expectations of their twins’ zygosity may have influenced their ratings, it is also possible that parents were more likely to assume the twins were identical if they behaved more alike. In another study on hyperactivity, Thapar, Hervas and McGuffin (1995) found that the correlations for recognised (N=70) and unrecognised (N=35) MZ twins were highly similar.

Overall, research evidence suggests that the equal environments assumption is a reasonable one.

Zygosity determination

It is of course crucial in twin studies that the zygosity of the twin pairs is classified as correctly as possible. Blood typing and DNA-fingerprinting are both very accurate methods, achieving 95-99% (Lykken, 1978; Wilson, 1980) and theoretically 100% accuracy, respectively.
In many cases it is not practical to obtain blood samples from large numbers of twins taking part in a study. Luckily a method exists which is easy and cheap to use and still achieves high accuracy: the parents can rate the twins with regard to their physical similarity and confusability. Questionnaires achieve an accuracy of between 90% and 98% in zygosity determination, when compared to blood typing (Bonnelykke, Hauge, Holm, Kristoffersen & Gurtler, 1989; Cohen, Dibble, Grawe & Pollin, 1973; Magnus, Berg & Nance, 1983; Nichols & Bilbro, 1966). This level of accuracy is considered sufficient for most purposes.

3.2 Molecular genetics

Research using quantitative genetic methods has paved the way for the search for the actual genes influencing behaviour, including those influencing complex behaviours. Complex behaviours are those that are thought to be influenced by multiple genes and also by environmental factors. Although quantitative genetics will continue to play an important role in future investigations too, advances in molecular genetics have in many ways changed the direction in behaviour genetic research (Plomin et al., 1997; Rutter, 1994).

Several different genetic mechanisms could produce complex inheritance (for reviews, see Craddock & Owen, 1996; Skuse, 1997). As discussed earlier, epistasis refers to the interaction between multiple genes and is therefore a separate phenomenon from the simple additive effects of two or more genes. Another possible mechanism is genetic or locus heterogeneity: several genes, each of them on its own, can produce the same phenotype. If different pairs of alleles at a single locus result in expression of subtle variations in a phenotype, this is known as allelic heterogeneity. Imprinting is a phenomenon in which the expression of an allele depends on its parental origin. Anticipation or dynamic mutation 1 refers to the deterioration of a

1 Mutation = a heritable change in DNA base pair sequences (Plomin et al., 1997)
disorder as it is passed on to the next generation. *Mitochondrial gene mutation* is also possible: the mutation lies not in the nuclear genome but in the mitochondrial genome which results in maternal pattern of inheritance. These different genetic mechanisms could of course also act together in various combinations. An important possibility also to bear in mind is that what appears to be the same phenotype could also be due, not to any susceptibility alleles, but to environmental or other random causes - such cases are known as *phenocopies* (see Skuse, 1997).

The most important issue here, however, is the assumption of behavioural traits resulting from the mainly additive combination of many genes at different loci (see McGuffin, Owen, O’Donovan, Thapar & Gottesman, 1994). Instead of the term *polygenic inheritance*, a modern approach refers to *QTLs* \(^2\) (quantitative trait loci). Implicit in the QTL-approach is that the multiple genes can have varying effect sizes.

In humans the two main methods in molecular genetics are association and linkage studies. Allelic association refers to a correlation between a particular allele and a trait in a population. A difficulty with this method lies in identifying the candidate genes, the genes that could potentially affect the behaviour under investigation. One approach is to use QTLs found in mice as candidate genes for research in humans, which is possible because of the similarity between mouse and human genes. In association studies the marker has to lie very close to the susceptibility gene. An advantage of association studies over linkage studies (see below) is that they can find QTLs which have only small effects (Craddock & Owen, 1996).

Linkage studies differ from association studies in that, instead of studying populations of unrelated individuals, they focus on large pedigrees. The aim is for the pattern of inheritance to reveal a linkage between a DNA marker and a trait. Due to various methodological difficulties with the traditional linkage approach (see

\(^2\) QTL = genes of various effect sizes in multiple-gene systems that contribute to quantitative (continuous) variation in a phenotype (Plomin et al., 1997)
Craddock & Owen, 1996), a technique called the affected sib-pair design is often preferable. In this type of a linkage study, allele sharing between sibling pairs is compared. If allele sharing for particular markers exceeds the expected 50 percent (if both members of the sibling pair are affected), this suggests linkage. This sib-pair design is not only useful for studying dichotomous variables (e.g. affected/unaffected), but also for studying continuous variables. Linkage studies can provide a preliminary localisation of a gene and association studies can then narrow down the region of interest.

Molecular genetics is a rapidly developing discipline. The future is likely to see yet faster and more effective methods being developed for identifying genes that affect complex behaviours.

3.3 Criticisms of behaviour genetics

Apart from criticisms aimed at the methodology of behaviour genetic investigations (many of these issues have been discussed in the sections above), the field has also been the subject of criticisms of another kind. One argument is that it is not fruitful to investigate genetic influences, as these cannot be altered, and that researchers should focus on the environment, as it is open to intervention.

Firstly, it is important that the term heritability is not misunderstood (see Plomin et al., 1997). Heritability does not imply genetic determinism. Even if a trait is highly heritable, it does not mean that environmental interventions could not work. Heritability describes what is, rather than what could be.

Genetic information can, in fact, be invaluable in the treatment and prevention of disorders (see Rutter et al., 1990). Phenylketonuria is a well-known example of how an understanding of the genetics of a disorder can lead to a treatment in which the
environment is manipulated. This autosomal recessive condition causes intellectual impairment unless the affected individual follows a diet low in phenylalanine from early on.

Genetic information can also be used in genetic counselling, to inform parents of the risks of carrying certain inherited disorders. The other side of the coin is, though, that genetic information could also be misused. When more is known about genetic factors, will people with certain characteristics or at a particular genetic risk be discriminated against? Plomin and colleagues (Plomin et al., 1997) argue that 'despite the problems created by advances in science, we would not want to cut off the flow of knowledge and its benefits in order to avoid having to confront such problems' (p. 279). Nevertheless, scientists should of course take a responsible approach to their research; ethical considerations are an integral part of planning a research project.

Behaviour genetics is certainly often seen to place the emphasis on inequality, as it focuses on differences between individuals. We are indeed, in certain respects, born unequal - but let’s call it each of us being unique. In the same way as we accept obvious physical differences between us, we can acknowledge that we differ in terms of our psychological characteristics and our specific patterns of risk and protective factors. Plomin et al. (1997) rightly point out that the findings of individual differences that have a genetic basis do not compromise the value of social equality.

An emphasis on the environment also is not a guarantee on obtaining the most valuable information for the treatment and prevention of disorders. In some cases an emphasis on the home environment led to blaming the parents for their children’s difficulties when this was misguided, as in the case of autism. With regard to hyperactivity, an understanding of its genetic etiology has led to a better understanding of why some treatments may work better than others. This is not to say that environment is unimportant. Behaviour geneticists take into account both
genes and the environment, and attempt to understand the complex interactions between them.

3.4 Behaviour genetic studies on hyperactivity

3.4.1 Family studies

Family studies have found an increased incidence of ADD/ADHD in the relatives of ADD/ADHD probands (e.g. Biederman et al., 1992; Biederman, Faraone, Keenan, Knee & Tsuang, 1990; Biederman et al., 1986; Cantwell, 1972; Faraone, Biederman, Keenan & Tsuang, 1991; Perrin & Last, 1996; Roizen et al., 1996; Schachar & Wachsmuth, 1990). Although some of the studies have suffered from methodological limitations (with regard to diagnostic procedures and nonblind ratings of psychopathology, for example), the general picture strongly suggests that ADHD runs in families.

An example of one of the methodologically stronger studies is that by Biederman and colleagues (Biederman et al., 1992). Two groups of boys aged between 6 and 17 took part in the study: 140 probands with ADHD and 120 normal controls. Children were excluded if they had major sensorimotor handicaps, psychosis, autism, full-scale IQ below 80, were from the lowest socio-economic status, had been adopted or if their nuclear family was unavailable for study. All the probands had been referred to a pediatric or a psychiatric clinic. ‘Blind’ raters conducted DSM-III-R -based structured interviews with parents, siblings and the probands themselves (expect for children younger than 12 years). The estimates of risk for relatives were adjusted for age, as a younger relative may not yet have lived through the risk period for a particular disorder.
The main finding was that parents and siblings of ADHD probands were five times more likely than relatives of controls to receive a (lifetime) diagnosis of ADHD themselves. This result remained significant even after controlling for measures of psychosocial adversity. When the relatives were classified based on a broader definition of ADHD, the proportion of affected individuals increased from 16% to 25%. Relatives of ADHD probands were also at an increased risk for antisocial disorders, major depressive disorder, substance dependence and anxiety disorders. However, a more recent analysis of this sample (Faraone, Biederman, Jetton & Tsuang, 1997) showed that the higher rates of conduct disorder and antisocial personality disorder were limited to the relatives of those probands who had comorbid conduct disorder in addition to ADHD. Although this study included boys only, an earlier study (Faraone, Biederman, Keenan & Tsuang, 1991a) suggests that the findings are highly similar for girls.

Faraone and colleagues (Faraone et al., 1992) also carried out a segregation analysis of ADHD on this same sample, using the computer programmes POINTER and REGTL. The authors concluded that the results were most consistent with the effects of a single major gene; the data provided no support for multifactorial polygenic transmission, non-familial environmental transmission or for cultural transmission.

The model predicted that only 46% of boys and 31% of girls with the ‘ADHD gene’ would obtain a diagnosis of ADHD. The authors suggest that environmental factors determine whether individuals carrying the ‘ADHD gene’ will actually express it. The reduced penetrance could also theoretically be due to the ‘ADHD gene’s’ interaction with another gene. Faraone et al. (1992) also discuss the possible relevance of their findings to the gender differences in the prevalence of ADHD. However, because of low power in their study and as their findings are not consistent with some earlier findings, the usefulness of their findings in this respect is limited. In general, the results of this study await replication. (Later sections of this chapter discuss findings which are more in line with models of QTL effects.)
The family studies show that there is a familial contribution to ADHD. To investigate whether the familial contribution is a genetic one, one needs to focus on twin and adoption studies.

3.4.2 Adoption studies

Only a small number of adoption studies on ADHD/hyperactivity have been carried out. The early adoption studies generally supported the genetic hypothesis (e.g. Cantwell, 1972; Morrison & Stewart, 1971), but as their methodologies had several limitations (see McMahon, 1980), these studies will not be reviewed here.

The Toronto Adoption Study (see Deutsch & Kinsbourne, 1991) compared three groups: ADD probands and their biological parents and siblings, ADD probands and their adoptive parents and siblings, and control probands and their biological parents and siblings. The three proband groups (N=72) were matched on age, gender and parental socio-economic status. ADD symptomatology was assessed on a continuous scale. The relatives of the 'biological' ADD group had a higher rate of ADD symptomatology than the relatives of the 'adopted' ADD group, which supports the genetic hypothesis. This group difference remained also when discrete diagnoses (ADD/non-ADD) were used instead of the continuous dimension. The rates of ADD symptomatology in the relatives of the control group probands were similar to those of the adopted ADD group probands.

Alberts-Corush, Firestone and Goodman (1986) investigated the performance of biological and adoptive parents of hyperactive and control children on neuropsychological measures. The hyperactive group consisted of 25 children and their biological parents and of another group of 18 children and their adoptive parents. The control group similarly had a group of 25 children and their biological parents and another group of 20 children and their adoptive parents. To be classified as hyperactive the children had to receive a diagnosis of ADDH based on DSM-III
criteria and to have obtained a Conners' Teacher Hyperactivity Index score of 1.5 or higher.

Compared to the other groups of parents, the biological parents of hyperactive children had slower mean reaction times on a delayed reaction time task and they made fewer correct recognitions with increasing matrix size on a task called the span of apprehension. The groups did not differ on their performance on an executive function measure (Porteus Maze test), however.

A limitation with this study is that the biological parents of hyperactive children differed from the other parent groups on IQ and educational level. It would have been informative too, if the investigators had tested the children on the same tasks as their parents and if they had determined the hyperactivity status also of the parents using interviews or rating scales. These limitations aside, this study tentatively suggests that the genetic resemblance between hyperactive children and their parents need not be limited to diagnoses of ADHD/hyperactivity, but may also be found on psychological tests.

Nigg, Swanson and Hinshaw (1997) obtained similar findings on a measure of covert visual attention. The ADHD group consisted of 27 boys and the comparison group of 17 boys aged between 6 and 12 years. There were three parent groups: biological parents of boys with ADHD (N=16), biological parents of the comparison group (N=14) and adoptive parents of boys with ADHD (N=12). Only the ADHD group and the biological parents of ADHD boys showed lateral effects, that is differences in performance depending on whether stimuli was presented in the left or the right visual field.

The comparison boys and their parents and the adoptive parents of ADHD boys showed a ‘normal’ pattern of responses on the task. The investigators also assessed parent history of childhood attention problems or ADHD symptoms. The biological
fathers of ADHD boys reported significantly higher rates of childhood attention problems than the other two groups of fathers. For mothers the differences between the groups were in the same direction, but statistically non-significant. Nigg et al. (1997) conclude that, due to several methodological limitations, such as the small sample sizes, the study is best viewed as exploratory.

Van den Oord, Boomsma and Verhulst (1994) in the Netherlands carried out a rather different type of an adoption study. The sample (N=758; mean age 12.4 years) consisted of three groups: 1) biological siblings adopted away together; 2) biologically unrelated adoptees growing up as siblings; and 3) adoptees growing up as singletons. The authors used the Child Behaviour Checklist (CBCL) to obtain ratings of problem behaviours, including attention problems. Model fitting techniques were used to analyse the data. Genetic effects accounted for 47% of the variance on the Attention Problems subscale; the effects of the shared environment were very small.

In sum, the adoption studies suggest that genetic factors are involved in the etiology of hyperactivity. The evidence is rather limited, however, due to the small number of studies that have been carried out and the methodological limitations with the existing studies. None of the studies reviewed here studied both the adoptive and biological relatives of the same children. To obtain further evidence of genetic effects, one has to focus on twin studies.

3.4.3 Twin studies

General population samples

Twin studies which have taken a model fitting approach have investigated scores on a hyperactivity dimension in general population samples. This approach produces a heritability estimate of *individual differences* in hyperactivity. Table 3.4.3a
summarises the results from these twin studies. Note that heritability (h^2) is given as a proportion in the table and that the phenotypic correlations are given separately for males (M) and females (F) when the authors reported these separately. Phenotypic DZ correlations refer to the correlations for same-sex DZ twins (for correlations for opposite-sex DZ twins in the few studies that included them, see the original references).

An early twin study by Willerman (1973) reported a heritability of 77% for scores on an ‘activity’ questionnaire. The first methodologically strong twin study on hyperactivity was carried out by Goodman and Stevenson (1989a,b). The sample was a general population sample of 213 13-year-old twin pairs. Parent and teacher ratings on the Rutter questionnaires provided a measure of hyperactivity (the items included in the hyperactivity dimension are ‘squirmy’, ‘restless’ and ‘cannot settle’, each rated between 0 and 2). The twins were also assessed on two measures of attentiveness: freedom from distractibility and an ‘E’ scan test, which involved detecting and deleting as many E-letters as possible in two minutes. This study did not involve model fitting analyses; the heritability estimates were obtained from the twin correlations.

The heritability estimates varied across raters and measures, but were in general rather high: 54-100% for hyperactivity ratings and 32% (freedom from distractibility) and 42% (‘E’ scan) for the inattentiveness measures. However, expectancy effects inflated the estimates for the hyperactivity ratings, though not for the attentiveness measures. Taking the expectancy effects into account, genetic factors explained approximately half of the explainable variance (taking also the reliability of the measures into account). There was no evidence to suggest that the heritabilities would be different for boys and girls.
Table 3.4.3a Twin studies of hyperactivity/ADHD: individual differences heritability estimates

<table>
<thead>
<tr>
<th>Study</th>
<th>Twin pairs</th>
<th>Age</th>
<th>Informants</th>
<th>Measures</th>
<th>Phenotypic correlation</th>
<th>h²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MZ</td>
<td>DZ</td>
</tr>
<tr>
<td>Goodman &</td>
<td>102 MZ, 111</td>
<td>13</td>
<td>Mother</td>
<td>Rutter A Scale</td>
<td>.68</td>
<td>-.08</td>
</tr>
<tr>
<td>Stevenson,</td>
<td>same-sex DZ</td>
<td></td>
<td>Father</td>
<td>Rutter A Scale</td>
<td>.48</td>
<td>.21</td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td>Teacher</td>
<td>Rutter B Scale</td>
<td>.62</td>
<td>.26</td>
</tr>
<tr>
<td>Thapar et al.,</td>
<td>113 MZ, 85</td>
<td>8-16</td>
<td>Mother</td>
<td>Rutter A Scale</td>
<td>M .71</td>
<td>F .58</td>
</tr>
<tr>
<td>1995</td>
<td>same-sex DZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaves et al.,</td>
<td>689 MZ, 371</td>
<td>8-16</td>
<td>Mother</td>
<td>CAPA (interview)</td>
<td>M .32</td>
<td>F .40</td>
</tr>
<tr>
<td>1997</td>
<td>same-sex DZ,</td>
<td></td>
<td></td>
<td>Rutter A Scale</td>
<td>.51</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>295 opposite-</td>
<td></td>
<td></td>
<td>CAPA (interview)</td>
<td>.46</td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td>sex DZ</td>
<td></td>
<td></td>
<td>Rutter A Scale</td>
<td>.60</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teacher</td>
<td>.62</td>
<td>.52</td>
</tr>
<tr>
<td>Sherman,</td>
<td>194 MZ, 94</td>
<td>11-12</td>
<td>Mother</td>
<td>DICA-R (interview)</td>
<td>.90</td>
<td>a</td>
</tr>
<tr>
<td>McGue et al.,</td>
<td>DZ, males only</td>
<td></td>
<td>Teacher</td>
<td>Teacher rating scale b</td>
<td>.71</td>
<td>.49</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadder et al.,</td>
<td>377 MZ, 271</td>
<td>7-13</td>
<td>Parent (usually</td>
<td>Ratings from a</td>
<td>M .44</td>
<td>F .31</td>
</tr>
<tr>
<td>1998</td>
<td>same-sex DZ,</td>
<td></td>
<td>mother)</td>
<td>telephone survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>252 opposite-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sex DZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a correlation not estimated

b adapted from Conners' Teacher Rating Scale & Rutter B Scale; additional items added based on the DSM-III and DSM-III-R diagnoses

125
A subsequent twin study (Thapar, Hervas & McGuffin, 1995) replicated Goodman and Stevenson's (1989b) results. This population-based sample consisted of 198 pairs of twins aged between 8 and 16 years. The three activity items from the Rutter questionnaire were used to define hyperactivity, but only maternal ratings were obtained.

The AE model, which includes additive genetic and non-shared environmental effects only, fitted the data better than the other ‘basic’ models (see section 6.1.3) and provided a heritability estimate of 59%. Because of the findings of very low DZ correlations and of differences in MZ and DZ variances, the authors also fitted a sibling interaction model to the data. Sibling interaction here refers to the situation where phenotypic differences between the members of a twin pair become exaggerated; one twin’s high activity level results in the co-twin showing lower levels of activity (compared to ‘true’ levels of activity). The authors concluded that the model incorporating sibling interaction, which produces a heritability estimate of 88%, explains the data best.

This conclusion has come under some criticism recently, however. Silberg and colleagues (Silberg et al., 1996) point out that Thapar et al. (1995) did not systematically compare their model with a model that includes genetic non-additivity, nor did they consider the possibility of rater bias.

The findings of high heritability for the dimension of hyperactivity (Goodman & Stevenson, 1989b; Thapar et al., 1995) were replicated in a large-scale twin study by Eaves et al. (1997). The twins, aged between 8 and 16 years, were participants in the Virginia Twin Study of Adolescent Behavioral Development. Interviews with both parents (with the Child and Adolescent Psychiatric Assessment, CAPA) and ratings by parents (Rutter’s A2) and teachers (Rutter’s B2) formed the measures of ADHD.
Additive genetic factors accounted for between 50% and 80% of the variance after removing contrast effects (rater bias and/or sibling interaction; see the following section) from the data, with the non-shared environment (and measurement error) explaining the remaining variance. Questionnaire and interview data from both parents produced highly similar results and the results were also relatively homogeneous over sexes. The evidence for twin contrast effects, implicated by reduced DZ correlation and increased DZ variance, was very strong both for mother-report and father-report data. The model with the contrast effects produced a significantly better fit for the data than did a model with genetic non-additivity (dominance) effects. Teacher ratings did not show any significant contrast effects and also produced slightly lower heritability estimates than parent ratings.

The evidence continues to accumulate in support of the findings from the earlier twin studies. Sherman, McGue and Iacono (1997) analysed data from boys aged 11 and 12 years taking part in the Minnesota Twin Family Study. Mothers were interviewed using a modified version of the DICA-R and teachers completed the MTFS Teacher Rating Form (the items were adapted from the Conners Teacher Rating Scale, the Rutter Child Scale B and other items were added based on the DSM-III and DSM-III-R diagnoses). Genetic effects accounted for 73% of the variance in teacher-reported ADHD symptoms and for 89% of the variance in mother-reported ADHD symptoms.

Sherman, Iacono and McGue (1997) carried out model fitting analyses also on the two ADHD dimensions separately. Factor analyses on the behavioural items revealed the two dimensions of inattention and impulsivity-hyperactivity both for teacher-report and mother-report data. Heritability estimates were high, in particular for impulsivity-hyperactivity: 91% for mother-rated and 69% for teacher-rated impulsivity-hyperactivity, and 69% for mother-rated and 39% for teacher-rated inattention. Bivariate analyses suggested that these two ADHD dimensions are mediated by a common genetic factor. The shared environment was important only
for teacher-rated inattention. A limitation of these two sets of analyses is that the authors did not fit the data to models including dominance or contrast effects.

Recently Nadder and colleagues (Nadder, Silberg, Eaves, Maes & Meyer, 1998) have reported data from the second wave of ascertainment of the Virginia Twin Study of Adolescent Behavioral Development. The measure of ADHD symptomatology was different from the other studies, in that the maternal ratings were obtained from a telephone survey. The model including contrast effects provided the best fit for the data and showed that genetic effects explained approximately 60% of the variance in ADHD symptomatology in this sample of 7-13-year-old girls and boys. The authors point out, however, that they could not exclude with statistical significance additional effects from dominance. The results suggested that the magnitude of genetic and environmental causes is the same for both sexes.

Studies using the Child Behaviour Checklist (CBCL) provide further evidence for the heritability of attention problems (these measures were not included in the summary table). Gjone, Stevenson and Sundet (1996) reported heritabilities for the Attention Problems subscale ranging from 66% to 79% in a sample of twins aged 5 to 9 years and 12 to 15 years. The results were robust across age, sex and severity. Edelbrock, Rende, Plomin and Thompson (1995) obtained a heritability estimate of 66% in a sample of twins aged 7 to 15 years. Similarly, Zahn-Waxler, Schmitz, Fulker, Robinson and Emde (1996) found that between 56% (father report) and 72% (mother report) of the variance in the Attention Problems subscale for a sample of 5-year-old twins was due to genetic effects.

The findings also apply to even younger children. With a sample of 3-year-old twins, van den Oord, Verlhurst and Boomsma (1996) found that genetic factors explained more than half of the variance in the ‘Overactive syndrome’ (derived from the CBCL). Although extreme scores on the CBCL do not equate directly to ADHD,
there is convergence between the two approaches. Kasius, Ferdinand, van den Berg and Verhulst (1997) found that the Attention Problems scale was a significant predictor of 'pure' ADHD, as diagnosed using the DSM-III-R.

Sibling interaction or rater bias?

The low, even negative, DZ correlations for parental (especially maternal) ratings is a consistent finding across the studies. Additive genetic effects on their own cannot account for DZ correlations which are less than half of MZ correlations. The two possible explanations for such a pattern are those of dominant or epistatic (interactive) genetic influences and contrast or competition effects. However, dominance effects would not be expected to produce negative DZ correlations.

As briefly discussed earlier, contrast effects refer to the negative influence of the phenotype or behaviour of one individual on that of another: a high rating of hyperactive behaviour in one twin decreases the hyperactivity rating in the other twin. Contrast effects decrease MZ and, in particular, DZ correlations. They also increase the variance of ratings, again the DZ variances in particular. Competition effects refer to the opposite situation of a positive influence of the phenotype on that of another.

The evidence from the twin studies on hyperactivity suggests that contrast effects explain the pattern of findings that has emerged. However, it has remained unclear whether the contrast effects reflect true sibling interaction or whether they reflect rater bias. True sibling interaction means that the more one twin is hyperactive, the less hyperactive the other. The rater bias explanation suggests that the more hyperactive one twin is perceived to be, the less the perception of the other twin's hyperactivity.
To explore this issue, Simonoff et al. (in press) analysed data from 1044 twin pairs from the Virginia Twin Study of Adolescent Behavioral Development. Ratings from different teachers for the twins in a pair for a subsample of these twins enabled the comparison between true phenotypic effects and contrast as a form of rater bias. As father-report data was missing from a high proportion of cases, the analyses focused on maternal ratings only. The analyses supported the rater bias explanation of contrast effects in maternal hyperactivity ratings. Simonoff and colleagues suggest that parents may find it difficult to judge 'normal' levels of activity, attention and impulsivity. The findings of no contrast effects on conduct problems, for which norms may be more clear cut, support this argument.

Although there is no evidence of contrast effects in teacher ratings of hyperactivity, the analyses by Simonoff et al. (in press) suggest that teacher ratings reflect a different bias. Ratings made by the same teacher were more highly correlated than ratings made by different teachers. The study did not have enough power to distinguish between two possible models - those of 'twin confusion' and 'correlated errors' - but they could both influence teacher ratings. The twin confusion model suggests that teachers may have difficulty attributing behaviour to the correct child. The correlated errors model suggests that teachers vary in their expectations of behaviour, which is then reflected in their ratings.

Extreme hyperactivity

A smaller number of twin studies have investigated the heritability of extreme hyperactivity, using the DeFries and Fulker approach. Such studies produce a group heritability estimate for hyperactivity. Table 3.4.3b summarises the results from these studies.
Table 3.4.3b Twin studies of hyperactivity/ADHD: group heritability estimates

<table>
<thead>
<tr>
<th>Study</th>
<th>Twin pairs</th>
<th>Age</th>
<th>Informants</th>
<th>Measures</th>
<th>Probandwise concordances (%)</th>
<th>h^2_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson, 1992</td>
<td>17-31 MZ, 25-47 same-sex DZ</td>
<td>13</td>
<td>Mother Teacher</td>
<td>Rutter A Scale, Rutter B Scale</td>
<td>*</td>
<td>.75</td>
</tr>
<tr>
<td>Gillis et al., 1992</td>
<td>37 MZ, 37 DZ</td>
<td>8-20</td>
<td>Parent</td>
<td>DICA parent interview</td>
<td>79</td>
<td>32</td>
</tr>
<tr>
<td>Levy et al., 1997</td>
<td>583 same-sex twins</td>
<td>4-12</td>
<td>Mother</td>
<td>DSM-III-R Questionnaire</td>
<td>82</td>
<td>38</td>
</tr>
</tbody>
</table>

* not reported
Stevenson (1992) analysed the results for their sample of 13-year-old twins (Goodman & Stevenson, 1989a,b) using this approach. Ratings of hyperactivity by mothers produced a high group heritability estimate of 75%, whereas the group heritability estimate for teacher-rated hyperactivity was noticeably lower at 16%. The estimates were 25% (freedom from distractibility) and 76% ('E' scan) for the attentiveness measures.

Gillis, Gilger, Pennington and DeFries (1992) obtained further evidence of strong genetic effects on parent reports of extreme hyperactivity. The children were a subsample of twins taking part in the Colorado Reading Project: 37 MZ and 37 DZ pairs in which at least one of the twins was classified as having ADHD. The diagnosis of the twins was based on the Diagnostic Interview for Children and Adolescents - Parent Interview (DICA-P). Probandwise concordance rates for ADHD were 79% for MZ pairs and 32% for DZ pairs. The group heritability estimate varied between 87% and 98%, depending on adjustment for differences in IQ or reading.

The Australian Twin ADHD Project (ATAP; Levy, Hay, McStephen, Wood & Waldman, 1997) is one of the largest genetic studies of ADHD. Out of a total of 5067 children, aged between 4 and 12 years, 583 same-sex twin pairs were included in the DF extreme analysis. At least one twin in each of these pairs scored above a specific cut-off point on a DSM-III-R-based parent questionnaire, which was specifically designed for the study. The investigators validated the ADHD diagnosis obtained from the questionnaire using a diagnostic interview.

The results from this study show the robustness of the heritability findings: the group heritability of ADHD was 91% and the heritability of the trait (i.e. number of symptoms, ignoring diagnostic cut-offs) was 75%. This finding of the disorder not being significantly more heritable than the trait, and also the finding that the results
are similar even if different cut-off criteria are applied for ADHD, support the idea of the probands representing the high end of a continuum.

Levy et al. (1997) also report that when DSM-IV criteria were applied in a preliminary analysis of data from 1618 families taking part in the ATAP, the heritabilities for the inattentive and hyperactive-impulsive subtypes were similar to those they report for ADHD based on DSM-III-R criteria.

Summary of findings from twin studies

The overall conclusion from this increasing number of twin studies is that there are strong genetic effects on ADHD or hyperactivity. The findings are quite consistent across the different measures used. Heritability estimates for the dimension of hyperactivity vary between 50% and 100% for parent-report data and between 50% and 70% for teacher-report data. There is evidence of rater bias in maternal ratings of hyperactivity, but it is possible to remove the variance due to such bias statistically from the variance explained by genetic and environmental factors. Teacher ratings may reflect another type of bias, that of 'twin confusion' or 'correlated errors'.

Twin studies similarly report high group heritability estimates (75-98%) for extreme hyperactivity, when reported by parents. The only group heritability estimate reported for teacher ratings (Stevenson, 1992) is noticeably lower at 16%. The sample size was small in this study and it is too early to draw conclusions based on this single result. The findings of high heritabilities for hyperactivity whether it is measured as a dimension or as a categorical classification have generally been interpreted as supporting the notion of a continuous dimension of hyperactivity at the phenotypic level (e.g. Tannock, 1998).
The amount of variance in hyperactivity not due to genetic effects has been attributed to the non-shared environment (and measurement error). The evidence does not support a clear role for shared environmental factors in hyperactivity.

3.4.4 Animal models

Animal models for hyperactivity can be useful for identifying candidate genes and for providing insight into the neurochemical pathways involved in ADHD symptomatology.

One animal model of hyperactivity is the Spontaneously Hypertensive Rat (SHR; see, for example, Russell, de Villiers, Sagvolden, Lamm & Taljaard, 1995; Sagvolden et al., 1992). Unlike some other animal models in which the hyperactivity has been caused by surgical, neurotoxic or environmental intervention, the SHR is spontaneously hyperactive. Sagvolden et al. (1992) obtained evidence which suggests that the SHR are more sensitive to immediate reinforcement than control rats. Methylphenidate decreased the relative effectiveness of an immediate reinforcer and increased the relative effectiveness of delayed reinforcers.

Russell et al. (1995) found differences between the SHR and control rats in dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen. An experiment using a different animal model of ADHD (Kostrzewa, Brus, Kalbfleisch, Perry & Fuller, 1994) similarly suggests that dopamine - as well as serotonin - neurons are implicated in hyperactivity. These findings parallel the findings with humans (section 1.11).

Owing to the advances in molecular genetics, reports, based on research on mice and rats, are now appearing which suggest actual candidate genes for hyperactivity. Moisan and colleagues (Moisan et al., 1996) carried out the first behavioural QTL analysis in rat. The WKHA rats used in the study originate from an intercross
between the SHR and WKY rats (the control rats in the studies described above). A QTL on chromosome 8 explained 29% of the variance of the intercross between the strains, influencing spontaneous activity, activity in a novel environment and rearing in the open-field.

A mouse model of hyperactivity based on the mouse mutant coloboma has provided evidence for another candidate gene, the Snap gene (Hess, Collins & Wilson, 1996). A deletion mutation (including the deletion of the Snap gene) causes the profound hyperactivity the coloboma mice exhibit spontaneously. The replacement of the deleted Snap gene with a Snap transgene resulted in the mice exhibiting normal levels of locomotor activity.

3.4.5 Molecular genetic studies

Human homolog of the Snap gene?

The application of the findings regarding the Snap gene to humans has not been successful. Hess et al. (1995) carried out linkage studies to determine whether the human homolog of the Snap gene or other gene within the deletion interval would be associated with ADHD. Five families, in which there appeared to be autosomal dominant transmission, took part in the investigation. The ADHD diagnosis in children under the age of 17 was based on a DSM-III-R -based interview with parent(s) and on a T-score greater than 70 on the Hyperactivity Index of the Conners’ Parent Rating Scale. In older family members the diagnosis was based on an interview with the individual and his/her spouse and on ratings by the individual’s mother or father on the Conners’ scale.

The analyses failed to find any evidence for the predicted linkage. The authors discuss several possibilities for this negative finding. For example, their sample may not have been representative of the majority of ADHD families or a different
component of a ‘critical pathway’ might be involved in mice and in humans. With regard to the pattern of inheritance for ADHD the authors conclude that ‘although the pedigrees employed in this study suggest autosomal dominant transmission with variation in expression, multifactorial inheritance or the presence of a second gene which modifies phenotype cannot be excluded with certainty’ (p. 578).

The thyroid gene

Other studies have reported more success in the search for genes causing hyperactivity in humans. Hauser et al. (1993) studied 18 families (49 affected and 55 unaffected family members) with generalised resistance to thyroid hormone (GRTH), a disease caused by mutations in the thyroid receptor-β gene. Among the children, 70% of the affected individuals and 20% of the unaffected individuals obtained a diagnosis of ADHD (according to DSM-III-R criteria). Among the adults, 50% of the affected individuals and 7% of the unaffected individuals met the criteria for ADHD. This is evidence for a linkage between ADHD and the thyroid gene. Hauser et al. (1993) also discuss some possible mechanisms by which the thyroid receptor-thyroid hormone complex could insert its influence on behaviour: it seems to be involved in brain development and may influence catecholamine neurotransmitter systems too.

However, as the incidence of the resistance to thyroid hormone in the population is less than that of ADHD, it could only possibly be a small genetic subtype. Also, the prevalence of GRTH in ADHD is very low and subsequent studies have not supported the linkage of ADHD and GRTH (Elia, Gulotta, Rose, Marin & Rapoport, 1994; Valentine et al., 1997; Weiss et al., 1994; Weiss, Stein, Trommer & Refetoff, 1993).
Because of the efficacy of pharmacological agents that act on the dopaminergic system in the treatment of many ADHD children, the dopaminergic genes have been considered as candidate genes for hyperactivity. Cook et al. (1995), using the haplotype-based haplotype relative risk method (HHRR), investigated the possibility of an association between ADHD and the dopamine transporter gene (DAT1). The HHRR avoids the problems associated with population stratification and the classification of relatives with other psychiatric disorders as affected or unaffected; it investigates whether, in the transmission of allele from parents to offspring, the ratio deviates from the expected 50%.

The participants in the study were 49 children with ADHD and their parents and 8 children with undifferentiated attention deficit disorder (UADD) and their parents. The diagnoses were based on DSM-III-R criteria and involved semistructured interviews and several teacher and parent rating scales. In DSM-III-R children are diagnosed as having UADD if they have attentional problems, but not enough hyperactivity and impulsivity symptoms to reach the cut-off point for ADHD. The results from the analyses suggested a significant association between ADHD/UADD and the dopamine transporter gene. Excluding the UADD cases from the analyses did not change the results. This association between ADHD and the dopamine transporter polymorphism has recently been replicated in a study with 40 probands and their parents, using the same methods as in the Cook et al. (1995) study (Gill, Daly, Heron, Hawi & Fitzgerald, 1997).

A separate study suggests that three dopaminergic genes - dopamine D2 receptor (DRD2), dopamine β-hydroxylase (DBH) and the dopamine transporter (DAT1) - are all involved in ADHD (Comings et al., 1996). Comings and colleagues (Comings et al., 1991) had already earlier reported an association between ADHD and the dopamine D2 receptor gene (DRD2).
The study focusing on the three dopaminergic genes (Comings et al., 1996) investigated a group of patients originally diagnosed with Tourette syndrome (N=255), their relatives (N=192) and controls (N=67). A questionnaire which included DSM-III and DSM-III-R items was used to make a diagnosis of ADHD and other disorders. Each of the three dopaminergic genes was individually associated with ADHD. The results provided further evidence for polygenic inheritance in that the ADHD scores ranged from a high score (in the clinical range) for those who inherited all the three alleles to a low score (in the normal range) for those who inherited none of the three alleles. The three dopaminergic genes were also associated with other behavioural variables (e.g. tics, stuttering, conduct and oppositional disorders), but the association was strongest for ADHD (explaining 7.6% of the variance). A recent review (Blum et al., 1996) concludes that the D2 dopamine receptor gene is associated with a whole range of problem behaviours - alcoholism, polysubstance abuse, smoking, obesity, Tourette syndrome and ADHD - which the authors collectively call the 'reward deficiency syndrome'.

The dopamine D4 receptor gene polymorphism

Another development in the search for genes influencing the dopaminergic system is the report by LaHoste et al. (1996) of an association between the dopamine D4 receptor gene polymorphism (located on chromosome 11) and ADHD. The participants were 39 children between the ages of 7 and 12 years who were diagnosed as having ADHD according to DSM-IV criteria. The DNA from the cases was compared with that from carefully matched controls. The ADHD group differed from the controls in that they were more likely to have the 7-fold repeat and less likely to have the 4-fold repeat form (the most prevalent form in the human population) of DRD4. There was some suggestion that children with ADHD who had at least one 7-fold repeat allele were more severely affected than ADHD children without this allele.
This research group recently replicated and extended the findings of their initial study (Swanson, Sunohara et al., 1998). The replication study employed a family-based association design, instead of the population-association (case-control) design of the initial study. Haplotype relative risk (HRR) analysis on the DNA from 52 families (ADHD probands and their parents) provided evidence for an association between the DRD4 gene and ADHD. However, having a 7-repeat allele of the DRD4 gene cannot be a necessary condition for the diagnosis of ADHD, as only 50% of the ADHD probands were in this category.

Swanson and colleagues (Swanson, Sunohara et al., 1998) also discuss the possibility that ADHD would have both genetic and non-genetic etiologies: ‘It has been suggested that environmentally-altered brain development due to fetal distress, which selectively damages dopamine neurons and affects cortical-basal ganglia dopamine pathways, may increase risk for behavioral symptoms of ADHD. We hypothesize that similar biological consequences (e.g. underactivity in cortical-basal ganglia neural networks) may occur due to genetic factors (e.g. inheritance of a 7+ genotype that produces a subsensitive dopamine D4 receptor variant) or to non-genetic factors (e.g. damage to striatal dopamine neurons during fetal distress).’ (pp. 39-40).

There are also reports of associations between the dopamine D4 receptor gene polymorphisms and a personality trait known as novelty seeking (Benjamin et al., 1996; Ebstein et al., 1996). Novelty seeking refers to characteristics such as impulsiveness, exploration, changeableness and excitability - behaviours similar to those observed in ADHD. A recent study indeed demonstrated that adult ADHD patients score higher than normal controls on a novelty seeking scale (Downey, Stelson, Pomerleau & Giordani, 1997).

Three investigations have failed, however, to replicate the finding of an association between novelty seeking and the DRD4 7-repeat allele (Jönsson et al., 1997; Malhotra et al., 1996; Vandenbergh, Zonderman, Wang, Uhl & Costa, 1997). The
results of a further study (Ebstein, Nemanov, Klotz, Gritsenko & Belmaker, 1997) suggest the following conclusion: the effect of the DRD4 gene on novelty seeking is small (explaining only about 3-4% of the variance) and therefore the ‘noise’ generated by differences in methodology or demographic characteristics between studies could have obscured the finding of an association.

To summarise, new evidence from molecular genetic studies on animals and humans suggests several genes that may be implicated in hyperactivity. The dopaminergic genes may provide a particularly fruitful direction for future research. The QTL found on rat chromosome 8 is another candidate worth exploring further.

3.5 Chapter summary

The first half of this chapter introduced the methods of behaviour genetics. Family, adoption and twin studies form the main quantitative genetic methods in research on human behaviour. Family studies can be informative regarding the mode of inheritance and they can also disconfirm a genetic hypothesis. Twin and adoption studies can confirm the genetic hypothesis. The difficulty in obtaining the sample often rules out the possibility of carrying out an adoption study.

The twin method relies on comparisons between monozygotic and dizygotic twin pairs. Research supports the equal environments assumption, which underlies the twin design, and shows that questionnaires achieve high levels of accuracy in determining zygosity of twins. With regard to the representativeness issue, some small differences between twins and singletons do exist, but these do not invalidate genetic analyses. Whereas the quantitative genetic methods operate at the level of overall genetic and environmental influences, molecular genetic techniques aim to identify the actual genes influencing behaviour.

140
The second half of this chapter reviewed the research on hyperactivity which has used these various behaviour genetic methods. Overall, the studies suggest a high heritability for the dimension of hyperactivity in the general population, with genetic factors accounting for approximately 60-70% of the variance. The non-shared environment (including measurement error) rather than the shared environment explains most of the remaining variance. The finding that the estimates vary somewhat depending on the informant, and the evidence for rater bias in maternal ratings, highlight the importance of obtaining ratings from multiple sources. Parent reports on extreme hyperactivity show similarly high heritability. New evidence from molecular genetic studies has already implicated several possible candidate genes that may be involved in the etiology of hyperactivity.
Chapter 4

Co-occurrence of hyperactivity and conduct problems

4.1 Conduct problems

Although hyperactivity frequently co-occurs with several other childhood disorders, the strongest association is that with antisocial behaviours. In fact the co-occurrence of the two conditions is so common that for a long time it was questioned whether they can be distinguished at all (see Taylor, Schachar & Wieselberg, 1986). At present the key challenge is to understand why this co-occurrence emerges. Studies which aim to focus only on either hyperactivity or conduct problems also have to explicitly consider how to tackle the issue of comorbidity. To place the co-occurrence of conduct problems and hyperactivity in a theoretical context, background issues relating to conduct disorder will be first briefly reviewed.

4.1.1 Defining features

The term ‘externalising problems’ encompasses not only hyperactivity but also conduct problems. As with hyperactivity, conduct problems can either be considered as a categorical classification or as a continuous dimension. Conduct problems or
antisocial behaviour, considered as a dimension, refer to delinquent acts, such as lying, truancy and stealing, and aggressive acts. The various antisocial behaviours may seem rather different, but they all violate social rules and expectations, and often reflect acts against other people or property. Researchers often measure antisocial behaviour using rating scales, such as the Achenbach scales (Achenbach, 1991a,b) or the Conners’ scales (Goyette et al., 1978).

The DSM-IV (American Psychiatric Association, 1994) specifies the criteria for the psychiatric diagnosis of conduct disorder. It divides the symptoms into four groups: aggression to people and animals, destruction of property, deceitfulness or theft and serious violations of rules (see Table 4.1.1a for a full list of symptoms). The DSM-IV requires that the child has shown at least three of these symptoms, of which at least one was present within the last six months and the remaining within the last 12 months.

Table 4.1.1b shows the ICD-10 (WHO, 1993) list of symptoms for conduct disorder. The specific rules or requirements about numbers of symptoms in ICD-10 are quite similar to the DSM-IV criteria (in general, three or more symptoms must be present, with at least one having been present for at least six months), but the ICD-10 distinguishes between conduct disorder confined to the family context, unsocialized conduct disorder and socialized conduct disorder. Both classification systems make a distinction between childhood-onset and adolescent-onset conduct disorder (see below).
Table 4.1.1a DSM-IV symptom list for conduct disorder

<table>
<thead>
<tr>
<th>Aggression to people and animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. often bullies, threatens, or intimidates others</td>
</tr>
<tr>
<td>2. often initiates physical fights</td>
</tr>
<tr>
<td>3. has used a weapon that can cause serious physical harm to others (e.g. a bat, brick, broken bottle, knife, gun)</td>
</tr>
<tr>
<td>4. has been physically cruel to people</td>
</tr>
<tr>
<td>5. has been physically cruel to animals</td>
</tr>
<tr>
<td>6. has stolen while confronting a victim (e.g. mugging, purse snatching, extortion, armed robbery)</td>
</tr>
<tr>
<td>7. has forced someone into sexual activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destruction of property</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. has deliberately engaged in fire setting with the intention of causing serious damage</td>
</tr>
<tr>
<td>9. has deliberately destroyed others' property (other than fire setting)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deceitfulness or theft</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. has broken into someone else’s house, building, or car</td>
</tr>
<tr>
<td>11. often lies to obtain goods or favors or to avoid obligations (i.e. “cons” others)</td>
</tr>
<tr>
<td>12. has stolen items of nontrivial value without confronting a victim (e.g. shoplifting, but without breaking and entering; forgery)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serious violations of rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. often stays out at night despite parental prohibitions, beginning before age 13 years</td>
</tr>
<tr>
<td>14. has run away from home overnight at least twice while living in parental or parental surrogate home (or once without returning for a lengthy period)</td>
</tr>
<tr>
<td>15. is often truant from school, beginning before age 13 years</td>
</tr>
</tbody>
</table>
Table 4.1.1b ICD-10 symptom list for conduct disorders

1. has unusually frequent or severe temper tantrums for his or her developmental level
2. often argues with adults
3. often actively refuses adults’ requests or defies rules
4. often, apparently deliberately, does things that annoy other people
5. often blames others for his or her own mistakes or misbehaviour
6. is often “touchy” or easily annoyed by others
7. is often angry or resentful
8. is often spiteful or vindictive
9. often lies or breaks promises to obtain goods or favours or to avoid obligations
10. frequently initiates physical fights (this does not include fights with siblings)
11. has used a weapon that can cause serious physical harm to others (e.g. bat, brick, broken bottle, knife, gun)
12. often stays out after dark despite parental prohibition (beginning before 13 years of age)
13. exhibits physical cruelty to other people (e.g. ties up, cuts, or burns a victim)
14. exhibits physical cruelty to animals
15. deliberately destroys the property of others (other than by fire-setting)
16. deliberately sets fires with a risk or intention of causing serious damage
17. steals objects of non-trivial value without confronting the victim, either within the home or outside (e.g. shoplifting, burglary, forgery)
18. is frequently truant from school, beginning before 13 years of age
19. has run away from parental or parental surrogate home at least twice or has run away once for more than a single night (this does not include leaving to avoid physical or sexual abuse)
20. commits a crime involving confrontation with the victim (including purse-snatching, extortion, mugging)
21. forces another person into sexual activity
22. frequently bullies others (e.g. deliberate infliction of pain or hurt, including persistent intimidation, tormenting, or molestation)
23. breaks into someone else’s house, building, or car

Recent genetic analyses on data from a large-scale twin study have provided support for the view that conduct disorder represents an extreme of the normal variation in conduct-disordered behaviour found in the general population (Slutske et al., 1997).
The study focused on conduct disorder symptoms in childhood and adolescence, but adult twins provided the information retrospectively. Model-fitting analyses showed that a multiple-threshold model fit the data. This suggests that subclinical manifestations of conduct disorder lie on the same liability dimension as the diagnosed disorder.

