First Observation of the Decay $B^0_s \rightarrow D^- D^+$ and Measurement of Its Branching Ratio

The $B^0_s - \bar{B}^0_s$ system exhibits mixing, with two distinct mass eigenstates B_H and B_L having a mass difference $\Delta m_s = m^{B_L} - m^{B_H}$, which has recently been measured [1]. In the standard model, these two states have decay widths Γ^L_s and Γ^H_s, with difference $\Delta \Gamma_s = \Gamma^L_s - \Gamma^H_s$ and average $\langle \Gamma_s \rangle = (\Gamma^L_s + \Gamma^H_s)/2$. To good approximation, the two mass eigenstates are expected to be eigenstates of $\mathcal{C P}$: B^{even}_s and B^{odd}_s, so that $\Delta \Gamma_s = \Delta \Gamma_s^{CP}$, where $\Delta \Gamma_s^{CP} = \Gamma(B^{\text{even}}_s) - \Gamma(B^{\text{odd}}_s)$. The Standard Model predicts $\Delta \Gamma_s^{CP}/\Gamma_s = 0.147 \pm 0.060$ [2] with a reasonably small uncertainty. A measurement of this quantity can therefore provide a sensitive test and in case of a discrepancy it would be a good indicator for new physics. Measuring Γ_s determines $\Delta \Gamma