The prevalence rate of conduct disorder is between 2% and 6% among community samples of children (see Kazdin, 1995). As with hyperactivity, conduct problems are more common among boys than girls: the sex ratio is around 3-4:1 (see Zoccolillo, 1993). Among those children who show conduct problems from an early age, the symptoms tend to persist over time (see below). The concept of heterotypic continuity (Kagan, 1969) is again helpful: the underlying characteristics or tendencies may be stable, but children of different ages show different symptoms. For example, a young child, however aggressive or antisocial, would be unlikely to break into someone else's house or force someone into sexual activity.

4.1.2 Subtypes

A substantial amount of evidence suggests that there are two distinct developmental pathways to antisocial behaviour - one emerging in childhood and the other during adolescence (see, for example, Hinshaw, Lahey & Hart, 1993). Both the DSM-IV and the ICD-10 also make the distinction between childhood-onset (onset prior to age 10 years) and adolescent-onset conduct disorder.

Hinshaw and colleagues (Hinshaw et al., 1993) and Kazdin (1995) have reviewed the evidence supporting the distinction between the two subtypes. The symptoms of oppositional defiant disorder - defiant, disobedient and hostile behaviours toward authority figures - are considered early signs of childhood-onset conduct disorder. The childhood-onset type is the more severe form, with stability over time: a link is suggested from childhood-onset conduct disorder to antisocial behaviour in
The co-occurrence of conduct problems and hyperactivity is specific to conduct problems with childhood onset (see section 4.2.2 below).

Adolescent-onset conduct disorder is markedly less aggressive and less severe than the childhood-onset subtype. It is less likely to continue beyond the adolescent years; Moffitt (1993) suggests that the distinction between the two subtypes explains the almost tenfold temporary increase in the prevalence of antisocial behaviour during adolescence. In contrast to childhood-onset antisocial behaviour, which is much more common among boys than girls, adolescent-onset antisocial behaviour is more evenly distributed among the sexes. Peer influences are considered important in the etiology of the adolescent-onset form of antisocial behaviour (Moffitt, 1993). The distinction between childhood- and adolescent-onset conduct disorder in many respects mirrors the previous distinction between aggressive and non-aggressive forms of conduct disorder (see Hinshaw et al., 1993).

4.1.3 Etiology

Environmental factors

Certain parenting practices, in particular lack of monitoring and harsh and inconsistent discipline, are associated with aggressive and delinquent behaviours (for a review, see Frick, 1994). For example, Kingston and Prior (1995) found that, in a sample of 2-8-year-old children, harsh child-rearing practices were associated with stable aggressive behaviour. Studies have linked conduct problems with various other environmental factors too, such as dysfunctional family relationships and lower socio-economic status (see Kazdin, 1995; Lahey et al., 1995).

There is a strong association between conduct disorder and parental (in particular paternal) antisocial personality disorder, as well as other antisocial behaviours, such as substance abuse (see Frick, 1994; Kazdin, 1995). However, demonstrating such
an association does not answer the question of whether the transmission is genetic, environmental or a combination of both. An antisocial child with an antisocial father may not only be copying his father’s behaviour, but may also have inherited the genes predisposing for aggressive behaviour.

Most studies investigating the role of environmental factors in conduct problems have not explicitly distinguished between the childhood- and adolescent-onset subtypes. Nevertheless, many of the parenting variables have been associated with conduct problems in pre-adolescent children and therefore seem to play a role in childhood-onset antisocial behaviour (see Kazdin, 1995; Kingston & Prior, 1995). Adolescent-onset antisocial behaviour is thought to relate particularly to peer influences, which may itself be related to factors such as lack of monitoring and disadvantaged neighbourhood.

Genetic effects

Before investigators became aware of the distinction between childhood- and adolescent-onset antisocial behaviour, the inconsistent findings regarding genetic effects presented a puzzle. There is only slight evidence of genetic effects on juvenile delinquency (McGuffin & Gottesman, 1985). Criminality and antisocial personality disorder in adulthood show marked heritability, however (McGuffin & Gottesman, 1985; see also Plomin et al., 1997).

The ‘two developmental pathways’ view explains these findings as showing that genetic factors do not play a major role in adolescent-onset conduct disorder (juvenile delinquency), whereas there are moderately strong genetic effects on childhood-onset conduct disorder (with criminality as one manifestation of the disorder in adulthood). In their review of the genetic literature, Dilalla and Gottesman (1989) used the terms ‘transitory delinquents’ and ‘continuous antisocials’, which nicely capture the difference between the two subtypes.
Two recent twin studies which used the Child Behaviour Checklist and obtained their samples from the general population exemplify the results for the continuous dimensions of aggressive and delinquent behaviours. Edelbrock, Rende, Plomin and Thompson (1995) studied a sample of 99 MZ and 82 DZ twin pairs and Schmitz, Fuller and Mrazek (1995) a sample of 66 MZ and 137 DZ twin pairs. The heritability estimates were 60% for the Aggressive behaviour subscale and 35% for the Delinquent behaviour subscale in the Edelbrock et al. (1995) study; the estimates were 55% and 79%, respectively, in the Schmitz et al. (1995) study. The two studies obtained comparable results for the Aggressive behaviours subscale, but how could we explain the widely different estimates for the Delinquent behaviours subscale? Again, the age of the children might provide an explanation: the average age of the children was 11.0 years (range 7-15 years) in the Edelbrock et al. study and 7.6 years (range 4-18 years) in the Schmitz et al. study. More children in the study by Edelbrock et al. may have showed adolescent-onset antisocial behaviour, which the lower heritability estimate for the Delinquent behaviours subscale may indicate.

Perhaps providing some direction for molecular genetic investigations, studies have linked antisocial behaviour to reduced levels of serotonin and norepinephrine (see Pennington & Ozonoff, 1996). A recent study (Unis et al., 1997) reported an increase in whole blood serotonin levels in adolescents with childhood-onset conduct disorder, compared to adolescents with adolescent-onset conduct disorder. In section 1.11.3 we discussed the association between hyperactivity and serotonin levels. Unis et al. (1997) did not report rates of co-occurring hyperactivity in their samples, but noted that the two groups did not differ in rates of comorbid ADHD diagnoses. This suggests that their samples of the two types of conduct disorder may not be representative of other such samples and therefore it is difficult to judge the significance of these results.

An important finding has emerged from analyses on Swedish adoption data on criminality in adulthood: environmental stressors seem to interact with specific
genetic predispositions, either increasing or decreasing the risk of different genotypes (Bohman, 1996). This evidence of gene-environment interaction shows how genes may operate by influencing an individual’s susceptibility to environmental stressors.

4.1.4 Cognitive impairments?

Studies on possible cognitive deficits in children with conduct problems have produced mixed results, in part because of methodological limitations. Recent reviews on hypothesised executive function (Pennington & Ozonoff, 1996) and response inhibition (Oosterlaan, Logan & Sergeant, 1998) deficits in both conduct disorder and ADHD provide a useful framework for discussing the findings. Both reviews were discussed in more detail in chapter two; here the main findings are only briefly summarised as they relate to conduct disorder.

In their review of executive function (EF) deficits in childhood disorders, Pennington and Ozonoff (1996) summarised the studies which had tested the EF hypothesis in relation to conduct disorder. Nine studies fulfilled their criteria of (1) an explicit test of the frontal hypothesis of conduct disorder or use of commonly accepted EF measures; (2) publication in a refereed journal; and (3) inclusion of a control group (Dykman & Ackerman, 1991; Hurt & Naglieri, 1992; Lueger & Gill, 1990; McBurnett et al., 1993; Moffitt & Henry, 1989; Moffitt & Silva, 1988; Moffitt, Lynam & Silva, 1994; Seguin, Pihl, Harden, Tremblay & Boulerice, 1995; and White et al., 1994).

There was evidence of poor performance on EF measures in both clinic-referred and population samples of children with conduct disorder, and this was not due to lower IQs of these children. The crucial finding, however, was that this only held for children who showed both conduct disorder and ADHD symptoms; conduct disorder on its own was not associated with poor performance on EF tasks. Pennington and Ozonoff (1996) concluded that some non-EF measures (in particular verbal
measures, such as verbal IQ) often show a stronger association with conduct disorder than do EF measures. A limitation of the review, which reflects a limitation of the studies included in the review, is that no distinction was made between childhood- and adolescent-onset conduct disorder.

The review of stop task studies (Oosterlaan et al., 1998) concluded that children with conduct disorder were indistinguishable from children with ADHD. (See section 2.2.3 for a critique of the meta-analysis.) Both groups of children had flatter inhibition slopes than the control children. However, the results regarding conduct disorder were inconsistent across studies. The authors did not report the results for the standard deviations of reaction times. For the mean reaction times, the results are difficult to interpret due to methodological reasons (Oosterlaan et al., 1998). The only safe conclusion at present is that we do not yet know how conduct disorder, independent of ADHD, relates to performance on the stop task and other measures of response inhibition. As the children in the stop task studies were aged between 6 and 12 years, we know even less about any possible link between adolescent-onset conduct disorder and performance on such tasks.

The research literature on the association between the disruptive behaviour disorders and academic underachievement was reviewed in section 1.8.1. The conclusion was that in childhood the link is stronger for hyperactivity (Frick et al., 1991; Sonuga-Barke et al., 1994), though by adolescence there is a clear association between antisocial behaviour and underachievement (see Hinshaw, 1992b). Antisocial behaviour and delinquency are associated with low verbal intelligence in particular (see Earls, 1994).

The possibility that poor performance on psychological tests and tasks could also reflect 'task engagement' factors, such as delay aversion, rather than a cognitive deficit was discussed in some detail in chapter two. Very few methodologically strong studies have investigated this possibility with regard to children with conduct
problems. The study by Sonuga-Barke, Taylor and Heptinstall (1992; see section 2.4.3), which investigated the effects of presentation time on task performance, found that the conduct disorder-only group of 6-8-year-old girls did not show the same tendency to choose shorter presentation times as the hyperactive and comorbid hyperactive and conduct problem groups.

The inconsistent findings regarding the association between conduct disorder and performance on cognitive and other tasks may reflect, in part, a lack of a proper theoretical framework. Studies have often failed to adopt a developmental perspective to antisocial behaviour. Before asking the question of whether hyperactivity and conduct disorder are associated with the same ‘deficits’ on certain tasks, it is essential to consider the reasons for the co-occurrence of the two disorders.

4.2 Co-occurrence of conduct problems and hyperactivity

4.2.1 Prevalence

In general, between 25% and 50% of hyperactive children show conduct problems by adolescence (e.g. Barkley, Fischer, Edelbrock & Smallish, 1990; Eiraldi, Power & Maguth Nezu, 1997; Gittelman, Mannuzza, Shenker & Bonagura, 1985; Loney, Whaley-Klahn, Kosier & Conboy, 1983; Mannuzza et al., 1991). The exact rate of co-occurrence depends crucially on how each disorder is defined. For example, in a sample of 6-12-year-old children, 44% of those with ADHD combined type (based on DSM-IV criteria) met diagnostic criteria for conduct disorder, compared to none of those with the inattentive type of ADHD (Eiraldi et al., 1997).

McArdle, O'Brien and Kolvin (1995) investigated the relationship between hyperactivity and conduct disorder in a large community-based sample. The children
were aged 7 and 8 years and 11 and 12 years. McArdle et al. (1995) defined conduct disorder based on data from semi-structured parent interviews and hyperactivity based on the Rutter teacher and parent scales.

Grouping situational and pervasive hyperactivity together, 28% of the younger and 13% of the older children with hyperactivity had conduct problems. Of the younger children with pervasive hyperactivity, a total of 44% were conduct disordered, of whom 7% severely so. For the older children with pervasive hyperactivity, the figures were 28% and 11%, respectively. But how large proportion of children with conduct problems are also classified as hyperactive? Almost all (93%) of the younger children with conduct problems, but somewhat fewer (65%) of the older children, had either situational or pervasive hyperactivity. Considering only pervasive hyperactivity, 32% of the younger children and 26% of the older children with conduct problems were also classified as hyperactive.

These prevalence figures show that, when defining hyperactivity as including both situational and pervasive subtypes, hyperactivity was virtually a prerequisite for conduct disorder among the younger children. The opposite was not true, however: the majority of hyperactive children, in either age group, did not have comorbid conduct disorder. When using the pervasiveness criterion for hyperactivity, the prevalence rate differences between hyperactive children showing conduct problems and conduct disordered children showing hyperactive symptoms were less obvious.

Overall, these findings confirm the high rates of co-occurrence between the two disorders. There is also a strong association between the dimensions of conduct disorder/oppositional behaviour and hyperactivity. The correlations between the dimensions for the same rater are around .6 and for different raters around .4 (which is as high as correlations between raters for the same psychopathology) (Fergusson, Horwood & Lloyd, 1991).
4.2.2 Reasons for the co-occurrence

Silberg et al. (1996) point out that there are two different strategies for examining the reasons for the co-occurrence of two disorders. The first strategy investigates causal influences that are separate for the two disorders, as well as causal influences that the disorders may share. The second strategy focuses on the developmental pathways of the disorders.

Following the first approach, Silberg et al. (1996) analysed data from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) to explore the possibility of shared genetic effects on hyperactivity and conduct problems. The analyses focused on mothers' ratings (both biological and adoptive) of 265 MZ and 163 DZ male-male, 347 MZ and 160 DZ female-female, and 262 male-female twin pairs. See section 3.4.3 for a discussion of the measures used in the study.

Silberg et al. (1996) carried out bivariate model fitting analyses, using the Cholesky decomposition model (see section 6.1.3), separately for the younger cohort (8-11 years) and the older cohort (12-16 years). In the younger cohort, the covariation between hyperactivity and conduct problems was almost entirely due to genetic factors. For both girls and boys, the same set of genes were influencing the two types of problem behaviours. A very different pattern of results emerged for the older cohort: there was evidence of a distinct set of genes influencing hyperactivity and conduct problems.

A latent class analysis of the VTSABD data on antisocial behaviours provided further evidence for this: Silberg and colleagues (Silberg et al., 1995) showed that separate classes of 'pure' conduct problems and comorbid hyperactivity-conduct problems emerged. There were strong genetic effects on the comorbid class, whereas the pure conduct problems class had a very strong shared environmental component.
The recent twin study by Nadder et al. (1998; see section 3.4.3) confirmed the finding from the Silberg et al. (1996) study of a common genetic factor influencing the coexpression of ADHD and ODD/CD symptomatology. Although the results suggested that the two phenotypes share only 50% of the additive genetic factors, this finding may be due to the study not distinguishing between childhood- and adolescent-onset conduct problems (the children were aged between 7 and 13 years).

To investigate more directly the developmental progression of the disorders, Taylor and colleagues (Taylor, Chadwick, Heptinstall and Danckaerts, 1996) carried out a longitudinal study. The first phase of the study involved screening a population of 6- and 7-year-old boys and obtaining ratings on the Rutter scales from teachers and parents. More detailed data, including interview with parents (the Parental Account of Children’s Symptoms, i.e. PACS), was obtained for a selected subsample of the children. At the follow-up stage, when the boys were aged between 16 and 18 years, the parents again completed the Rutter scale and were interviewed using the Parental Account of Child and Adolescent Symptoms (PACAS).

This longitudinal approach revealed an interesting developmental pattern: hyperactivity in childhood predicted conduct problems in adolescence, whereas conduct problems in childhood did not predict adolescent hyperactivity. This led the authors to conclude that the two conditions frequently co-occur because conduct disorder is a complication of hyperactivity. The children in the comorbid group were similar to the hyperactive-only group on various outcome measures. In children showing symptoms of both conditions, hyperactivity seems to be the primary problem.

Taylor et al. (1996) emphasise that their suggestion ‘is not the same as the idea that hyperactivity represents an early stage of a single disorder of which conduct disorder is a later stage. The development of poor social adjustment in the hyperactive group did not depend on the development of antisocial symptoms; to the contrary,
antisociality as such played only a weak role in determining later social adjustment’ (p. 1224).

4.3 Chapter summary

Antisocial behaviour, or the diagnosis of conduct disorder, refers to aggressive and delinquent acts. Several studies indicate an association between environmental factors, such as parenting characterised by harsh discipline and lack of monitoring, and children’s antisocial behaviour. The distinction between childhood-onset and adolescent-onset conduct problems is important. Genetic factors seem to play a more important role in the etiology of childhood-onset antisocial behaviour. Adolescent-onset antisocial behaviour is more common and less severe, and peer influences in particular are thought to be involved in the etiology of this subtype.

The two types of externalising behaviours frequently co-occur in the same children. However, although hyperactivity predicts later conduct problems, the reverse is not true. In section 1.8 the various possibilities for explaining the co-occurrence of two conditions were discussed, using the framework of Caron and Rutter (1991). Recent evidence provides strongest support for the view that hyperactivity increases the risk for conduct problems. Taylor et al. (1996) suggest that hyperactivity raises the likelihood of impaired social adjustment, including the development of conduct problems. This refers to childhood-onset antisocial behaviour; adolescent-onset antisocial behaviour is not associated with hyperactivity.

Although hyperactivity may lead to conduct problems, not all hyperactive children will follow this pathway; some of them will not show any symptoms of conduct disorder. Regarding performance on psychological tests or tasks, a largely unresolved issue is the extent to which any true or apparent deficits on hyperactive
children’s task performance are related to the co-occurring conduct disorder symptomatology or to the ‘core’ hyperactivity symptomatology itself.
Chapter 5

Aims of the study

5.1 Integration of the literature

Chapters one to three reviewed the research literature on hyperactivity. The first chapter focused on general background literature. Between 2% and 7% of children could be classified as hyperactive and longitudinal investigations show that the symptoms tend to persist over time. Hyperactive children frequently suffer from other problems too, such as learning disabilities, anxiety disorders and, in particular, antisocial behaviour. Although most studies on hyperactivity have adopted a categorical approach, research suggests an underlying continuous dimension of hyperactivity.

Studies on cognitive and task engagement factors in hyperactivity (chapter two) provide little support for the view that the core ‘deficit’ would be one of sustained attention. Several alternative theories have attempted to explain the emerging pattern of findings. A popular theory is the response inhibition hypothesis. Evidence for this view comes from studies which show group differences between hyperactive and control children on inhibition tasks. The debate, however, centers on the interpretation of these group differences. It now appears that hyperactive children are not less likely to trigger the inhibitory process than other children, nor
is their inhibitory process more variable. Rather, the group differences emerge because children with hyperactivity are generally slower and more variable in their speed of responding on these tasks. To confirm that these results, particularly that of slower speed of the inhibitory process, are not an artifact of selection, it would be important to show that this pattern of responding is also characteristic of a general population-based sample of hyperactive children and not only of clinic-based samples.

Another hypothesis of the presumed cognitive deficits in hyperactivity focuses on working memory. This view reflects an attempt to explain the findings that children with hyperactivity tend to perform poorly on various executive function measures. The argument is that the function which all the so-called executive function measures share is that of working memory. The available evidence suggests that children with hyperactivity may perform poorly on some working memory measures. As the evidence is very limited, it would be important to study the working memory performance of an unbiased sample of hyperactive children.

In contrast to these cognitive theories, the delay aversion hypothesis suggests that children with hyperactivity simply have aims that are different from those of other children: in their behaviour and task performance they aim to reduce overall periods of delay. Evidence from several studies supports this hypothesis.

Chapter three reviewed the research on genetic factors in hyperactivity. It is clearly a condition which has a very strong genetic component. Twin studies suggest a heritability of around 60-70% and molecular genetic studies have started to provide preliminary evidence about specific genes which may be involved.

A general picture of hyperactivity is slowly emerging. It all seems to start from genes. Certain genes start a chain of changes which in the end results in an individual showing a tendency to behave in an overactive, impulsive and inattentive manner. However, genes do not in some mysterious way cause behaviour directly.
Genes simply code for proteins, which create the different physiological systems (the skeletal system, muscles, the endocrine system, the immune system, the digestive system and, most important for behaviour, the nervous system).

At the neurochemical level, the evidence is strongest for the involvement of dopamine and norepinephrine in hyperactivity. Research implicates the frontal-striatal circuits as the areas of the brain whose functioning the 'hyperactivity genes' seem to influence. These differences in how the brain functions between individuals with and without hyperactivity could cause the group differences on the psychological tests or tasks. This cognitive or motivational level could also be seen as mediating the link between genetic factors and behaviour.

An important issue to remember is that whatever the specific associations of hyperactivity are at the various levels of the 'causal pathway', the differences between individuals with and without hyperactivity need not be qualitative, but may simply be quantitative. Another important issue is the possible heterogeneity in hyperactivity. One should also not forget that the heritability of hyperactivity, though high, is not 100%: the environment must play a role too.

Chapter four reviewed the research on conduct problems and on the co-occurrence of conduct problems and hyperactivity. Studies indicate an association between environmental factors, such as parenting characterised by harsh discipline and lack of monitoring, and children's antisocial behaviour. The co-occurrence of hyperactivity and antisocial behaviour is specific to childhood-onset conduct problems. Recent research suggests that hyperactivity may lead to conduct problems; this would also explain the findings of shared genetic effects on the two types of externalising behaviours. These new findings lead to new research questions. We do not yet know, for example, to what extent any true or apparent deficits on hyperactive children's task performance are related to the co-occurring conduct problem symptomatology or to the 'core' hyperactivity symptomatology itself.
5.2 Aims and hypotheses

The present study was an attempt to start to integrate the disparate sub-fields of research on hyperactivity. The main hypothesis combines the research traditions of behaviour genetic studies and studies testing psychological theories of hyperactivity: the cognitive impairments or task engagement factors associated with hyperactivity mediate the genetic effects on the condition. It was possible to investigate this by establishing whether the genetic influences on ratings of hyperactivity are also those which produce poor performance on the measures. The present design allowed the testing of this type of a genetic hypothesis, as we employed a twin design.

The study also aimed to investigate the task performance of hyperactive children in more detail. The three theories of hyperactivity which we focused on are those of response inhibition deficit, working memory impairment and delay aversion. We contrasted the relative efficacy of tasks related to each of these theories in differentiating children with hyperactivity from control children. The hypothesis was that children with hyperactivity perform worse than control children on tasks measuring inhibition, working memory and delay aversion. In contrast to most previous studies, the present sample of hyperactive children was obtained from the general population and is therefore unbiased. As recent evidence seems to provide somewhat stronger support for the delay aversion than the other two theories, we could investigate the possibility that the delay aversion task would be a better discriminator between the groups than the other tasks. We also aimed to explore the largely neglected issue of possible sex differences in hyperactive children's performance on the tasks.

From a behaviour genetic perspective, the present study had several further aims. We aimed to replicate the previous findings of high heritability both for the dimension of hyperactivity and for extreme hyperactivity. As a measure of hyperactivity we used the Conners' Revised Teacher and Parent Rating Scales.
These questionnaires are frequently used in hyperactivity research but have not, to our knowledge, been used in a twin study before. Another aim was to explore the extent to which hyperactive children’s performance on the various tasks is influenced by genetic, shared environmental and non-shared environmental factors.

This study also attempted to provide further insight into the co-occurrence of hyperactivity and conduct problems. We aimed to explore the extent to which hyperactive children’s poor performance on any of the tasks is related to the co-occurring conduct problem symptomatology. The study also aimed to replicate the recent findings of shared genetic effects on hyperactivity and conduct problems. In contrast to the previous studies exploring this issue, which considered hyperactivity as a continuous dimension, we focused on extreme hyperactivity.

In addition to the main hypotheses and aims outlined above, the study design also allowed an investigation of several other issues that may further our understanding of hyperactivity. We aimed to investigate whether a population-based sample of hyperactive children have lower average IQs than other children. If hyperactivity were associated in our sample with lower IQs, we could investigate whether this would explain any possible group differences on performance on the various tasks. A further aim was to explore the possibility of shared genetic effects on extreme hyperactivity and IQ. With regard to task performance, we also aimed to investigate possible age effects.

As hyperactivity is frequently associated with not only conduct problems, but also other types of problems, such as anxiety, we aimed to investigate this in our population-based sample of hyperactive children. We also aimed to explore the possibility of co-occurring anxiety symptoms influencing task performance. The twin design also allowed us to investigate the heritability of the other types of problem behaviours, as well as the heritability of IQ. In addition, although the
study focused on pervasive hyperactivity, we aimed to examine the extent to which there is cross-informant consistency in ratings of hyperactive behaviour.

A further aim of this study was to obtain UK norms for the Revised Conners’ Teacher Rating Scale. The original norms are based on a rather small North American sample, for which the data was collected 20 years ago (Goyette et al., 1978).
Chapter 6

Design and Methodology

6.1 Analysis of twin data

6.1.1 Twin correlations

The fact that DZ twins share approximately half their genes and MZ twins all their genes provides the basis for analysing twin data. Based on this genetic relatedness and the assumption that the environments for MZ and DZ twins are roughly equal (the equal environments assumption, see section 3.1.3), it is possible to quantify the importance of genetic and environmental factors in causing differences between individuals on traits or abilities.

In the basic equation, variance in a phenotype \(V_p\) is divided into that due to additive genetic factors \(A\) and that due to the environment (common or shared, \(C\), and nonshared, \(E\)):

\[V_p = A^2 + C^2 + E^2\]
Within-pair correlations between twins provide estimates of the \(A \), \(C \) and \(E \) terms:

\[
\begin{align*}
 r_{MZ} &= A^2 + C^2 \\
 r_{DZ} &= \frac{1}{2}A^2 + C^2
\end{align*}
\]

Inspection of the twin correlations gives an indication of the importance of the \(A \) and \(C \) terms. If the twin correlations are approximately the same for MZ and DZ twins, this suggests a role for the shared environment but not for genetic factors. An MZ correlation twice the size of a DZ correlation suggests that additive genetic factors may be important for the trait. A larger difference between the MZ and DZ correlations suggests that, in addition to additive genetic factors, nonadditive genetic factors, or contrast effects (sibling interaction and/or rater bias), contribute to the phenotypic variance too. (Only if there is no shared environmental influence, can the nonadditive genetic effects be estimated.) An MZ correlation less than twice the size of the DZ correlation suggests that both additive genetic and shared environmental factors are important.

Obtaining estimates for the \(A \), \(C \) and \(E \) terms from these basic calculations has its limitations. First, this approach does not allow one to test whether a particular parameter differs significantly from zero. Second, it does not take into account variance differences between twins. Model fitting provides a method which overcomes these limitations.

6.1.2 Model fitting

Structural equation modelling (SEM) combines two methods of analysis: path analysis and factor analysis. The term *structural equation* refers to a regression equation in the context of a causal model. The aim in a factor analysis is to account for the correlation (covariance) between sets of measures in terms of a smaller number of underlying dimensions (factors). The form of factor analysis used in SEM is called confirmatory factor analysis. In contrast to exploratory factor
analysis, which is data-driven, confirmatory factor analysis tests a hypothesised set of relationships between the measured variables by using latent (unobserved) variables. The latent variables are commonly theoretical constructs which are thought to explain the covariance between two or more measured variables.

In short, SEM is a theory-driven method for testing the fit of multiple relationships simultaneously; the relationships between variables can be unidirectional or two-directional (correlational). Various packages exist for carrying out SEM analyses. We used the EQS (Bentler, 1995) to analyse the present data.

In SEM terminology, problems of identification refer to the restrictions on the number of free parameters that can be estimated from the number of data points specified. A model is under-identified, if one or more of the parameters cannot be estimated due to insufficient number of data points. If there is exactly the same number of data points as there are parameters, the model is said to be just-identified. An over-identified model has fewer parameters than there are data points.

In SEM, estimating parameters is an iterative process. The programme first derives the goodness of fit using some initial values for the parameters that it needs to estimate. The programme then determines which parameter changes lead to an improvement in the fit. This is repeated until the fit cannot be improved any further. The fit of the model is evaluated based on several fit indices. In analysing the present data, we used the following fit indices: chi-square, Akaike's information criteria and comparative fit index (see Table 6.1.2).

As the aim is to choose the model that best fits the data, the investigator has to compare different models of the same data. It is possible to carry out a statistical comparison, if the models are nested. The models are nested, if a subset of free parameters in one model is contained in the other model. The investigator can then calculate the change in the chi-square value ($\Delta\chi^2$). Choosing the model that best
fits the data follows the principle of parsimony. If a parameter can be dropped without it significantly worsening the fit of the model, it is dropped. That is, the aim is to choose the model with the fewest parameters, without significant deterioration in fit.

Table 6.1.2 Fit indices used in present thesis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Method of evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>Chi-square</td>
</tr>
<tr>
<td></td>
<td>Given that the model is correct and the sample size sufficiently large, this is the likelihood ratio test statistic for testing the model against the alternative that the covariance matrix is unconstrained. The smaller the value, the better the fit.</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike’s information criteria</td>
</tr>
<tr>
<td></td>
<td>This takes into account both the statistical goodness of fit and the number of parameters that have to be estimated. The model with the lowest value, which should ideally be negative, is the one with the best fit.</td>
</tr>
<tr>
<td>CFI</td>
<td>Comparative fit index</td>
</tr>
<tr>
<td></td>
<td>This is based on the value of the fitting function for the current model and varies between zero and one. For the model to be considered adequate, the value should be above 0.9 (Dunn, Everitt & Pickles, 1993).</td>
</tr>
</tbody>
</table>

6.1.3 Model fitting with twin data

The univariate model

In model fitting with twin data, the MZ and DZ covariance matrices provide the data against which the model is tested. Latent variables in this type of analysis are the A, C and E terms. Figure 6.1.3a shows the simple univariate model (the full ACE model; Neale & Cardon, 1992). The covariance between the A terms is set to
1.0 for MZ twins, as they share all their genes, and to 0.5 for DZ twins, as they share approximately half their genes. The covariance between the C terms is set to 1.0 both for MZ and DZ twins, as this captures the shared environmental factors. By definition, there is no covariance between the non-shared environmental factors (E). The E term also contains variance due to error.

The full ACE model is fitted first. Then parameters which do not significantly contribute to the fit of the model are dropped. Because the E term includes measurement error, this term is not usually dropped in univariate analyses. Two models, the AE and the CE models, are nested within the full model. The change in the chi-square value is used to determine which model provides the best fit for the data.

The model which includes contrast effects (AEs) would be represented by reciprocal paths 's' between the twins’ phenotypes. The AE model is nested within the AEs model.

Figure 6.1.3a Univariate analysis of twin data
Figure 6.1.3b shows the univariate model with dominance effects (the ADE model). This model can be fitted to the data, if the C term is not significant. The within-pair correlation for dominance is 1.0 for MZ pairs and 0.25 for DZ pairs. The AE model is nested within the ADE model.

![Univariate analysis of twin data with dominance effects](image)

The multivariate model

Various types of multivariate models exist for analysing twin data. Figure 6.1.3c shows *Cholesky decomposition* for the bivariate model. In this model, a set of A, C and E terms influence both variables. In addition, a separate set of A, C and E terms influence the second variable only. Cholesky decomposition can also be applied to situations where there are more than two variables. Other types of multivariate models include *the general plus specific factors model*: a set of A, C and E terms influence all the variables and, in addition, each variable has its own specific set of A, C and E terms. The general variables account for the shared
variance between the factors and the specific factors account for the variance that is specific to each variable.

![Figure 6.1.3c Cholesky decomposition for the bivariate model](image)

6.1.4 Group heritability analyses

As briefly discussed in section 3.1.3, an alternative method of analysing twin data is the DF extreme group analysis (DeFries & Fulker, 1985; 1988) which calculates a group heritability (h^2_g). This method is based on multiple regression. The investigator chooses those twin pairs in which at least one twin scores above a predetermined cut-off point. The term 'proband' refers to the twin who scores above the cut-off point. If both twins score above the cut-off point, the data for them is double entered.
This method calculates the regression toward the mean for MZ and DZ co-twins of probands. In the regression equation, the predictors are the proband's score (P) and the coefficient of genetic relatedness between the twins (R; 1.0 for MZ twins and 0.5 for DZ twins). The response (dependent) variable is the co-twin's predicted score (C).

\[C = B_1P + B_2R + A \]

\(B_1 \) is the partial regression of co-twin's score on proband's score and \(B_2 \) is the partial regression of co-twin's score on coefficient of relationship. If the data have been transformed prior to the analysis, \(B_2 \) is a direct estimate of \(h^2_g \). A transformation here means that each score is expressed as a deviation from the mean of the unselected population and then divided by the proband mean for the zygosity group (i.e. MZ scores are divided by the MZ proband mean). The last term in the equation, \(A \), is the regression constant.

Because the data are double entered, the standard errors for the \(h^2_g \) term have to be corrected using the following formula (see Stevenson, Pennington, Gilger, DeFries & Gillis, 1993):

\[
\text{corrected SE} = \text{obtained SE} \times \sqrt{\frac{N_D - K - 1}{N_S - K - 1}}
\]

where \(N_D \) is the number of double-entered twin pairs, \(N_S \) is the number of single-entered twin pairs and \(K \) is the number of terms in the equation, which is 2 in this case. The transformed MZ co-twin mean gives an upper limit for the total genetic and shared environmental influences.

The bivariate DF extreme analysis calculates the regression towards the mean on a second variable in the co-twins of probands. The bivariate group heritability estimate is denoted as \(h^2_{g(xy)} \); \(x \) is the variable used to define the probands and \(y \) is the measure on which the co-twins are predicted. That is, the co-twin's score on \(Y \)
is regressed onto the proband’s X score and the R term. The final transformation is achieved by dividing the scores of co-twins (Y) by the proband mean score on X for the respective zygosity groups. Like in the univariate case, the regression coefficient $B_{2(xy)}$ provides an estimate of $h^2_{g(xy)}$. The bivariate group heritability analysis examines whether there are shared genetic effects on the two variables.

6.2 Statistical power

Power calculations are needed to give an indication of the sample sizes required to detect significant differences. Our study design involves both genetic and non-genetic analyses. The non-genetic analyses are simply comparisons between two independent means, those of hyperactive and control groups. To detect a medium difference between two independent sample means ($d = .50$) at $\alpha = .05$ and 80% power requires a sample size of 64 in each group (Cohen, 1992). The sample size requirement would be 26 individuals to detect large effect sizes ($d = .80$).

In the present study the emphasis in the genetic analyses is on the DF extreme analyses, as these test the main hypothesis of the study. With a group heritability estimate of .60 (i.e. a difference in the standardised co-twins’ means of .30) and one-tailed $\alpha = .05$, the sample size would need to be 138 children to achieve 80% power (Cohen, 1988).

The model fitting approach has less power than the DF extreme analysis. Using the technique developed by Neale and Cardon (1992), a sample of 75 MZ and 75 DZ twin pairs would be required to detect a heritability of .6 ($r_{MZ} = .65$, $r_{DZ} = .35$) with 80% power and $\alpha = .05$.

172
6.3 Design of the study

The design of the study is a twin design. Identical and non-identical twin pairs participated in the study. The children were further divided into hyperactive and control groups. To remove the confound of sex, we included only same-sex twins in the study.

6.4 Ethical consideration

The Great Ormond Street Hospital for Children NHS Trust and the Institute of Child Health Research Ethics Committee gave ethical permission for this study to be carried out. Parents of the twin pairs invited for an assessment session received information sheets explaining the nature of the study. They signed consent forms prior to the session. The nature of the study was not intrusive. We did not provide formal feedback as to the children's level of performance, except in the case of two twin pairs whose parents specifically requested this. We sent a summary of the results of the study to all the families who came for an assessment session.

6.5 Participants

6.5.1 Recruitment of sample

Contacting LEAs and schools

The sample was recruited from a general population sample of same-sex twins aged between 7 and 11 years. We obtained a permission from the following 16 Local Education Authorities to approach the primary schools in their area: Redbridge, Cambridgeshire, Barking and Dagenham, Haringey, Havering, Surrey,
Bedfordshire, Oxfordshire, Hounslow, Bexley, Hertfordshire, Croydon, East Sussex, Buckinghamshire, Avon and Hillingdon. Only one education authority, Berkshire, was unwilling for us to make contact with schools in their area, as they were already taking part in another large-scale research project.

The criterion we used in choosing the LEAs was their geographical location – as close to London as possible. However, we had to exclude most of the London LEAs, as these had recently taken part in another twin study (Hohnen & Stevenson, in press). As our ultimate aim was to test the top 5% of the pervasively hyperactive twins, we decided on the number of LEAs we should approach based on our estimates of the number of twin pairs in each LEA, the likely drop-out rates at the various stages of the screening, the rate of agreement between teacher and parent ratings and also based on power calculations of the sample size required.

After obtaining a permission from the LEAs, we then wrote to the head teachers of all the primary schools within the LEAs (including special schools). There were 2439 schools taking children in the age range of 7-11 years in this area. We asked the class teachers of any twins fulfilling the criteria for our study (same-sex twins; date of birth between 1 September 1985 and 1 September 1990) to complete the Revised Conners’ Teacher Rating Scale (CTRS-28; Goyette et al., 1978), one for each twin. As many schools have a policy of placing the members of a twin pair in separate classes, different teachers may have rated each twin’s behaviour. Some schools wished the children to remain anonymous at this stage and they therefore gave their initials only, rather than giving the children’s full names. Some other schools contacted the parents at this stage to ask for their permission for the teachers to fill in the rating scales about their children’s behaviour at school. We sent one reminder letter to those schools which did not reply to our initial letter.

The next stage of the screening process involved choosing the twin pairs in which at least one twin scored above the cut-off point (T-score of 64 or higher) on the Hyperactivity dimension of the Teacher Conners’. This cut-off point represents our
estimate of the top 5% of the *pervasively* hyperactive children, taking into account the likely rate of agreement between parents and teachers and the estimated percentage of cases who would drop out at any stage during the screening process. We were therefore not aiming to include the highest scoring 5% in the ‘potentially hyperactive’ group at this stage, as this would have resulted in including only a very small percentage of the sample after the last stage of the screening. We also chose children who were candidates for the control group, stratifying them (i.e. not matching one by one) with the hyperactive twin pairs on age, sex and zygosity. To be chosen as controls, both twins had to score below the cut-off point on the Hyperactivity dimension.

Contacting parents

We then wrote to the parents of the chosen twin pairs - via the schools - and asked one of the parents, or both parents together, to fill in the Revised Conners’ Parent Rating Scale (CPRS-48; Goyette et al., 1978) for each twin and also to complete the Twin Similarity Questionnaire (Nichols & Bilbro, 1966). Only if the *same* twin scored at or above the cut-off point (T-score = 64) on the Hyperactivity dimension of the teacher questionnaire *and* on the Impulsive-Hyperactive dimension of the parent questionnaire, was the twin pair invited to the Institute for an assessment session. Similarly, for a control pair to be included in the last stage of the study, both twins had to score below the cut-off point on the hyperactivity dimension on both the Teacher and Parent Conners’.

We excluded twin pairs if one or both of them had serious disabilities or medical conditions or if they were on stimulant medication. In total we excluded 11 twin pairs: two with autism, four with physical disabilities (e.g. cerebral palsy), two with medical syndromes, two with learning difficulties and one twin pair in which the other twin was on stimulant medication (Ritalin). We sent a remainder letter to those parents who did not reply to our initial letter. Towards the end of the data collection, when several of the families cancelled their appointments, we contacted some of
these parents again, in an attempt to increase the sample size for the hyperactive group. We also made one reminder phone call to those families who did not reply to our second letter to them, in which we had invited the family for an assessment session.

Response rates

We received replies from 1629 (66.8%) schools. Of those schools which replied to our letter, only 59 indicated that they did not wish to take part in the study. In 858 of the schools there were no twins fulfilling the criteria for our study. We received Teacher Conners’ for 1316 twin pairs. In 262 (19.9%) of the twin pairs at least one twin scored above the cut-off point on the Hyperactivity dimension. To get an estimate of the proportion of a population of singletons who would score above this cut-off point (to remove the twin effect of an increased likelihood of at least one of the twins being a ‘case’), it is useful to consider this result separately for ‘twins A’ and ‘twins B’: 13.7% of ‘twins A’ and 12.6% of ‘twins B’ scored above the cut-off point on the Hyperactivity dimension.

We wrote to 392 families, asking the parents to complete the Parent Conners’. Of the parents who replied, 7 did not wish to participate in the study and therefore did not complete the questionnaires. We received Parent Conners’ from 68.4% (268) of the families we contacted (66.4% of the potential hyperactive families and 72.3% of the potential control families). The parents completed the Conners’ scale on average three months after the teachers had completed the Teacher Conners’.

Of those twin pairs of whom one or both twins were classified as a ‘case’ according to teacher report and for whom we received the Parent Conners’, 41.4% retained their group status based on parent report. Twin pairs classified as ‘controls’ based on teacher report (and for whom we received the Parent Conners’) scored below the cut-off point also on Parent Conners’ in 78.7% of the cases. Of those families whom we invited for an assessment session (N = 146), 65.8% (96) agreed to make the visit (49
of the 72 hyperactive families (68.0%) and 47 of the 74 control families (63.5%). Of the families who had agreed to come for an assessment, one hyperactive family had to be excluded before the visit and two hyperactive families after the assessment (these are included in the 11 families above who were excluded from the study). The sample whom we tested on the various tasks therefore consists of 93 twin pairs - 46 pairs in which at least one twin was pervasively hyperactive and 47 control pairs. See Figure 6.5.1 for an illustration of the various stages in the recruitment of the sample.

Figure 6.5.1 Recruitment of sample
If there was any missing data on the questionnaires, we contacted the person who had completed the questionnaire. In the very rare cases where we were unable to obtain the missing information, we coded the missing item using the most conservative option (e.g. '0' for 'not at all').

6.5.2 Twin characteristics

How close did we get to our original aim of testing the top 5% of the pervasively hyperactive children (as defined in the present study)? The 46 hyperactive twin pairs whom we assessed represent 3.5% of the total population of 1316 twin pairs (for whom we received Teacher Conners'). However, not all families whom we invited agreed to make the visit. A more interesting question is what proportion of the total twin population do those twins represent who would have been appropriate to be included in the hyperactive group. We invited 76 hyperactive families for an assessment session, but subsequently had to exclude 3 of these families. The 73 hyperactive twin pairs whom we would have liked to assess represent 5.5% of the total population of 1316 twin pairs.

Of the 1316 twin pairs, 52.4% were girls and 47.6% boys. Mean age was 8.3 years (SD = 1.5 years). We also asked the teachers whether they thought the twins were identical, non-identical or whether they were unsure about the twins' zygosity. This rather crude measure of zygosity resulted in 57.7% of the twin pairs being classified as identical, 34.2% as non-identical and 8.1% as 'not known'. These twin pairs were the sample for the analyses to obtain UK norms for the Revised Conners' Teacher Rating Scale.

Of the 268 twin pairs for whom we received ratings also from parents, 51.9% were girls and 48.1% boys. Mean age for this group of children was 7.9 years (SD = 1.4 years); 131 of them were classified as MZ and 136 as DZ pairs (TSQ was missing for one twin pair; see section 6.4.4 for zygosity determination).
Because this sample of 268 twin pairs has an excess of hyperactive children, we created a sample representative of the general population for the model fitting analyses on the rating scale data. This representative sample was chosen as follows. We estimated that, using our hyperactivity criteria, approximately 5% of the children in the general population would be pervasively hyperactive and 12-15% situationally hyperactive. We first chose randomly from twins A so that the proportions of situationally hyperactive, pervasively hyperactive and control children would equal approximately these proportions estimated for a general population sample. We then deleted further pairs in which twin B was situationally or pervasively hyperactive, until the total proportions of situationally hyperactive, pervasively hyperactive and control children were close to the figures estimated for the general population. There are 125 pairs in this sample: 61 MZ and 64 DZ pairs. Of the 250 children, 6% were pervasively hyperactive, 15.6% were situationally hyperactive and 78.4% were controls. Mean age was 8.0 years (SD = 1.39 years) and 44.8% of them were girls.

The 93 twin pairs who took part in the last stage of the study were 8.9 years old on average at the time of the assessment (SD = 1.3 years; range = 6.9 - 12.2 years). The Parent Conners’ were completed on average four months (SD = 2.2 months) prior to the assessment. Table 6.5.2 shows the figures for age, sex and zygosity for the two groups separately. An independent t-test and chi-square tests showed that there were no significant differences between the groups on age or sex, but the chi-square value for zygosity was significant ($\chi^2_{(1)} = 3.887, p = .049$). Despite us stratifying the groups on zygosity after the first stage of screening, the groups of children we actually assessed differed in their distribution of MZ and DZ twins (there were more DZ twins in the hyperactive group than in the control group).
Table 6.5.2 Group characteristics

<table>
<thead>
<tr>
<th></th>
<th>Hyperactive pairs (N=46)</th>
<th>Control pairs (N=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>8.8 (1.2)</td>
<td>9.0 (1.5)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>24 (52.2%)</td>
<td>27 (57.4%)</td>
</tr>
<tr>
<td>boys</td>
<td>22 (47.8%)</td>
<td>20 (42.6%)</td>
</tr>
<tr>
<td>Zygosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZ</td>
<td>18 (39.1%)</td>
<td>28 (59.6%)</td>
</tr>
<tr>
<td>DZ</td>
<td>28 (60.9%)</td>
<td>19 (40.4%)</td>
</tr>
</tbody>
</table>

In terms of ethnic origin, 92% of the twin pairs were Caucasian, 1% were Indian/Pakistani, 1% Asian, 2% African/Caribbean and 3% of them were classified as ‘other’. In 41 pairs one or both twins suffered from some medical problems or other difficulties. In 22 pairs at least one twin suffered from asthma or allergies, in four pairs from hearing problems, in two pairs from speech problems and in 15 pairs from other medical problems. In addition, two children were reported to have dyslexia. Only one child had received a formal diagnosis of ADHD. Forty-eight (52%) of the twin pairs were born premature (before 38 weeks of gestation). The average birthweight was 2510 grams (SD = 544 grams; range 700-4000 grams). (See section 7.2.7 for analyses on the association between hyperactivity and low birthweight.)

6.5.3 Family demographics

An interview with the parents provided information about family demographics. Seventy-two (77%) of the twin pairs lived with both their biological parents, 15 (16%) with their mother only, 1 (1%) with father only, 4 (4%) with mother and stepfather and 1 (1%) with non-related carers. In terms of the position of the twins in the family, 14 (15%) were the oldest, 47 (51%) were the youngest, 9 (10%) were in the middle and 23 (25%) were only children. On average there were 1.3 other children in the family.
The average age of the twins' mothers was 37.5 years (SD = 4.4 years) and fathers 40.2 years (SD = 5.7 years). Of the 92 mothers from whom we have the information, 58 (63%) were currently working, 31 (34%) were non-working parents and 3 (3%) were students. Of the 78 fathers from whom we have the information, 73 (94%) were currently working, 2 (3%) were unemployed, 2 (3%) were non-working parents and 1 (1%) was a student. We also asked the parents about the last educational qualifications that they had obtained (see Table 6.5.3).

Table 6.5.3 Parents' educational qualifications

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Mothers (N = 92)</th>
<th>Fathers (N = 75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exam qualifications</td>
<td>19 (21%)</td>
<td>12 (16%)</td>
</tr>
<tr>
<td>GCSE/O-level</td>
<td>32 (35%)</td>
<td>24 (32%)</td>
</tr>
<tr>
<td>Technical/secretarial</td>
<td>13 (14%)</td>
<td>10 (13%)</td>
</tr>
<tr>
<td>A-level</td>
<td>6 (7%)</td>
<td>7 (9%)</td>
</tr>
<tr>
<td>Professional qualification without university degree</td>
<td>15 (16%)</td>
<td>9 (12%)</td>
</tr>
<tr>
<td>University degree (or equivalent)</td>
<td>7 (8%)</td>
<td>13 (17%)</td>
</tr>
</tbody>
</table>

We used the Standard Occupational Classification from the Office of Population Censuses and Surveys (1990) to classify the families' social class. The family's social class was based either on mother's or father's occupation, whichever was the highest. See Figure 6.5.3 for the social class distribution of the families. The six categories are as follows:

I Professional etc. occupations
II Managerial and technical occupations
III Skilled occupations
 (N) non-manual
 (M) manual
IV Partly skilled occupations
V Unskilled occupations
6.5.4 Zygosity determination

It was not possible, within the constraints of the study, to obtain blood samples from the twins. We therefore determined zygosity using the Twin Similarity Questionnaire (TSQ; Nichols & Bilbro, 1966 - see Appendix D). This is a short questionnaire which includes items regarding the physical similarity (hair colour, eye colour, weight, height and complexion) and physical confusability of the twins. Parents rate their twins either on a dichotomous scale (yes/no) or, for some items, on a scale from 0 to 2. The higher the score, the more similar the twins are in appearance; the maximum score is 20.

The general rule we used was to classify twins who obtained a score of 13 or higher on the questionnaire as MZ and those who obtained a score of 12 or lower as DZ. Using blood typing as a test of validity, Cohen et al. (Cohen, Dibble, Grawe &
Pollin, 1975) had shown that all twins scoring 13 or above on the TSQ were MZ twins and all those scoring below 9 were DZ twins.

We also took a photograph of each twin pair whom we tested. For those cases who were on the MZ/DZ borderline on the TSQ (scoring 12-14), we used the photographs to determine their zygosity: three raters independently classified the twin pairs as MZ or DZ based on the photographs. In the very rare cases when the raters disagreed about the twins' zygosity, we either rang the parents to inquire whether the twins' zygosity had been determined using blood tests or we obtained further ratings from two other raters. We also used this procedure in the few cases where the twins did not obtain scores on the MZ/DZ borderline, but their TSQ score did not seem to match their zygosity as determined using the photograph. In all cases, an agreement was reached about the twins' zygosity. A comparison of TSQ scores and our zygosity classification based on the photographs had suggested that the 12/13 cut-off point on the TSQ would be the most appropriate.

6.6 Procedure

Each family - the twins and at least one parent - made one visit to the Institute of Child Health. Apart from us reimbursing their travel expenses, the families did not receive any financial reward for participation. The parents had signed a consent form prior to the session.

The parents were first interviewed, to obtain background information, such as social class and any illnesses or disabilities the twins might suffer from. The parents then left the testing room and two testers assessed the twins in two separate rooms. The twins were told they were going to play some games, some of which would be easy and some hard for children of their age and that all the information would be confidential (they would not receive any individual feedback although all the families would later receive a summary of the results of the study).
The order of task presentation was fixed, but different for each twin. For ‘twin A’, we presented the tasks in the following order: stop task, counting span, similarities, sentence span, delayed response alternation, delay aversion, picture completion, vocabulary and block design. The order of task presentation for ‘twin B’ was the following: counting span, similarities, sentence span, stop task, picture completion, vocabulary, block design, delayed response alternation and delay aversion. The same tester assessed the same twin throughout the session. The order of task presentation was counterbalanced across the testers, that is, each tester tested ‘twin A’ equally often. The twins were given an approximately 20 minute break in the middle of the testing and also several shorter breaks. In total, the testing session took approximately three hours.

The testers aimed to be ‘blind’ with regard to the group status of the twins. Only in the very rare cases where a tester remembered the name of a particular family for a specific reason, did we not achieve this aim.

6.7 Measures

Measures of working memory, response inhibition and delay aversion were chosen for the test battery. The measures had to be appropriate for the age range in question (ages 7-11 years). We also wanted to obtain an estimate of the children’s IQ, to be able to control for differences in general cognitive ability. A time limit that we set for the testing session (excluding breaks) was 2.5 hours and this obviously limited the number of tests we could include in the test battery.

6.7.1 Delay Aversion Task - “Star Trek” (Warner-Rogers, Taylor, Sonuga-Barke & Newman, unpublished)

This is a new computer task designed to test the delay aversion theory of hyperactivity. The full task involves several conditions, but in the present study we
included only the condition that is predicted to show differences between hyperactive and control children (Sonuga-Barke, personal communication, 1996). See Appendix E for the task instructions, which were specifically written for this study. In this task the child has to make a choice, for 20 times, between a small immediate reward (one point involving a two second pre-reward delay) and a large delayed reward (two points involving a 30 second pre-reward delay). If the child chooses the small reward, the next trial starts immediately afterwards; this of course reduces the overall length of the session.

The task is presented as a Star Trek game, in which the child, as a captain of the U.S.S. Enterprise, has to fire Klingon Battle Cruisers (using the computer mouse). The aim of the game is to earn as many points as possible and to motivate the children they are told that they will receive a small prize in the end (in this study the children received Great Ormond Street Hospital pencils). Before the experimental trials, the child first practises using the mouse and choosing each of the rewards. The tester also asks the child questions about the game, to ensure that he or she has understood the rules and aims of the game correctly. No reports have previously been published regarding the reliability of the task (for reliability results from our studies, see section 6.8). The delay aversion variable used in the analyses is the percentage of choices for two points.

The tester also rated the child’s apparent delay aversion (the extent to which the child continued talking or doing something else while waiting) on a simple three-point scale (see Appendix K).

6.7.2 Delayed Response Alternation Task (DRA; Carpenter & Gold, 1994; Gold, Faith Berman, Randolph, Goldberg & Weinberger, 1996)

This task is a computerised spatial working memory measure which, to our knowledge, has not been used in a hyperactivity study before. The task was validated as a prefrontal measure in a study with adults that involved PET scanning (Gold et
al., 1996; see section 2.3.2). No reliability data have previously been published for this task.

In this task two boxes, one coloured (yellow) and the other uncoloured, are first presented on the screen for one second. After a two second presentation of an empty screen, two uncoloured boxes appear on the screen and the child has to choose one of these boxes, either the one on the side where the coloured box was or the one on the side where the uncoloured box was. The computer gives feedback as to whether the choice was correct or incorrect (the word right or wrong is presented on the screen for 1.5 seconds immediately after the child has responded). New stimuli (another two boxes, one coloured and the other uncoloured) then appear on the screen after a 1.5 second delay.

The task for the child is to find out the rule that the computer uses to decide which box is the correct one each time. If the child does not find out the rule on his or her own, the rule is then taught explicitly. The rule involves choosing the coloured and the uncoloured box (whatever side they appear on) on alternate trials. The position of the coloured box varies randomly. All children do the task for a second time after the teaching session.

We modified the original instructions rather extensively, as these had been written for adults and were not appropriate for children (see Appendix F for the task instructions). Before the children started the task proper, they first practised responding (pressing the numbers 1 and 2 on the keyboard) with a practice version of the task. In this practice version the correct rule was always to choose the coloured (blue) box. The children were told after the practice that the rule might be different in the ‘real game’.

The DRA variables used in the analyses are the percentage of correct choices before and after the teaching session.
6.7.3 **Stop Task** (Logan & Cowan, 1984; Logan, Cowan & Davis, 1984 - *the original version*; Oosterlaan & Sergeant, 1998a - *the version used in this study*)

This computer task measures inhibition and is based on Logan and Cowan's (1984) 'race model' of inhibition. This particular version of the task is presented as a game in which the child has to perform tasks similar to those of an airtraffic controller. The child is first taught to respond to airplanes appearing on the computer screen by pressing the response button that is on the same side as the plane was (a two-choice reaction time task). The child is then instructed to withhold responding whenever he or she hears a tone on headphones (the 'stop' trials), but otherwise to keep on responding to the planes as quickly as possible (the 'go' trials). The tones are presented at four different intervals after the presentation of the planes. All children did four experimental blocks (with 64 trials in each) on this task and were given short breaks between the blocks.

Twenty-five percent of the trials are stop trials. The stop signals are presented at the following stop signal intervals: 50, 200, 350 and 500 msec before the child's expected response. The expected moment of responding is estimated from the child's mean reaction time (MRT) in the preceding block of trials. MRT is calculated across correctly executed responses on go trials. The stop signals are 1 kHz tones produced by a function generator.

Each trial begins with a 350 msec presentation of a fixation point ('+'-sign presented at the centre of the screen). The presentation of the stimuli (an airplane, displayed for 1500 msec) follows this. The intertrial interval is 1000 msec. A Keithley PIO-12 digital interface board enables the stimuli to be presented and the data to be collected with millisecond accuracy. The stimuli appear equally often on either side of the screen within each block and the stop signals are presented equally often after left- and right-sided presentations of the stimuli. A go trial
always follows a stop trial, except once in each trial where two stop signals are presented in succession.

Kindlon, Mezzacappa and Earls (1995) investigated the temporal stability of the stop task. The children (N=31; ages 6-16) who participated in the study were recruited from schools for children with externalising behaviour disorders. The period between the test and retest sessions varied between 2 and 5 months. The results showed moderate to high stability for all the stop task variables which were included in the study (see Table 6.7.3.) Kindlon et al. (1995) did not report the results for mean (nonsignal) reaction time, total number of errors, number of omission errors or stop signal reaction time. No reliability data have previously been reported for the particular version of the stop task used in the present study.

Table 6.7.3 Temporal stability results for the stop task (Kindlon et al., 1995)

<table>
<thead>
<tr>
<th></th>
<th>Bivariate correlation</th>
<th>Squared partial correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean probability of inhibition</td>
<td>.79</td>
<td>.52</td>
</tr>
<tr>
<td>Slope of inhibition function</td>
<td>.72</td>
<td>.40</td>
</tr>
<tr>
<td>Commission errors (%)</td>
<td>.61</td>
<td>.33</td>
</tr>
<tr>
<td>SD of reaction times</td>
<td>.66</td>
<td>.42</td>
</tr>
</tbody>
</table>

See Appendix G for the instructions used in this task. A professional translator translated the instructions from Dutch into English. Based on our experience in administering the task to children, we also made some changes to the instructions where necessary.
The following stop task variables were used in the analyses: inhibition slope, stop signal reaction time (SSRT), mean reaction time (MRT), standard deviation of reaction times (SD of RTs), total number of errors, number of omission errors and number of commission errors (see Appendix L for an explanation of the inhibition variables).

6.7.4 Sentence Span (Daneman & Carpenter, 1980 - the original version; Siegel & Ryan, 1989 - the version used in this study) and Counting Span (Case, Kurland & Goldberg, 1982) Tasks

These tasks are working memory measures (see Appendix H for the task instructions). In the sentence span task, the tester reads sentences out to the child who has to supply the missing last word for each sentence. In the end of each set, the child is asked to repeat all the words that he or she had supplied, in the correct order. The tester first gives the child a practice sentence and then, in order also to practise recalling the supplied words, further two sentences. The task proper begins with two-sentence sets and, unless the child fails all three sets of any level, finishes with five-sentence sets. The sentences for the task have been chosen so that the missing word is virtually predetermined. However, the particular word that the child supplies is not important. We made some modifications to the sentences in order for them to be more appropriate for British children.

The counting span task is similar to the sentence span task except that the child is asked to count yellow dots on cards rather than to supply words. The tester asks the child to touch each yellow dot with his or her finger and to count out loud. The child is asked to ignore blue dots on the cards, which are arranged randomly with the yellow dots to prevent counting by subitizing. The practice starts with counting the yellow dots on one card. The tester then, presenting one card at a time, asks the child to count the dots on two cards and, when presenting a blank card, to recall the numbers of dots on the cards. The testing proper starts with two-card sets and, unless the child fails all three sets of any level, finishes with five-card
sets. The size of the cards was 14 cm x 21 cm and the dots were 0.9 cm in diameter. The studies using these tasks with children have not reported reliability data for them. The possible scores range from 0 to 12 on both tasks.

6.7.5 Wechsler Intelligence Scales for Children (WISC-IIIUK; Wechsler, 1992)

Four subtests from the WISC were used to obtain an estimate of the child’s IQ: picture completion and block design provided an estimate of performance IQ, and vocabulary and similarities an estimate of verbal IQ. We chose these subtests because they have high loadings on the performance and verbal IQ factors, respectively. The four subtests together provided an estimate of the child’s full-scale IQ. We use the term ‘full-scale IQ’ to refer to this estimate of the children’s full-scale IQ.

Hunter et al. (Hunter, Yule, Urbanowics & Lansdown, 1989) have shown the use of four subtests from the WISC to estimate full-scale IQ to be reliable in a British sample of children. We used British standardised norms to score the test along with the standard coding instrument and manual. The validity and reliability of the WISC-IIIUK are well established.

6.7.6 Revised Conners’ Parent (CPRS-48) and Teacher (CTRS-28) Rating Scales (Goyette, Conners & Ulrich, 1978)

The Conners’ scales (see Appendix I) are widely used to obtain ratings from parents and teachers on a range of problem behaviours in children, and on hyperactivity in particular. These revised, shorter versions of the original scales are relatively quick to complete and therefore have advantages over lengthier scales such as the Child Behaviour Checklist (CBCL; Achenbach, 1991) and the Teacher Report Form (TRF; Achenbach, 1991). The parent scale provides the following dimensions: Conduct problem, Learning problem, Psychosomatic, Impulsive-Hyperactive, Anxiety and Hyperactivity Index. The dimensions obtained from the
teacher scale are the following: Conduct problem, Hyperactivity, Inattentive-Passive and Hyperactivity Index.

Extensive data exists to support the validity and reliability of these scales, although much of these data are based on the original scales rather than the revised ones. For example, no data on the test-retest reliability of the CPRS-48 have been reported. Edelbrock, Greenbaum and Conover (1985) reported one-week test-retest reliabilities for the three factors of CTRS-28 which ranged from .88 to .96. Goyette et al. (1978) reported data on inter-rater reliability; the correlation between teacher and parent ratings on the Impulsive-Hyperactive/Hyperactivity dimension was .36. They also reported data on internal consistency: item-total correlations on the CPRS-48 range from .13 for item 44 (vomiting or nausea) to .65 for item 6 (sucks or chews thumb, clothing, blanket). High internal consistency reliability has been reported for the longer version of the Teacher Conners' (see Conners, 1989), but no such data have been published for the shorter version of the rating scale. See Conners (1989) for data on the validity on the scales, although again most of the data is based on the original rather than revised versions of the scales. Goyette et al. (1978) provided normative data, on which the T-scores are based, for the CPRS-48 and CTRS-28. See Appendix A for norms for the CTRS-28 obtained from the present sample.

The Hyperactivity Index combines items relevant for both hyperactivity and conduct problems and therefore this dimension was not used in the present study.

6.7.7 Interview with parent(s)

This structured interview included questions about various background variables (see Appendix J). The first section included questions about the family: type of accommodation, number and position (older/younger) of other children, number of individuals in the household and type of family (biological parents/stepparents etc.). The second section included questions about the parents: both parents'
occupations, educational background, age, and ethnic origins. The third and last section focused on the twins: whether they were born premature, their birthweights and whether they suffer from any medical problems or other difficulties.

6.7.8 Ratings of behaviour during testing

After the testing session, the tester rated the child on hyperactive behaviours (fidgeting, lower limb movements, bottom shuffling movements and gross motor activity) on a four-point scale, ranging from ‘not at all’ to ‘very much’ (see Appendix K).

6.8 The reliability studies

To investigate the test-retest reliability of the tasks which we intended to include in the test battery, as well as the reliability of the testers who were to be involved in the main study, we carried out three separate reliability studies. The first reliability study focused on paper-and-pencil measures and the second on computer tasks. The testers in these studies were myself and two research assistants who were involved in the data collection for the first half of the main study. The third reliability study was carried out to establish the reliability of a third research assistant who was involved in the data collection for the latter half of the main study. With one exception, the tasks included in these reliability studies were described in section 6.7 above. The exception is a task called the dual task, which is briefly described below. Because of the low test-retest reliability of this task (see below), we decided to exclude the dual task from the test battery for the main study.

6.8.1 Reliability study I

A test-retest reliability study was first carried out for the following measures: the four subtests of the WISC, the dual task, the counting span and sentence span tasks.
The dual task (Baddeley, Della Sala, Gray, Papagno & Spinnler, in press) is an executive function measure. It is a paper-and-pencil measure in which the child first performs two simple tasks (a memory span task and a tracking task) separately and then simultaneously (the dual task condition).

After all three testers had been trained in how to administer and score the tasks, we carried out a small pilot study. Two London schools, a primary and a secondary school, participated in this pilot phase. Based on our experience in administering the tasks on children, we made minor changes to the procedures and instructions where necessary.

Following this initial pilot phase, we then carried out the test-retest reliability study. Two different inner London schools, a primary and a secondary school, took part in this study. The head teachers in both schools wrote letters to the parents of an agreed number of children, explaining the nature of the study and asking for permission for their child to take part. We had emphasised to the head teachers that we were aiming to obtain as representative a sample as possible. The parents of only one child refused to allow their child to participate. In addition, one child, while given parental consent, did not wish to take part in the study.

A total of 34 children, 15 girls and 19 boys, participated in the reliability study. The children ranged in age from 7.9 to 15.3 years (mean age = 11.4 years, SD=2.3 years). (We decided only later to include only children aged between 7 and 11 years in the main study.) Twenty of the children were from the primary school and 14 from the secondary school. Majority (71%) of them were Caucasian, 15% were Indian/Pakistani, 3% were Asian, 9% were African/Caribbean and 3% were classified as 'other' in terms of ethnic origin.

The children were tested individually in separate rooms in the school. On any single day, two testers tested children simultaneously. We divided the tests into two standard test batteries. Test battery A contained the following tests, which were
presented in the following order: counting span, similarities, dual task and sentence span. The tests in test battery B were picture completion, vocabulary and block design. The order of presentation of the tasks was counterbalanced across children; that is, half of the children did test battery A first and half of them test battery B first. The order of task administration was similarly counterbalanced across the three testers. That is, each tester started with test battery A with approximately equal numbers of children.

The children were tested again after a two-week period. The tests were presented in the same order for each child as they had been presented at time 1. However, each tester now administered a different test battery to each child: if tester 1 tested child 1 with test battery A at time 1, he or she tested this child with test battery B at time 2. All children whom we assessed at time 1, we also assessed at time 2.

Despite us having emphasised to the head teachers that the children should not be chosen with any particular criteria in mind, apart from age, the sample from the primary school included several children with general learning disabilities. In part, this seems to have resulted from a misunderstanding between the head teacher and a teacher. However, both schools were in relatively disadvantaged areas of London and the IQs of the children might have been expected to be, on average, somewhat below average.

The average full-scale IQ (based on the four subtests) for the total sample was 83.74. We therefore decided to analyse the results both for the total sample and for a subsample of the children, excluding children with very low IQs. Preliminary analyses indicated that excluding children with low IQs, whether those with IQs below 70 or only those with even lower IQs, did not seem to have a noticeable effect on the reliability results. Table 6.8.1a shows the results for the total sample and Table 6.8.1b for the subsample of children with IQs above 65.
Table 6.8.1a Test-retest reliability results for the total sample: paper-and-pencil measures (N=34)

<table>
<thead>
<tr>
<th>measure</th>
<th>intra-class r</th>
<th>inter-class r</th>
<th>mean time 1 (SD)</th>
<th>mean time 2 (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scale IQ</td>
<td>0.92</td>
<td>0.97</td>
<td>83.74 (20.79)</td>
<td>90.41 (21.58)</td>
<td>-7.63</td>
<td>33</td>
<td>.001</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>0.94</td>
<td>0.95</td>
<td>84.68 (18.92)</td>
<td>88.29 (19.88)</td>
<td>3.53</td>
<td>33</td>
<td>.001</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>0.83</td>
<td>0.92</td>
<td>85.97 (20.99)</td>
<td>95.15 (21.05)</td>
<td>-6.32</td>
<td>33</td>
<td>.001</td>
</tr>
<tr>
<td>Sentence span</td>
<td>0.65</td>
<td>0.71</td>
<td>4.12 (2.29)</td>
<td>5.00 (2.49)</td>
<td>2.82</td>
<td>33</td>
<td>.008</td>
</tr>
<tr>
<td>Counting span</td>
<td>0.55</td>
<td>0.67</td>
<td>6.35 (2.88)</td>
<td>7.88 (2.68)</td>
<td>-3.92</td>
<td>33</td>
<td>.001</td>
</tr>
<tr>
<td>Dual task - ‘mu’</td>
<td>0.33</td>
<td>0.35</td>
<td>94.44 (8.49)</td>
<td>96.29 (7.61)</td>
<td>-1.17</td>
<td>33</td>
<td>.25</td>
</tr>
</tbody>
</table>

a) single condition
- tracking | 0.87 | 0.95 | 131.32 (32.89) | 144.38 (32.14) | a |
- memory span | -0.12 | -0.11 | 0.88 (0.14) | 0.86 (0.15) |

b) dual condition
- tracking | 0.78 | 0.89 | 122.32 (35.99) | 138.15 (31.77) |
- memory span | 0.12 | 0.13 | 0.84 (0.19) | 0.82 (0.16) |

* these analyses were not carried out

Table 6.8.1a shows that the test-retest reliability results were good for the WISC measures, acceptable for the sentence span and counting span tasks, but low for the dual task measure. The t-test results show that there were significant learning effects for all the tasks except for the dual task. The measure of interest that one obtains from the dual task is that indexed as ‘mu’. This measure expresses the child’s dual task performance as a percentage of single task performance, the contributions from
the two tasks being equally weighted. As the correlations were low for this measure, the results were also analysed separately for those measures on which 'mu' is based. This more detailed analysis indicates that it was the memory span measure rather than the tracking measure that was unreliable in the task. Because of this low reliability, we decided to exclude the dual task from the test battery. Table 6.8.1b shows that excluding children with IQs below 65 did not significantly alter the test-retest reliability results.

Table 6.8.1b Test-retest reliability results for children with IQs above 65: paper-and-pencil measures (N = 29)

<table>
<thead>
<tr>
<th>measure</th>
<th>intra-class r</th>
<th>inter-class r</th>
<th>mean time 1 (SD)</th>
<th>mean time 2 (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full scale IQ</td>
<td>0.91</td>
<td>0.96</td>
<td>87.83 (19.63)</td>
<td>94.69 (20.31)</td>
<td>-6.86</td>
<td>28</td>
<td>.001</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>0.93</td>
<td>0.96</td>
<td>87.59 (18.77)</td>
<td>91.73 (19.27)</td>
<td>3.89</td>
<td>28</td>
<td>.001</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>0.79</td>
<td>0.89</td>
<td>90.62 (18.84)</td>
<td>99.69 (19.20)</td>
<td>-5.53</td>
<td>28</td>
<td>.001</td>
</tr>
<tr>
<td>Sentence span</td>
<td>0.60</td>
<td>0.66</td>
<td>4.24 (2.31)</td>
<td>5.14 (2.36)</td>
<td>2.52</td>
<td>28</td>
<td>.018</td>
</tr>
<tr>
<td>Counting span</td>
<td>0.58</td>
<td>0.69</td>
<td>6.31 (3.00)</td>
<td>7.80 (2.85)</td>
<td>-3.46</td>
<td>28</td>
<td>.002</td>
</tr>
<tr>
<td>Dual task - 'mu'</td>
<td>0.30</td>
<td>0.32</td>
<td>93.87 (8.88)</td>
<td>95.97 (7.83)</td>
<td>-1.15</td>
<td>28</td>
<td>.26</td>
</tr>
</tbody>
</table>

The results were also analysed to investigate whether there would be differences between testers in the mean values obtained for the various measures. Tables 6.8.1c-6.8.1e show the mean values and the independent t-test results.
All other comparisons were non-significant, except the vocabulary comparison between Emma and Doug. In order to explore this finding further, a similar comparison was carried out for time 2 data. In contrast to time 1 data, the mean for children Emma tested the vocabulary subtest on at time 2 was a little higher (8.67, SD = 1.50) than the mean for children Doug tested the subtest on (7.43, SD = 4.40), and the t-test result was non-significant ($t_{21} = .81$, $p = .43$). This shows that there was no constant difference between the two testers in a particular direction on this measure.

<table>
<thead>
<tr>
<th>measure</th>
<th>Emma mean (SD)</th>
<th>Jonna mean (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block design</td>
<td>5.67 (3.17)</td>
<td>7.22 (5.04)</td>
<td>-0.87</td>
<td>19</td>
<td>.40</td>
</tr>
<tr>
<td>Picture completion</td>
<td>8.25 (3.44)</td>
<td>8.00 (3.71)</td>
<td>0.16</td>
<td>19</td>
<td>.88</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>5.25 (2.30)</td>
<td>7.11 (4.31)</td>
<td>-1.17</td>
<td>11.4</td>
<td>.26</td>
</tr>
<tr>
<td>Similarities</td>
<td>9.00 (3.23)</td>
<td>6.64 (3.30)</td>
<td>1.66</td>
<td>19</td>
<td>.11</td>
</tr>
<tr>
<td>Sentence span</td>
<td>4.10 (2.28)</td>
<td>3.82 (2.23)</td>
<td>0.29</td>
<td>19</td>
<td>.78</td>
</tr>
<tr>
<td>Counting span</td>
<td>5.90 (3.57)</td>
<td>6.18 (2.82)</td>
<td>-0.20</td>
<td>19</td>
<td>.84</td>
</tr>
<tr>
<td>Dual task - 'mu'</td>
<td>97.49 (9.42)</td>
<td>91.54 (10.06)</td>
<td>1.40</td>
<td>19</td>
<td>.18</td>
</tr>
</tbody>
</table>
Table 6.8.1d Study 1: Comparisons of mean values between two testers, Doug and Jonna (time 1 data only)

<table>
<thead>
<tr>
<th>measure</th>
<th>Doug mean (SD)</th>
<th>N</th>
<th>Jonna mean (SD)</th>
<th>N</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block design</td>
<td>8.23 (4.29)</td>
<td>13</td>
<td>7.22 (5.04)</td>
<td>9</td>
<td>0.51</td>
<td>20</td>
<td>.62</td>
</tr>
<tr>
<td>Picture completion</td>
<td>9.54 (2.22)</td>
<td>13</td>
<td>8.00 (3.71)</td>
<td>9</td>
<td>1.22</td>
<td>20</td>
<td>.24</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>8.69 (2.96)</td>
<td>13</td>
<td>7.11 (4.31)</td>
<td>9</td>
<td>1.02</td>
<td>20</td>
<td>.32</td>
</tr>
<tr>
<td>Similarities</td>
<td>7.46 (3.84)</td>
<td>13</td>
<td>6.64 (3.30)</td>
<td>11</td>
<td>0.56</td>
<td>22</td>
<td>.58</td>
</tr>
<tr>
<td>Sentence span</td>
<td>4.38 (2.50)</td>
<td>13</td>
<td>3.82 (2.23)</td>
<td>11</td>
<td>0.58</td>
<td>22</td>
<td>.57</td>
</tr>
<tr>
<td>Counting span</td>
<td>6.85 (2.48)</td>
<td>13</td>
<td>6.18 (2.82)</td>
<td>11</td>
<td>0.61</td>
<td>22</td>
<td>.55</td>
</tr>
<tr>
<td>Dual task - 'mu'</td>
<td>94.56 (5.64)</td>
<td>13</td>
<td>91.54 (10.06)</td>
<td>11</td>
<td>0.93</td>
<td>22</td>
<td>.36</td>
</tr>
</tbody>
</table>
Table 6.8.1e Study 1: Comparisons of mean values between two testers, Doug and Emma (time 1 data only)

<table>
<thead>
<tr>
<th>measure</th>
<th>Doug</th>
<th>Emma</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean (SD)</td>
<td>N</td>
<td>mean (SD)</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Block design</td>
<td>8.23 (4.29)</td>
<td>13</td>
<td>5.67 (3.17)</td>
<td>12</td>
<td>-1.69</td>
</tr>
<tr>
<td>Picture completion</td>
<td>9.54 (2.22)</td>
<td>13</td>
<td>8.25 (3.44)</td>
<td>12</td>
<td>-1.12</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>8.69 (2.96)</td>
<td>13</td>
<td>5.25 (2.30)</td>
<td>12</td>
<td>-3.23</td>
</tr>
<tr>
<td>Similarities</td>
<td>7.46 (3.84)</td>
<td>13</td>
<td>9.00 (3.23)</td>
<td>10</td>
<td>1.02</td>
</tr>
<tr>
<td>Sentence span</td>
<td>4.38 (2.50)</td>
<td>13</td>
<td>4.10 (2.28)</td>
<td>10</td>
<td>-0.28</td>
</tr>
<tr>
<td>Counting span</td>
<td>6.85 (2.48)</td>
<td>13</td>
<td>5.90 (3.57)</td>
<td>10</td>
<td>-0.75</td>
</tr>
<tr>
<td>Dual task - ‘mu’</td>
<td>94.56 (5.64)</td>
<td>13</td>
<td>97.49 (9.42)</td>
<td>10</td>
<td>0.93</td>
</tr>
</tbody>
</table>

In conclusion, this first reliability study demonstrated that all the measures included in the study, with the exception of the dual task, show adequate levels of reliability and that all the testers are reliable in test administration.

6.8.2 Reliability study II

A second test-retest reliability study was carried out separately for the computer tasks: the stop task, the delayed response alternation (DRA) task and the delay aversion task.

The same three testers were trained in the administration of the tasks and a small pilot study was carried out in a primary school in London. We revised the instructions for the DRA and stop tasks rather extensively. The instructions for the
DRA were written for adult subjects and were therefore inappropriate for children. A professional translator translated the stop task instructions from Dutch into English and we made changes to them where we felt it was necessary. As no written instructions existed for the delay aversion task, we wrote them and then piloted the instructions with 7-11-year-old children. We also made changes to the administration procedures of the tasks where necessary.

The reliability study was carried out in an inner London primary school. The head teacher in the school wrote to the parents of children in the 7-11 age range, asking for permission for their child to take part in the study. We then chose the children to be tested randomly from those whose parents had given their consent, although we aimed for approximately equal numbers of girls and boys and children of different ages. The study sample consisted of 18 children: 8 girls and 10 boys. Mean age was 8.8 years (SD=1.4 years). In terms of ethnic origin, majority (78%) of the children were Caucasian, 11% were Asian and 11% were African/Caribbean.

On any single day, one tester assessed children individually in a separate room in the school. We varied the order of administration of the tasks randomly across children and testers, but administered the tasks in the same order at test and retest for each child. Each examiner tested children of both sexes and of the various age groups. The testing session lasted for approximately 1h 15min and we gave the children several breaks during the testing. There was a two-week period in between the test and retest sessions; for two children only this period was longer by a few days, as these children were absent during the ‘proper’ retest days. A different examiner tested each child at time 1 and time 2. In the delay aversion task, the children were asked to try to earn as many points as possible and they were told they would receive a small prize in the end. The prizes were Great Ormond Street pencils and badges. We did not think it ethically acceptable to give the children money for the points earned.
A practical problem arose when administering the delay aversion task. On a few occasions, the mouse did not work properly which resulted in the child not being able to shoot the Klingon Cruisers at the chosen time. However, as we kept detailed notes it was possible to alter the data afterwards, so that it corresponded to the child’s actual choices of rewards rather than what the computer had recorded.

Table 6.8.2a shows the test-retest reliability results for the DRA, delay aversion and stop tasks. In the DRA task, the child first attempts, on his or her own, to find out the rule that the computer uses to decide which of the two boxes is the correct one each time. The rule is then taught to the child and, after some practice, the child does the same task again. As many children would be expected to remember the rule at retest, the comparison that is of most interest in terms of test-retest reliability is that between time 1 and time 2 after teaching sessions.

The children made an average of 56% correct choices on the DRA task at time 1 before the teaching session and 77% after the teaching session. At time 2 they made an average of 76% correct choices before the teaching session and 78% afterwards. More than half (61%) of the children did not find out the rule on their own at time 1, but 78% of them remembered the rule at time 2. In the delay aversion task, at time 1 the children chose the larger reward on 53.9% of the trials on average and at time 2 on 54.4% of the trials on average.

The reliability correlation coefficients were of the same magnitude - both 0.74 and therefore acceptable - for the DRA (after teaching) and delay aversion tasks. The correlation coefficients were low for the measure of DRA performance before teaching, as expected, and the significant t-test result confirms the learning effect from time 1 to time 2 sessions.

Of the stop task variables the inter-class correlation coefficients were acceptable for the mean probability of inhibition, mean reaction time and standard deviation of reaction times. The lower intra-class correlations and the significant t-test results
show that there were learning effects from time 1 to time 2 testing. The inter-class correlations were lower for the error variables, the slope of the inhibition function and stop signal reaction time.

Table 6.8.2a Test-retest reliability results for the computer tasks (N=18)

<table>
<thead>
<tr>
<th>measure</th>
<th>intra-class r</th>
<th>intra-class (SD)</th>
<th>inter-class r</th>
<th>inter-class (SD)</th>
<th>mean time 1 (SD)</th>
<th>mean time 2 (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA before teaching</td>
<td>-0.03</td>
<td>22.28 (7.61)</td>
<td>0.32</td>
<td>30.56 (6.55)</td>
<td>-4.22</td>
<td>17</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRA after teaching</td>
<td>0.74</td>
<td>30.89 (5.75)</td>
<td>0.74</td>
<td>31.17 (5.66)</td>
<td>0.08</td>
<td>17</td>
<td>.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay aversion</td>
<td>0.74</td>
<td>30.78 (6.27)</td>
<td>0.74</td>
<td>30.89 (7.12)</td>
<td>0.01</td>
<td>17</td>
<td>.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean probability of inhibition</td>
<td>0.52</td>
<td>62.48 (12.18)</td>
<td>0.72</td>
<td>70.26 (10.63)</td>
<td>-3.78</td>
<td>17</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>0.35</td>
<td>488.72 (95.87)</td>
<td>0.66</td>
<td>404.58 (85.44)</td>
<td>4.75</td>
<td>17</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of RTs</td>
<td>0.64</td>
<td>115.94 (41.39)</td>
<td>0.74</td>
<td>96.25 (38.76)</td>
<td>2.90</td>
<td>17</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total errors</td>
<td>0.41</td>
<td>4.67 (5.84)</td>
<td>0.49</td>
<td>7.50 (8.11)</td>
<td>-1.65</td>
<td>17</td>
<td>.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>commission errors</td>
<td>0.22</td>
<td>2.17 (2.66)</td>
<td>0.45</td>
<td>4.94 (6.11)</td>
<td>-2.16</td>
<td>17</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>omission errors</td>
<td>0.37</td>
<td>2.50 (3.45)</td>
<td>0.37</td>
<td>2.56 (3.84)</td>
<td>-0.06</td>
<td>17</td>
<td>.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inhibition slope</td>
<td>0.29</td>
<td>0.14 (0.03)</td>
<td>0.32</td>
<td>0.14 (0.03)</td>
<td>1.01</td>
<td>17</td>
<td>.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRT</td>
<td>0.11</td>
<td>230.97 (43.56)</td>
<td>0.21</td>
<td>201.39 (58.98)</td>
<td>1.92</td>
<td>17</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The results were also analysed to investigate any possible differences between testers in the mean values obtained for the measures. The mean values and the independent t-test results (see Tables 6.8.2b - 6.8.2d) indicate that, with one exception, the comparisons were non-significant. The only significant comparison was that for the standard deviation of reaction times between Emma and Jonna. As this comparison is potentially important (higher SDs may indicate less effort from the subject), the same comparison was also performed for time 2 data. Although the difference between the testers was in the same direction as for time 1 data (Emma: mean = 109.65, SD = 34.28, N = 9; Jonna: mean = 92.18, SD = 53.07, N = 5), the t-test result was non-significant ($t_{(12)} = .75, p = .47$).

<table>
<thead>
<tr>
<th>measure</th>
<th>Emma (N = 5)</th>
<th>Jonna (N = 7)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA before teaching</td>
<td>21.40</td>
<td>19.14</td>
<td>0.55</td>
<td>10</td>
<td>.60</td>
</tr>
<tr>
<td>DRA after teaching</td>
<td>31.40</td>
<td>31.00</td>
<td>0.12</td>
<td>10</td>
<td>.91</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>26.20</td>
<td>31.86</td>
<td>-1.70</td>
<td>10</td>
<td>.12</td>
</tr>
<tr>
<td>Stop task: mean probability of inhibition</td>
<td>57.98</td>
<td>64.39</td>
<td>-1.03</td>
<td>10</td>
<td>.33</td>
</tr>
<tr>
<td>MRT</td>
<td>521.23</td>
<td>500.74</td>
<td>0.42</td>
<td>10</td>
<td>.69</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>147.06</td>
<td>108.47</td>
<td>2.36</td>
<td>10</td>
<td>.04</td>
</tr>
<tr>
<td>total errors</td>
<td>9.60</td>
<td>2.86</td>
<td>1.72</td>
<td>4.78</td>
<td>.15</td>
</tr>
<tr>
<td>inhibition slope</td>
<td>0.14</td>
<td>0.16</td>
<td>-1.48</td>
<td>10</td>
<td>.17</td>
</tr>
<tr>
<td>SSRT</td>
<td>232.17</td>
<td>233.03</td>
<td>-0.03</td>
<td>10</td>
<td>.97</td>
</tr>
</tbody>
</table>
At first glance, the results for the DRA task, as presented separately for each tester in Tables 6.8.2b - 6.8.2d, seem to suggest differences between testers in the extent to which the children's performance on the task improves after teaching. The improvement after teaching was 10.00 points for the children Emma tested, 11.86 points for the children Jonna tested and 3.66 for the children Doug tested. However, rather than reflecting differences between testers, this is due to differences in the groups of children tested: 14% of the children Jonna tested and 20% of the children Emma tested found out the rule of the game on their own, whereas as many as 83% of the children Doug tested found out the rule. If the children find out the rule on their own, the extent to which their performance can improve after teaching is obviously limited (indeed the teaching then only involves confirming that they know the rule).
Table 6.8.2d Study 2: Comparisons of mean values between two testers, Emma and Doug (time 1 data only)

<table>
<thead>
<tr>
<th>measure</th>
<th>Emma (N=5)</th>
<th>Doug (N=7)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA before teaching</td>
<td>21.40 5.51</td>
<td>26.67 7.69</td>
<td>-1.28</td>
<td>9</td>
<td>.23</td>
</tr>
<tr>
<td>DRA after teaching</td>
<td>31.40 2.79</td>
<td>30.33 6.92</td>
<td>0.35</td>
<td>6.82</td>
<td>.74</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>26.20 6.61</td>
<td>33.33 6.25</td>
<td>-1.84</td>
<td>9</td>
<td>.10</td>
</tr>
<tr>
<td>Stop task mean probability of inhibition</td>
<td>57.98 8.88</td>
<td>64.01 15.76</td>
<td>-0.76</td>
<td>9</td>
<td>.47</td>
</tr>
<tr>
<td>MRT</td>
<td>521.23 81.42</td>
<td>447.61 117.40</td>
<td>1.18</td>
<td>9</td>
<td>.27</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>147.06 26.45</td>
<td>98.73 53.49</td>
<td>1.83</td>
<td>9</td>
<td>.10</td>
</tr>
<tr>
<td>total errors</td>
<td>9.60 8.36</td>
<td>2.67 3.88</td>
<td>1.82</td>
<td>9</td>
<td>.10</td>
</tr>
<tr>
<td>inhibition slope</td>
<td>0.14 0.03</td>
<td>0.13 0.03</td>
<td>0.43</td>
<td>9</td>
<td>.68</td>
</tr>
<tr>
<td>SSRT</td>
<td>232.17 47.33</td>
<td>227.56 50.28</td>
<td>0.16</td>
<td>9</td>
<td>.88</td>
</tr>
</tbody>
</table>

In conclusion, this second reliability study demonstrated that the DRA and delay aversion tasks show adequate levels of test-retest reliability and that all the testers are reliable in administering these tasks. For the stop task the results were mixed: some of the variables showed adequate levels of test-retest reliability, whereas for other variables the test-retest reliabilities were lower. Nevertheless, we decided to include the stop task in the test battery. (For a discussion of how the lower reliability of some of the stop task variables may have influenced the results, see section 8.8.3.) The third reliability study obtained noticeably better test-retest reliability results for the stop task (see below).

For the delay aversion task, we also examined the inter-rater reliability of testers' ratings of the children's apparent delay aversion during the task (the extent to which the child continued talking or doing something else while waiting). This was coded
as ‘not at all’, ‘a little’, or ‘very much’ (or ‘not applicable’ if the child always chose the small immediate reward) (see Appendix K). For this reliability analysis the category of ‘not at all’ was compared to the category of ‘a little or very much’. The sample for these analyses were 18 children (nine twin pairs) who participated in the main study. However, the data for one child could not be used in the analysis, as this child continuously chose the small immediate reward. Each child’s apparent delay aversion was rated by the tester and, based on a video tape of the testing session, by a second rater. Each family had, prior to the session, signed a consent form agreeing for the child to be videotaped. The kappa value was .60 (p = .003), which indicates good agreement between the testers (see Landis & Koch, 1977).

6.8.3 Reliability study III

A third reliability study was carried out to establish the reliability of a new tester who replaced Emma and Doug two thirds through the testing for the main study. After an initial training phase, the study was carried out with eight twin pairs. The twins were those for whom teachers and parents had disagreed about their group status, that is, at least one of the twins was classified as situationally hyperactive. We had therefore excluded these twins from the main study. Six of the twin pairs were girls and two pairs were boys. Their mean age was 8.9 years (SD=1.2 years). In terms of ethnic origin, seven of the twin pairs were classified as Caucasian and one pair as ‘other’.

Each family - the twins and at least one parent - made two visits to the Institute, with a two-week period in between the visits. In order to limit the length of the session to 2.5 hours, each twin did half of the test battery. ‘Twin A’ did the following tasks: stop task, sentence span, similarities and counting span. ‘Twin B’ did the remaining tasks: DRA, delay aversion, picture completion, vocabulary and block design. At retest each twin did the same tasks and in the same order; however, now the tester assessed ‘twin B’ first. Tables 6.8.3a and 6.8.3b show the results from this study.
Table 6.8.3a Results from the third reliability study: paper-and-pencil measures (N=8)

<table>
<thead>
<tr>
<th>measure</th>
<th>intra-class r</th>
<th>inter-class r</th>
<th>mean time 1 (SD)</th>
<th>mean time 2 (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence span</td>
<td>0.75</td>
<td>0.91</td>
<td>4.00 (2.33)</td>
<td>4.75 (1.49)</td>
<td>1.82</td>
<td>7</td>
<td>.11</td>
</tr>
<tr>
<td>Counting span</td>
<td>0.65</td>
<td>0.81</td>
<td>6.25 (2.19)</td>
<td>7.63 (2.88)</td>
<td>-2.31</td>
<td>7</td>
<td>.05</td>
</tr>
<tr>
<td>Similarities</td>
<td>0.85</td>
<td>0.91</td>
<td>9.75 (3.11)</td>
<td>10.75 (2.92)</td>
<td>2.16</td>
<td>7</td>
<td>.07</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>0.89</td>
<td>0.92</td>
<td>9.00 (2.39)</td>
<td>9.13 (1.89)</td>
<td>0.36</td>
<td>7</td>
<td>.73</td>
</tr>
<tr>
<td>Block design</td>
<td>0.58</td>
<td>0.73</td>
<td>7.75 (2.71)</td>
<td>9.25 (2.55)</td>
<td>2.20</td>
<td>7</td>
<td>.06</td>
</tr>
<tr>
<td>Picture completion</td>
<td>0.79</td>
<td>0.91</td>
<td>11.25 (3.24)</td>
<td>12.38 (2.45)</td>
<td>2.18</td>
<td>7</td>
<td>.07</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>0.67</td>
<td>0.88</td>
<td>97.13 (14.65)</td>
<td>106.25 (13.26)</td>
<td>-3.66</td>
<td>7</td>
<td>.008</td>
</tr>
</tbody>
</table>

The test-retest results are very good for the WISC subtests and the sentence span and counting span tasks. It was not possible to calculate the test-retest reliability results for full-scale or verbal IQ, as neither twin did all the IQ subtests nor both of the verbal IQ subtests.

For the delay aversion task the intraclass and interclass correlations are not very high when all the eight children are included in the analyses. However, a scatterplot of the data suggests that one child is an outlier. If this child is excluded, the results improve: inter-class correlation 0.75, intra-class correlation 0.66, mean time 1: 27.86 (SD=3.19), mean time 2: 27.57 (SD=5.38) and t-test result: t₆=0.21, p=.84.
Table 6.8.3b Results from the third reliability study: computer measures
(N=8, except for DRA N=7)

<table>
<thead>
<tr>
<th>measure</th>
<th>intra-class r</th>
<th>inter-class r</th>
<th>mean time 1 (SD)</th>
<th>mean time 2 (SD)</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA before teaching</td>
<td>-0.13</td>
<td>0.20</td>
<td>20.00 (6.22)</td>
<td>27.57 (7.07)</td>
<td>-2.38</td>
<td>6</td>
<td>.06</td>
</tr>
<tr>
<td>DRA after teaching</td>
<td>0.09</td>
<td>0.43</td>
<td>28.43 (4.47)</td>
<td>32.14 (2.91)</td>
<td>-2.37</td>
<td>6</td>
<td>.06</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>0.28</td>
<td>0.41</td>
<td>27.63 (3.02)</td>
<td>29.13 (6.64)</td>
<td>-0.70</td>
<td>7</td>
<td>.51</td>
</tr>
<tr>
<td>Stop task:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>0.58</td>
<td>0.77</td>
<td>482.15 (74.37)</td>
<td>430.48 (90.06)</td>
<td>-2.54</td>
<td>7</td>
<td>.04</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>0.77</td>
<td>0.88</td>
<td>117.30 (33.77)</td>
<td>118.98 (58.10)</td>
<td>0.15</td>
<td>7</td>
<td>.89</td>
</tr>
<tr>
<td>total errors</td>
<td>0.24</td>
<td>0.89</td>
<td>5.13 (4.23)</td>
<td>13.63 (20.33)</td>
<td>-1.44</td>
<td>7</td>
<td>.19</td>
</tr>
<tr>
<td>commission errors</td>
<td>0.40</td>
<td>0.92</td>
<td>2.50 (2.78)</td>
<td>6.38 (7.95)</td>
<td>-1.99</td>
<td>7</td>
<td>.09</td>
</tr>
<tr>
<td>omission errors</td>
<td>0.16</td>
<td>0.75</td>
<td>2.63 (2.13)</td>
<td>7.25 (13.22)</td>
<td>-1.12</td>
<td>7</td>
<td>.30</td>
</tr>
<tr>
<td>inhibition slope</td>
<td>0.45</td>
<td>0.57</td>
<td>0.13 (0.03)</td>
<td>0.12 (0.06)</td>
<td>0.67</td>
<td>7</td>
<td>.53</td>
</tr>
<tr>
<td>SSRT</td>
<td>0.57</td>
<td>0.59</td>
<td>239.54 (51.09)</td>
<td>247.41 (60.19)</td>
<td>0.43</td>
<td>7</td>
<td>.68</td>
</tr>
</tbody>
</table>

In the results for the DRA task shown in Table 6.8.3b one child was excluded as an outlier. This child did extremely well after teaching at time 1 and extremely badly after teaching at time 2. Although the reason for her poor performance at retest is not clear, with this very small sample size such results from even just one child can have a major effect on the results for the total sample. With her included in the sample, the inter-class correlation for the 'before teaching' variable was .23
and for the ‘after teaching’ variable -.34; the intra-class correlations were -.15 and -.35, respectively. However, even when this child is excluded, the results for the DRA are still not as good as in the previous reliability study.

There could be several reasons for this and the other small differences between the results of this study and the previous ones. First, the sample was different from the children who took part in the earlier studies: the children who participated in this later study were situationally hyperactive. These children’s behaviour could, for example, be more variable from time to time than that of control children (especially on tasks on which hyperactive children generally perform poorly). Also, as discussed above, the sample size was obviously very small. Second, the tester felt that whether the child was assessed before or after his or her co-twin influenced the performance of some of the children. For example, on the delay aversion task the child might have been better motivated to wait when doing the tasks before the co-twin than when doing the task last. The children in the earlier reliability studies were singletons.

Taking these limitations of this last small-scale reliability study into account, the results suggest that the tester is reliable in administering these tasks. This study also suggested a better test-retest reliability for several of the stop task variables compared to the previous study, which further justifies the inclusion of the stop task in the test battery.
Chapter 7

Results

7.1 Exploration of the data

7.1.1 Missing data

For most measures, there is very little missing data. Data for verbal IQ and full-scale IQ is missing for one child: she was an extremely shy child who refused to answer most verbal questions. For the stop task the data is missing for three cases, because with these children it was not possible to carry out all four experimental blocks. The data is also missing for two children for the DRA (delayed response alternation) ‘after teaching’ variable and for one child for the delay aversion measure. These children refused to finish these tasks.

7.1.2 Cases excluded from analyses

For the stop task data, all the preliminary analyses were carried out both including and excluding children with high error rates, to investigate what effect this would have on the results (this will be discussed later in section 7.2.2).
We also investigated the possibility that the data for children with low mental age (MA) would have to be excluded; they might have had difficulties understanding the instructions for the tasks and therefore the data might not be valid. We used the following formula to obtain an estimate of MA: $\text{MA} = \frac{\text{chronological age} \times \text{full-scale IQ}}{100}$. Investigation of regression lines fitted to scatterplots (MA against each of the task variables) suggested that including or excluding children with low MA (below 7) does not produce noticeably different results. Had a minimum MA been important, one would have expected the scores to drop drastically for children with low MA. As an example of these results, see Figures 7.1.2a and 7.1.2b which present the results for the DRA ‘after teaching’ variable. We therefore decided not to exclude the children with low mental age from analyses.

Figure 7.1.2a A scatterplot of mental age (MA) and DRA after teaching scores (total sample)
Figure 7.1.2b A scatterplot of mental age (MA) and DRA after teaching scores (excluding children with low MA)

From those analyses in which we compared the hyperactive and control groups on task variables (i.e. non-genetic analyses), we decided to exclude children who were situationally hyperactive (above the hyperactivity cut-off point only on teacher or parent questionnaire). The criterion in the present study for inclusion in the control group was for the child to score below the cut-off point on both questionnaires; the criterion for inclusion in the hyperactive group was for the child to be pervasively hyperactive. Therefore these situationally hyperactive co-twins of pervasively hyperactive twins were not appropriate, as individual children, for either group. The sample for these analyses consists of 51 pervasively hyperactive children and 119 non-hyperactive control children (except where there were missing data).
7.1.3 Parametric vs non-parametric methods

The distributions for the variables were examined using the one-sample Kolmogorov-Smirnov test (see Appendix B). The issue is whether the distributions would be close to a normal distribution for a general population sample; parametric methods assume an underlying normal distribution. These analyses were therefore carried out on the ‘representative’ sample for the rating scale variables (see section 6.5.2) and on the total sample of children tested (that is, not excluding situationally hyperactive children) for the testing variables.

For several variables the distributions were reasonably close to a normal distribution, suggesting that it would be appropriate to use parametric methods. The distributions for the four observational rating variables were very skewed, however, and we decided to use a summary score of these four scores in the analyses rather than the raw scores. For some other variables the distributions were also skewed, such that most children obtained low scores and only a few children obtained high scores. As such distributions are difficult to normalise, we decided to carry out the analyses on the existing scores. Note that the DF extreme group analysis, the method used to test the main hypothesis of this thesis, is a robust method in relation to the assumption of normality of distribution.

7.1.4 Should IQ or age be controlled for?

We investigated the possibility that IQ should be included in the analyses as a covariate. Table 7.1.4a shows the results from a MANOVA, comparing the two groups on verbal and performance IQ. The results are also presented controlling for conduct problems (average conduct problem scores based on teacher and parent report).
Table 7.1.4a Group comparisons for performance and verbal IQ scores: MANOVA results

<table>
<thead>
<tr>
<th></th>
<th>HYPERACTIVE</th>
<th>CONTROL</th>
<th>Univariate CP as a covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>mean</td>
<td>SD</td>
</tr>
<tr>
<td>PIQ</td>
<td>51</td>
<td>93.90</td>
<td>20.08</td>
</tr>
<tr>
<td>VIQ</td>
<td>51</td>
<td>93.49</td>
<td>16.66</td>
</tr>
<tr>
<td>Multivariate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CP = an average of parent and teacher ratings on the Conduct problem subscales (T-scores)

These results show that the hyperactive group had significantly lower performance and verbal IQs than the control group. With conduct problems as a covariate, the results are no longer significant. The correlation between average hyperactivity ratings and full-scale IQ was -.26 (p < .01) for the total sample of children tested (that is, including situationally hyperactive children). Controlling for average conduct problem ratings, the partial correlation between average hyperactivity ratings and full-scale IQ was -.20 (p < .01). The correlation between full-scale IQ and average conduct problem ratings on their own was -.17 (p < .05).

Table 7.1.4b shows the correlations between the main task variables and performance IQ and verbal IQ (hyperactive and control groups pooled together, including situationally hyperactive children). Most of the correlations, particularly those with verbal IQ, are in the moderate range.

We therefore decided to carry out all the group comparisons with full-scale IQ as a covariate. Even though the association with IQ is not equally strong for all the variables, consistently controlling for IQ in all the analyses allows equivalent comparisons to be made for all variables. However, the results are also reported for analyses in which IQ was not controlled for.
To investigate whether chronological age should be included in the analyses as another covariate, an independent t-test was carried out, comparing the groups on age. The result was non-significant, showing that the groups did not differ on age (HYPERACTIVE: mean=8.79, SD=1.15; CONTROL: mean=9.04, SD=1.43; \(t_{(168)}=1.10, p=.27 \)). Table 7.1.4c shows the correlations between age and the main task variables. Age is clearly related to performance on these tasks. However, we decided not to include age as a covariate in the analyses, as the groups did not differ significantly on age.
Table 7.1.4c Correlations between main task variables and age (N=183-186)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>.41**</td>
</tr>
<tr>
<td>DRA before teaching</td>
<td>.19**</td>
</tr>
<tr>
<td>after teaching</td>
<td>.30**</td>
</tr>
<tr>
<td>Counting span</td>
<td>.51**</td>
</tr>
<tr>
<td>Sentence span</td>
<td>.49**</td>
</tr>
<tr>
<td>Stop task: inhibition slope</td>
<td>.20**</td>
</tr>
<tr>
<td>SSRT</td>
<td>-.14</td>
</tr>
<tr>
<td>MRT</td>
<td>-.54**</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>-.46**</td>
</tr>
<tr>
<td>total errors</td>
<td>-.30**</td>
</tr>
</tbody>
</table>

** p < 0.01 (two-tailed)

7.2 Group comparisons on task variables and rating scale data

7.2.1 Delay aversion and working memory tasks

The group comparisons are reported both with full-scale IQ as a covariate (ANCOVA or MANOVA) and without controlling for IQ (t-test or MANOVA). Table 7.2.1a.1 summarises the results for the delay aversion, counting span and sentence span tasks. On the delay aversion task, hyperactive children chose the larger reward significantly less often than the control children, and this group difference remained significant after controlling for IQ. The means for the two groups on the two working memory measures show that hyperactive children tended to perform less well than the control children. However, the only significant group difference was that for sentence span without controlling for IQ. When IQ was included in the analysis as a covariate, this difference between the groups was no longer significant.
The results are also reported controlling for conduct problems and anxiety (Table 7.2.1a.2). With conduct problems as a covariate, none of the group comparisons are significant. In contrast, controlling for anxiety does not alter the pattern of findings: the group comparisons for the delay aversion and sentence span tasks remain significant.

The mean scores on the sentence span and counting span tasks (Table 7.2.1a.1) suggest that both groups performed relatively better on the counting span than on the sentence span task. Paired t-tests confirmed that these within-group differences were significant (HYPERACTIVE: \(t_{(50)} = 4.06, \ p < .001 \); CONTROL: \(t_{(118)} = 6.08, \ p < .001 \)).

The DRA before and after teaching scores were analysed together in a MANOVA (see Table 7.2.1b.1). Before teaching the children the rule, both groups performed at chance levels. After the children had been taught the rule, the control children performed significantly better than the hyperactive children. When IQ is controlled for, this group difference disappears. Table 7.2.1b.2 shows the results when conduct problems and anxiety are controlled for. In both cases the group comparison for the 'after teaching' variable remains significant.
Table 7.2.1a Group comparisons for delay aversion, sentence span and counting span tasks

Table 7.2.1a.1 T-test results and effect sizes

<table>
<thead>
<tr>
<th>variable</th>
<th>HYPERACTIVE</th>
<th></th>
<th>CONTROL</th>
<th></th>
<th>t-test</th>
<th>effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N mean SD</td>
<td>N mean SD</td>
<td></td>
<td>t-value df p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay aversion</td>
<td>51 40.29 5.54</td>
<td>118 53.22 7.61</td>
<td>-2.86</td>
<td>167 .005</td>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>Sentence span</td>
<td>51 3.33 1.86</td>
<td>119 4.24 1.83</td>
<td>-2.93</td>
<td>168 .004</td>
<td>.50</td>
<td></td>
</tr>
<tr>
<td>Counting span</td>
<td>51 4.71 3.12</td>
<td>119 5.66 3.06</td>
<td>-1.84</td>
<td>168 .07</td>
<td>.31</td>
<td></td>
</tr>
</tbody>
</table>

* effect size = difference in the group means/SD in the control group

Table 7.2.1a.2 ANCOVA results, with IQ, conduct problems and anxiety as covariates

<table>
<thead>
<tr>
<th>variable</th>
<th>ANCOVA IQ as a covariate</th>
<th>ANCOVA CP as a covariate</th>
<th>ANCOVA Anxiety as a covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F df p</td>
<td>F df p</td>
<td>F df p</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>3.82 1,165 .05</td>
<td>1.60 1,166 .21</td>
<td>7.17 1,166 .008</td>
</tr>
<tr>
<td>Sentence span</td>
<td>2.82 1,166 .10</td>
<td>0.68 1,167 .41</td>
<td>7.85 1,167 .006</td>
</tr>
<tr>
<td>Counting span</td>
<td>0.50 1,166 .48</td>
<td>0.47 1,167 .49</td>
<td>2.53 1,167 .11</td>
</tr>
</tbody>
</table>

CP = an average of parent and teacher ratings on the Conduct problem subscales (T-scores)
Anxiety = parent rating on the Anxiety subscale (T-scores)

218
Table 7.2.1b Group comparisons for DRA scores

Table 7.2.1b.1 MANOVA results and effect sizes

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>mean</th>
<th>SD</th>
<th>N</th>
<th>mean</th>
<th>SD</th>
<th>F</th>
<th>df</th>
<th>p</th>
<th>effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA before</td>
<td>51</td>
<td>50.25</td>
<td>11.75</td>
<td>119</td>
<td>51.11</td>
<td>14.19</td>
<td>0.14</td>
<td>1,167</td>
<td>.71</td>
<td>.06</td>
</tr>
<tr>
<td>DRA after</td>
<td>51</td>
<td>67.94</td>
<td>14.92</td>
<td>118</td>
<td>74.70</td>
<td>16.00</td>
<td>6.61</td>
<td>1,167</td>
<td>.01</td>
<td>.42</td>
</tr>
<tr>
<td>Multivariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.37</td>
<td>2,166</td>
<td>.04</td>
<td></td>
</tr>
</tbody>
</table>

* effect size = difference in the group means/SD in the control group

Table 7.2.1b.2 MANOVA results, with IQ, conduct problems and anxiety as covariates

<table>
<thead>
<tr>
<th>variable</th>
<th>ANCOVA IQ as a covariate</th>
<th>ANCOVA CP as a covariate</th>
<th>ANCOVA Anxiety as a covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>DRA before</td>
<td>0.02</td>
<td>1,165</td>
<td>.89</td>
</tr>
<tr>
<td>DRA after</td>
<td>2.64</td>
<td>1,165</td>
<td>.11</td>
</tr>
<tr>
<td>Multivariate</td>
<td>1.38</td>
<td>2,164</td>
<td>.26</td>
</tr>
</tbody>
</table>

CP = an average of parent and teacher ratings on the Conduct problem subscales (T-scores)
Anxiety = parent rating on the Anxiety subscale (T-scores)
On the DRA, we asked the children, after they had performed the task for the first time, what they thought the rule was. Table 7.2.1c shows the frequencies and percentages of children in each group who found and did not find out the rule on their own. If the child's explanation of the rule was unclear, we coded this as 'not sure'. A chi-square test on these data (excluding the 'not sure' case) was non-significant ($\chi^2(1)=1.29$, $p=.26$), indicating that the groups did not differ significantly in the numbers of children finding out the rule on their own.

<table>
<thead>
<tr>
<th>Whether found out rule</th>
<th>HYPERACTIVE (N=51)</th>
<th>CONTROL (N=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>yes</td>
<td>7 (13.7)</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>44 (86.3)</td>
<td></td>
</tr>
<tr>
<td>not sure</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

On the delay aversion task, we asked the children how they had decided whether to choose the smaller or the larger reward ('how did you decide whether to fire your phasers the first time or the second time that the box changed from green to red?'). See Table 7.2.1d for the results. A chi-square test on these data was non-significant ($\chi^2(4)=1.18$, $p=.88$), which indicates that the groups did not differ significantly in the reasons given for the choices made on the task.

We also rated the children's apparent aversion to delay during the task. These results are presented graphically in Figure 7.2.1 and numerically in Table 7.2.1e. A Mann-Whitney U-test on these data was highly significant ($U=1015.50$, $p<.001$), which indicates that the groups differed on the degree of 'delay aversion'
they showed during the task. More than half of the control children, but only 16% of hyperactive children, did not appear at all aversive to delay. In contrast, 44% of the hyperactive children, but only 13% of the control children, obtained the highest rating of 'very much' or consistently chose the small, immediate reward. (These data are not available for the total sample, as the decision to obtain the ratings was made only after testing had already started.)

Table 7.2.1d Reasons for making choices on the delay aversion task

<table>
<thead>
<tr>
<th>Reason</th>
<th>HYPERACTIVE (N=51)</th>
<th>CONTROL (N=117)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>did not want to wait</td>
<td>10</td>
<td>(19.6)</td>
</tr>
<tr>
<td>wanted to score more points</td>
<td>8</td>
<td>(15.7)</td>
</tr>
<tr>
<td>combination of the above</td>
<td>13</td>
<td>(25.5)</td>
</tr>
<tr>
<td>unusual reason</td>
<td>12</td>
<td>(23.5)</td>
</tr>
<tr>
<td>not clear</td>
<td>8</td>
<td>(15.7)</td>
</tr>
</tbody>
</table>

Table 7.2.1e Testers' rating of children's delay aversion during the task

<table>
<thead>
<tr>
<th>Delay aversion rating</th>
<th>HYPERACTIVE (N=43)</th>
<th>CONTROL (N=90)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>not at all</td>
<td>7</td>
<td>(16.3)</td>
</tr>
<tr>
<td>a little</td>
<td>17</td>
<td>(39.5)</td>
</tr>
<tr>
<td>very much</td>
<td>17</td>
<td>(39.5)</td>
</tr>
<tr>
<td>NA - always chose the small reward</td>
<td>2</td>
<td>(4.7)</td>
</tr>
</tbody>
</table>

221
Figure 7.2.1. Testers' ratings of children's delay aversion during the task

7.2.2 Stop task

Often in analysing stop task data, investigators have excluded those children who have error rates higher than 10% (Oosterlaan, personal communication, January 1998). We investigated statistically whether these children should be excluded from analyses. Group comparisons were carried out both including and excluding these children, to examine what effect this would have on the results (in particular, for effect sizes).

The group comparison results for the stop task measures, from t-tests and ANCOVAs (controlling for full-scale IQ), are presented in Table 7.2.2a. The group comparisons
were non-significant for the inhibition slope and SSRT (stop signal reaction time) and significant for MRT (mean reaction time), SD (standard deviation of reaction times) and the error variables. As the group comparison for the inhibition slope was non-significant, we did not carry out the ZRFT-correction (see Appendix L). Controlling for IQ did not change this pattern of results. The effect size is highest for the standard deviation of reaction times, which is noticeably higher than for any other variable: for example, the effect size is .47 for the delay aversion variable, whereas it is .83 for the standard deviation of reaction times.

Figure 7.2.2 shows the inhibition functions for the two groups. For both groups the mean probability of inhibition increased as the stop signal interval increased. The inhibition slopes were calculated by fitting regression lines to the individual inhibition functions.

![Inhibition functions: probability of inhibition as a function of the stop signal interval (MRT - stop signal delay)](image-url)
Table 7.2.2b shows the results when the children who had a total error rate of 10\% or higher (N=19) were excluded from the analyses. In general, the results are rather similar to those for the total sample. However, after controlling for IQ, the group comparison for the mean reaction time is no longer significant. The effect sizes are also lower than for those for the total sample.

The results were also analysed with conduct problems and anxiety as covariates. Controlling for anxiety did not alter the pattern of findings. With conduct problems as a covariate, the group comparison for mean reaction time is no longer significant. When the children with high error rates are excluded, the group comparison for the standard deviation of reaction times is, in addition, no longer significant.

These analyses suggest that excluding children with high error rates does not have a marked effect on the results. We therefore decided not to exclude this subgroup of children from further analyses on the stop task data.
Table 7.2.2a Group comparisons for stop task variables (including the high error cases)

Table 7.2.2a.1 T-test results and effect sizes

<table>
<thead>
<tr>
<th>stop task variable</th>
<th>HYPERACTIVE (N=49)</th>
<th>CONTROL (N=118)</th>
<th>t-value</th>
<th>t-test df</th>
<th>p</th>
<th>effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
<td>SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inhibition slope</td>
<td>.136</td>
<td>.042</td>
<td>.142</td>
<td>.046</td>
<td>-0.80</td>
<td>165</td>
</tr>
<tr>
<td>SSRT</td>
<td>238.67</td>
<td>80.90</td>
<td>222.27</td>
<td>68.49</td>
<td>1.33</td>
<td>165</td>
</tr>
<tr>
<td>MRT</td>
<td>527.41</td>
<td>95.76</td>
<td>475.55</td>
<td>101.76</td>
<td>3.05</td>
<td>165</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>142.37</td>
<td>40.32</td>
<td>114.30</td>
<td>33.74</td>
<td>4.62</td>
<td>165</td>
</tr>
<tr>
<td>commission errors</td>
<td>4.90</td>
<td>4.97</td>
<td>2.85</td>
<td>5.06</td>
<td>2.40</td>
<td>165</td>
</tr>
<tr>
<td>omission errors</td>
<td>5.29</td>
<td>6.36</td>
<td>2.36</td>
<td>4.32</td>
<td>2.95</td>
<td>67.12</td>
</tr>
<tr>
<td>total errors</td>
<td>10.18</td>
<td>9.64</td>
<td>5.20</td>
<td>7.70</td>
<td>3.21</td>
<td>74.66</td>
</tr>
</tbody>
</table>

* effect size = difference in the group means/SD in the control group
Table 7.2.2a.2 ANCOVA results, with IQ, conduct problems and anxiety as covariates

<table>
<thead>
<tr>
<th>stop task variable</th>
<th>ANCOVA IQ as a covariate</th>
<th>ANCOVA CP as a covariate</th>
<th>ANCOVA Anxiety as a covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>df</td>
<td>p</td>
</tr>
<tr>
<td>inhibition slope</td>
<td>0.03</td>
<td>1,163</td>
<td>.86</td>
</tr>
<tr>
<td>SSRT</td>
<td>0.67</td>
<td>1,163</td>
<td>.41</td>
</tr>
<tr>
<td>MRT</td>
<td>6.72</td>
<td>1,163</td>
<td>.01</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>14.57</td>
<td>1,163</td>
<td>.001</td>
</tr>
<tr>
<td>commission errors</td>
<td>7.56</td>
<td>1,163</td>
<td>.007</td>
</tr>
<tr>
<td>omission errors</td>
<td>3.45</td>
<td>1,163</td>
<td>.07</td>
</tr>
<tr>
<td>total errors</td>
<td>7.84</td>
<td>1,163</td>
<td>.006</td>
</tr>
</tbody>
</table>

CP = an average of parent and teacher ratings on the Conduct problem subscales (T-scores)
Anxiety = parent rating on the Anxiety subscale (T-scores)
Table 7.2.2b Group comparisons for stop task variables (excluding the high error cases)

Table 7.2.2b.1 T-test results and effect sizes

<table>
<thead>
<tr>
<th>stop task variable</th>
<th>HYPERACTIVE (N=38)</th>
<th>CONTROL (N=110)</th>
<th>t-value</th>
<th>t-test df</th>
<th>p</th>
<th>effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibition slope</td>
<td>.143</td>
<td>.145</td>
<td>-.20</td>
<td>146</td>
<td>.84</td>
<td>.04</td>
</tr>
<tr>
<td>SSRT</td>
<td>210.67</td>
<td>216.83</td>
<td>-.51</td>
<td>146</td>
<td>.61</td>
<td>.09</td>
</tr>
<tr>
<td>MRT</td>
<td>512.81</td>
<td>474.93</td>
<td>2.08</td>
<td>146</td>
<td>.04</td>
<td>.38</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>130.85</td>
<td>111.99</td>
<td>3.03</td>
<td>146</td>
<td>.003</td>
<td>.58</td>
</tr>
</tbody>
</table>

*effect size = difference in the group means/SD in the control group

Table 7.2.2b.2 ANCOVA results, with IQ, conduct problems and anxiety as covariates

<table>
<thead>
<tr>
<th>stop task variable</th>
<th>ANCOVA IQ as a covariate</th>
<th>ANCOVA CP as a covariate</th>
<th>ANCOVA Anxiety as a covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibition slope</td>
<td>F 0.29 df 1,144 p .59</td>
<td>F 0.49 df 1,145 p .48</td>
<td>F 0.01 df 1,145 p .42</td>
</tr>
<tr>
<td>SSRT</td>
<td>F 0.47 df 1,144 p .49</td>
<td>F 0.32 df 1,145 p .57</td>
<td>F 0.33 df 1,145 p .56</td>
</tr>
<tr>
<td>MRT</td>
<td>F 3.00 df 1,144 p .09</td>
<td>F 0.33 df 1,145 p .56</td>
<td>F 3.43 df 1,145 p .07</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>F 6.06 df 1,144 p .02</td>
<td>F 0.76 df 1,145 p .38</td>
<td>F 7.39 df 1,145 p .007</td>
</tr>
</tbody>
</table>

CP = an average of parent and teacher ratings on the Conduct problem subscales (T-scores)
Anxiety = parent rating on the Anxiety subscale (T-scores)
Time-on-task

To investigate whether the speed of responding on the task remains stable over time in each group, a repeated measures ANOVA was carried out, with group as the between-subjects variable (see Table 7.2.2c). Mean reaction time was calculated across the first half (blocks 1 and 2) and the second half (blocks 3 and 4). The results show that both groups were faster during the second half of the task (a practice effect) and that children in the hyperactive group were generally slower than the control children. The group by time-on-task interaction was not significant, however.

Table 7.2.2c also reports the results from a similar analysis for the standard deviation of reaction times. Only the main effect for group was significant, indicating that the hyperactive children were more variable in the speed of responding than control children, but there was no change for either group in the variability of speed over time.

Speed accuracy trade-off

Is there evidence of speed accuracy trade-off? The correlation between mean reaction time and total number of errors was .24. Considering the two types of errors separately, it is clear that there is a relationship between MRT and omission errors \((r = .44)\), but not between MRT and commission errors \((r = -.04)\). As the correlation between MRT and omission errors is positive, it shows an association between slow speed and a high number of omission errors. Therefore there was no evidence of speed accuracy trade-off.
Table 7.2.2c Time-on-task effects: mean reaction time (MRT) and standard deviation of reaction times (SD)

<table>
<thead>
<tr>
<th></th>
<th>MRT</th>
<th>SD of RTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>first half</td>
<td>second half</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
</tr>
<tr>
<td>Hyperactive (N=49)</td>
<td>538.11</td>
<td>103.46</td>
</tr>
<tr>
<td>Control (N=118)</td>
<td>480.86</td>
<td>107.26</td>
</tr>
<tr>
<td>ANOVA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>9.27</td>
<td>1,165</td>
</tr>
<tr>
<td>time-on-task</td>
<td>27.04</td>
<td>1,165</td>
</tr>
<tr>
<td>group x time-on-task</td>
<td>3.17</td>
<td>1,165</td>
</tr>
</tbody>
</table>
7.2.3 Ratings of behaviour during testing

A t-test was carried out to investigate whether the groups differ on the summary score of observational ratings of behaviour during testing. On this aggregate score, a higher score indicates more hyperactive behaviour. The result was highly significant (HYPERACTIVE: N=43, mean=6.28, SD=3.37; CONTROL: N=90, mean=2.32, SD=2.37; t(62.63)=6.92, p<.001), indicating that hyperactive children were rated as more active and fidgety than control children. Figure 7.2.3 shows the distributions of the scores for the two groups. As IQ was not associated with these ratings (correlations between full-scale IQ and the variables ranged from -.10 to .08), there was no need to control for it in this comparison.

![Graph showing distributions of observational rating scores]

Figure 7.2.3 Distributions of observational rating scores of hyperactive behaviour
7.2.4 Sex effects

Do girls and boys differ in their performance on the various tasks? Separate ANOVAs for each of the task variables were carried out to investigate this issue. The results (see Table 7.2.4) show that there were no significant main effects for sex or sex \times group interactions.

7.2.5 Discriminant function analysis

To obtain scores which maximally discriminate between the hyperactive and control groups, a discriminant function analysis was carried out. The situationally hyperactive children were excluded from this analysis, as were children who had missing data on any of the variables which were entered into the analysis. The sample therefore consists of 49 hyperactive children and 115 control children. However, the situationally hyperactive children received a discriminant function score and were included in the genetic analyses reported in later sections of this chapter. The variables included in the discriminant function analysis were all the main task variables and performance and verbal IQs.

Table 7.2.5 shows two sets of coefficients from the discriminant function analysis: linear classification functions (the actual weights used to create the discriminant scores) and linear discriminant functions. The latter give the relative magnitude of the contributions to the discriminant score, that is they take into account scaling differences between the measures. The standard deviation of reaction times on the stop task comes out again as the strongest variable, with a linear discriminant function (LDF) score of .81. Other variables with LDF scores of +/- .5 or higher are omission errors, sentence span, delay aversion, mean reaction time and verbal IQ.
Table 7.2.4 ANOVA results: sex effects on task variables (N=167-170)

<table>
<thead>
<tr>
<th>variable</th>
<th>group</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>group</td>
<td>7.71</td>
<td>1, 165</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.10</td>
<td>1, 165</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.73</td>
<td>1, 165</td>
<td>.40</td>
</tr>
<tr>
<td>Sentence span</td>
<td>group</td>
<td>8.31</td>
<td>1, 166</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>2.34</td>
<td>1, 166</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>1.06</td>
<td>1, 166</td>
<td>.31</td>
</tr>
<tr>
<td>Counting span</td>
<td>group</td>
<td>3.41</td>
<td>1, 166</td>
<td>.07</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.57</td>
<td>1, 166</td>
<td>.45</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.00</td>
<td>1, 166</td>
<td>.99</td>
</tr>
<tr>
<td>DRA before</td>
<td>group</td>
<td>0.14</td>
<td>1, 166</td>
<td>.71</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>1.31</td>
<td>1, 166</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.03</td>
<td>1, 166</td>
<td>.25</td>
</tr>
<tr>
<td>DRA after</td>
<td>group</td>
<td>6.60</td>
<td>1, 165</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>2.04</td>
<td>1, 165</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.12</td>
<td>1, 165</td>
<td>.73</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>group</td>
<td>0.62</td>
<td>1, 163</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.38</td>
<td>1, 163</td>
<td>.54</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.00</td>
<td>1, 163</td>
<td>.99</td>
</tr>
<tr>
<td>SSRT</td>
<td>group</td>
<td>1.82</td>
<td>1, 163</td>
<td>.18</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>3.52</td>
<td>1, 163</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.00</td>
<td>1, 163</td>
<td>.98</td>
</tr>
<tr>
<td>MRT</td>
<td>group</td>
<td>8.63</td>
<td>1, 163</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>1.12</td>
<td>1, 163</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.80</td>
<td>1, 163</td>
<td>.37</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>group</td>
<td>19.84</td>
<td>1, 163</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.05</td>
<td>1, 163</td>
<td>.83</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>1.42</td>
<td>1, 163</td>
<td>.24</td>
</tr>
<tr>
<td>Commission errors</td>
<td>group</td>
<td>5.66</td>
<td>1, 163</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.26</td>
<td>1, 163</td>
<td>.61</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.01</td>
<td>1, 163</td>
<td>.96</td>
</tr>
<tr>
<td>Omission errors</td>
<td>group</td>
<td>10.63</td>
<td>1, 163</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.52</td>
<td>1, 163</td>
<td>.47</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>2.65</td>
<td>1, 163</td>
<td>.11</td>
</tr>
<tr>
<td>Total errors</td>
<td>group</td>
<td>11.53</td>
<td>1, 163</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>sex</td>
<td>0.55</td>
<td>1, 163</td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td>group \times sex</td>
<td>0.89</td>
<td>1, 163</td>
<td>.35</td>
</tr>
</tbody>
</table>
Table 7.2.5 Results from the discriminant function analysis: linear classification functions (LCFs) and linear discriminant functions (LDFs)

<table>
<thead>
<tr>
<th>variable</th>
<th>LCFs</th>
<th>LDFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD of RTs</td>
<td>.901</td>
<td>.813</td>
</tr>
<tr>
<td>Omission errors</td>
<td>-.026</td>
<td>.597</td>
</tr>
<tr>
<td>Sentence span</td>
<td>-.096</td>
<td>-.561</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>-.258</td>
<td>-.545</td>
</tr>
<tr>
<td>MRT</td>
<td>-.117</td>
<td>.527</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>-.191</td>
<td>-.507</td>
</tr>
<tr>
<td>DRA after teaching</td>
<td>-.056</td>
<td>-.475</td>
</tr>
<tr>
<td>Commission errors</td>
<td>.265</td>
<td>.453</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>-.200</td>
<td>-.387</td>
</tr>
<tr>
<td>Counting span</td>
<td>.204</td>
<td>-.364</td>
</tr>
<tr>
<td>SSRT</td>
<td>-.094</td>
<td>.256</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>.434</td>
<td>-.154</td>
</tr>
<tr>
<td>DRA before teaching</td>
<td>.069</td>
<td>-.077</td>
</tr>
</tbody>
</table>

7.2.6 Ratings on other subscales of the Conners’

To investigate whether the hyperactive children were rated higher also on other types of problem behaviours apart from hyperactivity-impulsivity, independent-samples t-tests were carried out, comparing the groups on the other subscales of the Teacher and Parent Conners’. For several of the Parent Conners’ dimensions, there are no equivalent ones on the Teacher Conners’, and vice versa. Both rating scales include a conduct problems subscale, however, and average conduct problems scores were used in these analyses.

The results show (see Table 7.2.6) that the hyperactive group obtained significantly higher average ratings than the control group on the Conduct problems, Inattentive-Passive, Learning problems and Anxiety subscales. The only subscale on which the groups did not differ is that of Psychosomatic complaints.
Table 7.2.6 Group comparisons on the subscales of the Conners’

<table>
<thead>
<tr>
<th></th>
<th>HYPERACTIVE (N=51)</th>
<th>CONTROL (N=119)</th>
<th>t-test</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Average rating:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct problems</td>
<td>71.28</td>
<td>13.56</td>
<td>49.50</td>
<td>8.36</td>
<td>10.64</td>
</tr>
<tr>
<td>Teacher ratings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>61.76</td>
<td>11.35</td>
<td>48.25</td>
<td>8.17</td>
<td>7.69</td>
</tr>
<tr>
<td>Parent ratings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning problems</td>
<td>72.04</td>
<td>18.60</td>
<td>49.03</td>
<td>12.70</td>
<td>8.07</td>
</tr>
<tr>
<td>Psychosomatic</td>
<td>57.45</td>
<td>16.36</td>
<td>54.05</td>
<td>13.09</td>
<td>1.44</td>
</tr>
<tr>
<td>Anxiety</td>
<td>57.49</td>
<td>14.62</td>
<td>53.03</td>
<td>10.43</td>
<td>1.98</td>
</tr>
</tbody>
</table>

7.2.7 Birthweight

To investigate whether the groups would differ on birthweight, an independent samples t-test was carried out. As expected from a sample of twins, the mean birthweights were rather low (HYPERACTIVE: mean=2508.40 grams, SD=558.79; CONTROLS: mean=2577.59 grams, SD=495.27). This was the case for both groups; the t-test result was non-significant (t(164) = .79, p = .43).

7.3 Correlational analyses

The data were also analysed from a dimensional perspective, focusing on correlations between the various measures. Although the sample for the testing variables is not strictly representative of the general population, these analyses will give some indication of associations between the various measures.
7.3.1 Correlations between the task variables

Table 7.3.1 shows the correlations between the various task variables. Those variables which differentiated between the groups (not controlling for IQ - delay aversion, DRA after teaching, sentence span, and stop task variables SD of RTs, MRT and total number of errors), correlate moderately with one another (most of the correlations are around .4). In these analyses the total sample of children was included; that is, children with situational hyperactivity were not excluded.

7.3.2 Task variables and hyperactivity ratings

Table 7.3.2 presents correlations between the main task variables and the hyperactivity ratings as continuous dimensions (T-scores on the Hyperactivity dimension of Teacher Conners', T-scores on the Impulsive-Hyperactive dimension of Parent Conners', the average of these two scores and the summary score of the testers' ratings on the four observational rating scales). These correlations were calculated both as ordinary bivariate correlations and as partial correlations, controlling for full-scale IQ and conduct problems. Children with situational hyperactivity were included in these analyses.
Table 7.3.1 Correlations between main task variables (N=186)

<table>
<thead>
<tr>
<th></th>
<th>Delay aversion</th>
<th>DRA before</th>
<th>DRA after</th>
<th>Sentence span</th>
<th>Counting span</th>
<th>Inhibition slope</th>
<th>SSRT</th>
<th>MRT</th>
<th>SD of RTs</th>
<th>Total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRA before</td>
<td>.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRA after</td>
<td>.39**</td>
<td>.29**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentence span</td>
<td>.40**</td>
<td>.16*</td>
<td>.45**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counting span</td>
<td>.37**</td>
<td>.24**</td>
<td>.44**</td>
<td>.59**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>.31**</td>
<td>.09</td>
<td>.29**</td>
<td>.25**</td>
<td>.23**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRT</td>
<td>-.22**</td>
<td>-.10</td>
<td>-.31**</td>
<td>-.28**</td>
<td>-.20**</td>
<td>-.22**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>-.29**</td>
<td>-.07</td>
<td>-.25**</td>
<td>-.33**</td>
<td>-.35**</td>
<td>-.25**</td>
<td></td>
<td>.06</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SD of RTs</td>
<td>-.41**</td>
<td>-.16*</td>
<td>-.44**</td>
<td>-.48**</td>
<td>-.40**</td>
<td>-.42**</td>
<td>.25**</td>
<td>.79**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Total errors</td>
<td>-.34**</td>
<td>-.14</td>
<td>-.44**</td>
<td>-.48**</td>
<td>-.35**</td>
<td></td>
<td></td>
<td>.24**</td>
<td>.57**</td>
<td>1.00</td>
</tr>
</tbody>
</table>

** p < .01 (two-tailed)
† inhibition slope and SSRT have been corrected for the number of omission errors and therefore it is not appropriate to calculate these correlations.

236
Table 7.3.2a Correlations between main task variables and hyperactivity dimensions
(partial correlations, controlling for full-scale IQ, in italics)

<table>
<thead>
<tr>
<th>Hyperactivity dimension</th>
<th>N</th>
<th>Delay aversion</th>
<th>DRA before</th>
<th>DRA after</th>
<th>Sentence span</th>
<th>Counting span</th>
<th>Inhibition slope</th>
<th>SSRT</th>
<th>MRT</th>
<th>SD of RTs</th>
<th>Total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>179</td>
<td>-.30**</td>
<td>-.08</td>
<td>-.22**</td>
<td>-.29**</td>
<td>-.23**</td>
<td>-.02</td>
<td>.12</td>
<td>.25**</td>
<td>.35**</td>
<td>.30**</td>
</tr>
<tr>
<td>Teacher</td>
<td>176</td>
<td>-.24**</td>
<td>-.05</td>
<td>-.15*</td>
<td>-.20**</td>
<td>-.15*</td>
<td>.05</td>
<td>.08</td>
<td>.22**</td>
<td>.30**</td>
<td>.25**</td>
</tr>
<tr>
<td>Parent</td>
<td>179</td>
<td>-.14</td>
<td>.01</td>
<td>-.14</td>
<td>-.24**</td>
<td>-.22*</td>
<td>-.10</td>
<td>.08</td>
<td>.25**</td>
<td>.31**</td>
<td>.20**</td>
</tr>
<tr>
<td>Parent</td>
<td>176</td>
<td>-.06</td>
<td>.04</td>
<td>-.05</td>
<td>-.13</td>
<td>-.12</td>
<td>-.02</td>
<td>.03</td>
<td>.22**</td>
<td>.25**</td>
<td>.13</td>
</tr>
<tr>
<td>Average</td>
<td>179</td>
<td>-.24**</td>
<td>-.04</td>
<td>-.20**</td>
<td>-.28**</td>
<td>-.24**</td>
<td>-.06</td>
<td>.10</td>
<td>.27**</td>
<td>.36**</td>
<td>.27**</td>
</tr>
<tr>
<td>Average</td>
<td>176</td>
<td>-.17*</td>
<td>-.01</td>
<td>-.11</td>
<td>-.18*</td>
<td>-.15*</td>
<td>.02</td>
<td>.06</td>
<td>.24**</td>
<td>.30**</td>
<td>.21**</td>
</tr>
<tr>
<td>Tester</td>
<td>142</td>
<td>-.43**</td>
<td>-.08</td>
<td>-.29**</td>
<td>-.45**</td>
<td>-.31**</td>
<td>-.22*</td>
<td>.30**</td>
<td>.25**</td>
<td>.41**</td>
<td>.49**</td>
</tr>
<tr>
<td>Tester</td>
<td>139</td>
<td>-.38**</td>
<td>-.05</td>
<td>-.19*</td>
<td>-.36**</td>
<td>-.21*</td>
<td>-.14</td>
<td>.26**</td>
<td>.22**</td>
<td>.35**</td>
<td>.45**</td>
</tr>
</tbody>
</table>

* p < .05 (two-tailed), ** p < .01 (two-tailed)
<table>
<thead>
<tr>
<th>Hyperactivity dimension</th>
<th>N</th>
<th>Delay aversion</th>
<th>DRA before</th>
<th>DRA after</th>
<th>Sentence span</th>
<th>Counting span</th>
<th>Inhibition slope</th>
<th>SSRT</th>
<th>MRT</th>
<th>SD of RTs</th>
<th>Total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>177</td>
<td>-.23**</td>
<td>-.17*</td>
<td>-.25**</td>
<td>-.15*</td>
<td>-.18**</td>
<td>.02</td>
<td>.14</td>
<td>.11</td>
<td>.18*</td>
<td>.28**</td>
</tr>
<tr>
<td>Teacher</td>
<td>175</td>
<td>-.19**</td>
<td>-.16*</td>
<td>-.21**</td>
<td>-.08</td>
<td>-.13</td>
<td>.06</td>
<td>.12</td>
<td>.10</td>
<td>.15*</td>
<td>.25**</td>
</tr>
<tr>
<td>Parent</td>
<td>177</td>
<td>-.01</td>
<td>-.04</td>
<td>-.11</td>
<td>-.09</td>
<td>-.15*</td>
<td>-.10</td>
<td>.07</td>
<td>.13</td>
<td>.15*</td>
<td>.13</td>
</tr>
<tr>
<td>Parent</td>
<td>175</td>
<td>.05</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
<td>.09</td>
<td>.04</td>
<td>.03</td>
<td>.11</td>
<td>.09</td>
<td>.08</td>
</tr>
<tr>
<td>Average</td>
<td>177</td>
<td>-.14</td>
<td>-.12</td>
<td>-.22**</td>
<td>-.14</td>
<td>-.20**</td>
<td>-.05</td>
<td>.12</td>
<td>.15*</td>
<td>.19**</td>
<td>.24**</td>
</tr>
<tr>
<td>Average</td>
<td>175</td>
<td>-.09</td>
<td>-.10</td>
<td>-.16*</td>
<td>-.05</td>
<td>-.13</td>
<td>.01</td>
<td>.09</td>
<td>.12</td>
<td>.14</td>
<td>.20**</td>
</tr>
<tr>
<td>Tester</td>
<td>140</td>
<td>-.37**</td>
<td>-.14</td>
<td>-.27**</td>
<td>-.39**</td>
<td>-.26**</td>
<td>-.17*</td>
<td>.34**</td>
<td>.12</td>
<td>.28**</td>
<td>.47**</td>
</tr>
<tr>
<td>Tester</td>
<td>138</td>
<td>-.33**</td>
<td>-.11</td>
<td>-.20*</td>
<td>-.31**</td>
<td>-.19*</td>
<td>-.10</td>
<td>.30**</td>
<td>.10</td>
<td>.23**</td>
<td>.44**</td>
</tr>
</tbody>
</table>

* p < .05 (two-tailed), ** p < .01 (two-tailed)
In general, the correlations with the task variables tend to be higher for teacher ratings than for parent ratings. Controlling for IQ or conduct problems reduces in general the correlations slightly, although the results vary across variables. The highest correlations with the rating scale scores are those for the standard deviation of reaction times; these are around .3. The correlations for the other task variables which picked up group differences are mostly between .2 and .3. The correlations of the task variables with the testers' ratings of hyperactive behaviour during the session are higher than the correlations with parents' and teachers' ratings, with very few exceptions. These correlations are highest for the delay aversion, sentence span, standard deviation of reaction times and total error variables (between .42 and .50).

7.3.3 Hyperactivity ratings and observations of behaviour

Table 7.3.3 shows the correlations between parents' ratings of hyperactivity, teachers' ratings of hyperactivity and testers' ratings of hyperactive behaviour during the session (the summary score). These correlations suggest a degree of cross-informant consistency in hyperactivity ratings. However, as only children from whom we have the observational ratings were included in these analyses, the sample is not representative of the general population. For the larger sample representative of the general population (N=250), the correlation between teacher and parent ratings of hyperactivity was .33 (p < .01).

Table 7.3.3 Correlations between observational ratings and hyperactivity ratings by parents and teachers (N=148)

<table>
<thead>
<tr>
<th>Rater</th>
<th>Teacher</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent</td>
<td>.71**</td>
<td></td>
</tr>
<tr>
<td>Tester</td>
<td>.57**</td>
<td>.46**</td>
</tr>
</tbody>
</table>

** p < .01 (two-tailed)
7.4 Introduction to model fitting analyses

To obtain estimates of the importance of genetic, shared environmental and non-shared environmental effects on the behavioural ratings and performance on each of the tests, univariate ACE models were fitted to each of these variables. The structural equation programme EQS (Bentler, 1995) was used to analyse the data.

The rating scale data is based on a subsample of those cases from whom we obtained ratings from both teachers and parents (and therefore obtained zygosity information). Because the total sample from whom we obtained this information has an excess of hyperactive children, a sample representative of the general population was created for these analyses. Section 6.5.2 described how we chose this sample.

For these analyses, we followed the standard procedure of first fitting the full ACE model and then dropping the A and C terms individually, to investigate whether this would significantly worsen the fit of the model. Following the rule of parsimony, the model with the fewest parameters, which did not significantly worsen the fit, was chosen as the best-fitting model. If the full ACE model did not converge, the model with the smallest (or largest negative) AIC value was chosen as the one providing the best fit for the data. (If a model does not converge in EQS, this indicates that a parameter is zero or negative.) As in some cases the data suggested that a contrast effect model might be needed (very low DZ twin correlations and differences in variances between MZ and DZ twins), this possibility was also tested for each of the rating scale dimensions. The ADE models were also fitted to the data, to enable a comparison between the contrast effect model and a model which includes genetic non-additivity.
In some cases, using the standard EQS approach, the fit of even the best-fitting model was poor (CFI-value less than .9). When this happened it was because the DZ variances were larger than the MZ variances. We therefore altered the EQS syntax file to analyse correlations rather than covariances (which is the standard approach). This greatly improved the fit in each case. The results were analysed using this approach for the following dimensions: average hyperactivity ratings, parent ratings on Hyperactivity, Learning problems, Psychosomatic and Anxiety.

Due to the relatively small sample size, the rating scale data were not analysed using the four-group sex limitation model approach. This approach would enable investigation of sex effects, as two models are compared: a model where the paths for girls and boys are constrained to be equal and a model where no constraints are imposed. Section 7.8 reports the results separately for girls and boys for the average hyperactivity ratings using the DF extreme groups approach.

The results for the testing data are presented only for the hyperactive group (with the exception of IQ data - see below). Given that the prediction is that the etiologies for performance on these tasks may be different for hyperactive children and control children, obtaining estimates for data pooled together from the two groups might be inappropriate (DeFries, personal communication, January 1998). Such analyses for the control group would be difficult to interpret; lack of variance in scores would complicate the issue further. The control group was a ‘super-normal’ group rather than a representative group, in the sense that both twins scored below the hyperactivity cut-off points.

For the hyperactive group the ACE analyses on the testing data estimate the extent to which genetic, shared environmental and non-shared environmental factors contribute to individual differences on performance on the tasks for pairs in which at least one twin is pervasively hyperactive. These analyses relate to the group
heritability analyses presented in section 7.9. If there are genetic influences on performance on a particular task within the hyperactive group, it is possible that these genetic effects are \textit{shared} genetic effects with those on hyperactivity ratings. This issue of shared genetic effects is explored using bivariate group heritability analyses. It was not possible to investigate genetic effects on an ‘extreme group’ on each of the task variables (that is, a group of children who performed particularly poorly on a task) using the DF extremes analysis. The reason for this is how the sample was selected: we selected children based on their scores on the hyperactivity ratings rather than based on their scores on the tasks. Model fitting provides an alternative approach to the investigation of genetic effects on performance on the tasks within the hyperactive group. It is only a first step, however, and the group heritability analyses presented in section 7.9 answer the main research questions more directly.

Analysing the results for the hyperactive group only resulted in a rather small number of MZ and DZ pairs for each of these analyses, which calls for caution in interpreting the results (particularly in the case of the C terms). We therefore decided only to report the full ACE model (as the most conservative option) and the ADE model, if they converged. The reason for reporting the ADE model, if it converged, is that it could provide a better fit for the data, if the effect of the C term is very small. If the full ACE model did not converge, the same procedure was followed as for the rating scale data: the results are reported for the AE, CE and ADE models (if these converged) and the model with the smallest (or largest negative) AIC value was chosen as the best-fitting model. If the ADE model converged, the change in chi-square from the ADE model to the AE model was also calculated, but due to the small sample size the significance of this comparison has to also be interpreted with caution.
As the task variables correlate with age (see Table 7.1.4c), all these analyses were also rerun using age-adjusted scores (age regressed out), to explore what effect this would have on the results. The fit of the models was in most cases worse than that based on the original scores (see Appendix C) and therefore only the results based on the original scores are reported.

For the IQ data, we inspected the phenotypic correlations for both groups, but performed the ACE analyses only on data from the control group. See section 7.6.4 for a further discussion.

The estimates in the tables are the squared path coefficients representing the proportion of variance explained. The phenotypic correlation between MZ and DZ twins, as well as the standard deviations, are shown below each table. The numbers of MZ and DZ twins refer to pairs of twins. If results for a model (commonly the ACE and/or ADE models) are not reported in a table at all, this means that the model(s) did not converge. For the contrast effect models (AE), the coefficients were restandardised to equal to 1 (e.g. restandardised \(a^2 = \frac{a^2}{(a^2+e^2)} \)). The contrast effect coefficient (\(\beta, \text{unsquared} \)) is shown in the table in the place of the C term. Shaded background indicates a best-fitting model. Confidence intervals are not reported for the coefficients, as EQS does not provide standard errors for standardised coefficients. These standard errors would be needed to calculate the confidence intervals.

7.5 Model fitting analyses on rating scale data

The sample for these analyses consists of 61 MZ pairs and 64 DZ pairs, which is the reconstituted representative sample.
7.5.1 Hyperactivity ratings

Table 7.5.1 shows the results from univariate model fitting for the Hyperactivity T-scores from Teacher and Parent Conners', as well as for an average hyperactivity rating score (an average of these two T-scores). The full ACE models did not converge for any of these variables. The ADE model converged for teacher ratings on hyperactivity, but the change in the chi-square value from the ADE model to the AE model was non-significant. This indicates that the AE model provides a better fit for the data than the ADE model. The fit of the AE model is also better than the fit of the CE model, judging by the AIC-values. Heritability is estimated at .57. That is, genetic factors account for approximately 60% of the variance in hyperactivity based on teacher report.

The low DZ correlations, relative to the MZ correlations, for parent-report and average hyperactivity scores suggest that contrast effect models might provide a good fit for the data. For parent ratings of hyperactivity the change in chi-square from the AE model to the AE model narrowly fails to reach significance, however, and therefore the AE model has to be chosen as the best-fitting model. This results in a somewhat lower heritability estimate of .41. The results from analyses on the average hyperactivity rating, which may be considered as the most reliable measure of hyperactivity, provide evidence of contrast effects (sibling interaction and/or rater bias). To obtain an estimate of the proportion of variance in the average hyperactivity ratings that was due to contrast effects, the three terms \((a^2, e^2 \text{ and } \beta^2)\) were restandardised to equal 1. Such contrast effects explain 3% of the variance. With the contribution of the contrast effects removed \((a^2 + e^2\) restandardised to equal 1), genetic factors explain 74% of the variance. For each hyperactivity variable, the non-shared environment and/or measurement error account for the remaining variance.
Table 7.5.1 Model fitting results for ratings on hyperactivity

Table 7.5.1.1 Teacher Conners': Hyperactivity T-score

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2/d^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>.50</td>
<td>.07</td>
<td>.43</td>
<td>3.36</td>
<td>3</td>
<td>.34</td>
<td>-2.64</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.57</td>
<td>-</td>
<td>.43</td>
<td>3.39</td>
<td>4</td>
<td>.50</td>
<td>-4.61</td>
<td>1.00</td>
<td>0.03</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.41</td>
<td>.59</td>
<td>8.35</td>
<td>4</td>
<td>.08</td>
<td>0.35</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.57 (9.86, 11.72) DZ = 0.27 (10.58, 11.68)

Table 7.5.1.2 Parent Conners': Hyperactivity T-score

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2/β</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.67</td>
<td>-.157</td>
<td>.33</td>
<td>0.53</td>
<td>3</td>
<td>.91</td>
<td>-5.47</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.23</td>
<td>.77</td>
<td>9.36</td>
<td>4</td>
<td>.05</td>
<td>1.36</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.48 (8.71, 10.57) DZ = -0.01 (10.85, 12.94)

Table 7.5.1.3 Average Hyperactivity Rating

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2/β</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.74</td>
<td>-.172</td>
<td>.26</td>
<td>0.82</td>
<td>3</td>
<td>.85</td>
<td>-5.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.28</td>
<td>.72</td>
<td>14.88</td>
<td>4</td>
<td>.005</td>
<td>6.88</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.58 (7.37, 8.80) DZ = -0.01 (8.97, 10.11)

7.5.2 Other dimensions on Parent Conners’

Table 7.5.2 shows the results from univariate genetic analyses for the other dimensions on Parent Conners': Conduct problem, Learning problem, Psychosomatic and Anxiety. These analyses were not carried out for the Hyperactivity Index, as this subscale consists of items from the other subscales and therefore is not a separate dimension as such (it did not emerge as a factor in factor analysis).
For the Conduct problem dimension, dropping either the A or C terms did not significantly worsen the fit of the model. As one cannot choose between the AE and CE models, the most conservative option here is to choose the ACE model (but this calls for caution in interpreting the results).

Table 7.5.2 Model fitting results for other dimension on Parent Conners' Table

Table 7.5.2.1 Conduct Problem

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.29</td>
<td>.27</td>
<td>.44</td>
<td>6.16</td>
<td>3</td>
<td>.10</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.59</td>
<td>-</td>
<td>.41</td>
<td>7.68</td>
<td>4</td>
<td>.10</td>
<td>-0.32</td>
<td>.89</td>
<td>1.52</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.48</td>
<td>.52</td>
<td>7.53</td>
<td>4</td>
<td>.11</td>
<td>-0.46</td>
<td>.89</td>
<td>1.37</td>
<td>1</td>
<td>ns</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.56 (10.31, 13.34) DZ = 0.43 (12.20, 12.89)

Table 7.5.2.2 Learning Problem

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.73</td>
<td>-.174</td>
<td>.27</td>
<td>0.83</td>
<td>3</td>
<td>.84</td>
<td>-5.18</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>.49</td>
<td>-</td>
<td>.51</td>
<td>5.64</td>
<td>4</td>
<td>.23</td>
<td>-2.36</td>
<td>.92</td>
<td>4.81</td>
<td>1</td>
<td><.05</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.57 (13.89, 15.96) DZ = -0.02 (15.05, 14.25)

Table 7.5.2.3 Psychosomatic

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.61</td>
<td>-.131</td>
<td>.39</td>
<td>0.28</td>
<td>3</td>
<td>.96</td>
<td>-5.72</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>.38</td>
<td>-</td>
<td>.62</td>
<td>2.28</td>
<td>4</td>
<td>.69</td>
<td>-5.73</td>
<td>1.00</td>
<td>2.00</td>
<td>1</td>
<td>ns</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.44 (12.44, 10.97) DZ = 0.02 (13.87, 10.87)

Table 7.5.2.4 Anxiety

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.82</td>
<td>-.274</td>
<td>.18</td>
<td>4.13</td>
<td>3</td>
<td>.25</td>
<td>-1.87</td>
<td>.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>.47</td>
<td>-</td>
<td>.53</td>
<td>19.12</td>
<td>4</td>
<td>.001</td>
<td>11.12</td>
<td>.51</td>
<td>14.99</td>
<td>1</td>
<td><.001</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.62 (10.94, 9.24) DZ = -0.26 (12.53, 9.59)

246
For the Psychosomatic subscale the AE model provided the best fit for the data, with heritability estimated at .38. Parents’ ratings on Anxiety and Learning problems suggest that contrast effects explain part of the variance. The AE models suggest strong genetic effects for both dimensions ($h^2 = .82$ for Anxiety and .73 for Learning problems). *Before* the contributions of the contrast effects were removed, they explained 3% of the variance in Learning problems and 7% of the variance in Anxiety.

7.5.3 Other dimensions on Teacher Conners’

Table 7.5.3 shows the results from model fitting analyses for the Conduct problem and Inattentive-Passive subscales of the Teacher Conners’. For both dimensions dropping the C term did not significantly worsen the fit of the model, whereas dropping the A term resulted in a significantly worse fit. The AE and ADE models did not converge. Heritability was estimated at .69 for Conduct problems and at .80 for Anxiety, with the non-shared environment and/or measurement error accounting for the remaining variance.
Table 7.5.3 Model fitting results for other dimensions on Teacher Conners’

Table 7.5.3.1 Conduct Problem

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.51</td>
<td>.17</td>
<td>.32</td>
<td>1.92</td>
<td>3</td>
<td>.59</td>
<td>-4.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.69</td>
<td>-</td>
<td>.31</td>
<td>2.62</td>
<td>4</td>
<td>.62</td>
<td>-5.38</td>
<td>1.00</td>
<td>0.70</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.55</td>
<td>.45</td>
<td>7.62</td>
<td>4</td>
<td>.11</td>
<td>-0.38</td>
<td>0.93</td>
<td>5.70</td>
<td>1</td>
<td><.05</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.67 (12.10, 11.75) DZ = 0.44 (11.43, 13.25)

Table 7.5.3.2 Inattentive-Passive

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>$\Delta \chi^2$</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.68</td>
<td>.13</td>
<td>.20</td>
<td>1.37</td>
<td>3</td>
<td>.71</td>
<td>-4.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.80</td>
<td>-</td>
<td>.20</td>
<td>1.79</td>
<td>4</td>
<td>.77</td>
<td>-6.21</td>
<td>1.00</td>
<td>0.42</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.62</td>
<td>.38</td>
<td>16.22</td>
<td>4</td>
<td>.003</td>
<td>8.22</td>
<td>0.83</td>
<td>14.85</td>
<td>1</td>
<td><.01</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ = 0.79 (9.66, 10.49) DZ = 0.47 (10.23, 10.69)

7.6 Model fitting analyses on testing data

These analyses are based on twin pairs in which at least one twin is hyperactive (except the analyses on IQ data - see section 7.6.4).

7.6.1 Delay aversion and working memory measures

The results from univariate model fitting for the delay aversion, sentence span and counting span tasks are shown in Table 7.6.1a (MZ and DZ phenotypic correlations and standard deviations are shown below the tables). For the delay aversion measure, the full ACE model did not converge, and neither did the ADE model. The CE model provided the best fit for the data: there was no evidence of genetic effects on the hyperactive children’s performance on this task. The
common environment explained 45% of the variance. The higher DZ than MZ phenotypic correlations are somewhat surprising.

Similarly for sentence span, the best fitting model was the CE model, suggesting no genetic influences (this is also evident from the twin correlations). The shared environment explains almost 60% of the variance on this task. In contrast, there were genetic effects on the hyperactive group's performance on the counting span task, with the ACE model converging and heritability estimated at .53.

Table 7.6.1b shows the results for the DRA variables (before and after teaching). Genetic factors account for approximately a quarter of the variance in both scores. For the after teaching score, the shared and non-shared environmental factors explain approximately half of the remaining variance each. For the before teaching score, the non-shared environment and measurement error explain all of the remaining variance (the full ACE model did not converge).

Table 7.6.1a Model fitting results: delay aversion, sentence span and counting span tasks (18 MZ, 28 DZ)

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.46</td>
<td>-</td>
<td>.54</td>
<td>6.35</td>
<td>4</td>
<td>.17</td>
<td>-1.65</td>
<td>0.75</td>
</tr>
<tr>
<td>CE</td>
<td>~</td>
<td>.45</td>
<td>.55</td>
<td>2.84</td>
<td>4</td>
<td>.58</td>
<td>-5.16</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ=0.29 (22.90, 26.11) DZ=0.56 (28.35, 23.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence span</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>.63</td>
<td>-</td>
<td>.37</td>
<td>6.95</td>
<td>4</td>
<td>.14</td>
<td>-1.05</td>
<td>0.83</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.58</td>
<td>.42</td>
<td>2.44</td>
<td>4</td>
<td>.66</td>
<td>-5.56</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ=0.53 (1.79, 1.50) DZ=0.63 (1.91, 1.60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting span</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE</td>
<td>.53</td>
<td>.09</td>
<td>.38</td>
<td>1.10</td>
<td>3</td>
<td>.78</td>
<td>-4.90</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ=0.55 (2.91, 2.88) DZ=0.38 (3.56, 3.23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.6.1b Model fitting results: DRA (18 MZ, 28 DZ)

Table 7.6.1b.1 DRA before teaching

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.27</td>
<td>-</td>
<td>.73</td>
<td>1.17</td>
<td>4</td>
<td>.88</td>
<td>-6.83</td>
<td>1.00</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.14</td>
<td>.86</td>
<td>2.08</td>
<td>4</td>
<td>.72</td>
<td>-5.92</td>
<td>1.00</td>
</tr>
</tbody>
</table>

MZ = 0.38 (12.95, 11.73) DZ = -0.03 (11.80, 11.99)

Table 7.6.1b.2 DRA after teaching

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.23</td>
<td>.37</td>
<td>.40</td>
<td>.84</td>
<td>3</td>
<td>.84</td>
<td>-5.16</td>
<td>1.00</td>
</tr>
</tbody>
</table>

MZ = 0.62 (16.27, 13.68) DZ = 0.49 (14.70, 15.11)

7.6.2 Stop task

Table 7.6.2 shows the results from univariate model fitting for the stop task variables. The phenotypic correlations reveal a consistent pattern of findings for the hyperactive group. The MZ correlations are high (between .65 and .80) and the DZ correlations are noticeably lower (between .06 and .18).

The model fitting results provide further evidence for this pattern. The full ACE models did not converge for any of the variables. The best fitting model in each case is the AE model. The ADE model converged only for the inhibition slope, but even in this case the AE model provided a better fit (both judging by the largest negative AIC-value and the non-significant change in the chi-square value). Heritability estimates vary from .61 to .77: there are strong genetic effects on the hyperactive group's performance on the stop task.
Table 7.6.2 Model fitting results: Stop task variables (16 MZ, 27 DZ)

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>Δχ²</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>.08</td>
<td>.57</td>
<td>.35</td>
<td>0.00</td>
<td>3</td>
<td>1.00</td>
<td>-6.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>AE</td>
<td>.61</td>
<td>-</td>
<td>.39</td>
<td>0.57</td>
<td>4</td>
<td>.97</td>
<td>-7.43</td>
<td>1.00</td>
<td>0.57</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.35</td>
<td>.65</td>
<td>3.65</td>
<td>4</td>
<td>.46</td>
<td>-4.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ=0.65 (0.04, 0.04) DZ=0.18 (0.06, 0.04)

Table 7.6.2.2 SSRT

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>Δχ²</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.64</td>
<td>-</td>
<td>.36</td>
<td>1.52</td>
<td>4</td>
<td>.82</td>
<td>-6.48</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.33</td>
<td>.67</td>
<td>5.03</td>
<td>4</td>
<td>.28</td>
<td>-2.97</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ=0.66 (66.54, 75.46) DZ=0.17 (76.92, 75.13)

Table 7.6.2.3 MRT

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>Δχ²</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.72</td>
<td>-</td>
<td>.29</td>
<td>4.08</td>
<td>4</td>
<td>.40</td>
<td>-3.92</td>
<td>.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.32</td>
<td>.68</td>
<td>9.80</td>
<td>4</td>
<td>.04</td>
<td>1.80</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ=0.76 (85.61, 91.17) DZ=0.06 (96.65, 79.45)

Table 7.6.2.4 SD of RTs

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>Δχ²</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.71</td>
<td>-</td>
<td>.23</td>
<td>2.85</td>
<td>4</td>
<td>.58</td>
<td>-5.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.41</td>
<td>.59</td>
<td>9.64</td>
<td>4</td>
<td>.05</td>
<td>1.64</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ=0.69 (32.25, 35.03) DZ=0.16 (37.43, 42.43)

Table 7.6.2.5 Total number of errors

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
<th>Δχ²</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.77</td>
<td>-</td>
<td>.23</td>
<td>2.85</td>
<td>4</td>
<td>.58</td>
<td>-5.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.41</td>
<td>.59</td>
<td>9.64</td>
<td>4</td>
<td>.05</td>
<td>1.64</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ=0.80 (9.35, 9.54) DZ=0.17 (9.95, 7.97)

For the inhibition slope variable, using the standard EQS approach, the fit of even the best-fitting model was very poor. Therefore, for this variable only, the EQS syntax file was altered to analyse correlations rather than covariances (which is the standard approach), which resulted in much improved fit.
7.6.3 Ratings of behaviour during testing

Similar analyses were carried out for the summary score of the testers' observational ratings of hyperactive behaviour during the testing session (see Table 7.6.3). Note that the rater was different for each twin in a pair. For the hyperactive group the full ACE model converged and provides a good fit for the data (the ADE model did not converge). Approximately 60% of the variance in these observational ratings is due to genetic effects, which is in line with the results for parents' and teachers' ratings of hyperactivity for the larger sample. (The results for the control group are not reported here. The lack of variance in the scores resulted in CFI-values of 0.)

<table>
<thead>
<tr>
<th></th>
<th>a²</th>
<th>c²</th>
<th>e²</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.57</td>
<td>.17</td>
<td>.27</td>
<td>.28</td>
<td>3</td>
<td>.98</td>
<td>-5.72</td>
<td>1.00</td>
</tr>
</tbody>
</table>

MZ=0.71 (3.23, 3.29) DZ=0.47 (3.50, 3.61)

7.6.4 IQ data

How strong are the genetic, shared and non-shared environmental effects on IQ? Inspections of the twin correlations suggested different patterns of findings for the hyperactive and control groups. For the control group the phenotypic correlations were rather close to what could have been predicted based on previous research, although they suggested somewhat less strong genetic effects for performance IQ. The results from the univariate model fitting for the IQ data for the control group are shown in Table 7.6.4a.
For each IQ variable - full-scale IQ, performance IQ and verbal IQ - the full ACE model converged. The proportion of variance due to genetic effects was estimated to be higher for verbal IQ ($h^2 = .44$) than for performance IQ ($h^2 = .16$). Genetic effects explained approximately 40% of the variance in the control children's full-scale IQ scores. Shared environmental factors explained almost half of the variance in each IQ variable.

Table 7.6.4a Model fitting results: IQ (control pairs: 28 MZ, 19 DZ)

Table 7.6.4a.1 Full-scale IQ

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.37</td>
<td>.46</td>
<td>.17</td>
<td>2.26</td>
<td>3</td>
<td>.52</td>
<td>-3.74</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ</td>
<td>0.86</td>
<td>(19.47, 18.04)</td>
<td>DZ</td>
<td>0.58</td>
<td>(14.21, 16.13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.6.4a.2 Performance IQ

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.16</td>
<td>.48</td>
<td>.36</td>
<td>1.25</td>
<td>3</td>
<td>.74</td>
<td>-4.75</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ</td>
<td>0.64</td>
<td>(17.94, 15.21)</td>
<td>DZ</td>
<td>0.57</td>
<td>(16.81, 16.98)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.6.4a.3 Verbal IQ

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.44</td>
<td>.44</td>
<td>.12</td>
<td>3.06</td>
<td>3</td>
<td>.38</td>
<td>-2.94</td>
<td>1.00</td>
</tr>
<tr>
<td>MZ</td>
<td>0.91</td>
<td>(19.67, 20.68)</td>
<td>DZ</td>
<td>0.56</td>
<td>(14.10, 16.37)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the hyperactive group both the MZ and DZ correlations were high for each of the IQ variables, suggesting negligible genetic influences. We decided not to analyse these data using the model fitting approach, as the interpretation of the results would be difficult. Table 7.6.4b shows the phenotypic correlations for the hyperactive group.
Table 7.6.4b Phenotypic correlations for IQ variables: Hyperactive group

<table>
<thead>
<tr>
<th></th>
<th>FIQ</th>
<th>PIQ</th>
<th>VIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ (18 pairs)</td>
<td>.75</td>
<td>.63</td>
<td>.77</td>
</tr>
<tr>
<td>DZ (28 pairs)</td>
<td>.75</td>
<td>.57</td>
<td>.74</td>
</tr>
</tbody>
</table>

7.6.5 Discriminant function score

The model fitting results for the discriminant score (Table 7.6.5) show that there are strong genetic effects in the hyperactive group on a score which maximally discriminates between the groups. The AE model provides a heritability estimate of .60.

Table 7.6.5 Model fitting results: Discriminant score (16 MZ, 26 DZ)

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.60</td>
<td>.00</td>
<td>.40</td>
<td>2.03</td>
<td>4</td>
<td>.73</td>
<td>-5.98</td>
<td>1.00</td>
</tr>
<tr>
<td>CE</td>
<td>.31</td>
<td>.69</td>
<td>5.19</td>
<td>4</td>
<td>.27</td>
<td>-2.81</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

$MZ=0.64\ (1.10,\ 1.02)\ DZ=0.13\ (1.01,\ 1.20)$

7.7 Concordance rates

Both pairwise and probandwise concordance rates were calculated for pervasive hyperactivity, although these have to be interpreted with caution due to the small sample size. *Pairwise* concordance rate is calculated as the number of concordant pairs in the hyperactive sample divided by the total number of hyperactive pairs.
Probandwise concordance rate is calculated as the number of affected individuals in concordant pairs divided by the total number of affected individuals.

The pairwise concordance rate was .22 (4/18) for MZ twins and .07 (2/28) for DZ twins. The probandwise concordance rate was .36 (8/22) for MZ twins and .14 (4/29) for DZ twins. The significance of the probandwise concordance rate can be tested with the chi-square test. The chi-square value was 3.54 which, with 1 degrees of freedom, narrowly fails to reach significance (the critical value is 3.84).

7.8 Univariate group heritability analyses

Section 6.1.4 introduced the DF extreme group analysis (DeFries & Fulker, 1985; 1988), a method based on multiple regression which calculates a group heritability. It focuses on the regression to the mean in the co-twins of MZ and DZ probands. Using this method, univariate analyses were carried out on the hyperactivity ratings.

The sample from which the probands have been chosen is the sample of 267 twin pairs for whom we have the TSQ scores and therefore know their zygosity. For each of the analysis - teacher ratings on the Hyperactivity dimension (T-scores), parent ratings on the Impulsive-Hyperactive dimension (T-scores) and an average of these two - the probands were chosen as those with a T-score of 65 or above (i.e. 1.5 standard deviations above the mean, based on the standardisation sample) on the particular dimension. In these analyses we did not use our definition of pervasive hyperactivity, as it is more appropriate to choose the probands as extreme scorers on the particular dimension for which the co-twin means are also calculated.
Table 7.8 presents the results from these univariate analyses. In the table, numbers of MZ and DZ pairs refer to numbers of single-entered pairs. The standard errors have been corrected for the double entry (see section 6.1.4). The B_2 terms are direct estimates of h^2.

<table>
<thead>
<tr>
<th>Hyperactivity T-score</th>
<th>MZ pairs</th>
<th>DZ pairs</th>
<th>B_2</th>
<th>SE</th>
<th>95% CI</th>
<th>t-value</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>teacher</td>
<td>83</td>
<td>90</td>
<td>.20</td>
<td>.06</td>
<td>.08-.31</td>
<td>3.34</td>
<td><.001</td>
</tr>
<tr>
<td>parent</td>
<td>40</td>
<td>55</td>
<td>.42</td>
<td>.06</td>
<td>.30-.54</td>
<td>7.00</td>
<td><.001</td>
</tr>
<tr>
<td>average</td>
<td>49</td>
<td>64</td>
<td>.27</td>
<td>.06</td>
<td>.15-.39</td>
<td>4.50</td>
<td><.001</td>
</tr>
<tr>
<td>average - girls</td>
<td>33</td>
<td>33</td>
<td>.26</td>
<td>.07</td>
<td>.12-.40</td>
<td>3.52</td>
<td><.001</td>
</tr>
<tr>
<td>average - boys</td>
<td>16</td>
<td>31</td>
<td>.29</td>
<td>.09</td>
<td>.11-.47</td>
<td>3.23</td>
<td><.001</td>
</tr>
</tbody>
</table>

* one-tailed

The group heritability estimate for hyperactivity based on teacher report is rather low, although significant. The interpretation of a group heritability estimate of .2 is that 20% of mean differences between the groups (the extreme group on the dimension and the rest of the sample) is due to genetic factors. The group heritability estimate obtained from the analysis on parent ratings on hyperactivity is somewhat higher at .42.

The separate analyses for boys and girls for the average hyperactivity rating show that similar results are obtained independent of the sex of the child: the group heritability estimate is .26 for girls and .29 for boys.
7.9 Bivariate group heritability analyses

The bivariate DF analyses focus on the regression to the mean on a task variable in the co-twins of probands. These analyses were carried out separately for each of the main task variables. These bivariate DF analyses test the main hypothesis of this thesis: whether the cognitive deficits or task engagements factors associated with hyperactivity mediate the genetic effects on the condition. That is, do the genetic effects on extreme hyperactivity also produce poor performance on the tasks?

As a check for the appropriateness of the bivariate DF analyses, we first investigated whether hyperactivity ratings and the task variables are similarly associated within MZ and DZ twins. Independent-samples t-tests were carried out to compare the means on the task variables between MZ probands (for a definition of a proband, see below) and DZ probands. These analyses thus focus on within-twin associations rather than between-twin associations. Comparing the results as means reflects the DF analysis approach of expressing between-twin similarity as co-twin mean differences. The results of the t-tests were non-significant (see Table 7.9a), which indicates that the between-group tests for the bivariate DF analyses are justified.

In these analyses the probands were chosen as those with an average T-score (average of parent and teacher ratings of hyperactivity) of 65 or above. The only exception are additional analyses for the observational rating variable, for which probands were chosen as those with a T-score of 65 or above on the teacher and parent ratings separately. Because there is no gold standard of hyperactivity and each measure is associated with some error, the issue of whether there is evidence of shared genetic effects on observational ratings and parent and teacher ratings considered separately is worth exploring.
Table 7.9a Results from t-tests comparing means on the task variables between MZ and DZ probands

<table>
<thead>
<tr>
<th>variable</th>
<th>MZ probands (N = 22-25)</th>
<th>DZ probands (N = 26-31)</th>
<th>t-test</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
<td>SD</td>
<td>t-value</td>
</tr>
<tr>
<td>Delay aversion</td>
<td>43.60</td>
<td>27.97</td>
<td>38.71</td>
<td>22.13</td>
<td>0.73</td>
</tr>
<tr>
<td>DRA before</td>
<td>50.20</td>
<td>12.66</td>
<td>49.76</td>
<td>11.17</td>
<td>0.14</td>
</tr>
<tr>
<td>DRA after</td>
<td>65.90</td>
<td>14.81</td>
<td>69.68</td>
<td>15.72</td>
<td>-0.92</td>
</tr>
<tr>
<td>Sentence span</td>
<td>2.80</td>
<td>1.73</td>
<td>3.55</td>
<td>1.96</td>
<td>-1.49</td>
</tr>
<tr>
<td>Counting span</td>
<td>4.32</td>
<td>2.67</td>
<td>4.74</td>
<td>3.42</td>
<td>-0.51</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>.129</td>
<td>.042</td>
<td>.137</td>
<td>.045</td>
<td>-0.61</td>
</tr>
<tr>
<td>SSRT</td>
<td>246.78</td>
<td>71.09</td>
<td>235.34</td>
<td>85.99</td>
<td>0.52</td>
</tr>
<tr>
<td>MRT</td>
<td>511.27</td>
<td>89.74</td>
<td>536.13</td>
<td>98.42</td>
<td>-0.95</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>141.20</td>
<td>33.36</td>
<td>143.00</td>
<td>44.01</td>
<td>-0.16</td>
</tr>
<tr>
<td>Total errors</td>
<td>11.35</td>
<td>10.16</td>
<td>9.42</td>
<td>9.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Omission errors</td>
<td>5.96</td>
<td>6.08</td>
<td>5.13</td>
<td>6.72</td>
<td>0.47</td>
</tr>
<tr>
<td>Commission errors</td>
<td>5.39</td>
<td>5.30</td>
<td>4.29</td>
<td>4.38</td>
<td>0.84</td>
</tr>
<tr>
<td>Discriminant score</td>
<td>.675</td>
<td>1.018</td>
<td>.608</td>
<td>1.18</td>
<td>0.22</td>
</tr>
<tr>
<td>Full-scale IQ</td>
<td>89.08</td>
<td>15.01</td>
<td>93.87</td>
<td>19.86</td>
<td>-1.00</td>
</tr>
<tr>
<td>Conduct problems</td>
<td>69.94</td>
<td>11.74</td>
<td>71.50</td>
<td>14.84</td>
<td>-0.43</td>
</tr>
<tr>
<td>Observational rating</td>
<td>6.82</td>
<td>3.25</td>
<td>6.04</td>
<td>3.35</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 7.9b presents the bivariate h^2_g results. As in the univariate analyses above, numbers of MZ and DZ pairs refer to numbers of single-entered pairs and the standard errors have been corrected for the double entry.

Some of the bivariate group heritability estimates are negative values. These can only be interpreted as values of zero: there are no shared genetic effects between extreme hyperactivity ratings and performance on the task. Negative or near-zero values were obtained for the following variables: delay aversion, DRA before and after teaching, sentence span, counting span, stop task inhibition slope and IQ.
Table 7.9b Results from bivariate DF analyses

<table>
<thead>
<tr>
<th>variable</th>
<th>MZ pairs</th>
<th>DZ pairs</th>
<th>B<sub>2(xy)</sub></th>
<th>SE</th>
<th>95% CI</th>
<th>t-value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>18</td>
<td>28</td>
<td>-0.06</td>
<td>.22</td>
<td>-0.88 - 0.75</td>
<td>-0.15</td>
<td>ns</td>
</tr>
<tr>
<td>DRA before</td>
<td>18</td>
<td>28</td>
<td>0.02</td>
<td>.40</td>
<td>-0.77 - 0.81</td>
<td>0.06</td>
<td>ns</td>
</tr>
<tr>
<td>DRA after</td>
<td>18</td>
<td>28</td>
<td>0.23</td>
<td>.42</td>
<td>-1.07 - 0.60</td>
<td>-0.55</td>
<td>ns</td>
</tr>
<tr>
<td>Sentence span</td>
<td>18</td>
<td>28</td>
<td>0.49</td>
<td>.39</td>
<td>-1.26 - 0.27</td>
<td>-1.26</td>
<td>ns</td>
</tr>
<tr>
<td>Counting span</td>
<td>18</td>
<td>28</td>
<td>0.16</td>
<td>.46</td>
<td>-1.05 - 0.73</td>
<td>-0.35</td>
<td>ns</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>16</td>
<td>27</td>
<td>0.07</td>
<td>.45</td>
<td>-0.95 - 0.81</td>
<td>0.06</td>
<td>ns</td>
</tr>
<tr>
<td>SSRT</td>
<td>16</td>
<td>27</td>
<td>0.59</td>
<td>.44</td>
<td>-0.28 - 1.46</td>
<td>1.33</td>
<td>ns</td>
</tr>
<tr>
<td>MRT</td>
<td>16</td>
<td>27</td>
<td>0.23</td>
<td>.34</td>
<td>-0.44 - 0.89</td>
<td>0.67</td>
<td>ns</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>16</td>
<td>27</td>
<td>0.64</td>
<td>.36</td>
<td>-0.07 - 1.35</td>
<td>1.77</td>
<td><.05</td>
</tr>
<tr>
<td>Total errors</td>
<td>16</td>
<td>27</td>
<td>0.60</td>
<td>.46</td>
<td>-0.30 - 1.50</td>
<td>1.32</td>
<td>ns</td>
</tr>
<tr>
<td>Omission errors</td>
<td>16</td>
<td>27</td>
<td>0.35</td>
<td>.49</td>
<td>-0.61 - 1.30</td>
<td>0.71</td>
<td>ns</td>
</tr>
<tr>
<td>Commission errors</td>
<td>16</td>
<td>27</td>
<td>0.60</td>
<td>.46</td>
<td>-0.30 - 1.50</td>
<td>1.32</td>
<td>ns</td>
</tr>
<tr>
<td>Discriminant score</td>
<td>16</td>
<td>26</td>
<td>0.80</td>
<td>.41</td>
<td>0.003 - 1.60</td>
<td>1.97</td>
<td><.05</td>
</tr>
<tr>
<td>Full-scale IQ</td>
<td>18</td>
<td>28</td>
<td>-0.16</td>
<td>.38</td>
<td>-0.90 - 0.59</td>
<td>-0.41</td>
<td>ns</td>
</tr>
<tr>
<td>Conduct problems</td>
<td>18</td>
<td>28</td>
<td>0.63</td>
<td>.38</td>
<td>-0.12 - 1.38</td>
<td>1.66</td>
<td>ns</td>
</tr>
<tr>
<td>Observational rating</td>
<td>16</td>
<td>23</td>
<td>0.63</td>
<td>.50</td>
<td>-0.35 - 1.61</td>
<td>1.25</td>
<td>ns</td>
</tr>
<tr>
<td>Observational rating<sup>a</sup></td>
<td>16</td>
<td>23</td>
<td>0.56</td>
<td>.52</td>
<td>-0.46 - 1.58</td>
<td>1.08</td>
<td>ns</td>
</tr>
<tr>
<td>Observational rating<sup>b</sup></td>
<td>16</td>
<td>23</td>
<td>0.73</td>
<td>.52</td>
<td>-0.29 - 1.75</td>
<td>1.40</td>
<td>ns</td>
</tr>
</tbody>
</table>

* one-tailed

B_{2(xy)} = bivariate group heritability estimate

a= probands chosen based on only teacher ratings of hyperactivity

b= probands chosen based on only parent ratings of hyperactivity

In contrast, the bivariate group heritability estimates for several of the stop task variables were rather high, although mostly non-significant due to the relatively high standard errors. The highest estimate for an individual variable was that for the standard deviation of reaction times and it is also the only one which is statistically significant: there are shared genetic effects on extreme hyperactivity and the variability of speed. Other variables which obtained a high group
heritability estimate (around .6) were stop signal reaction time, commission errors and total errors.

Overall the highest bivariate group heritability estimate was obtained for the discriminant score. Scores, obtained from all the testing data in a way which maximises discrimination between the groups, carry a large proportion of the genetic variance on the extreme hyperactivity ratings. Reassuringly, there would also seem to be shared genetic effects on testers' observational ratings of hyperactive behaviours and extreme hyperactivity ratings by teachers and parents, although these group heritability estimates are non-significant due to the rather high standard errors (the sample sizes were particularly small for these analyses). The bivariate group heritability estimate is similarly high for average ratings on conduct problems, although it narrowly misses significance.

Similar bivariate DF analyses were also carried out on the variables which had been adjusted for full-scale IQ. That is, using regression the variance due to IQ was removed. The results for the main task variables for these IQ-adjusted scores (see Table 7.9c) are very similar to those presented above. The shared genetic effects on extreme hyperactivity and some of the stop task variables are not due to shared genetic effects with IQ. This analysis could not be carried out for the discriminant scores, as performance and verbal IQs were among the variables included in the discriminant analysis.

Similarly using regression the variance due to conduct problems (average of parent and teacher ratings on the conduct problems subscales) was removed and a further set of bivariate DF analyses were carried out on these scores. The overall pattern of the findings (see Table 7.9d) is similar to that obtained in the original analyses. However, the larger bivariate h^2_g-values are now somewhat smaller and are all non-significant.

260
Table 7.9c Results from bivariate DF analyses for IQ-adjusted scores

<table>
<thead>
<tr>
<th>variable</th>
<th>MZ pairs</th>
<th>DZ pairs</th>
<th>B_{2(xy)}</th>
<th>SE</th>
<th>95% CI</th>
<th>t-value</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>18</td>
<td>28</td>
<td>-.01</td>
<td>.37</td>
<td>-.72 - .71</td>
<td>-.02</td>
<td>ns</td>
</tr>
<tr>
<td>DRA before</td>
<td>18</td>
<td>28</td>
<td>.04</td>
<td>.41</td>
<td>-.76 - .85</td>
<td>0.10</td>
<td>ns</td>
</tr>
<tr>
<td>DRA after</td>
<td>18</td>
<td>27</td>
<td>-.18</td>
<td>.45</td>
<td>-1.05 - .70</td>
<td>-0.39</td>
<td>ns</td>
</tr>
<tr>
<td>Sentence span</td>
<td>18</td>
<td>28</td>
<td>-.48</td>
<td>.39</td>
<td>-1.24 - .28</td>
<td>-1.24</td>
<td>ns</td>
</tr>
<tr>
<td>Counting span</td>
<td>18</td>
<td>28</td>
<td>-.16</td>
<td>.46</td>
<td>-1.06 - .74</td>
<td>-0.35</td>
<td>ns</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>16</td>
<td>27</td>
<td>-.03</td>
<td>.47</td>
<td>-0.94 - .89</td>
<td>-0.06</td>
<td>ns</td>
</tr>
<tr>
<td>SSRT</td>
<td>16</td>
<td>27</td>
<td>.58</td>
<td>.45</td>
<td>-.30 - 1.46</td>
<td>1.29</td>
<td>ns</td>
</tr>
<tr>
<td>MRT</td>
<td>16</td>
<td>27</td>
<td>.21</td>
<td>.34</td>
<td>-.47 - .88</td>
<td>0.61</td>
<td>ns</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>16</td>
<td>27</td>
<td>.63</td>
<td>.37</td>
<td>-.08 - 1.35</td>
<td>1.74</td>
<td><.05</td>
</tr>
<tr>
<td>Omission errors</td>
<td>16</td>
<td>27</td>
<td>.33</td>
<td>.55</td>
<td>-.74 - 1.40</td>
<td>0.60</td>
<td>ns</td>
</tr>
<tr>
<td>Commission errors</td>
<td>16</td>
<td>27</td>
<td>.67</td>
<td>.53</td>
<td>-.38 - 1.71</td>
<td>1.25</td>
<td>ns</td>
</tr>
<tr>
<td>Total errors</td>
<td>16</td>
<td>27</td>
<td>.60</td>
<td>.47</td>
<td>-.32 - 1.52</td>
<td>1.28</td>
<td>ns</td>
</tr>
</tbody>
</table>

* one-tailed

B_{2(xy)} = bivariate group heritability estimate

Table 7.9d Results from bivariate DF analyses for scores adjusted for conduct problems

<table>
<thead>
<tr>
<th>variable</th>
<th>MZ pairs</th>
<th>DZ pairs</th>
<th>B_{2(xy)}</th>
<th>SE</th>
<th>95% CI</th>
<th>t-value</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay aversion</td>
<td>18</td>
<td>28</td>
<td>.06</td>
<td>.44</td>
<td>-.80 - .92</td>
<td>0.14</td>
<td>ns</td>
</tr>
<tr>
<td>DRA before</td>
<td>18</td>
<td>28</td>
<td>-.02</td>
<td>.40</td>
<td>-.80 - .76</td>
<td>0.05</td>
<td>ns</td>
</tr>
<tr>
<td>DRA after</td>
<td>18</td>
<td>27</td>
<td>-.19</td>
<td>.43</td>
<td>-1.03 - .65</td>
<td>-0.45</td>
<td>ns</td>
</tr>
<tr>
<td>Sentence span</td>
<td>18</td>
<td>28</td>
<td>-.35</td>
<td>.40</td>
<td>-1.13 - .43</td>
<td>-0.89</td>
<td>ns</td>
</tr>
<tr>
<td>Counting span</td>
<td>18</td>
<td>28</td>
<td>-.14</td>
<td>.46</td>
<td>-1.04 - .76</td>
<td>-0.30</td>
<td>ns</td>
</tr>
<tr>
<td>Inhibition slope</td>
<td>16</td>
<td>27</td>
<td>-.06</td>
<td>.47</td>
<td>-.98 - .86</td>
<td>-0.13</td>
<td>ns</td>
</tr>
<tr>
<td>SSRT</td>
<td>16</td>
<td>27</td>
<td>.58</td>
<td>.44</td>
<td>-.29 - 1.44</td>
<td>1.31</td>
<td>ns</td>
</tr>
<tr>
<td>MRT</td>
<td>16</td>
<td>27</td>
<td>.11</td>
<td>.35</td>
<td>-.58 - .79</td>
<td>0.30</td>
<td>ns</td>
</tr>
<tr>
<td>SD of RTs</td>
<td>16</td>
<td>27</td>
<td>.52</td>
<td>.40</td>
<td>-.27 - 1.30</td>
<td>1.28</td>
<td>ns</td>
</tr>
<tr>
<td>Total errors</td>
<td>16</td>
<td>27</td>
<td>.54</td>
<td>.47</td>
<td>-.38 - 1.46</td>
<td>1.14</td>
<td>ns</td>
</tr>
<tr>
<td>Omission errors</td>
<td>16</td>
<td>27</td>
<td>.28</td>
<td>.50</td>
<td>-.70 - 1.26</td>
<td>0.56</td>
<td>ns</td>
</tr>
<tr>
<td>Commission errors</td>
<td>16</td>
<td>27</td>
<td>.63</td>
<td>.48</td>
<td>-.31 - 1.57</td>
<td>1.31</td>
<td>ns</td>
</tr>
<tr>
<td>Discriminant score</td>
<td>16</td>
<td>26</td>
<td>.66</td>
<td>.44</td>
<td>-.20 - 1.52</td>
<td>1.50</td>
<td>ns</td>
</tr>
<tr>
<td>Observational rating</td>
<td>16</td>
<td>23</td>
<td>.40</td>
<td>.57</td>
<td>-.72 - 1.52</td>
<td>0.69</td>
<td>ns</td>
</tr>
</tbody>
</table>

* one-tailed

B_{2(xy)} = bivariate group heritability estimate

261
Chapter 8

Discussion

8.1 Introduction to discussion

The discussion starts with a summary of the main findings from the study. After this, each of the three theories of hyperactivity is evaluated in the light of the results. The following two sections examine the support for the genetic hypotheses, those regarding the heritability of hyperactivity and the possible mediators of the genetic effects.

A further two sections discuss other findings that provide further insight into hyperactivity and the more general issues of heritability of other problem behaviours and of IQ. Then the limitations of the present study, as well as more general issues about design in the light of the choices we made, are discussed. The next section draws all the present and previous findings together, in an attempt to provide a more comprehensive account of hyperactivity. A discussion of the directions for future research follows this. The last section considers the practical implications of the findings.
8.2 Summary of main findings

Confirming findings from previous twin studies, hyperactivity as a dimension had a high heritability: 50-70% of the variance was due to genetic effects. The genetic analyses provided evidence of contrast effects in average hyperactivity ratings based on both teacher and parent report; teacher-report data was not on its own suggestive of any such rater bias or sibling interaction effects, however. There was significant evidence of genetic effects also on extreme hyperactivity, although the present group heritability estimates were somewhat lower than those reported in previous studies. In line with previous research, the evidence was also suggestive of shared genetic effects on extreme hyperactivity and conduct problems.

The performance of the hyperactive and control groups on the tasks was compared to test the predictions of the different theories of hyperactivity. On the delay aversion task hyperactive children chose the small immediate reward more often than the control children, supporting the delay aversion hypothesis. Testers' ratings of the children's apparent delay aversion confirmed this finding. However, controlling for conduct problems removed the significant group difference.

Hyperactive children's performance on the working memory measures produced a somewhat mixed set of findings. They performed significantly worse than the control group on the sentence span task but not on the counting span task (although there was a trend for them to perform worse on the counting span task too). On the delayed response alternation task both groups performed at chance levels before they were taught the rule. A significant group difference emerged on the 'after teaching' scores, with the hyperactive children performing worse. Neither of the significant group differences on the working memory measures remained significant after controlling for IQ. The theoretical issues of whether it is appropriate to control for IQ in these comparisons and whether poor performance on a working memory task could reflect something other than impaired working memory are discussed in later sections of this chapter.
The analyses on the stop task variables showed that hyperactive children were not less likely to trigger the inhibitory process nor did they have a more variable inhibitory process than control children, confirming previous findings. The failure to find a significant group difference on the stop signal reaction time suggests that a slow inhibitory process may be characteristic of only clinic-referred children and not of the total population of hyperactive children, although this result has to be viewed with some caution. Even if hyperactivity were associated with a slow inhibitory process, this may reflect a general slowing down of responses rather than a specific deficit in response inhibition.

In contrast to these negative findings regarding the inhibition variables, there were significant group differences on the other stop task variables. Hyperactive children were slower and more variable in their speed on the primary task (a reaction time task) and they also made more errors. Of all the variables which discriminated between the groups, the effect was strongest for the variability of speed. This pattern of responding - variable in speed, slow, and inaccurate - is interpreted as supporting the state-regulation theory of hyperactivity (van der Meere, 1996), which argues that hyperactive children have a non-optimal activation/effort state.

The data produced significant evidence of shared genetic effects on extreme hyperactivity and the variability of speed on the stop task. There was also some suggestion of shared genetic effects with the number of commission errors made and the speed of the inhibitory process, although these results were not statistically significant. Given that the pattern of responding characteristic of hyperactivity would truly indicate an activation/effort problem rather than a cognitive deficit, these findings suggest that the non-optimal activation/effort state mediates the genetic effects on hyperactive behaviour. Although the delay aversion and the two working memory measures discriminated between the groups, there was no evidence of shared genetic effects on extreme hyperactivity and performance on these tasks. Delay aversion is a characteristic of hyperactivity, but it seems to have
an environmental rather than a genetic origin. The small sample sizes in these analyses call for some caution in interpreting these results, however.

Girls and boys with hyperactivity were indistinguishable in their performance on the various tasks. The genetic analyses similarly supported the idea of similar etiology across gender: the group heritability estimates for hyperactivity were of similar magnitude for boys and girls.

Overall, the findings from this study take us a step further towards a more comprehensive account of hyperactivity. The present and previous research findings pooled together suggest one possible link from genes to behaviour: from genes to neurotransmitters (dopamine, norepinephrine and serotonin) and frontal-striatal functioning, and then, via a non-optimal effort/activation state, to hyperactive behaviour. However, hyperactivity is not purely genetic and delay aversion may relate to the environmental variables that may play a role.

8.3 Which theory do the data support?

With regard to the non-genetic side of the thesis, the main research question was whether children with hyperactivity would show a response inhibition deficit, impaired working memory or a tendency to be particularly aversive to delays. To our knowledge, this was the first study to contrast these three different theories of hyperactivity within a single study, with the same group of children. The present study is also one of the few studies which recruited the sample from the general population. Most previous studies have relied on clinic-referred samples which are unlikely to be representative of the total population of hyperactive children. Do the data support any of these theories of the 'core' deficit in hyperactivity?
8.3.1 Delay aversion

Like in the previous study with a similar task (Sonuga-Barke, Taylor, Sembi et al., 1992), hyperactive children chose the small, immediate reward more often than the control children. This finding supports the delay aversion hypothesis: hyperactive children seem to aim to reduce the overall length of the delay period, at the expense of earning higher rewards. The testers’ ratings on the apparent delay aversion of the children confirmed this finding, as a similar group difference emerged on these ratings. The hyperactive children not only chose the immediate reward more often, but they also appeared to find the waiting period very aversive (they continued talking or doing something else) when they did wait for the larger reward. Analysing the data using a dimensional approach confirmed these results. Hyperactivity ratings by testers and teachers correlated moderately and significantly with performance on the delay aversion task; the correlations with parents’ ratings were low and non-significant. (See section 8.6.3 for a discussion of rater effects.)

Despite these differences between the hyperactive and control groups in the choices made on the task, the groups did not differ significantly in the reasons the children themselves gave for making their choices. Approximately a fifth of the children in both groups admitted that they wanted to minimise any waiting during the task. Between 16% and 20% of the children gave the ‘expected’ reason of wanting to score a lot of points.

Both the current study and the study by Sonuga-Barke, Taylor, Sembi et al. (1992) found a significant group difference on a computerised delay aversion measure. The difference in the results between the two studies relates to the magnitude of the difference. In the Sonuga-Barke et al. study hyperactive children chose the larger reward on average 18% of the trials (and control children on 48% of the trials), compared to 40% of the trials in the present study (53% for the control group). Differences in methodology could explain the ‘stronger’ delay aversion tendency of
hyperactive children in the original study. For example, the presentation of the task as a Star Trek game, with well-designed graphics, could have made the task more interesting in the present study. In the present study the children also had to perform the task only once, whereas the original study included several different conditions. Another possible explanation is the age of children: the children in the Sonuga-Barke et al. study were younger (6 and 7 year olds) than the children in the present study. Some support for this possibility comes from the findings of a correlation between age and performance on the delay aversion task (see section 8.7.1).

Due to time constraints for the testing sessions, we did not include in this study the condition where there would be a delay period after choosing the small reward. Sonuga-Barke, Taylor, Sembi et al. (1992) showed that in this situation, where choosing the immediate reward did not reduce the overall delay period, the hyperactive and control groups were indistinguishable. This led to the argument that hyperactive children are not truly impulsive, but are delay averse.

Although the hyperactive group obtained lower performance and verbal IQs than the control group, the group difference on the delay aversion measure remained significant after controlling for IQ. The hyperactive group's tendency to choose the immediate reward more often was not due to their lower general cognitive ability. Performance on the delay aversion task correlated moderately with performance (.21) and verbal (.40) IQs, however. Children with higher IQs tended to wait more often for the larger reward.

The group difference on the delay aversion measure did not remain significant after controlling for conduct problems. This suggests that co-occurring conduct problems carry some of the association between hyperactivity and delay aversion. Hyperactivity and conduct problems indeed correlated to roughly the same degree with performance on the task (with teacher ratings -.30 and -.15 and with parent ratings -.14 and -.19, respectively). Sonuga-Barke, Taylor, Sembi et al. (1992) did
not investigate this issue of whether delay aversion is specific to hyperactivity. A separate study by Sonuga-Barke and colleagues (Sonuga-Barke, Taylor and Heptinstall, 1992) found adverse effects of self-imposed presentation time on both the hyperactive-only and comorbid hyperactive-conduct problems groups, but not on the conduct problem-only group. See section 8.6.2 for a further discussion of the implications of the present findings for understanding the co-occurrence of hyperactivity and conduct problems. Ratings on anxiety were not related to performance on the delay aversion measure.

In sum, the results supported the delay aversion hypothesis, although delay aversion may not be specific to hyperactivity symptoms; the group difference on the task did not remain significant after controlling for conduct problems. But is delay aversion truly a 'core' deficit in hyperactivity or could it be a consequence of something else? This is discussed in section 8.9.

8.3.2 Impaired working memory

Few previous studies have investigated hyperactive children’s performance on working memory measures. The study using the counting span and sentence span tasks (Siegel & Ryan, 1989) reported no differences between ADD and control groups on most comparisons. The only comparison on which children with ADD performed worse was that for the younger age group (7 and 8 year olds) on the sentence span task. The findings of the present study add to this evidence which at first sight seems inconclusive: hyperactive children performed significantly worse than control children on the sentence span but not on the counting span task. There was a trend, however, for the hyperactive group to perform worse on the counting span task too.

What could explain the differences in the results between the findings from the present study and those from the study by Siegel and Ryan (1989)? The children with ADD in the Siegel and Ryan study may not be representative of children with
hyperactivity. The two groups of ADD children had average IQs of 108 and 112. Because of the association between IQ and working memory (see below), having a sample of ADD children with unusually high IQs may have 'hidden' a working memory impairment, if such existed. Indeed, the group difference on the sentence span task disappeared in the present study when IQ was controlled for. Another difference between the studies is that pervasiveness of symptoms was not a requirement in the Siegel and Ryan study.

Taken together, data from the present and the previous (Siegel & Ryan, 1989) studies suggest that the relationship between hyperactivity and poor performance on these working memory tasks is stronger for younger children and for the sentence span rather than the counting span task.

Why do hyperactive children perform relatively better on the counting span task? In most respects the two tasks are very similar. The most obvious difference between the tasks relates to the level of difficulty (other than the working memory requirements). Although the words in the sentence span task were meant to be virtually predetermined, some of the children had to think for a short while about a suitable answer. This slowed down the pace of the task, which presumably increased the working memory demand. Indeed it was not only hyperactive children who performed relatively better on the counting span task, but this held for the control group too. The two tasks also differ on how active a role the child plays: on the counting span task the child is actively involved in counting the dots with his or her finger, whereas on the sentence span task the child simply responds verbally to verbal items the tester presents.

Controlling for anxiety did not change the pattern of findings on the working memory measures, but controlling for conduct problems resulted in a non-significant group difference on the sentence span task.
On the computerised working memory measure, the delayed response alternation task, both groups performed at chance levels before they were taught the rule. This was clearly a difficult task for children between the ages of 7 and 12 years. The ‘before teaching’ score does not therefore reflect working memory ability. The groups did not differ significantly in the numbers of children reporting to have found out the rule on their own: 14% of the hyperactive children and 21% of the control children did so. This task has neither been used with children nor in a study on hyperactivity in previous research.

When the children performed the task again after having been taught the rule, the hyperactive group performed significantly worse than the control group. One possible interpretation of this finding is that the children with hyperactivity showed impaired working memory. This conclusion would fit in with the evidence from the two previous studies which found that hyperactive children performed worse than control children on a working memory task (Gorenstein et al., 1989; Shue & Douglas, 1992).

The group difference remained significant after controlling for conduct problems or anxiety, indicating that neither of these other types of problem behaviours explains the association between hyperactivity and poor performance on the task.

Considering the data as continuous variables confirmed this pattern of findings. Hyperactivity ratings correlated significantly (although only in the low-to-moderate range) with the ‘after teaching’ scores for tester, teacher, and average of teacher and parent ratings. There was no association between hyperactivity ratings and the ‘before teaching’ scores, or between ratings on conduct problems and either before or after teaching scores on the delayed response alternation task.

The significant group differences on the sentence span and DRA after teaching variables disappeared when IQ was controlled for. Whether controlling for IQ is in fact appropriate is a rather complicated theoretical issue. The argument for
including IQ as a covariate in the analyses is that the groups differed significantly on IQ. Any group differences on task performance could be due to differences in general cognitive ability. The counter-argument is that the lower IQ of the hyperactive children is very much part of the disorder and gives clues about the nature of the ‘core’ deficit. Pennington (1994) emphasises the relation between working memory and intelligence: ‘working memory is clearly one very important mechanism that appears to account for considerable variance in what is called fluid intelligence’ (p. 267).

In sum, there was some, but not conclusive, evidence of poor performance on working memory tasks among hyperactive children. Controlling for IQ removes the group differences, however. Even if the research findings are interpreted as showing poor performance on working memory tasks, the question remains whether this really indicates impaired working memory or whether it could be the result of, for example, delay aversion or lack of effort (see section 8.9).

8.3.3 Response inhibition deficit

The overall conclusion from previous research with the stop task is that hyperactive children are neither less likely to trigger the inhibition process nor are they less variable in their inhibitory process (Oosterlaan et al., 1998). The present findings support this conclusion: the failure to find a group difference on the inhibition slope ruled out these possibilities.

The difference between the present findings and those from most previous studies relate to the inhibition slope, however. The previous studies found a significant difference between hyperactive and control children on the inhibition slope, although this difference disappeared after the ZRFT-correction, leading to the above conclusion. In these studies the group difference on the inhibition slope was due (in part, see section 2.3.3) to a slower inhibitory process. The present study
did not find this: the groups did not differ significantly on the stop signal reaction time.

The only previous study of those included in the meta-analysis of stop task studies (Oosterlaan et al., 1998), which similarly failed to find a difference between hyperactive and control groups on the stop signal reaction time, was that by Daugherty et al. (1993). Like the present study, and unlike the other stop task studies, Daugherty et al. recruited their sample of hyperactive children from the general population. This raises the possibility that the slow inhibitory process is characteristic only of clinic-referred children with hyperactivity or ADHD.

There is reason to be somewhat cautious about conclusions regarding the speed of the inhibitory process. The test-retest reliabilities were lower for both the inhibition slope and the stop signal reaction time than for most other variables. It may be that the failure to find significant group differences on these variables was due to their lower reliability. The theoretically important issue is whether the groups would have differed on stop signal reaction time, had it been a more reliable measure of the speed of the inhibitory process. If the groups had differed on the inhibition slope too, this would have simply reflected the group differences on the stop signal reaction time and the variability of speed on the primary task. It is extremely unlikely, had the inhibition slope result been significant, that it would have remained significant after the ZRFT-correction. Previous research has shown that the ZRFT-correction removes the significant difference between the groups: hyperactive children are not less likely to trigger the inhibitory process nor do they have a more variable inhibitory process than other children (Oosterlaan et al., 1998).

How likely is it that the non-significant stop signal reaction time was due to its lower reliability? Low reliability may inflate the variances within each group. This would reduce the power to detect significant differences between the groups. Inspection of the standard deviations of the variables between the present results

272
and those from two previous studies which were similar to the present one (Oosterlaan & Sergeant, 1996; Oosterlaan & Sergeant, 1998a) do not suggest any consistent differences in their magnitude. For some of the stop task variables the standard deviations were similar for the hyperactive groups in the present study and the study by Oosterlaan and Sergeant (1998a), but the standard deviations were higher for the control group in the present study. However, some of the variables for which this pattern emerged detected highly significant group differences. That is, even if the standard deviations had been greater for the control group in the present study, this is unlikely to account for the non-significant group comparison on the stop signal reaction time.

On the other hand, some support for the possibility of low reliability causing the non-significant stop signal reaction time result comes from the moderate correlations between SSRT and task variables which detected significant group differences.

In sum, the hyperactive children were not less likely to trigger the inhibitory process nor was their inhibitory process more variable, compared to control children. The groups also did not differ significantly in terms of the speed of the inhibitory process, although there is a slight possibility that this was due to the lower reliability of this measure.

Even if hyperactivity would be associated with a slow inhibitory process, this does not necessarily indicate a response inhibition deficit (although this is a common interpretation; e.g. Oosterlaan et al., 1998). Given that hyperactive children are also slower in their responses on the primary task (see below), these results together may indicate a general slowing down of responses, rather than a specific response inhibition deficit. In the Users’ Guide to the Stop Signal Paradigm, Logan (1994) writes: ‘Differences in stop signal reaction time have to be interpreted. They could reflect a specific deficit in inhibition ... or a general slowing down that affects go processes as well as stop processes’ (p. 233).
Apart from the issue of a response inhibition deficit and the variables measuring it, other stop task variables picked up significant group differences. Children in the hyperactive group were slower (in terms of their reaction times on the primary task), more variable in their speed of responding (on the primary task) and they made a higher number of both omission and commission errors than the children in the control group. (See section 8.3.4 below for an interpretation of these findings.) However, neither the hyperactive children, nor the control children, became slower or more variable in their speed of responding over time. In fact, both groups became faster on the primary task over time, indicating a practice effect.

Could the lower IQs of the children with hyperactivity explain the pattern of findings that emerged? This could not be the explanation, as the hyperactive children were slower and more variable in their speed and made more errors even when IQ was controlled for.

Ratings on conduct problems, but not anxiety, were associated with the stop task variables. Controlling for conduct problems had the effect of reducing the size of the group differences: the group difference on the mean reaction time became non-significant (whether children with high error rates were included or excluded) and the group difference on the standard deviation variable (a stronger finding) became non-significant only in the latter case. See section 8.6.2 for a further discussion of the significance of co-occurring conduct problems in hyperactivity.

Considering the hyperactivity and task variables as continuous dimensions for the total sample of children tested on the tasks confirmed the main pattern of findings. See section 8.6.3 for a discussion of differences in results depending on who rated the child.
8.3.4 Evidence for a different hypothesis?

Rather than brushing aside the findings regarding the stop task variables which do not measure response inhibition as uninteresting, perhaps they give important clues about the nature of the disorder. Overall, the variability in the speed on the reaction time task (the primary task of the stop task) best discriminated between the hyperactive and control groups. The effect size was highest for this variable, it came out as the strongest variable in the discriminant function analysis and it also correlated significantly with teacher, parent and tester ratings of hyperactivity, irrespective of whether IQ was controlled for or not.

What could cause some children to be particularly variable in their speed of responding on a reaction time task, sometimes responding fast and other times slowly? One possibility Oosterlaan and Sergeant (1996) suggested is that it may indicate lack of consistent effort. On some trials the children try harder and respond quicker, on other trials they try less hard and are slower.

A speculative alternative explanation would involve the concept of a neurological insult: a neurological 'event' (something resembling a seizure, say) would cause the child to lose concentration for short periods of time every now and then, which would result in variable reaction times (Goodman, personal communication, May 1998). This explanation is unlikely, as such a neurological event which would disrupt concentration should also influence performance with regard to other variables. The child would be likely to miss the stop signal every now and then, resulting in a decreased likelihood of triggering the inhibition process. Neither the present study nor the previous ones have found evidence for this. As reviewed in section 2.1, previous research has also not found evidence for an attention deficit in hyperactivity.

The explanation of hyperactive children's task performance as indicating lack of consistent effort may come quite close to parents' and teachers' description of
hyperactive children's behaviour (see van der Meere, 1996), which in some cases leads to a referral to a clinic. Despite the apparent circulatory nature of the argument, it is an important theoretical issue. Most theories of hyperactivity refer to a deficit, whether in response inhibition, working memory or something else. If hyperactive children perform worse than other children on certain tasks due to lack of consistent effort rather than impaired cognitive functioning, this has also practical implications (see section 8.11 for a further discussion).

The children with hyperactivity were not only more variable in their reaction times, but they were also generally slower and made more errors. This pattern of responding (slow, variable and inaccurate) conforms to the pattern van der Meere (1996) concluded in his review as characteristic of hyperactivity. These findings support the state-regulation theory of hyperactivity, which argues that the core problem in hyperactivity relates to a non-optimal activation/effort state.

This 'new' interpretation of findings from studies on hyperactivity seems to be gaining popularity in general. For example, the report on ADHD by the working party of the British Psychological Association (1996) concluded that 'it would seem ... that problems regarded as either attentional or inhibitory may be underpinned by an inability to maintain effort over time in order to meet task demands' (p. 8).

8.4 Heritability of hyperactivity

8.4.1 Heritability of individual differences in hyperactivity

Previous twin studies have consistently reported high heritability estimates for individual differences in hyperactivity, that is when hyperactivity has been measured as a continuous dimension in a sample from the general population. Heritability estimates based on mother-report data have been around 70-100%, whereas teacher ratings (on the same scales) have produced heritabilities in the
range of 50-60% (Eaves et al., 1997; Goodman & Stevenson, 1989b; Silberg et al., 1996).

The heritability estimates of between 41% and 74% from the present study add to this existing evidence of strong genetic effects on hyperactivity. It is important to remember that these values are indeed estimates which in reality have confidence intervals; the exact values do not deserve too strong an emphasis. The heritability estimate of 41% from parent ratings may slightly underestimate the extent of genetic effects, as it was difficult to choose between the AE and AE₃ models: the AE₃ model would have produced a higher heritability estimate of 67%. The heritability estimate based on the average hyperactivity ratings (74%), combining teacher- and parent-report data, could perhaps be considered as the most reliable estimate.

The twin correlations from the present data are also close to the twin correlations reported in previous studies (e.g. Eaves et al., 1997; Goodman & Stevenson, 1989b). Further validation for the role of genetic effects in hyperactivity came from the genetic analyses on the testers’ ratings of the hyperactive children’s behaviour during the session, as the heritability for hyperactive behaviours was estimated at 57%.

The overall conclusion is that genetic effects explained approximately 50-70% of the variance in individual differences in hyperactivity. This finding also suggests that the hyperactivity dimensions of the Conners’ scales indeed measure a similar phenotype as other measures of hyperactivity or ADHD (none of the previous twin studies on hyperactivity used the Conners’ rating scales).

The previous twin studies which have obtained ratings from both teachers and parents have tended to find somewhat higher heritability estimates for parent-reported (especially mother-reported) than teacher-reported hyperactivity (e.g. Eaves et al., 1997; Sherman et al., 1997). The present estimates from parent and
teacher ratings on hyperactivity were rather close to one another and for the
reasons mentioned above it would be difficult to conclude that there was any
evidence of a meaningful difference in the estimates. We did not distinguish
between ratings by mothers and ratings by fathers in this study: parent ratings refer
to a combination of the two, as well as in some cases to a joint effort by both
parents.

Some of the previous heritability estimates based on parent-report data are in fact
suspiciously high. For example, Goodman and Stevenson (1989b) obtained a
heritability estimate of greater than 1.00 for mothers' ratings of hyperactivity!
More recent studies which have systematically compared a model including
contrast effects with the other models suggest that contrast effects explain 1-5% of
the variance in parent-reported hyperactivity (e.g. Eaves et al., 1997). The present
data similarly showed significant contrast effects, although only for average
hyperactivity ratings, which explained 3% of the variance. The teacher-report data
did not on its own show any evidence of contrast effects, however, which
replicates the finding from the Eaves et al. (1997) study.

These findings are suggestive of rater bias in parental ratings, although the present
design did not allow an explicit comparison between rater bias and true sibling
interaction. Such analyses by Simonoff et al. (in press) provided evidence for the
rater bias account of parent ratings on hyperactivity. As discussed in section 3.4.3,
Simonoff and colleagues suggest that parents may find it difficult to judge 'normal'
levels of activity, attention and impulsivity. The findings from the present and
previous studies of no contrast effects on conduct problems, for which norms may
be more clear cut, support this argument. The analyses by Simonoff et al. (in
press) also showed that teacher ratings are not a gold standard of hyperactivity
either, but show different biases - those of 'twin confusion' or 'correlated errors'.

Although this study had low power to detect shared environmental influences, the
previous large-scale twin studies have similarly not found evidence of such effects
The environmental factors which influence hyperactive behaviours seem not to be of the kind which are shared between members of the same family but seem to be those factors which are specific to each individual. On the other hand, Simonoff and colleagues (Simonoff et al., in press) point out that it is difficult to detect both shared environmental effects and contrast effects, if both were present; this requires large sample sizes and either extended genetic designs or multiple informants.

In sum, our findings replicated the previous findings of high heritability for the dimension of hyperactivity and were also suggestive of contrast effects in parental ratings.

8.4.2 Heritability of extreme hyperactivity

The existing literature has not only showed that hyperactivity as a continuous dimension has a high heritability but also that there are strong genetic effects on extreme hyperactivity ratings, when studied on their own. Most previous group heritability estimates have been based on parent-report (mostly mother-report) data. The estimates vary from around 70% to almost 100% (Gillis et al., 1992; Gjone et al., 1996, Levy et al., 1997; Stevenson, 1992).

The present group heritability estimate of 42% for parent-reported hyperactivity is therefore somewhat lower than the previous estimates. There are several possible explanations for this. First, the sample of parents in the present study might have included a higher proportion of fathers, although we did not keep records of whether it was the mother or father who completed the questionnaire. Some evidence suggests that father-report data produces lower heritability estimates than mother-report data (e.g. Goodman & Stevenson, 1989b), although the evidence is not consistent (Eaves et al., 1997). Second, this could be due to the different measure of hyperactivity used in the present study. Both of these possible factors would presumably have had an effect also on the individual differences heritability
estimates. Although the individual differences heritability estimates (those based on parent and average ratings) were somewhat closer to those found in previous studies than the group heritability estimates, they were still among some of the lower estimates.

Another possibility is the high proportion of girls in the present sample. The finding that the group heritability estimates were very similar for average hyperactivity ratings for girls and boys seems to rule out this possibility, however. Age is also unlikely to explain the lower group heritability estimate. Studies suggest that the group heritability estimate for hyperactivity does not vary significantly as a function of age (e.g. Levy et al., 1997) and the age range in the present study was also similar to those in previous studies.

The group heritability estimate of 20% for teacher-reported hyperactivity data is very close to the estimate Stevenson (1992) reported for his sample (16%). Although these findings need to be replicated with larger sample sizes, they raise the possibility that teacher-report data produces lower group heritability estimates for hyperactivity than parent-report data. If parent ratings are more prone to bias than teacher ratings, some of the very high group heritability estimates reported in previous research may reflect this.

On the other hand, we do not know how accurate teachers are at identifying extreme hyperactivity. If teacher ratings of extreme hyperactivity would reflect ‘true’ hyperactivity better than parent ratings, perhaps the evidence for shared genetic effects between questionnaire ratings and testers’ observational ratings would be greater for teacher than for parent ratings. The observational ratings are not a gold standard of hyperactivity either, but offer a measure of hyperactivity that does not reflect the same biases as questionnaire ratings. Our data did not support this suggestion of stronger evidence of shared genetic effects on observational ratings and ratings by teachers rather than by parents.
It was not possible within the present study to investigate whether the group heritability estimates for hyperactivity were *significantly* lower than the individual differences heritability estimates. The evidence from previous studies is consistent with the idea of strong genetic effects on hyperactivity whether it is considered as a dimension or as a categorical classification (Levy et al., 1997; Sherman et al., 1997). Our results call for more caution in reaching such a conclusion as yet. Future studies could be specifically designed to investigate this issue.

The concordance rates were similarly lower in the present study compared to previous findings. The probandwise concordance rates were 36% for MZ and 14% for DZ twins, compared to around 80% for MZ and 30-40% for DZ twins in previous studies (Gillis et al., 1992; Levy et al., 1997). Admittedly the sample size in the current study was very small for this type of analysis.

To summarise, there was significant evidence of genetic effects on extreme hyperactivity ratings. The genetic effects were less strong than in previous research, however.

8.5 Mediators of genetic effects on hyperactivity

The main hypothesis of this thesis was that the cognitive impairments or task engagement factors that would be associated with hyperactivity would mediate the genetic effects on the condition. Previous twin studies of hyperactivity have not explored this issue. The present study reflects the move in quantitative genetics from simply calculating heritability estimates to also asking more complex, more informative questions about genetic effects.

We tested this hypothesis by investigating whether there are shared genetic effects on extreme hyperactivity ratings and the task variables. The measures which differentiated between the groups - delay aversion, sentence span, delayed response
alternation after teaching score and the stop task variables of standard deviation of reaction times, mean reaction time and the error variables - are all potential candidates for sharing genetic effects with hyperactivity ratings. The other requirements are those of genetic effects on extreme hyperactivity and on hyperactive children's performance on the tasks. Although the genetic effects on extreme hyperactivity were not as strong as those found in previous research, they were still significant.

The failure to find any evidence of genetic effects on hyperactive children's performance on the delay aversion and sentence span tasks ruled out the possibility of shared genetic effects with hyperactivity ratings. This suggests that the poor performance of hyperactive children on these tasks has an environmental rather than a genetic origin. (The data was suggestive of both shared and non-shared environmental effects on performance on these tasks.)

For the hyperactive group, genetic factors explained approximately a quarter of the variance on the DRA after teaching scores and between 60% and 80% of the variance on the stop tasks variables. However, there was no evidence that the genetic effects on performance on the spatial working memory measure would have been shared with those on extreme hyperactivity ratings. This leaves some of the stop task variables as the only possible candidates for sharing genetic effects with hyperactive behaviour.

One variable emerged again as the strongest finding: there was significant evidence of shared genetic effects on extreme hyperactivity and the variability of speed on the stop task. That is, of those genetic effects that there were on extreme hyperactivity ratings, a significant proportion was shared with the genetic effects on the variability of speed. This was the only statistically significant finding for any of the individual task variables.
Due to the small sample size, it is informative also to consider the size of the bivariate group heritability estimates, rather than exclusively focus on the statistical significance of these estimates. The group heritability estimates were rather high for two other stop task variables too: for commission errors and stop signal reaction time. The number of commission errors made discriminated well between the groups and therefore the possibility of shared genetic effects on this variable and hyperactivity fits in with the general pattern of findings. The finding which is more difficult to interpret is that of possible shared genetic effects on hyperactivity and the speed of the inhibitory process. (The hyperactive and control groups did not differ significantly on this variable.) It suggests that to the extent that hyperactivity and the speed of the inhibitory process are related, they may be so through genetic influences held in common.

In addition to the variability of speed on the stop task, the only other statistically significant result was that for the discriminant score. Scores based on all the testing data which maximally differentiate between the groups carry a significant proportion of the genetic effects on extreme hyperactivity ratings.

The finding of possible shared genetic effects on hyperactivity and some of the stop task variables is not due to shared genetic effects on hyperactivity and IQ. The pattern of the findings was very similar when IQ was controlled for, with the group heritability estimate for the variability of speed remaining significant.

There was evidence of shared genetic effects on extreme hyperactivity and conduct problems (although this finding narrowly missed statistical significance). This confirms the findings from previous twin studies (see section 8.6.2 for a further discussion). Conduct problems seem to have carried a small proportion of the shared genetic effects on hyperactivity and the task variables, as controlling for conduct problems had the effect of reducing the bivariate group heritability estimate or increasing the size of the standard errors, or both. This resulted in non-significant bivariate group heritability estimates for each of the variables, although
the estimates were still high for the discriminant score, commission errors, stop signal reaction time and standard deviation of the reaction times (between .58 and .66).

In sum, there was significant evidence of shared genetic effects on extreme hyperactivity and the variability of speed of responding. There was also some suggestion of hyperactivity sharing genetic effects with the number of commission errors made and the speed of the inhibitory process, although these findings were not statistically significant. These variables may mediate the genetic effects on hyperactivity. Despite the delay aversion and the two working memory (sentence span and DRA after teaching) measures distinguishing between the two groups, these measures do not seem to share genetic effects with those on hyperactive behaviour.

8.6 Further insight into hyperactivity

8.6.1 Association with lower IQ

Whereas it is helpful to investigate what effects controlling for IQ has on the group differences on testing data, the lower average IQ of the hyperactive group is in itself a theoretical issue. How does the present data help to understand the association of hyperactivity with slightly lower scores on IQ tests?

It is worth considering the possibility that the association of hyperactivity with lower IQ would arise because of the association between hyperactivity and conduct problems. The difference in the IQs between the groups did not remain significant when conduct problems were controlled for. On the other hand, when both hyperactivity and conduct problems were considered as dimensions, the negative correlation between hyperactivity and IQ remained significant when conduct problems were controlled for, though it was slightly less in magnitude. Conduct
problems on their own showed some association with IQ, although somewhat less strong than hyperactivity (the correlation between full-scale IQ and hyperactivity was -.26, compared to -.17 with conduct problems). Together these data suggest that co-occurring conduct problems do not completely explain the association between hyperactivity and lower IQ.

Goodman et al. (1995) concluded from their investigation onto the association between behavioural problems and lower IQ that the 'IQ as a marker' hypothesis is a plausible explanation. The authors discussed, though did not test, the possibility of genes as the 'third factor' causing both lower IQ and behavioural deviance. Our data did not support this hypothesis: there was no evidence of shared genetic effects on extreme hyperactivity and IQ. Another possible 'third factor' Goodman et al. (1995) discussed is motivation to succeed and to please. This motivational/effort account remains a possibility. An important issue for future research would be to investigate whether medication improves hyperactive children's scores on IQ tests.

Another factor that could theoretically explain the link between hyperactivity and lower IQ is low birthweight. As expected from a sample of twins, both groups had rather low average birthweights. However, the hyperactive group did not have lower average birthweight than the control group, confirming the finding from the twin study by Goodman and Stevenson (1989b). In contrast to these findings, the follow-up studies of children born with very low birthweights have found an increased incidence of ADHD among these children (Botting et al., 1997; Szatmari et al., 1993). It is possible that only very low birthweight would be related to ADHD symptomatology; the numbers of children with birthweights below 1500 grams were too low in the present study to investigate this. The children with very low birthweights may have suffered brain damage which could cause the hyperactive and inattentive behaviour, as well as the low IQs.
In sum, low birthweight or co-occurring conduct problems do not seem to adequately explain the association between hyperactivity and lower IQ scores. There was no evidence of shared genetic effects on hyperactivity and IQ scores. Future studies could aim to investigate the extent to which the lower IQ scores of hyperactive children might reflect lack of effort and to what extent they reflect 'true' lower general cognitive ability.

8.6.2 Co-occurring conduct problems

The children with hyperactivity were rated significantly higher on conduct problems, compared to the control children. As there is extensive literature on the high rates of co-occurrence of these behaviours (see section 4.2.1), this provides further support for the representativeness of the present sample of hyperactive children.

If, among pre-adolescent children, conduct disorder is a complication of hyperactivity (Taylor et al., 1996), this raises the question of whether the poor performance of hyperactive children on some tasks is due to the 'core' hyperactivity or the co-occurring conduct problems. Previous research has not answered this question satisfactorily. Controlling for conduct problems removed the significant group difference on the delay aversion and sentence span tasks. As there were no genetic effects on hyperactive children's performance on either of these tasks, this suggests that their performance on these tasks may relate to some of the environmental factors which are also associated with conduct problems.

Controlling for conduct problems also removed the significant group difference on the speed of responding on the stop task (and the variability of speed, when the children with high error rates were excluded). These variables were related to genetic factors, but environmental variables did of course account for a proportion of the variance too. The significant group differences on the remaining variables - DRA after teaching and the error variables on the stop task - remained significant after controlling for conduct problems. (To be precise, the p-value for commission
errors was .06 and therefore only showing a 'trend'. This suggests that the
association between hyperactivity and these variables is not due to the co-occurring
conduct disorder symptomatology.

The heritability of the conduct problems dimension was estimated at 69% based on
teacher report and at 29% based on parent report. Caution is needed when
interpreting the parent-report data, however, as it was difficult to choose between
the various models. The heritability estimate based on teacher ratings on conduct
problems is in line with previous reports of the extent to which genetic factors
account for aggressive behaviour (e.g. Edelbrock et al., 1995; Schmitz et al.,
1995). The Conners’ scales do not have separate subscales for aggressive
behaviour and delinquent behaviour, but the emphasis on the conduct problems
subscale is on aggressive behaviours.

The finding of genetic effects on conduct problems raises the possibility of shared
genetic effects on hyperactivity and conduct problems. The data indeed provided
support for this hypothesis (although the result narrowly missed statistical
significance). Silberg et al. (1996) similarly showed that in the younger age group
(8-11 years) of their sample the same set of genes influenced hyperactivity and
conduct problems. Significant evidence of shared genetic effects on the two
phenotypes also emerged in the study by Nadder et al. (1998). Both of these
studies focused on normal variation of scores on the behavioural dimensions, using
the Cholesky decomposition approach. The present study confirmed this finding
using the DF extreme group approach, focusing on extreme hyperactivity. This
result fits in with the idea of hyperactivity increasing the risk for the development
of conduct problems. Although the finding is not inconsistent with conduct
problems increasing the risk for hyperactivity, previous research does not support
this possibility (see chapter four). Longitudinal genetic studies could investigate
this issue more directly. Within the present design we could not explore the other
possible routes to conduct disorder.
8.6.3 Cross-informant consistency

The present study focused on pervasive hyperactivity: the children were included in the hyperactive group only if both teachers and parents rated them highly on the hyperactivity dimension. It is useful to consider very briefly the implications of the data with regard to rater effects.

The current data suggests a similar degree of cross-informant consistency as previous research. Goyette et al. (1978) reported a correlation of .36 between teacher and parent ratings on the hyperactivity dimensions of the Conners' scales; the correlation for the sample representative of the general population was .33 for our data.

The teachers' and parents' ratings of hyperactivity correlated moderately highly with testers' ratings of hyperactive behaviours during the session. A caveat here is that the sample of children - all the children whom we tested - are not representative of the general population. The high correlation (.7) between teachers' and parents' ratings on this sample reflects this. Nonetheless, the correlations suggest some degree of consistency between the rather crude ratings of behaviour during a single testing session and ratings on the Conners'. The finding of a highly significant group difference on the testers' ratings confirms this (as the parent and teacher ratings were used to define the groups).

The correlations between ratings of hyperactivity and performance on the tasks were somewhat higher for teacher rather than parent ratings, although we did not test whether the correlations were significantly higher for teacher ratings. For several of the variables the correlations with tester ratings were even somewhat higher than those with teacher ratings. The genetic analyses provided some evidence of possible rater bias in ratings by parents. These findings together point to the need to obtain ratings from multiple sources.
8.6.4 Sex effects

Many studies on hyperactivity have not included girls at all in their samples. It was one of the aims of the present investigation to explore this neglected issue of the nature of sex effects in hyperactivity. Heptinstall and Taylor (1996) suggest that hyperactivity is truly less common among girls than boys.

The focus on sex effects in the present study is more dimensional in nature than that of the diagnostic approach to hyperactivity or ADHD. Rather than comparing girls who show 'clinically significant' hyperactivity to boys who show 'clinically significant' hyperactivity, we compared the 'top end' of boys showing hyperactive behaviours to a similar proportion of 'top end' girls. With regard to performance on the tasks, hyperactive girls were indistinguishable from hyperactive boys. This suggests that even if hyperactive girls (as defined in this study) show hyperactive behaviours to a lesser extent (see Appendix A for the results), they still show the same pattern of responding on tasks as hyperactive boys.

The group heritability estimates for hyperactivity ratings based on both teacher- and parent-report data were also similar for boys and girls, which provides further evidence of similar etiology across gender. We did not have enough power in the study to investigate sex effects for the heritability of individual differences in hyperactivity. Previous twin studies which have included both boys and girls in their samples have obtained comparable heritability estimates - whether individual differences or group heritabilities - across the sexes (e.g. Eaves et al., 1997; Gillis et al., 1992; Goodman & Stevenson, 1989b).

8.6.5 Co-occurrence of other problem behaviours

The fact that hyperactivity frequently co-occurs not only with conduct problems but also with learning problems and anxiety is an important issue both theoretically and clinically. Confirming this general pattern of findings, the present sample of
hyperactive children obtained higher scores than the control children on ratings of anxiety and learning problems. The hyperactive children obtained higher scores also on the Inattentive-Passive dimension, but to an extent this finding simply reflects the fact that children who are hyperactive and impulsive (the characteristics used to define the hyperactive group) are often also inattentive (the third ADHD symptom category). On only one of the dimensions of the Conners’ was there no significant group difference: the parents of the hyperactive children did not rate their children higher on Psychosomatic complaints than did parents of control children.

Our data did not support the view that hyperactive children who also show symptoms of anxiety may differ from other hyperactive children with regard to cognitive or task engagement factors (e.g. Pliszka, 1992). Controlling for anxiety did not change the pattern of findings for group comparisons and the correlational analyses also showed that ratings on anxiety were not related to performance on the tasks. However, we did not design this study specifically to address this question and parents’ ratings on the Anxiety subscale of the Conners’ may not be a completely adequate measure of anxiety.

8.7 Further findings

8.7.1 Developmental effects

Although developmental effects were not a specific focus of the present thesis, it is useful to consider the findings within the developmental context. The finding of moderate correlations between age and performance on the sentence span and counting span tasks confirms the previous reports of developmental effects on children’s performance on these tasks (Case et al., 1982; Siegel, 1994).
There was also a significant and moderate association between age and performance on the delayed response alternation task, which provides further evidence of developmental effects on working memory. However, children in this age group - 7 to 12 years - have clearly not yet achieved adult-level performance on the task: control children made an average of 75% correct responses after they had been taught the rule, whereas the figure was 99% for the healthy adults in the study by Gold et al. (1996).

Age was also related to the children’s performance on the delay aversion task, with older children being more likely to wait for the larger reward and therefore to obtain more points. Sonuga-Barke, Taylor, Sembi et al. (1992) did not focus on age effects; the children in their sample were all 6 and 7 year olds. This association between age and performance on the delay aversion task may explain the ‘stronger’ delay aversion tendency of the hyperactive children in the previous study (Sonuga-Barke et al.) than in the present study.

Previous studies using the stop task have suggested that age is not significantly related to the slope of the inhibition function or to error rates (Schachar & Logan, 1990; Oosterlaan & Sergeant, 1996). The present data indicate significant, though moderately low, correlations between age and the inhibition slope and total number of errors. Age was more strongly related to the speed and variability of speed on the primary task, which is in line with previous findings. The existing evidence on developmental effects on the speed of the inhibitory process is inconclusive. As in the study by Oosterlaan and Sergeant (1996), age was not significantly related to stop signal reaction time in the present study; Schachar and Logan (1990), however, reported a moderate negative correlation between age and the speed of the inhibitory process.

In sum, age was related to most of the response variables. However, the usefulness of the present correlational findings is limited by the fact that the sample was not a general population sample.
8.7.2 Heritability of other problem behaviours

We obtained heritability estimates for other problem behaviours too, apart from hyperactivity and conduct problems. Whereas several previous twin studies have estimated the extent to which genetic factors influence individual differences in scores on behavioural rating scales, to our knowledge this is the first twin study to report such data for the Conners’ scales.

Teacher ratings on the Inattentive-Passive dimension suggested high heritability: approximately 80% of the variance was due to genetic effects. This links with the literature showing strong genetic effects on ADHD symptomatology, as inattentiveness is one of the three ADHD dimensions. Not all the items of this subscale focus on inattentiveness, however. The other items include, for example, ‘difficulty in learning’, ‘appears to be easily led by other children’ and ‘childish and immature’.

The present data on ratings of anxiety and somatic complaints can be compared to the results from two recent twin studies which obtained ratings from parents on the Child Behaviour Checklist. The samples in both studies were general population samples and the twins were aged between 7 and 15 years in the study by Edelbrock and colleagues (Edelbrock, Rende, Plomin & Thompson, 1995) and between 4 and 18 years in the study by Schmitz and colleagues (Schmitz, Fulker & Mrazek, 1995).

Somatic complaints refer to complaints of, for example, headaches and stomach aches. The present data confirms the finding of genetic factors influencing somatic symptoms, although the heritability estimate (38%) was somewhat lower than the heritability estimates from the CBCL studies (51% and 73%). For parents’ ratings on anxiety, our findings suggest higher heritability (82%) than the CBCL studies (34% and 50%). The CBCL anxiety subscale in fact includes both anxiety and
depression items, whereas the Conners' anxiety subscale focuses exclusively on anxiety. This is one possible explanation for the discrepant findings.

The learning problems subscale of the Conners' includes items such as 'difficulty in learning' and 'fails to finish things'. Genetic factors explained approximately 73% of the variance on this dimension. Parents' ratings on both the learning problems and the anxiety subscales showed evidence of contrast effects (sibling interaction and/or rater bias). Eaves et al. (1997) similarly reported evidence of contrast effects for parental ratings on anxiety.

To summarise, genetic factors seem to influence various types of problem behaviours in childhood. These findings refer to normal variation on these behavioural dimensions in the general population.

8.7.3 Heritability of IQ

Twin studies of general population samples suggest a heritability of around 50% for IQ; the average twin correlations are .86 for MZ twins and .60 for DZ twins (see Plomin et al., 1997). The shared environment accounts for approximately 40% of the variance in IQs for twins, although the shared environmental effects may be slightly weaker for nontwin siblings (Plomin et al., 1997). Genetic factors become more, rather than less, important for IQ with age; the heritability of IQ increases throughout childhood and into adulthood (McGue, Bouchard, Iacono & Lykken, 1993).

Data from the present control twin pairs replicated the previously reported twin correlations for full-scale IQ (although in the present study we used only four subtests): the twin correlations were .86 for MZ and .58 for DZ twins. Genetic factors explained approximately 40% of the variance in full-scale and verbal IQ scores, whereas the heritability estimate was somewhat lower for performance IQ (20%). The shared environment accounted for approximately half of the variance for each type of IQ scores.
8.8 Limitations and comments

Each study has its limitations and the conclusions must be interpreted with these in mind. Acknowledging those limitations which suggest specific improvements to methodology is beneficial for future research. Accepting the limitations over which one has little control teaches a useful lesson about the real world.

8.8.1 Statistical power

The most obvious limitation of the present study relates to sample size and its implications for statistical power. Whereas at the first stage of the study we had a large sample of 1316 twin pairs, each stage of the selection procedure unavoidably reduced the sample size.

The sample size for the non-genetic group comparisons was 49-51 children in the hyperactive group and 118-119 children in the control group. As discussed in section 6.2, at $\alpha = .05$ and 80% power the sample size requirement would be 64 individuals in each group to detect medium effect sizes and 26 individuals to detect large effect sizes. These power calculations show that the sample sizes were adequate for the non-genetic analyses.

In the genetic analyses on the testing data, the emphasis was on the DF extreme group analyses, as these tested the main hypotheses of the study. The sample sizes were 40-83 MZ pairs and 55-90 DZ pairs in the univariate DF analyses (except when the results were analysed separately for girls and boys), and 16-18 MZ and 27-28 DZ pairs in the bivariate DF analyses. As discussed earlier, with a group heritability estimate of .60 (i.e. a difference in the standardised co-twins' means of .30) and one-tailed $\alpha = .05$, the sample size would need to be 138 children to achieve 80% power (Cohen, 1988). Therefore the power in the present study for the DF analyses was lower than the preferred 80% (although the results showed that the power was adequate to detect several statistically significant effects).
Nonetheless, it is necessary to consider the findings as preliminary; only replication of the findings in future studies would justify drawing firm conclusions.

The model fitting approach has less power than the DF extreme group approach and therefore one has to be even more cautious when interpreting the ACE results for the task variables. These were only used as ‘first-step’ analyses, however, to give an indication of whether the task variables would show genetic effects, before carrying out the bivariate DF analyses which tested the main hypothesis directly. The model fitting analyses on rating scale data were based on 61 MZ pairs and 64 DZ pairs. The power calculations we reported in section 6.2 showed that a sample of 75 MZ and 75 DZ twin pairs would be required to detect a heritability of .6 \((r_{MZ} = .65, \ r_{DZ} = .35)\) with 80% power and \(\alpha = .05\). Although the sample sizes were adequate for detecting genetic effects on the rating scale data, the identification of common environmental terms would require larger sample sizes (see Neale and Cardon, 1992).

In general, a larger sample for the testing data would have been ideal. However, it simply would not have been feasible within the constraints of the study to screen a larger population of twins and to carry out the testing on a larger sample.

8.8.2 Representativeness of the sample

Representativeness of twins

The representativeness of twins in general, and how the present data supports the representativeness of this sample of twins, are discussed in Appendix A. In brief, there were very few significant differences between the present sample and the standardisation sample on the mean scores of the Teacher Conners' subscales. As the children in the standardisation sample were singletons, this suggests that ratings on the CTRS-28 are comparable for twins and singletons.
Representativeness within the geographical location

We decided not to use an existing twin register, but rather to recruit the twins from schools, in order to obtain a sample that would be representative of children in the area. Did we achieve this aim? The response rate from schools was approximately 70%; it is quite likely that some of the schools that did not reply in fact did not have any twins fulfilling the criteria for the study. Of the parents whom we contacted, approximately 70% completed the questionnaires. We do not know whether the parents who did not reply were different with regard to any background variables to those who replied. However, rather similar numbers of parents of both potential hyperactive and potential control twins replied. This is reassuring, as it suggests that parents of hyperactive children were not less likely than parents of non-hyperactive children to agree to participate in the study. This was also the case for the families we invited for a testing session: 68% of the hyperactive and 64% of the control families agreed to make the visit.

Representativeness of the population of hyperactive children

Another issue is whether the children in the hyperactive group are representative of hyperactive children in general. There are two issues here in fact: how comparable is the present sample of hyperactive children to the samples of hyperactive or ADHD children in other studies and how representative are they of a 'true' group of hyperactive children.

There is undoubtedly some, but not complete, overlap between the current definition of hyperactivity and the clinical diagnosis of ADHD according to DSM-IV criteria. Both require pervasiveness of the symptoms and the prevalence estimates are similar (around 5%). On the other hand, the current definition focused on the symptoms of hyperactivity and impulsivity, whereas a diagnosis of ADHD can be based on symptoms of hyperactivity-impulsivity only, of inattention only, or a combination of both. The current definition did not include the DSM-IV
requirements of age of onset and duration of symptoms. The present sample of hyperactive children is likely to resemble more closely samples of hyperactive children in studies which, like the present study, adopted a dimensional rather than a categorical approach. Such studies select the hyperactive children as those scoring above a predetermined cut-off point on a hyperactivity rating scale.

An aspect on which the present sample differs from most previous studies is the proportion of girls in the sample. The use of T-scores for cut-off points ensured approximately equal numbers of girls and boys. The argument could be made that girls in the hyperactive group would show less severe symptomatology than boys, because of girls' tendency to score lower on the hyperactivity dimensions. Whereas this is a valid argument, the sex differences themselves were what we were interested in and were the reason for the selection procedure we adopted. The question was whether the girls scoring in the approximately top 5% on the hyperactivity dimensions would differ from the top 5% of pervasively hyperactive boys, even if the average raw scores would be lower for girls than boys. Sex effects in hyperactivity have largely been neglected in previous hyperactivity research. Section 8.6.4 discussed the findings from the present study.

There is no gold standard of hyperactivity. Validation for the present definition of hyperactivity came from the observational ratings of hyperactive behaviours during the session, as these ratings differentiated well between the hyperactive and control groups. Although hyperactive children do not necessarily 'show their true colours' during a short clinic session, they may be more likely to do so in a long testing session which requires concentration. There was also some evidence of shared genetic effects on the questionnaire ratings of extreme hyperactivity and the observational ratings of hyperactive behaviours, although this finding was not statistically significant (the sample size here was particularly small, resulting in high standard errors).
Complicating the measurement of hyperactivity is the possible heterogeneity of the disorder. Subgroups of hyperactive children may exist whose etiologies differ, although they may show similar symptoms. If some children are phenocopies (see section 3.2) rather than 'true' cases, including them in a study may cloud the picture. Although the present study was not specifically designed to address heterogeneity as such, we did consider the effects of anxiety, conduct problems, IQ and gender on the results. In addition, the selection criteria ensured the exclusion of children showing the 'inattentive' type of hyperactivity or ADHD. This was important, as it is possible that these children do not have the same 'core' deficit as hyperactive children showing hyperactive-impulsive symptoms.

Appropriateness of the screening procedure

We designed the screening procedure with the aim of obtaining a sample of pervasively hyperactive children and a sample of non-hyperactive children. The requirement for both twins in the control group to score below the hyperactivity cut-off points was made with the group comparisons in mind: we wanted to compare pervasively hyperactive children to non-hyperactive children. The selection of the control group has no bearing on the DF extreme group analyses, as only hyperactive children and their co-twins are included in these analyses. For the model-fitting analyses the fact that the control group represented a 'super-normal' group meant that it was not possible to examine genetic effects on performance on the tasks in a general population sample.

Because of the screening procedure we adopted, we had to 'create' a sample representative of the general population for the model-fitting analyses on the rating scale data. Ideally the sample for these analyses would have been randomly selected from the general population.

These limitations reflect the trade-off between benefits and costs in any study design. The justification for the screening procedure was that the main focus of the
study was on the genetic effects on task performance (as mediators) within the hyperactive twin pairs. The design of the study enabled an investigation of all the hypotheses of the study.

8.8.3 Adequacy of measures

Reliability

The purpose of the test-retest reliability studies was to determine whether the measures show adequate test-retest reliability. Most of the measures showed good or adequate reliability, but the stop task variables of inhibition slope and stop signal reaction time showed lower test-retest reliability. The implications of this for the results was discussed in section 8.3.3. Worth noting in passing is that the version of the stop task we used was the same as the version used in the study by Oosterlaan and Sergeant (1998a; although they also included response re-engagement as an additional condition). They did not report reliability data for the measure.

Measurement of inhibition

Due to time limits on the testing session, we did not include other measures of inhibition in the test battery apart from the stop task. With all its advantages (see section 2.2.2), it does have a disadvantage too. Logan (1994) points out that 'the disadvantage of the stop signal paradigm is that it reflects an extreme form of control that may be different in important ways from more subtle forms of control' (p. 191). Further, the stop task focuses on momentary inhibition, the ability to suppress a particular response when it is signalled. It does not measure ongoing inhibition, which some accounts (e.g. Barkley, 1997) view as important in hyperactivity.
Inferences about state regulation

A rather different type of a limitation relates to inferences about activation/effort state. That is, we did not design the study to test the state-regulation theory of hyperactivity, but nonetheless interpret the stop task findings as supporting this view (see below). This reflects at the same time both the joys and frustrations of carrying out research: one never knows beforehand what the results will look like and only after analysing the results will one realise which interesting research questions had not even been asked. This is truly what research is all about. It is about testing reasonable theories, but having the flexibility of mind to give up the pet theories when the data support an alternative view. Whether the pattern of responding on the stop task which was associated with hyperactivity in fact reflects a non-optimal activation/effort state is discussed below.

8.9 Towards a more comprehensive account of hyperactivity

The previous sections discussed the findings as they relate to each separate research issue. This section attempts to pull together the main findings from this study, as well as those from previous research. The approach is novel in that it combines the genetic and non-genetic findings, with the aim of taking us towards a more comprehensive account of hyperactivity.

8.9.1 Cognitive impairment or a state-regulation deficit

The findings from the present study challenge the response inhibition deficit hypothesis. Even if hyperactivity would be associated with a slower inhibitory process, the findings could be interpreted as showing a general slowing down of responses rather than a specific difficulty with response inhibition.
Although the present study was not specifically designed to test the state-regulation theory (van der Meere, 1996), the data provided strongest support for this view. An effort/activation problem could explain the variability in speed, the general slowing down of responses and the high numbers of both commission and omission errors made among the hyperactive children. Although van der Meere (1996) emphasises the role of the effort and activation systems in particular, the arousal system may well be involved too. As discussed in section 2.5.2, the important neurotransmitters in the arousal system are noradrenaline and serotonin.

The description of hyperactivity as a state regulation problem not only fits well with the present findings but also with the findings from previous research. The state-regulation theory emphasises those aspects of ADHD which are most similar to the personality theory concept of novelty seeking or sensation seeking. As discussed in section 2.5.2, sensation seeking refers to characteristics such as boredom susceptibility and thrill and experience seeking. The evidence for the association between the dopamine D4 receptor gene polymorphisms and both ADHD and novelty seeking was reviewed in section 3.4.5. Adults with ADHD indeed score higher than other adults on a novelty seeking scale (Downey et al., 1997). Section 2.2.3 reviewed the evidence that stimulant medication makes hyperactive children's responses on the stop task faster, less variable in speed and more accurate. Stimulant medication also increases the levels of epinephrine (which are low in ADHD) in urine; injections of epinephrine to healthy adults lead to faster and more efficient task performance (section 1.11.3).

Both the genetic and the non-genetic analyses suggest that the slow, variable and inaccurate responding may indicate a 'core' deficit in hyperactivity at the cognitive/motivational level. Could this pattern of responding in fact be due to a cognitive deficit rather than a non-optimal activation/effort state? Lower general cognitive ability cannot explain the results, but perhaps the core problem would be a more specific cognitive deficit yet to be properly defined.
How could we investigate whether the pattern of responding would be due to a cognitive deficit or an activation/effort problem? If it were the latter, *under certain circumstances* hyperactive children should not be any more variable in their speed of responding, any slower or more inaccurate than other children. The argument is that they would perform as well as their peers, if their activation/effort state was optimal. Following this argument, medication seems to optimise hyperactive children's activation/effort state. Setting up a task which would optimise their activation/effort state without the use of medication would be challenging, but not impossible.

The concept of novelty seeking might provide some suggestions what the task should be like - the children should perceive it as interesting, exciting and challenging. Our experience from testing the hyperactive children and from discussions with their parents suggests that hyperactive children often seem to be trying hardest when playing a favourite computer game. For a laboratory task set up as a computer game to fulfil the criteria above, it indeed should be as gripping as commercial computer games. For example, a game stimulating driving might provide an opportunity to collect reaction time data.

On the other hand, any school-like task involving sitting at a desk and performing a task that an adult has requested may not be likely to optimise hyperactive children's activation/effort state. An interesting alternative, although more challenging to set up, would be a task involving physical activity. For example, the task could involve an 'activity round': in a rather large room there would be different tasks or activities within some distance from one another that the child should perform. The child would be timed for finishing the whole round and therefore should move as quickly as possible from one activity to another. Some of the activities would be simply 'fun activities', whereas others would be reaction time type of tasks on which hyperactive children usually exhibit their slow, variable and inaccurate style of responding. The child would only perform each task for a short time any given time, but would perhaps do the whole round a few
times, so that enough data could be collected. A chart could be put up on a wall where the child's finishing times would be recorded, to further motivate the child. Rewards or 'punishments' could be used to minimise 'unwanted' tendencies, such as making errors on a reaction time task.

If hyperactive children would not show their typical pattern of responding on such a task or some other task which would aim to optimise their activation/effort state, this would suggest that this pattern of responding does not reflect a cognitive deficit.

A complicating issue is that it may not be possible to optimise hyperactive children's activation/effort state, if it in fact reflected 'learned helplessness'. Aspects of task performance which appear 'motivational' could in fact have a cognitive basis: if hyperactive children found certain tasks difficult because of a cognitive deficit, they might give up even trying to do well on such tasks. Lack of effort would then reflect a past history of failures. Longitudinal studies could be designed to investigate this possibility.

The evidence from studies on the effects of medication make this a less plausible explanation, however. Hyperactive children did not show their typical pattern of responding on the stop task while on medication (Tannock et al., 1995) and Milich and colleagues (Milich et al., 1991) reported that hyperactive children showed increased effort while on medication. These were immediate effects of medication and therefore medication could not have reversed a cognitive deficit which would then have led, in the long term, to more experiences of successes and to increased effort. The studies by Douglas and colleagues (reviewed in section 2.5.2), using reaction time paradigms, similarly do not support the cognitive deficit -hypothesis: continuous positive feedback reduced the variability of reaction times and decreased mean reaction times of hyperactive children.
Apart from response inhibition the other possible cognitive deficit associated with hyperactivity that we specifically tested in this study was that of working memory impairment. The inconsistency in hyperactive children’s performance on working memory measures in the present and previous studies is the first reason to question the working memory impairment hypothesis. Another complicating issue is the failure in the present study to find any group differences on working memory tasks when IQ was controlled for. The genetic analyses showed that there were no shared genetic effects on hyperactivity and performance on any of the working memory tasks: working memory impairment cannot be a mediator of genetic effects on hyperactivity.

Together with previous findings, the present results do not therefore provide strong support for a working memory impairment as the core deficit in hyperactivity. It seems more likely that when hyperactive children show poor performance on working memory tasks, it is a consequence of something else. Because of the hypothesised partial overlap between the constructs of working memory and intelligence (especially fluid intelligence; Pennington, 1994), the explanation for an association between hyperactivity and poor performance on working memory tasks may be the same as that for an association between hyperactivity and lower IQ scores (see section 8.6.1).

8.9.2 Delay aversion or a state-regulation deficit

How could we test between the predictions of the delay aversion and state-regulation theories? This may be asking the wrong question. The data from the present study provides support for both theories in differentiating between hyperactive and control groups. The genetic data distinguished between the two theories, however.

Whereas the activation/effort mechanism could be seen as carrying some of the genetic effects on hyperactive behaviour, delay aversion seems to have an
environmental origin. The evidence suggests that delay aversion is a characteristic of hyperactivity, but it is not a mediator of genetic effects on hyperactivity. Hyperactivity is not purely genetic; delay aversion may relate to some of the environmental factors which are involved.

8.9.3 A schematic representation of possible links

Figure 8.9.3 represents an attempt to present graphically the overall pattern of findings from the present and previous studies on hyperactivity. In the figure, the square with the black frame represents variables which were not measured in this study. As we did not investigate the specific environmental factors which could influence performance on the tasks, all environmental factors are lumped together. This does not imply that the same environmental factors would necessarily influence the various variables. The variables in the model represent specific variables which have been associated with hyperactivity, either in the present or in previous investigations. For example, the findings regarding neurotransmitters and frontal-striatal 'dysfunction' in hyperactivity were reviewed in section 1.11.

What is the evidence for each of these links in the model? Let's consider each of them separately.

link a -

Genes influence the functioning of neurotransmitters. For example, several dopamine genes are known (see section 3.4.5).
link b -

Stimulant medication, which acts on the neurotransmitters, reverses the pattern of responding that is characteristic of hyperactivity. On the stop task, it reduces the variability of the reaction times, accelerates responses and improves error rates (Tannock et al., 1995). Previous research also links dopamine with motivational factors (see Koob, 1996). Milich et al. (1991) showed that boys with ADHD exerted more effort and/or were more willing to cooperate after experiencing failure when they were on medication. Note, too, that the striatum is implicated in the control of motivation, as well as in activation and locomotor behaviour.
This study showed that there were genetic effects on the hyperactive children’s speed and variability of speed, as well as on error rates on the stop task.

This study showed that this pattern of responding - slow, variable and inaccurate - was strongly characteristic of hyperactive children. Previous research has obtained similar findings. The reason why it is unlikely that this pattern of responding would be a consequence rather than a cause of the behavioural phenotype was discussed in section 8.3.4.

The findings from this study confirmed the previous findings of genetic effects on hyperactive behaviour.

The main hypothesis of this thesis tested this idea of mediators between genes and hyperactive behaviour. There was significant evidence for shared genetic effects on extreme hyperactivity and the variability of speed. There was also some suggestion of shared genetic effects with task accuracy and the speed of the inhibitory process.

This study showed that environmental factors influenced the hyperactive children’s performance on the delay aversion and working memory tasks. In fact, there was no evidence of genetic effects on their performance on the delay aversion and sentence span tasks. Interestingly the group differences on both the delay aversion and the sentence span tasks were non-significant when conduct problems were controlled for; conduct problems have been strongly associated with various environmental factors (see section 4.1.3). Environmental factors also seemed to have an effect, though less strong, on the stop task variables. As genetic factors do not account for all of the variance in hyperactive behaviours, environmental factors
must play a role too. The links between environmental factors and the task engagement and cognitive variables may be bi-directional, although there is no direct evidence for this.

link g

Our data suggested a moderate correlation between delay aversion and certain stop task variables, in particular the variability of speed. There is no evidence regarding the direction of causality. If the association exists because of a shared third variable, such a variable does not seem to be shared genes, as there was no evidence of genetic effects on performance on the delay aversion measure.

Sonuga-Barke (1996b) has suggested that delay aversion could explain the stop task finding of slower stop signal reaction time even when the primary task reaction time is controlled for. The argument is that the longer inter-stimulus interval for the stop signal compared to the inter-stimulus interval for the go signal would explain the particularly slow reaction times of hyperactive children to the stop signal. It is not clear, however, why the time between the stop signals would count as a 'delay' period, as the child continuously responds to stimuli appearing on the screen (even if the go signals are different from the stop signals). The issue of whether hyperactivity is in fact associated with a slower inhibitory process was discussed in section 8.3.3.

link h

The present and previous studies have shown delay aversion to be a characteristic of hyperactivity. Sonuga-Barke (1994) argues that delay aversion causes the behavioural symptoms of hyperactivity.

link i

The present findings suggested a moderate correlation between the working memory measures and the delay aversion scores. One could speculate that delay aversion to some extent causes the poor performance on measures such as working
memory measures. If the association exists because of a shared third variable, such a variable does not seem to be shared genes, as there was no evidence of genetic effects on performance on the delay aversion measure.

link j -
Our data suggested a moderate correlation between the working memory measures and certain stop task variables, again the variability of speed in particular. Although there is no evidence regarding the direction of causality, one could speculate that a non-optimal activation/effort state could be causally related to the lower scores on working memory tasks.

link k -
Although there was no evidence of *shared* genetic effects on hyperactivity and any of the working memory measures, there was nonetheless some evidence of genetic effects on hyperactive children’s performance on two of the working memory measures (counting span and DRA after teaching).

This schematic representation of possible links within variables associated with hyperactivity is undoubtedly a simplistic attempt to bring some of the research findings together. For example, it does not explicitly consider the possible heterogeneity in hyperactivity. Some of the 'causal' links are merely speculative. However, it is useful in that it suggests directions for future research.

8.10 Challenges for future research

Many challenges remain for future research. First of all, the present findings regarding genetic effects on task performance and the possible mediators of genetic effects on hyperactivity should be replicated with a larger sample size. Genetic analyses on hyperactivity should also further explore the issue of whether genetic
factors are equally important for extreme hyperactivity and for individual differences in the dimension of hyperactivity. Studies should focus, too, on the discrepancy between the group heritability estimates based on teacher ratings of hyperactivity and those based on parent ratings.

An important theoretical challenge is to investigate whether the pattern of responding characteristic of hyperactivity reflects a non-optimal activation/effort state or whether it could reflect a cognitive deficit. Studies would also benefit from a theoretical approach to the issue of lower IQ scores among hyperactive children, rather than considering the IQ differences between groups only as an added ‘nuisance’. Would stimulant medication improve hyperactive children’s scores on IQ tests?

If the findings of no genetic effects on performance on some of the tasks are confirmed, this points to the need to explore environmental factors that may play a role. This implies the delay aversion measures in particular, as these discriminate well between hyperactive and control children. Studies could also explore the possibility that the same environmental factors are related to the co-occurring conduct problem symptomatology. Considering this from another angle, it would be important to study the extent to which delay aversion is related to ‘pure’ hyperactivity (i.e. hyperactivity not associated with conduct problems). Investigations of the interrelationships between the various measures which are associated with hyperactivity (for example, delay aversion and the variability of speed) will hopefully inform about the direction of causality. An interesting research question is whether stimulant medication would improve hyperactive children’s performance on delay aversion measures.

Studies using different methods - including those of molecular genetics, functional imaging, response to medication - will undoubtedly continue to add to our understanding of what has been labelled attention deficit hyperactivity disorder.
8.11 Practical implications

If hyperactive children perform poorly on some tasks because of a non-optimal effort/activation state and not because of any cognitive deficit, this has important practical implications. Neither teachers nor parents should accept that these children cannot do school work and other tasks like other children, but they should view these children nonetheless as needing a lot of attention from them. School work and other tasks would need to be planned carefully, with the aim of keeping the children actively engaged in doing something they would view as interesting. As delay aversion is also characteristic of hyperactivity, avoiding any unnecessary delays in order to keep the children motivated seems important too. Whereas all children would be likely to benefit from an emphasis on such factors, hyperactive children may be particularly likely to suffer in the long-term if no special consideration is given to how best motivate them to work hard.

On the one hand, these suggestions may seem purely common sense. On the other hand, the explanation of hyperactive children’s performance in terms of an effort/activation problem rather than a cognitive deficit, if valid, emphasises in particular the need to change the attitudes of teachers and parents of these children. The findings of genetic factors being implicated in the etiology of hyperactivity could easily be misinterpreted; the ‘if it is genetic, nothing can be done about it’ attitude is much too common. If hyperactivity can simply be described as the extreme end on certain personality-type dimensions, this makes the genetic findings easier to understand. A focus on the similarities between the concepts of hyperactivity and novelty seeking may be helpful. For example, the ‘novelty seeking’ tendency may explain why attempts to improve hyperactive children’s academic performance by isolating them and removing all extraneous stimuli have proved unsuccessful (see Douglas, 1983).

A better understanding of the role of genetic factors in hyperactivity may also help to understand why stimulant medication is often such an effective treatment. In the
past much too often the blame for any difficulties a child was experiencing was placed on the shoulders of the parents. In the case of hyperactivity, a focus on understanding the characteristics and tendencies the child is born with, and how these then interact with the environment, is important.

This takes us back to the quote with which this thesis began. The parent, in a letter to the Times Magazine, described what it is like living with a child who, in this case, had received a diagnosis of ADD. The difficulties of these children are real and often have serious consequences. Although we do not yet have answers to all questions, we have come a long way since the early descriptions of ‘moral deficiency’ or ‘minimal brain damage’ in our attempt to understand what causes some children to behave in this restless and overactive manner, which often makes everyday life a real challenge.
References

328

345

346

Appendix A
UK norms for the Revised Conners’
Teacher Rating Scale

A.1 Introduction

The Conners’ scales are widely used to obtain ratings from teachers and parents on a range of problem behaviours in children. An advantage of the revised, shorter versions of the original scales - the Conners’ Teacher Rating Scale *CTRS-28* and the Conners’ Parent Rating Scale *CPRS-48* (Goyette, Conners & Ulrich, 1978) - is that they are relatively quick to complete. Data exists to support the validity and reliability of the original Conners’ scales; fewer studies have investigated the validity and reliability of the revised scales (see Conners, 1989). Edelbrock, Greenbaum and Conover (1985) reported one-week test-retest reliabilities for the three factors of CTRS-28 which ranged from .88 to .96.

Goyette et al. (1978) provided normative data for the CTRS-28. The sample was 383 children (175 females and 208 males) between the ages of 3 and 17 years. The results are reported separately for the sexes and for five age groups (3-5, 6-8, 9-11, 12-14 and 15-17 years): in each sex/age group cell there were on average 38 participants. Erford (1996) has pointed out that the small number of participants in the standardisation sample poses the most serious threat to the scale’s usefulness.
In their factor analysis of the data, Goyette et al. (1978) extracted three factors (Conduct Problem, Hyperactivity and Inattentive-Passive) which together accounted for 61.7% of the variance. These factors are highly similar to the first three of the five factors which emerged in a factor analysis of the original 39-item teacher version (Conners, 1969). In addition a Hyperactivity Index can be derived from the CTRS-28. The Hyperactivity Index is based on 10 items from the other dimensions and constitutes the Conners' Abbreviated Symptom Questionnaire (ASQ). Although the ASQ was originally developed as a measure of hyperactivity, it is now considered a more general index of child psychopathology (Conners, 1989). (See Rowe and Rowe, 1997, for a critical evaluation of the revised ASQ.)

Two recent factor analytic studies report a somewhat different factor structure for the CTRS-28. With a sample of 354 clinic-referred children aged between 6 and 16 years, Wilson and Kiessling (1988) found evidence for a six-factor solution accounting for 69% of the variance. The Hyperactivity and Conduct factors consisted of the same items, with one exception, as in the Goyette et al. (1978) study. The Inattentive-Passive factor, however, split into three factors, labelled Passive, Inattentive and Learning Problems. Items which were not, with one exception, included in any of factors in the Goyette et al. (1978) study, formed an Unsociability factor.

Erford (1996) obtained ratings from the teachers of 540 children, aged between 5 and 10 years, in ordinary classrooms. Instead of the original three factors, four factors emerged, which Erford (1996) labelled AD/H, Oppositional Behavior, Emotional Lability and Passive-Withdrawal. The greatest similarity between these new factors and the original three factors is for the AD/H factor, which consists of all the seven items in the original Hyperactivity factor plus three additional items. In general, the Hyperactivity factor emerges as the most robust factor. This is reassuring, considering that the scale was originally developed to measure the response of hyperactive children to drug treatment (Conners, 1969).
A further concern over the use of the scale is whether the norms are appropriate for use with children in other countries. In the UK, Taylor and Sandberg (1984) used the original version of the Teacher Conners (CTRS-39; Conners, 1969) with a sample of 437 ordinary school children and a clinic-referred sample of 76 children. The scale had moderate inter-rater reliability and stability over time and it also distinguished the sample of clinic-referred children from the other children. Comparisons between the mean scores for the sample of school children and the mean scores obtained in surveys in other countries showed cross-national differences. In general, the mean scores for the UK sample tended to fall between the scores for a New Zealand sample (who were scoring highest; Werry & Hawthorne, 1976) and those for US samples (Goyette et al., 1978; Werry, Sprague & Cohen, 1975). To the best of our knowledge, UK norms for the revised Conners' Teacher Rating Scale have not previously been reported.

Despite attempts at providing a new factor structure for the CTRS-28, researchers and clinicians using the questionnaire are likely to rely on the Conners' rating scales manual (Conners, 1989) and the scoring sheets, which are based on the original factor structure and the related norms. As the scale is frequently used to guide decisions about caseness, it is crucial that the norms are appropriate for the population to which they are applied. The norms are based on a rather small North American sample for which the data was collected twenty years ago. There is clearly a need to provide up-to-date norms for the CTRS-28 with a large, representative sample. Miller, Koplewicz and Klein (1997) provided age and sex norms for a sample of pre-school children, but no such recent data exists for school-age children. It was the aim of the present study to obtain norms for British children aged 7 to 11 years.

The original study, as well as more recent surveys, have reported sex and age effects for the CTRS-28. Teachers consistently rate younger children higher on the
Hyperactivity and Conduct Problem dimensions, indicating more problematic behaviour (Goyette et al., 1978; Wilson & Kiessling, 1988). Males obtain higher scores on average than females on the Hyperactivity and Inattentive-Passive (Goyette et al., 1978) or Inattentive (Wilson & Kiessling, 1988) dimensions. With the sample of pre-school children, Miller et al. (1997) similarly reported higher scores on the Hyperactivity and Conduct Problem dimensions for younger children and higher scores on all dimensions for boys. Most studies report no sex and age interactions. However, using the Conners' 10-item Abbreviated Parent-Teacher Questionnaire, which is a slightly reworded version of the Hyperactivity Index, Rowe and Rowe (1997) reported both main effects for sex and age, as well as an interaction for sex and age. This study had a sample of 6841 children aged 5 to 14 years and the ratings were obtained from parents.

The present study therefore aimed to obtain norms for the CTRS-28 with a large, representative sample of 7-11-year-old British twin school children. Research suggests that twins are representative of the general population with regard to most demographic, diagnostic and symptomatic variables (Simonoff, 1992; Rutter & Redshaw, 1991). Within this design it was possible to investigate whether previous findings of sex and age effects would be replicated. Of particular relevance for clinical use of the scale is whether the present data would replicate the cut-off points for 'extreme' groups, children scoring particularly highly on the dimensions.

A.2 Method

A.2.1 Recruitment of the sample

The participants were twin pairs who represent a general population sample of same-sex twins aged between 7 and 11 years. They were recruited to take part in a
twin study on hyperactivity. We obtained permission from 16 Local Education Authorities (LEAs) in the UK to approach the primary schools in their area. Of the LEAs we approached, only one was unwilling for us to make contact with schools in their area as they were already taking part in another large-scale research project. The criterion we used in choosing the LEAs was their geographical location - as close to London as possible. However, we had to exclude most of the London LEAs, as these had recently taken part in another twin study (Hohnen & Stevenson, in press).

After obtaining permission from the LEAs, we then wrote to the head teachers of all the primary schools within the LEAs (including special schools). There were 2439 schools taking children in the age range of 7-11 years in this area. We asked the class teachers of any twins fulfilling the criteria for our study (same-sex twins; date of birth between 1 September 1985 and 1 September 1990) to complete the Teacher Conners' (CTRS-28; Goyette, Conners & Ulrich, 1978) - one for each twin. As many schools have a policy of placing the members of a twin pair in separate classes, different teachers may have rated each twin's behaviour. We sent one reminder letter to those schools which did not reply to our initial letter.

We received replies from 1629 (66.8%) schools. Of those schools which replied to our letter, only 59 indicated that they did not wish to take part in the study. In 858 of the schools there were no twins fulfilling the criteria for our study. We received Teacher Conners’ for 1316 twin pairs. If there was any missing data on the questionnaires, we contacted the person who had filled in the questionnaire to obtain the missing items. In the very rare cases where we were unable to obtain the missing information, we coded the missing item using the most conservative option (e.g. ‘0’ for ‘not at all’).

The mean age of the sample was 8.3 years (SD=1.5 years) and of the 1316 twin pairs, 52.4% were girls and 47.6% boys.
A.2.2 Measures

The Revised Conners’ Teacher Rating Scale includes 28 items. Each item is rated as not at all present, just a little present, pretty much present, or very much present (scored 0 to 3, respectively), with higher scores indicating greater severity. See Table 1 for the items comprising each of the dimensions.

Table 1. Items comprising the dimensions of CTRS-28

<table>
<thead>
<tr>
<th>I</th>
<th>Conduct problem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acts ‘smart’ (impudent or sassy)</td>
</tr>
<tr>
<td></td>
<td>Temper outbursts and unpredictable behavior*</td>
</tr>
<tr>
<td></td>
<td>Overly sensitive to criticism</td>
</tr>
<tr>
<td></td>
<td>Pouts and sulks*</td>
</tr>
<tr>
<td></td>
<td>Mood changes quickly and drastically*</td>
</tr>
<tr>
<td></td>
<td>Quarrelsome</td>
</tr>
<tr>
<td></td>
<td>Denies mistakes or blames others</td>
</tr>
<tr>
<td></td>
<td>Uncooperative with teacher</td>
</tr>
<tr>
<td>II</td>
<td>Hyperactivity</td>
</tr>
<tr>
<td></td>
<td>Restless in the ‘squirmy’ sense*</td>
</tr>
<tr>
<td></td>
<td>Makes inappropriate noises when s/he shouldn’t</td>
</tr>
<tr>
<td></td>
<td>Demands must be met immediately</td>
</tr>
<tr>
<td></td>
<td>Disturbs other children*</td>
</tr>
<tr>
<td></td>
<td>Restless, always up and on the go*</td>
</tr>
<tr>
<td></td>
<td>Excitable, impulsive*</td>
</tr>
<tr>
<td></td>
<td>Excessive demands for teacher’s attention</td>
</tr>
<tr>
<td>III</td>
<td>Inattentive-passive</td>
</tr>
<tr>
<td></td>
<td>Distractibility or attention span a problem*</td>
</tr>
<tr>
<td></td>
<td>Daydreams</td>
</tr>
<tr>
<td></td>
<td>Appears to be easily led by other children</td>
</tr>
<tr>
<td></td>
<td>Appears to lack leadership</td>
</tr>
<tr>
<td></td>
<td>Fails to finish things that s/he starts*</td>
</tr>
<tr>
<td></td>
<td>Childish and immature</td>
</tr>
<tr>
<td></td>
<td>Easily frustrated in efforts*</td>
</tr>
<tr>
<td></td>
<td>Difficulty in learning</td>
</tr>
</tbody>
</table>

* items comprising the Hyperactivity Index
A.3 Results

Table 2 shows the means and standard deviations for each of the dimensions, for the total sample and for each age group separately, further divided by sex. To follow the procedure Goyette et al. (1978) adopted, item scores were summed within each factor and then divided by the number of items constituting the factor, to yield a mean score.

Table 3 shows a comparison of the mean scores between the present sample and the standardisation sample of Goyette et al. (1978). Results using Fisher's formula for t-tests (Guilford, 1965, p. 183) showed that the differences between the means of the two samples were non-significant for the older age group and significant for the younger age group only in two cases: boys in the present sample obtained higher scores on the Conduct problem dimension and girls obtained higher scores on the Hyperactivity dimension.
Table 2. Norms for CTRS-28

<table>
<thead>
<tr>
<th></th>
<th>Total mean (SD)</th>
<th>Girls mean (SD)</th>
<th>Boys mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.42 (.56)</td>
<td>.34 (.48)</td>
<td>.50 (.63)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.49 (.64)</td>
<td>.36 (.53)</td>
<td>.64 (.71)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.69 (.69)</td>
<td>.65 (.61)</td>
<td>.84 (.73)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.52 (.60)</td>
<td>.39 (.52)</td>
<td>.66 (.66)</td>
</tr>
<tr>
<td>Age 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.44 (.56)</td>
<td>.40 (.50)</td>
<td>.49 (.62)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.61 (.69)</td>
<td>.52 (.63)</td>
<td>.71 (.73)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.77 (.69)</td>
<td>.66 (.62)</td>
<td>.89 (.75)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.61 (.64)</td>
<td>.52 (.60)</td>
<td>.71 (.67)</td>
</tr>
<tr>
<td>Age 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.39 (.51)</td>
<td>.36 (.47)</td>
<td>.44 (.55)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.48 (.59)</td>
<td>.40 (.54)</td>
<td>.58 (.63)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.71 (.69)</td>
<td>.63 (.69)</td>
<td>.81 (.68)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.51 (.56)</td>
<td>.44 (.53)</td>
<td>.61 (.59)</td>
</tr>
<tr>
<td>Age 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.42 (.57)</td>
<td>.32 (.47)</td>
<td>.52 (.64)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.51 (.65)</td>
<td>.32 (.50)</td>
<td>.71 (.73)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.71 (.72)</td>
<td>.49 (.59)</td>
<td>.94 (.77)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.54 (.62)</td>
<td>.36 (.49)</td>
<td>.72 (.67)</td>
</tr>
<tr>
<td>Age 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.41 (.59)</td>
<td>.35 (.51)</td>
<td>.48 (.66)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.42 (.62)</td>
<td>.33 (.52)</td>
<td>.51 (.70)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.61 (.63)</td>
<td>.53 (.60)</td>
<td>.69 (.66)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.46 (.59)</td>
<td>.38 (.52)</td>
<td>.55 (.65)</td>
</tr>
<tr>
<td>Age 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.42 (.55)</td>
<td>.29 (.44)</td>
<td>.55 (.62)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.46 (.62)</td>
<td>.26 (.45)</td>
<td>.66 (.71)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.65 (.66)</td>
<td>.49 (.57)</td>
<td>.82 (.71)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.50 (.59)</td>
<td>.32 (.47)</td>
<td>.69 (.65)</td>
</tr>
<tr>
<td>Age 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Problem</td>
<td>.42 (.63)</td>
<td>.28 (.49)</td>
<td>.58 (.72)</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>.47 (.66)</td>
<td>.32 (.52)</td>
<td>.64 (.75)</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>.67 (.72)</td>
<td>.45 (.50)</td>
<td>.91 (.83)</td>
</tr>
<tr>
<td>Hyperactivity Index</td>
<td>.53 (.64)</td>
<td>.36 (.49)</td>
<td>.73 (.74)</td>
</tr>
</tbody>
</table>
Table 3. A comparison of mean scores between the present sample and the standardisation sample of Goyette et al. (1978)

<table>
<thead>
<tr>
<th>Ages 6-8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>the present sample</td>
<td>Goyette et al. (1978)</td>
<td>effect size*</td>
<td>Fisher's t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
<td>SD</td>
<td>t</td>
<td>df</td>
</tr>
<tr>
<td>Conduct problem</td>
<td>Girls</td>
<td>792</td>
<td>.35</td>
<td>.48</td>
<td>.28</td>
<td>.37</td>
<td>.15</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Boys</td>
<td>714</td>
<td>.49</td>
<td>.61</td>
<td>.32</td>
<td>.43</td>
<td>.28</td>
<td>2.77</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>girls</td>
<td>42</td>
<td>.40</td>
<td>.55</td>
<td>.28</td>
<td>.38</td>
<td>.22</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>60</td>
<td>.67</td>
<td>.70</td>
<td>.60</td>
<td>.65</td>
<td>.10</td>
<td>0.98</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>girls</td>
<td>42</td>
<td>.58</td>
<td>.64</td>
<td>.47</td>
<td>.64</td>
<td>.17</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>60</td>
<td>.89</td>
<td>.74</td>
<td>.76</td>
<td>.74</td>
<td>.18</td>
<td>1.72</td>
</tr>
<tr>
<td>Hyperactivity index</td>
<td>girls</td>
<td>42</td>
<td>.43</td>
<td>.54</td>
<td>.36</td>
<td>.45</td>
<td>.13</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>60</td>
<td>.68</td>
<td>.65</td>
<td>.58</td>
<td>.61</td>
<td>.15</td>
<td>1.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages 9-11</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>the present sample</td>
<td>Goyette et al. (1978)</td>
<td>effect size*</td>
<td>Fisher's t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
<td>SD</td>
<td>t</td>
<td>df</td>
</tr>
<tr>
<td>Conduct problem</td>
<td>girls</td>
<td>586</td>
<td>.31</td>
<td>.48</td>
<td>.28</td>
<td>.49</td>
<td>.06</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>540</td>
<td>.52</td>
<td>.66</td>
<td>.50</td>
<td>.66</td>
<td>.03</td>
<td>0.30</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>girls</td>
<td>49</td>
<td>.30</td>
<td>.50</td>
<td>.38</td>
<td>.51</td>
<td>-.16</td>
<td>-1.58</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>59</td>
<td>.59</td>
<td>.71</td>
<td>.70</td>
<td>.78</td>
<td>-.15</td>
<td>-1.52</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>girls</td>
<td>49</td>
<td>.50</td>
<td>.57</td>
<td>.49</td>
<td>.53</td>
<td>.02</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>59</td>
<td>.78</td>
<td>.72</td>
<td>.85</td>
<td>.73</td>
<td>-.10</td>
<td>-0.96</td>
</tr>
<tr>
<td>Hyperactivity index</td>
<td>girls</td>
<td>49</td>
<td>.35</td>
<td>.50</td>
<td>.38</td>
<td>.48</td>
<td>-.06</td>
<td>-0.60</td>
</tr>
<tr>
<td></td>
<td>boys</td>
<td>59</td>
<td>.64</td>
<td>.67</td>
<td>.67</td>
<td>.65</td>
<td>-.04</td>
<td>-0.45</td>
</tr>
</tbody>
</table>

* (mean for present sample - mean for Goyette et al. sample)/SD for present sample

A cut-off point of 2 standard deviations above the mean is often used as a ‘clinical’ cut-off point and has, for example, been used on the Conners’ scales as a criterion for identifying hyperactive children (see Conners, 1989). Table 4 shows the 2 standard deviation cut-off points on the CTRS-28 dimensions for the present sample and the standardisation sample. It also shows the percentage of children in the present sample scoring above the cut-off points, both using the cut-off points based on the present data and those based on the data from the Goyette et al.
(1978) study. The significance of these differences in the numbers of children scoring above and below the present and original cut-off points were tested using the McNemar's test.

For the older age group, an equal percentage of children score above the present and original 2 standard deviation cut-off points in five cases. For the Inattentive-Passive dimension, the present cut-off points identify fewer girls but more boys than the original cut-off points. These differences are significant at the 0.05 level, but rather small in magnitude. Boys' scores on the Hyperactivity dimension bring out the greatest difference: using the present cut-off point 5.4% of boys, whereas using the original cut-off point only 3.4% of them, would be identified as clinically hyperactive using this criterion.

In the case of the younger age group, the present 2 standard deviation cut-off points consistently identify a smaller percentage of children than do the original cut-off points for the same sample. The largest difference holds for Conduct problems in boys, with the present cut-off point identifying 5.2% of the boys, compared to 11.3% using the original cut-off point.
Table 4. Two standard deviation cut-off points for the present and Goyette et al. (1978) samples

<table>
<thead>
<tr>
<th></th>
<th>cut-off points</th>
<th>% children in the present sample above cut-off point</th>
<th>McNemar's test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cut-off points</td>
<td>% children in the present sample above cut-off point</td>
<td>McNemar's test</td>
</tr>
<tr>
<td>present</td>
<td>Goyette et</td>
<td>present</td>
<td>data</td>
</tr>
<tr>
<td>sample</td>
<td>al.</td>
<td>al.</td>
<td></td>
</tr>
<tr>
<td>Ages 6-8</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td>Boys</td>
<td>Girls</td>
<td>Boys</td>
</tr>
<tr>
<td>792</td>
<td>714</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>Conduct problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>10.48</td>
<td>8.16</td>
<td>4.9</td>
</tr>
<tr>
<td>boys</td>
<td>13.68</td>
<td>9.44</td>
<td>5.2</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>10.50</td>
<td>7.28</td>
<td>4.7</td>
</tr>
<tr>
<td>boys</td>
<td>14.49</td>
<td>13.30</td>
<td>4.5</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>14.88</td>
<td>14.00</td>
<td>5.1</td>
</tr>
<tr>
<td>boys</td>
<td>18.96</td>
<td>17.92</td>
<td>3.5</td>
</tr>
<tr>
<td>Hyperactivity index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>15.10</td>
<td>12.60</td>
<td>4.5</td>
</tr>
<tr>
<td>boys</td>
<td>19.80</td>
<td>18.00</td>
<td>5.5</td>
</tr>
<tr>
<td>Ages 9-11</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td>Boys</td>
<td>Girls</td>
<td>Boys</td>
</tr>
<tr>
<td>586</td>
<td>540</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>Conduct problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>10.16</td>
<td>10.08</td>
<td>4.3</td>
</tr>
<tr>
<td>boys</td>
<td>14.72</td>
<td>14.56</td>
<td>5.4</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>9.10</td>
<td>9.80</td>
<td>4.4</td>
</tr>
<tr>
<td>boys</td>
<td>14.07</td>
<td>15.82</td>
<td>5.4</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>13.12</td>
<td>12.40</td>
<td>4.6</td>
</tr>
<tr>
<td>boys</td>
<td>17.76</td>
<td>18.48</td>
<td>3.7</td>
</tr>
<tr>
<td>Hyperactivity index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>girls</td>
<td>13.50</td>
<td>13.40</td>
<td>5.8</td>
</tr>
<tr>
<td>boys</td>
<td>19.80</td>
<td>19.70</td>
<td>4.6</td>
</tr>
</tbody>
</table>

* for example, if the cut-off score is 10.48, the percentage of children scoring 11 or higher

*p < .05, **p < .01, ***p < .001

360
To investigate sex and age effects, we carried out ANOVAs for each dimension separately (see Table 5). All the main effects and interactions were significant at the 0.05 level, except the main effect for age for the Conduct problem dimension. Boys had significantly higher scores than girls on each dimension (see also Table 4) and the mean scores decreased slightly with age. The correlations between age and the dimensions (Table 6) clarify the nature of the age effects. Girls show a stronger tendency than boys for decreasing scores with age; the significant age and sex interactions in Table 5 similarly indicate this effect. However, the correlations are of a low magnitude, although several of them are statistically significant due to the large sample size.

| Table 5. Results from ANOVAs, investigating sex and age effects (N=2632) |
|-----------------------------|---|---|---|
| | F | df | p |
| Conduct problem | | | |
| age | 0.33 | 5, 2620 | ns |
| sex | 57.02 | 1, 2620 | <.001 |
| age*sex | 2.40 | 5, 2620 | <.04 |
| Hyperactivity | | | |
| age | 4.50 | 5, 2620 | <.001 |
| sex | 112.77 | 1, 2620 | <.001 |
| age*sex | 3.58 | 5, 2620 | <.003 |
| Inattentive-Passive | | | |
| age | 3.20 | 5, 2620 | <.007 |
| sex | 116.75 | 1, 2620 | <.001 |
| age*sex | 4.21 | 5, 2620 | <.001 |
| Hyperactivity index | | | |
| age | 3.01 | 5, 2620 | <.01 |
| sex | 122.94 | 1, 2620 | <.001 |
| age*sex | 3.56 | 5, 2620 | <.003 |
Table 6. Correlations between age and CTRS-28 dimensions (N=2632)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>total</th>
<th>girls</th>
<th>boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct problem</td>
<td>-.01</td>
<td>-.07*</td>
<td>.05</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>-.06**</td>
<td>-.12**</td>
<td>-.02</td>
</tr>
<tr>
<td>Inattentive-Passive</td>
<td>-.06**</td>
<td>-.10**</td>
<td>-.03</td>
</tr>
<tr>
<td>Hyperactivity index</td>
<td>-.04*</td>
<td>-.10**</td>
<td>-.01</td>
</tr>
</tbody>
</table>

*p < 0.05 (2-tailed), ** p < 0.01 (2-tailed)

A.4 Discussion

The present study allows a comparison of these UK CTRS-28 data with the original standardisation data which was based on a rather small North American sample (Goyette et al., 1978). Despite the differences in the samples and the era during which the data were collected, the means for the CTRS-28 dimensions for both girls and boys in the older age group (ages 9-11) were not significantly different between the two studies.

Some differences between the samples emerged for the younger age group (ages 6-8), however. Boys in the present study obtained higher ratings on average from teachers on the Conduct problem dimension, compared to the data from the original standardisation sample. Girls obtained higher average ratings on the Hyperactivity dimension. The present sample of 6-8-year-old children tended to score higher also on the other dimensions, but these comparisons did not reach significance.

An important question is whether the ‘clinical’ cut-off points, when using the standard scoring procedure for CTRS-28, are valid in the population in which they are used. Such cut-off points are also used in research studies which use rating
scales as a screening instrument. There is undoubtedly an arbitrary nature to any cut-off points on rating scales. However, such cut-off points are useful for identifying 'extreme' groups, children scoring particularly highly on a behavioural dimension. For example, if a T-score of 70 (2 standard deviations above the mean) is used to identify such an extreme group, it is important that the norms, on which the T-scores are based, generalise to the population in question.

The present data show that, for the older age group, a T-score cut-off point of 70 would have resulted for most dimensions in identifying an identical 'extreme' group as using a 2 standard deviation cut-off point based on the present norms. Approximately 4-5% of the children obtained scores above these cut-off points. There were only three exceptions. On the Inattentive-Passive dimension the present cut-off point identified fewer girls but a larger number of boys than the original cut-off points, although the differences were only 1% in magnitude. On the Hyperactivity dimension, 5.4% of boys scored above the present cut-off point and 3.4% above the original cut-off point. This finding is particularly relevant, as the Conners' scales are frequently used to guide the identification of hyperactive children.

In contrast, the results for the younger age group indicate how noticeably different populations can form the 'extreme' groups, depending on the generalisability of the norms. Whereas between 5.2% and 11.3% of the children obtained scores at or above the standardisation T-scores of 70, only between 3.5% and 5.2% of them were in the 'extreme' groups when using the 2 standard deviation cut-off points based on the present data.

In line with the recent data on pre-school children (Miller et al., 1997), boys obtained higher scores than girls on all dimensions. The present data does not allow an investigation of whether these sex differences could, in part, reflect a rater bias or whether they indicate a true difference in the degree to which girls
and boys show the types of problem behaviours the CTRS-28 measures. A recent review on sex differences in prevalence rates for hyperactivity (Heptinstall & Taylor, 1996) concludes that the male excess is a true finding and not due to rater bias.

The present data from 7-11-year-old children does not provide support for the previously reported decline in the mean scores for conduct problems with increasing age (Goyette et al., 1978; Wilson & Kiessling, 1988). The rather limited age range of the present study could, in part, explain this lack of replication. Such a pattern emerged for the other dimensions, however. The statistically significant age and sex interactions indicated that the decline in scores with age was greater for girls than boys. The inconsistency between the present results and those from previous studies, which did not report age and sex interactions (e.g. Goyette et al., 1978), may relate to differences in sample sizes. Indeed, the study which did report an age and sex interaction for the Hyperactivity Index (Rowe & Rowe, 1997) had a very large sample of 6841 children. Girls may show a greater decline in mean scores with age, at least until adolescence, but the effect is small.

Whereas the present sample is, in general, a representative sample of 7-11-year-old children in Southern England, two points are worth noting. First, the children were identified through state schools and therefore the approximately 5% of children in the 7-11 age range who go to private schools in the UK (Department for Education and Employment, personal communication, February 1998) were excluded from the study.

Second, all the children were twins, which raises the issue of whether twins are representative of the general population or whether they are in some ways different from singletons. Some small differences between the psychological characteristics of twins and singletons have been found (see Plomin, DeFries, McClearn & Rutter, 1997). Twins are on average slightly delayed in language development and in
learning to read, compared to singletons, and they have a slightly lower average IQ. With regard to behaviour problems, some studies report comparable levels of problem behaviours between twins and singletons (e.g. van den Oord, Koot, Boomsma, Verlhurst and Orlebeke, 1995), whereas a few studies have reported slightly higher rates of conduct disorder (Simonoff, 1992) and hyperactivity (Levy, Hay, McLaughlin, Wood & Waldman, 1996) among twins.

The finding that there were very few significant differences between the mean scores between the present sample and the standardisation sample suggests, however, that ratings on the CTRS-28 for twins and singletons are comparable. For the older age group the 2 standard deviation cut-off points were also almost identical between the two studies. This suggests that the differences which emerge for the younger age group cannot simply be explained as twin-singleton differences. More children in this British sample of 6-8-year-olds obtain high ratings on the various problem behaviours than did their American peers 20 years ago (Goyette et al., 1978).

Another issue is the non-independence of the sample, as the children were twin pairs. This might have acted to reduce variance within the sample. However, we examined this by calculating the percentages of children scoring above the cut-off points separately for the first and second members of the twin pair and found no evidence suggesting that the non-independence of the sample as twins would have influenced the results.

The Revised Conners' Teacher Rating Scale is a popular instrument, but the generalisability of the norms to the population in question is often simply assumed, rather than investigated. To researchers in the UK using the scale as a screening instrument with 9-11-year-old children, the present findings are rather reassuring. However, the present norms would more accurately identify 'extreme' groups for further investigation, on those dimensions on which differences emerged. This is particularly the case with children aged 6 to 8 years, where a reliance on the 2
standard deviation cut-off points based on the original norms would lead to the identification of substantially larger groups of children than would the use of similar cut-off points based on the present data. Similar investigations in other countries could clarify the issue of the extent to which the differences are the result of cross-cultural factors.
Appendix B
One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>birthweight</th>
<th>verbal IQ</th>
<th>performance IQ</th>
<th>DRA before teaching</th>
<th>DRA after teaching</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>186</td>
<td>182</td>
<td>183</td>
<td>186</td>
<td>186</td>
<td>154</td>
</tr>
<tr>
<td>Normal Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.940</td>
<td>2550.11</td>
<td>98.96</td>
<td>97.94</td>
<td>50.3898</td>
<td>72.5516</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.342</td>
<td>521.59</td>
<td>17.62</td>
<td>17.52</td>
<td>13.2523</td>
<td>15.7025</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.095</td>
<td>.110</td>
<td>.080</td>
<td>.067</td>
<td>.135</td>
<td>.079</td>
</tr>
<tr>
<td>Positive</td>
<td>.095</td>
<td>.045</td>
<td>.080</td>
<td>.067</td>
<td>.135</td>
<td>.057</td>
</tr>
<tr>
<td>Negative</td>
<td>-.064</td>
<td>-.110</td>
<td>-.044</td>
<td>-.062</td>
<td>-.069</td>
<td>-.079</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.295</td>
<td>1.485</td>
<td>1.082</td>
<td>.916</td>
<td>1.846</td>
<td>1.074</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.070</td>
<td>.024</td>
<td>.192</td>
<td>.371</td>
<td>.002</td>
<td>.199</td>
</tr>
</tbody>
</table>

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>delay aversion</th>
<th>counting span</th>
<th>sentence span</th>
<th>inhibition slope</th>
<th>commission errors</th>
<th>total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>185</td>
<td>186</td>
<td>186</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
<tr>
<td>Normal Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>49.35</td>
<td>5.22</td>
<td>3.88</td>
<td>.1388</td>
<td>3.4098</td>
<td>6.8415</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.107</td>
<td>.093</td>
<td>.112</td>
<td>.105</td>
<td>.254</td>
<td>.239</td>
</tr>
<tr>
<td>Positive</td>
<td>.107</td>
<td>.093</td>
<td>.108</td>
<td>.058</td>
<td>.254</td>
<td>.239</td>
</tr>
<tr>
<td>Negative</td>
<td>-.075</td>
<td>-.089</td>
<td>-.112</td>
<td>-.105</td>
<td>-.246</td>
<td>-.217</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.450</td>
<td>1.267</td>
<td>1.531</td>
<td>1.421</td>
<td>3.439</td>
<td>3.236</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.030</td>
<td>.080</td>
<td>.018</td>
<td>.035</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>
One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>omission errors</th>
<th>SSRT</th>
<th>SD</th>
<th>MRT</th>
<th>summary observational rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>148</td>
</tr>
<tr>
<td>Normal Parametersa,b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.4317</td>
<td>228.3468</td>
<td>124.0894</td>
<td>494.7469</td>
<td>3.89</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>5.4384</td>
<td>70.9136</td>
<td>38.0047</td>
<td>101.0420</td>
<td>3.42</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.269</td>
<td>.039</td>
<td>.066</td>
<td>.045</td>
<td>.170</td>
</tr>
<tr>
<td>Positive</td>
<td>.269</td>
<td>.039</td>
<td>.066</td>
<td>.045</td>
<td>.170</td>
</tr>
<tr>
<td>Negative</td>
<td>-.264</td>
<td>-.024</td>
<td>-.038</td>
<td>-.030</td>
<td>-.128</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>3.644</td>
<td>.534</td>
<td>.894</td>
<td>.605</td>
<td>2.064</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
<td>938</td>
<td>.401</td>
<td>.858</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>PC Conduct problem (T-score)</th>
<th>PC Learning problem (T-score)</th>
<th>PC Psychosomatic (T-score)</th>
<th>PC Impulsive-Hyperactive (T-score)</th>
<th>PC Anxiety (T-score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Normal Parametersa,b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>50.79</td>
<td>52.22</td>
<td>51.51</td>
<td>49.30</td>
<td>52.63</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>12.26</td>
<td>14.79</td>
<td>12.07</td>
<td>10.88</td>
<td>10.63</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.130</td>
<td>.174</td>
<td>.325</td>
<td>.088</td>
<td>.146</td>
</tr>
<tr>
<td>Positive</td>
<td>.130</td>
<td>.174</td>
<td>.325</td>
<td>.088</td>
<td>.146</td>
</tr>
<tr>
<td>Negative</td>
<td>-.099</td>
<td>-.135</td>
<td>-.240</td>
<td>-.082</td>
<td>-.117</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>2.051</td>
<td>2.752</td>
<td>5.139</td>
<td>1.549</td>
<td>2.304</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.016</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>TC Conduct problem (T-score)</td>
<td>TC Hyperactivity (T-score)</td>
<td>twin 1 TC inattentive-passive (t-score)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Parameters<sup>a,b</sup> Mean</td>
<td>52.76</td>
<td>51.32</td>
<td>51.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>12.12</td>
<td>11.00</td>
<td>10.26</td>
<td></td>
</tr>
<tr>
<td>Most Extreme Differences Absolute Mean</td>
<td>.214</td>
<td>.201</td>
<td>.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>.214</td>
<td>.201</td>
<td>.173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>-.188</td>
<td>-.174</td>
<td>-.109</td>
<td></td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>3.378</td>
<td>3.172</td>
<td>2.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asym. Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Test distribution is Normal.

^b Calculated from data.
Appendix C
Model fitting results for age-adjusted scores:
Hyperactive group only (16-18 MZ, 27-28 DZ)

Delay aversion

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.27</td>
<td>-</td>
<td>.73</td>
<td>8.26</td>
<td>4</td>
<td>.08</td>
<td>0.26</td>
<td>0.42</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.32</td>
<td>.68</td>
<td>5.25</td>
<td>4</td>
<td>.26</td>
<td>-2.75</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ= -.10 (.85, .86) DZ= .54 (.92, .99)

Sentence Span

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.56</td>
<td>-</td>
<td>.44</td>
<td>10.65</td>
<td>4</td>
<td>.03</td>
<td>2.65</td>
<td>.35</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.47</td>
<td>.53</td>
<td>8.23</td>
<td>4</td>
<td>.08</td>
<td>0.23</td>
<td>.59</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ= .34 (.94, .70) DZ= .56 (.86, 1.22)

Counting Span

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.49</td>
<td>-</td>
<td>.51</td>
<td>1.50</td>
<td>4</td>
<td>.83</td>
<td>-6.50</td>
<td>1.00</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.30</td>
<td>.70</td>
<td>2.61</td>
<td>4</td>
<td>.62</td>
<td>-5.39</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ= .44 (.88, .99) DZ= .24 (1.05, 1.15)

DRA before teaching

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.30</td>
<td>-</td>
<td>.70</td>
<td>2.86</td>
<td>4</td>
<td>.58</td>
<td>-5.14</td>
<td>1.00</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.17</td>
<td>.83</td>
<td>3.77</td>
<td>4</td>
<td>.44</td>
<td>-4.23</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ= .39 (.90, 1.06) DZ= .03 (.83, 1.08)

DRA after teaching

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>.29</td>
<td>.29</td>
<td>.42</td>
<td>.39</td>
<td>3</td>
<td>.94</td>
<td>-5.61</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Phenotypic correlation: MZ= .61 (1.02, .96) DZ= .42 (.89, .95)
Inhibition slope

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.66</td>
<td>-</td>
<td>.34</td>
<td>4.99</td>
<td>4</td>
<td>.29</td>
<td>-3.01</td>
<td>.87</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.30</td>
<td>.70</td>
<td>8.83</td>
<td>4</td>
<td>.07</td>
<td>0.83</td>
<td>.34</td>
</tr>
</tbody>
</table>

Phenotypic correlation: $MZ = .66 (.98, .88)$ $DZ = .15 (1.22, .88)$

SSRT

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.59</td>
<td>-</td>
<td>.41</td>
<td>1.58</td>
<td>4</td>
<td>.81</td>
<td>-6.42</td>
<td>1.00</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.31</td>
<td>.69</td>
<td>4.33</td>
<td>4</td>
<td>.36</td>
<td>-3.67</td>
<td>.94</td>
</tr>
</tbody>
</table>

Phenotypic correlation: $MZ = .62 (.89, 1.05)$ $DZ = .163 (1.05, 1.05)$

MRT

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.55</td>
<td>-</td>
<td>.45</td>
<td>7.93</td>
<td>4</td>
<td>.09</td>
<td>-0.07</td>
<td>.59</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.17</td>
<td>.82</td>
<td>11.52</td>
<td>4</td>
<td>.02</td>
<td>3.52</td>
<td>.21</td>
</tr>
</tbody>
</table>

Phenotypic correlation: $MZ = .72 (.85, 1.05)$ $DZ = -.14 (1.01, .87)$

SD

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.48</td>
<td>-</td>
<td>.52</td>
<td>4.26</td>
<td>4</td>
<td>.37</td>
<td>-3.74</td>
<td>.95</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.17</td>
<td>.83</td>
<td>6.62</td>
<td>4</td>
<td>.16</td>
<td>-1.38</td>
<td>.46</td>
</tr>
</tbody>
</table>

Phenotypic correlation: $MZ = .60 (1.03, .87)$ $DZ = -.03 (1.0, 1.11)$

Total number of errors

<table>
<thead>
<tr>
<th></th>
<th>a^2</th>
<th>c^2</th>
<th>e^2</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>AIC</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>.69</td>
<td>-</td>
<td>.31</td>
<td>7.78</td>
<td>4</td>
<td>.10</td>
<td>-0.22</td>
<td>.65</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>.32</td>
<td>.68</td>
<td>12.98</td>
<td>4</td>
<td>.01</td>
<td>4.98</td>
<td>.17</td>
</tr>
</tbody>
</table>

Phenotypic correlation: $MZ = .76 (1.15, .96)$ $DZ = .08 (1.23, .82)$
Appendix D
TWIN SIMILARITY QUESTIONNAIRE {scoring instructions}

NAMES OF CHILDREN..
NAMES OF PARENTS..
Address..

Please ring the answer that is correct for your twins. If questions 1-6 are difficult to answer because of the twins’ age please enter N/A for not applicable.

1. Are the twins emotionally attached to each other?
 N/A Strongly Somewhat Not at all

2. Do the twins have the same friends at the house?
 N/A Share all friends Share some Not shared

3. Do the twins argue?
 N/A A lot Sometimes Not at all

4. Do the twins try to be different from one another?
 N/A Yes A little Not at all

5. Up to what age were the twins dressed alike?
 Still are 8 6 4 2 Before 2

6. Has one of the twins ever told you that they should not be dressed the same any more?
 N/A Yes No

7. To what extent are the twins similar at the moment for the following:

 Height Not at all (0) Somewhat (1) Exactly (2)
 Weight Not at all (0) Somewhat (1) Exactly (2)
 Facial appearance Not at all (0) Somewhat (1) Exactly (2)
 Hair colour Not at all (0) Somewhat (1) Exactly (2)
 Eye colour Not at all (0) Somewhat (1) Exactly (2)
 Complexion Not at all (0) Somewhat (1) Exactly (2)

8. Do they look as alike as two peas in a pod? NO (0) YES (2)
9. Do you ever confuse them? NO (0) YES (2)
10. Are they sometimes confused by other people in the family? NO (0) YES (2)
11. Is it hard for strangers to tell them apart? NO (0) YES (2)

Only numbers 7-11 receive a score as shown in brackets.
Appendix E
Reward for Windows

INSTRUCTIONS FOR THE D.A. TASK

"In this game you are going to play the part of the captain of the U.S.S. Enterprise. Your ship has been attacked by a number of Klingon Battle Cruisers and it is up to you to decide when to fire your phasers. For each Klingon Cruiser that you destroy, you will score one point. The idea is to score as many points as you can by destroying as many Klingon Cruisers as possible."

"Firstly, have you ever used a mouse before?" (If the child is not familiar with the mouse, then explain the way that it is held and the way that the buttons are operated).

"Before you start the game, there are a number of things that I have to tell you."

Start the computer and use it to illustrate your explanation. From set-up, select 4 trials.

- "You can only fire your phasers when the box at the bottom of the screen turns from green to red." Point out the box to the child. "This tells you that there are Klingon Cruisers within your phaser range. In each mission this will happen twice. But you may only fire your phasers once per mission, so you must decide whether to fire the first time or the second time that the box changes from green to red."

Point out the right mouse button to the child and say, "You fire your phasers by clicking the right button on your mouse like this."

- "It is important that you know how many points you will score when you fire your phasers. You can see how many points you have collected by looking at the ‘total score’ box - there." Point out the score box to the child.

- Then, using the programme to demonstrate each choice in turn to the child say, "Now watch me do it first. If I fire the first time the box goes red, I get to score one point." Point out the score.
• “If I wait until the second time the box goes red, I get to score two points. To do this, I must wait until the Enterprise has passed over the first Klingon Cruiser and is within range of the two on the right hand side of the screen before firing my phasers.” *Fire on second targets.*

• *Again point out the scores and say,* “You see, now I have collected three points. That’s one for the first mission and two for the second.”

• “Notice that as soon as I had fired my phasers I moved on to the next mission. But it makes no difference to the number of missions whether you fire the first or second time that the box goes red. You will always have twenty missions to complete.”

From set-up, select 3 trials. “Now I am going to let you practice. Are you comfortable? Can you see the screen and reach the mouse OK?”

On the first practice trial say, “What I’d like you to do this mission is fire your phasers the first time that the box changes to red.”

1. *If the child successfully completes the first practice say*
 “Good, well done.”
 “How may points did you score?”

 Make sure the child is able to point out the score. If s/he is unable to do so, then point out the total score counter
 “Yes, you scored one point.”

2. *If the child is unsuccessful, continue until s/he manages to hit the target the first time the box changes colour*

On the second practice trial say, “Now wait, this time I want you to fire the second time the box changes to red.”

1. *Again, if the child is successful say*
 “Well done. How many points did you score that time?”

 Make sure the child can point out the score. If s/he is unable to do so, then point out the total score counter again
 “Yes, that time you scored two points.”

2. *If the child is unsuccessful, continue until s/he manages to hit the target the second time the box changes colour.*
In order to determine whether the child has understood both the delay and its implications for his/her score ask, “In each mission when you fired your phasers, did you have to wait longer to score one point or two points?”

If s/he answers correctly say “That’s right. If you want to score two points you have to wait until the box goes red for a second time. If you want to score one point, you only have to wait until the first time the box goes red.”

If the child does not answer correctly ask him/her to complete another practice trial until s/he does. Then continue as above.

Game One. From set-up select 20 trials. Remember to enter the child’s ID number into the appropriate dialogue box at the beginning of the game and to save data at the end of the task.

Saving data: Enter ID and save data as C:\reward\st0001 (etc.), where st = star trek, four-digit number = subject’s ID number

To introduce the first test trials say, “OK, that was just the practice. Now it’s your turn to play the game for real. Remember, you will have twenty missions. Everything will be exactly the same as in the practice except that I will put one of these counters on this sheet here every time you complete a mission, so that you’ll know how many missions you have left.

So do you know now what the aim of the game is? - - Yes, you should try to earn as many points as possible. Now, let’s see how many points you can earn - and at the end I will give you a small prize.

Once we have begun the game, I won’t be able to talk to you, so do you have any questions?

So every time YOU decide which one to choose - whether you want to shoot the first time or the second time the box goes red. You don’t have to shoot the first time and then the second time and then the first time and so on, like we did in the practice. You’re just trying to earn lots of points. Well, good luck!
Appendix F
DRA
EXPERIMENTAL PARADIGM

Exit Windows. At C:\ prompt, write 'cd\mdr' and then at MDR prompt, write 'mdr.exe'.

For 'data file name' enter the subject's code (e.g. 'dra0001a' - 'dra' task initials; subject 0001 - always use 4 digits; a=trial 1, b=trial 2). This will be then be saved as 'C:\MDR\DRA0001A.MDR'). After each child, save all the files (both the *.mdr and the *.dat files) onto a floppy disk.

Training sequence before experimental task begins to show how the screen will present the boxes, when to respond, and how to respond. Also to demonstrate that hitting the right or the left button yields a circle in the corresponding box.

DELAYED RESPONSE ALTERNATION (C)

40 Trials Sequence:
• 2 boxes, 1 yellow & 1 uncoloured -- 2.0 sec. exposure interval.
• Blank screen -- 3.5 sec.
• 2 uncolored boxes.
• Subject gives response.
• Screen displays response & feedback, “Right” or “Wrong.”

Intertrial interval: 2.5 sec.
• Trial 1: Uncolored box is correct choice.
• Trials 2 - 40: Correct answer alternates regardless of subject’s choice.

TEACHING PARADIGM

• Alternation Principle is explained.
• 2*10 practice trials are given.
• Ask the child whether s/he understands.

POST TEACHING DELAYED RESPONSE ALTERNATION (C)

40 Trials
Sequence: Exactly the same as above Delayed Response Alternation.
INTRODUCTION TO GAME

File manager, C: mdr. exe - Select test A and move to blank screen

Now we are going to play a game using the computer screen and these two buttons in front of you - numbers one and two. First though, let me explain how to play the game.

In this game, the computer will select a rule and it’s up to you to work out what that rule is. On the screen there will be two boxes that come up over and over again. One box will be blue and the other box will be empty. Both of these will stay on the screen for a short while and you should try to remember on which side the blue and empty boxes were. This is important because the rule that the computer uses has to do with the position of these two boxes.

Next, the screen will go blank for a short while and after that, two empty boxes will appear. You must then guess which of these is the correct box according to the rule that the computer is using. For example, is the correct box on the same side as the blue box was or the same side as the empty box was? To pick the left hand box, you must press number one (here). To pick the right hand box, you must press number two (there). After you have made your choice of box, the computer will tell you whether you were right or wrong. The goal of the game is to make as many correct choices as you possibly can.

Right, now we are going to practise so that you can see how the game works for yourself. First though, I’d like you to watch while I go through a couple of trials.

1. Start test A. Watch which side the blue box and the empty box are on. As you saw, the blue box on that screen was on the left hand side and the empty box was on the right hand side. I have decided that I am going to pick the one that is on the same side as the blue box was, the left hand side. So this time I’ll press number one.

2. When the computer displays the “right” message say, Look, I got it right that time.

3. When the new screen appears say, That time the blue box was on the right hand side and the empty box was on the left hand side. This time I’ll choose the empty box, the one on the left hand side.
4. When the computer displays the "wrong" message say, Oh dear, this time I got it wrong. The game goes on like this showing you more sets of boxes, one blue and the other empty, and giving you many turns to play.

Now it is your turn to practise playing the game. Remember, number two here, is for the right hand boxes on the screen. Number one is for the left hand boxes on the screen. The last blue box was on the left hand side so now you have a go at guessing which of these two boxes is on the correct side.

- Allow the child to go through 5 trials maintaining the interaction using phrases such as, Which one are you going to choose this time? Look you got it right / wrong. Oops! Well done! Try again. After 5 trials, I'll stop you there, well done.

Make ready task C and enter all details.

Test "C" time one:

Now that we have done the practice it's time for you to play the game. Remember, it is your job to figure out the basic rule of the game by choosing which box is the correct one each time. Also remember that the rule in this game may be different to the one that you saw in the practice game. It usually takes a while for people to discover the rule, but keep trying. Of course, the first box you choose will have to be just a guess, because you have not had a chance to find out the rule. The game will last about six minutes and the boxes will be yellow instead of blue.

Once the game has started I won't be able to help you. So, do you have any questions? OK, are you ready? Here we go. Start task C.
TEACHING THE GAME

Set up practice task.

Well done, in a minute you’re going to play the game again. But before you do, I need to ask you something. Can you tell me what you think the rule was?

1. *If the child is able to relate the rule correctly say,* Well done, that’s right. One time the correct box will be the yellow box and the very next time, the correct box will be the empty box. *Proceed with test C. Say* Remember, because the game could start anywhere in the sequence, yellow or empty box, your first answer will have to be a guess.

2. *If the child is unable to relate the rule correctly say,* No, that wasn’t it but don’t worry, the rule is very difficult to work out so I am going to tell you exactly what it is and show you how it works. I’ll also give you a chance to practise so that we’re both sure that what I said was clear.

To get the rule, you need to remember where the yellow and the empty box were. This is because one time the correct box to choose will be the yellow one and the very next time the correct box will be the empty one. So, the game involves choosing the yellow box, the empty box, the yellow box then the empty box and so on. This is the rule you need to use. One thing to remember is that the game could start anywhere, so your first answer will have to be a guess.

Now let’s go through some examples and then you can try it for yourself by playing the same game again. In this practice, please don’t touch the buttons until I say. Are you ready? *With the child at the computer, start the practice task. Run through 10 trials with coaching.*

1. That time the yellow box was on the left and the empty box on the right. So let’s take a guess and choose the empty box. Good, we got it right.

2. This time the correct box is the yellow one, which was on the left hand side. So we need to press number one for the left hand box. See, we got it right again.

3. This time we want to pick the empty box, so now we pick the left hand side. Good, right choice again.

4. This time we need to pick the yellow box, so which button do we need to choose? Good, well done.
5. Continue as above inserting the correct prompt from the sequence: If the child presses the wrong button, say Oops, wrong button, never mind and carry on the instructions from the sequence.

<table>
<thead>
<tr>
<th>Trial No</th>
<th>Box</th>
<th>Correct choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Empty</td>
<td>right hand side</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>left hand side</td>
</tr>
<tr>
<td>7</td>
<td>Empty</td>
<td>right hand side</td>
</tr>
<tr>
<td>8</td>
<td>Yellow</td>
<td>right hand side</td>
</tr>
<tr>
<td>9</td>
<td>Empty</td>
<td>left hand side</td>
</tr>
<tr>
<td>10</td>
<td>Yellow</td>
<td>left hand side</td>
</tr>
</tbody>
</table>

OK, that was excellent.

If the child is not competent by the end of these trials, then complete another 10 practice trials.

Test “C” retest.

Set up task C, enter all details and make ready the screen. Now you are going to play the game again. Remember what you have learned and use it to make sure that you make as many correct choices as you can. So it’s the same rule as what we just practised. I won’t be able to help you on this game, so do you have any questions? OK, good luck. Begin task C.
Appendix G
STOP TASK

HANDBOOK

based on
Jaap Oosterlaan’s
Change Task Handbook

Jonna Kuntsi 270996
The set-up

The child always sits to the right of you, the tester. The monitor that the child looks at is on the extreme right. In front of it is the case with the buttons (the two flexes on either side of the base of the monitor). To the left, next to the monitor that the child looks at is your monitor, turned so that the child cannot see it. To the left of that, is the computer with the tone generator, placed so that you can see whether the display is on 1000. Always check the set-up before you begin the study.

Starting up the programme

cd\stop C:\STOP>
Then type: chan_pio chan.drv

Saving data

For each child, use a four-digit number as his/her ID number (i.e. 0001, 0002 etc.). Remember to save data on two floppy disks.

Duration of administration

Primary task practise (1 block) 2:30 min.
Response inhibition (1 block) 2:30 min.
Experimental blocks (4*64 trials)

Total task duration approx. 30 min.

* State all special circumstances with respect to the child’s performance on the task, such as:
-the trials in which there was no response (state block number and trial number). State reason if possible.
-the trials in which the response was so slow that the response was registered as belonging to the next trial (state block number and trial number). State reason if possible.
-were more than the standard number of practise trials administered?
-were more than the standard number of experimental blocks administered?
First explain that you will read the instructions out loud so that you do not forget to tell the child anything. However, try to prevent the loss of contact with the child.

During the practise blocks feedback needs to be given to reach the indicated goal. Give as little feedback as possible during the experimental blocks, but intervene when the child does not perform as well as he or she can. Repeat the instructions as needed in order to come to an optimal performance for the child.

It is important that the child gives just as much weight to the swift and accurate execution of the primary task as to the inhibition of their responses.

Make sure that the first screen is showing.

What we are going to do now, is like what air traffic controllers have to do. They have to make sure that aeroplanes land safely, and they have to be able to react quickly and not make any mistakes. So they have to concentrate really hard and pay close attention to their work.

The child should take his or her place at about 40 cm from the screen. Tilt the monitor to the correct position. The child should sit straight in front of the screen. Make sure that the first screen is no longer visible. Also make sure that the child cannot see the screen with the results.

In the task that you get to do in a minute you have to try to react as quickly as possible when you see an aeroplane coming on the computer screen, and you also have to try to make as few mistakes as possible. An aeroplane can come on the left of the computer screen (indicate left) or on the right (indicate right). If you see the aeroplane on the left (indicate left) you have to push this button (point it out). And if you see the aeroplane on the right (indicate right) you have to push this button (point it out). So which button you should press depends on which side the aeroplane is on.

Right before an aeroplane comes on the computer screen, you'll first see a warning cross in the middle (indicate the middle): right after that you'll see an aeroplane come on the computer screen. So always pay attention when you see the warning cross.

Do you have any questions? Just so that I know that you understand, can you tell me in your own words what happens when you see the small cross in the middle of the screen?

(Response boxes - how to hold them.)
1 Primary task practice

Target to practise: shortest possible response times, stabilising response times (low sd) and as few mistakes as possible (less than 10%).

If the child has widely varying response times, stimulate faster responses...

When you see an aeroplane coming, you have to push one of the buttons.

Try to respond as quickly as possible.

Keep responding as fast as possible!

Come on, let's see what you can do!

I think you can go a bit faster.

Great! that was really good. Now it's going to get a bit more difficult. During the task you'll wear these headphones. Sometimes you'll hear a bleep on them. If you hear a bleep, do not press either of the buttons when you see an aeroplane coming. That can be quite difficult because you often hear the bleep just before you want to push a button.

When they see an aeroplane some children wait before they press the button so that they can listen to see if there's a bleep. They only press the button when the haven't heard a bleep. That's not allowed! You can't wait for the bleep. It's important to push one of the buttons as quickly as possible when you see an aeroplane coming.

Good, is everything clear? Could you please explain again in your own words what I am asking you to do this time.

Shall we give it a try? Put on the headphones. Put your two thumbs /fingers back on the buttons. Pay attention, here goes.
2 Response inhibition practice

Target to practise: shortest possible response times, stabilising response times (low sd) and as few mistakes as possible (less than 10%). Child needs to successfully inhibit at least four times. If he or she does not, then continue with practise until he or she has successfully inhibited four times.

What to do if...
..the child does not inhibit Pay attention to the bleep!

Don't push the button when you hear the bleep, okay!

Whoops! Watch out!

..the child inhibits Great! That's what's supposed to happen!

..the child realises that he or she should have inhibited, but he or she doesn't manage to You'll do better next time.

Just keep going. It's very difficult for everyone.

..the child becomes distracted as a result of not being able to inhibit a response You can't wait for a bleep. Push a button right away when you see an aeroplane coming.

Don't wait for a bleep, okay?

..the child begins to respond more slowly as a result of stop signals

3 Stop task

Now it's time to have another go. Again, it is important that you press a button as soon as you see an aeroplane and that you don’t wait in case there is a bleep. This time I won’t be able to talk to you, so do you have any questions?

REMEMBER TO DO AN EXTRA EXPERIMENTAL BLOCK IF NECESSARY!

NOTE: To get back to the main screen, type 'mode co80'.
Appendix H
Sentence Span Task - Anglicised Version

INSTRUCTIONS: I am going to say some sentences and the last word in each sentence will be missing. I want you to tell me what you think the last word should be. Let's try one. “For breakfast the little girl had orange ___________." Now I am going to read two sentences. After each sentence I want you to tell me the word that should go at the end of the sentence. When I finish the two sentences, I want you to tell me the two words that you said at the end of the sentence. Please tell me the words in the order that you said them. Let's try it. “When we go swimming we wear swimming ___________. Cars have to stop at red ___________.”

Discontinue when the child has failed an entire level. Give credit only when the child remembers the words in the correct order.

Note: Announce each new level. Record words in the order that the child said them.

Level 1: Two sentences

<table>
<thead>
<tr>
<th>2A</th>
<th>High Probability Response(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In a tennis game the player hits the ___________.</td>
<td>ball</td>
</tr>
<tr>
<td>2. On my two hands I have ten ___________. Responses ___________.</td>
<td>fingers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A tortoise is slow, a rabbit is ___________.</td>
<td>fast</td>
</tr>
<tr>
<td>2. When we are sick we often go to the ___________. Responses ___________.</td>
<td>doctor hospital</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An elephant is big, a mouse is ___________.</td>
<td>small</td>
</tr>
<tr>
<td>2. A saw is used to cut ___________. Responses ___________.</td>
<td>wood</td>
</tr>
</tbody>
</table>

Level 2: Three sentences.

<table>
<thead>
<tr>
<th>3A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Running is fast, walking is ___________.</td>
<td>slow</td>
</tr>
<tr>
<td>2. At the library people read ___________.</td>
<td>books</td>
</tr>
<tr>
<td>3. An apple is red, a banana is ___________. Responses ___________.</td>
<td>yellow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The sun shines during the day, the moon at ___________.</td>
<td>night</td>
</tr>
<tr>
<td>2. In the winter we have to wear warm ___________.</td>
<td>clothes</td>
</tr>
<tr>
<td>3. The child had blonde hair and blue ___________. Responses ___________.</td>
<td>eyes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In summer it is very ___________.</td>
<td>hot warm</td>
</tr>
<tr>
<td>2. People go to see monkeys in a ___________.</td>
<td>zoo circus</td>
</tr>
<tr>
<td>3. To cut meat we use a sharp ___________. Responses ___________.</td>
<td>knife</td>
</tr>
</tbody>
</table>
Level 3: Four Sentences

4A
1. Please pass the salt and ___________.
2. When our hands are cold we wear ___________.
3. On my way to school I posted a ___________.
4. After swimming I was soaking ___________.

Responses

4B
1. Snow is white, coal is ___________.
2. After school the children walked ___________.
3. A bird flies, a fish ___________.
4. In the barn, the farmer milked the ___________.

Responses

4C
1. In the autumn the leaves fall off the ___________.
2. We eat soup with a ___________.
3. On hot days I go to the pool to ___________.
4. We brush and comb our ___________.

Responses

Level 4: Five Sentences

5A
1. For the party, the girl bought a pretty pink ___________.
2. Cotton is soft and rocks are ___________.
3. Once a week we wash the kitchen ___________.
4. In the spring the farmer ploughs the ___________.
5. I throw the ball up and then it comes ___________.

Responses

5B
1. In the autumn we need to sweep up ___________.
2. At a birthday party we usually eat ice cream and ___________.
3. Sand paper is rough but glass is ___________.
4. In the garden, the man cut the ___________.
5. Over the fields, the girl rode the galloping ___________.

Responses

5C
1. With dinner we sometimes eat bread and ___________.
2. In the daytime it is light, and at night it is ___________.
3. Dogs have four ___________.
4. At the supermarket we buy ___________.
5. A man is big, a baby is ___________.

Responses
WORKING MEMORY - NUMBERS

Procedure:

Place the first card in front of child. After child finishes counting, immediately turn card over on a stack near E, not child.

N.B. Stop when child misses all sets of a given size.

Using the practice card, teach the child to count the yellow dots, ignoring the blue ones.

"Count the yellow dots. Try not to pay attention to the blue dots. Just count the yellow dots. You should touch each dot with your finger while you count out loud. Now you can practice counting the yellow dots."

"How many yellow dots were there?"

"Now I want you to count the yellow dots on one card and then on another card. Be sure to touch each yellow dot and to count out loud. When you see a blank card, I want you to tell me how many dots there were on the first card and then on the second card."

"Okay, let's try it."

"Now we are going to count yellow dots on some more cards. You should start to count as soon as you see a new card. When you see a blank card, you should tell me how many yellow dots were on each card in that set. In the beginning, you will only count 2 cards at a time, then 3 cards at a time, and then even more cards. Each time you see the blank card you should tell me the numbers for each card you counted. You should tell me the numbers in the order in which you saw the cards - that is, how many yellow dots on the first card, the second, and so on."

2. A __ __
 B __ __
 C __ __

3. A __ __ __
 B __ __ __
 C __ __ __

4. A __ __ __ __ __
 B __ __ __ __ __
 C __ __ __ __ __

5. A __ __ __ __ __
 B __ __ __ __ __
 C __ __ __ __ __
Appendix I
CONNERS' RATING SCALES

Child Name: ___________ **Child Age:** _____ **Child Sex:** _____ **Teacher:** ________________

Instructions: Read each item below carefully, and decide how much you think the child has been bothered by this problem during the past month.

<table>
<thead>
<tr>
<th>Not at All</th>
<th>Just a Little</th>
<th>Pretty Much</th>
<th>Very Much</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Restless in the "squirmy" sense
2. Makes inappropriate noises when s/he shouldn't
3. Demands must be met immediately
4. Acts "smart" (impudent or sassy)
5. Temper outbursts and unpredictable behavior
6. Overly sensitive to criticism
7. Distractibility or attention span a problem
8. Disturbs other children
9. Daydreams
10. Pouts and sulks
11. Mood changes quickly and drastically
12. Quarrelsome
13. Submissive attitude toward authority
14. Restless, always up and on the go
15. Excitable, Impulsive
16. Excessive demands for teacher's attention
17. Appears to be unaccepted by group
18. Appears to be easily led by other children
19. No sense of fair play
20. Appears to lack leadership
21. Falls to finish things that s/he starts
22. Childish and immature
23. Denies mistakes or blames others
24. Does not get along well with other children
25. Uncooperative with classmates
26. Easily frustrated in efforts
27. Uncooperative with teacher
28. Difficulty in learning
CONNERS' RATING SCALES

Name: ____________________ **Child Age:** _______ **Child Sex:** _______ **Parent Name:** __________

Instructions: Read each item below carefully, and decide how much you think your child has been bothered by the problem during the past month.

<table>
<thead>
<tr>
<th>All</th>
<th>Just a Little</th>
<th>Pretty Much</th>
<th>Very Much</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Picks at things (nails, fingers, hair, clothing)
2. Sassy to grown-ups
3. Problems with making or keeping friends
4. Excitable, Impulsive
5. Wants to run things
6. Sucks or chews (thumb, clothing, blankets)
7. Cries easily or often
8. Carries a chip on his/her shoulder
9. Daydreams
10. Difficulty in learning
11. Restless in the “squirmy” sense
12. Fearful (of new situations, new people or places, going to school)
13. Restless, always up and on the go
14. Destructive
15. Tells lies or stories that aren't true
16. Shy
17. Gets into more trouble than others same age
18. Speaks differently from others same age (baby talk, stuttering, hard to understand)
19. Denies mistakes or blames others
20. Quarrelsome
21. Pouts and sulks
22. Steals
23. Disobedient or obeys but resentfully
24. Worries more than others (about being alone, illness or death)
25. Fails to finish things
26. Feelings easily hurt
27. Bullies others
28. Unable to stop a repetitive activity
29. Cruel
30. Childish or Immature (wants help she shouldn't need, clings, needs constant reassurance)
31. Distractibility or attention span a problem
32. Headaches
33. Mood changes quickly and drastically
34. Doesn't like or doesn't follow rules or restrictions
35. Fights constantly
36. Doesn't get along well with brothers or sisters
37. Easily frustrated in efforts
38. Disturbs other children
39. Basically an unhappy child
40. Problems with eating (poor appetite, up between bites)
41. Stomach aches
42. Problems with sleep (can't fall asleep, up too early, up in the night)
43. Other aches and pains
44. Vomiting or nausea
45. Feels cheated in family circle
46. Boasts and brags
47. Lets self be pushed around
48. Bowel problems (frequently loose, irregular habits, constipation)
Appendix J
TWINS’ NAMES

Parent/guardian who came to ICH with the twins:

TWIN’S DOB

FAMILY DETAILS

Twins live with
1 both biological parents
2 mother only
3 father only
4 mother and substitute father
5 father and substitute mother
6 grandparents
7 non-related carers
8 other
please specify

Number of other children in the family

Twins are
1 oldest
2 youngest
3 in the middle
4 only children

Number of individuals in household

Accommodation
1 owned
2 privately rented
3 rented from council
4 other
please specify

MOTHER’S NAME
(if twins do not live with biological mother, ask details of both biological mother and substitute mother)

Date of birth
Ethnic origin	1	White UK
	2	Other white
	3	Indian/Pakistani
	4	Chinese/Asian
	5	African/ Caribbean
	6	Mixed race

Currently working?	1	yes	
	2	no	
		1	non-working parent
		2	unemployed
		3	student

Occupation (current or last)	...
(classify later)	I
	II
	III N
	III M
	IV
	V
	NA

Education	1	No exam qualifications
	2	GCSE/O-level
	3	Secretarial or technical
	4	A-level
	5	Professional qualification without University degree
		(e.g. SRN, teaching diplomas, HNC, TEC)
	6	University degree (or equivalent)

FATHER'S NAME ..

(if twins do not live with biological father, ask details of both biological father and substitute father)

Date of birth __/__/___
Currently working?
1 yes
2 no

 1 non-working parent
 2 unemployed
 3 student

Occupation (current or last) ...

(classify later)
1 I
2 II
3 III N
4 III M
5 IV
6 V
7 NA

Education
1 No exam qualifications
2 GCSE/O-level
3 Secretarial or technical
4 A-level
5 Professional qualification without University degree
 (e.g. SRN, teaching diplomas, HNC, TEC)
6 University degree (or equivalent)

LAST FEW QUESTIONS ABOUT THE TWINS:

Were the twins born premature?

1 yes at _____ weeks of gestation
2 no
3 don’t know

What were the twins’ birth weights?

<table>
<thead>
<tr>
<th>name</th>
<th>birth weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can the twins use a knife and a fork like other children of the same age?

1 yes
2 no
3 not sure
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>please specify ...</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
</tr>
</tbody>
</table>
Appendix K
Child's name:

Date: __/__/__

DOB: __/__/__ Age: _____

Ethnic origins:
0 White
1 Indian/Pakistani
2 Asian
3 Black
4 Other ______

Tester: ______

Order of task presentation (please circle):

Twin 1 Twin 2
Stop task Counting Span
 Similarities
 Sentence Span
 -- short break --
Counting Span Stop task
Similarities
Sentence Span
 -- BREAK--
DRA Picture Completion
Delay Aversion Vocabulary
 Block Design
 -- short break --
Picture Completion DRA
Vocabulary Delay Aversion
Block Design
Stop task

Stop task practice - the child has to successfully inhibit at least 4 times (tick off boxes).

☐ ☐ ☐ ☐ ☐

After each block, write down the mean, SD and no of errors & inhibition function.

<table>
<thead>
<tr>
<th>Inhib function</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>primary practice:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
<tr>
<td>stop practice:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
<tr>
<td>Block 1:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
<tr>
<td>Block 2:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
<tr>
<td>Block 3:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
<tr>
<td>Block 4:</td>
<td>mean _____ SD _____</td>
<td>errors N (%) _____</td>
<td></td>
</tr>
</tbody>
</table>

Trials in which there was no response:

<table>
<thead>
<tr>
<th>Block no</th>
<th>Trial no</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Were more than the standard no of practice trials administered? ____________

Were more than the standard no of experimental blocks administered? ____________

Additional comments:

__
“Star Trek”

Tick off the box corresponding to the child’s choice of reward after each trial.

<table>
<thead>
<tr>
<th>Trial</th>
<th>1 point</th>
<th>2 points</th>
<th>neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“How did you decide whether to fire your phasers the first time or the second time that the box changed from green to red?” (Prompt if needed.)

Did the child appear to find the waiting period very aversive (e.g. kept on talking or doing something else while waiting)?

0 no, not at all
1 yes, a little
2 yes, very much
8 NA - always chose the first one
DRA

Did the child find out the rule?

- □ yes
- □ no

GENERAL BEHAVIOUR DURING TESTING
(rate after the session)

<table>
<thead>
<tr>
<th></th>
<th>not at all</th>
<th>just a little</th>
<th>pretty much</th>
<th>very much</th>
</tr>
</thead>
<tbody>
<tr>
<td>fidgeting</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>lower limb movements</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>bottom shuffling movements</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>gross motor activity</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(e.g. getting up, running around)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix L
Stop task inhibition variables

(Taken from Oosterlaan et al., 1998.)

Inhibition slope

The inhibition function is generated by plotting the probability of inhibition against mean go signal reaction time minus stop signal delay (MRT - delay). The inhibition slope is calculated by fitting a regression line to the individual inhibition function.

Stop signal reaction time (SSRT)

In theory, we integrate the distribution of go signal reaction times from zero to a point in time at which the integral equals the probability of responding given a stop signal (i.e. 1 minus the probability of inhibition). We treat that point as an estimate of the time at which the stop process finished. This time is defined relative to the onset of the go signal (because we use the distribution of go signal reaction times to define it), thus we subtract out stop signal delay to estimate SSRT.

In practice, SSRT is calculated as follows: first, reaction times on go trials are rank ordered on a time axis. Second, we pick the nth reaction time, where n is defined by the product of the number of reaction times in the distribution and the probability of responding given a stop signal (or 1 minus the probability of inhibition). For example, if there were 100 reaction times in the distribution and the probability of responding given a stop signal was .3, the nth reaction time would be the 30th in the rank-ordered distribution. The nth reaction time is an estimate of the time at which the stop process runs to completion, relative to the
onset of the primary task stimulus. Third, we subtract stop signal delay from the
nth reaction time and estimate SSRT. For example, if the nth reaction time was
545 msec and the stop signal delay was 200 msec, SSRT would be 345 msec.
SSRT is calculated for each stop signal and then averaged.

ZRFT-slope

If there is a group difference on the inhibition slope, the so-called ZRFT
transformation is applied to the inhibition function. The ZRFT transformation
corrects for differences in mean reaction time, go signal reaction time variability
and SSRT. The probability of inhibition is plotted as a function of a z score that
represents the relative finishing time of the go process and the stop process in
standard deviation units, using the standard deviation of reaction times on the
primary task to define these units. ZRFT is obtained with the following formula:
ZRFT = (MRT - stop signal delay - SSRT)/standard deviation of reaction times on
the primary task. The slope of the inhibition function plotted against ZRFT is
known as the ZRFT-slope.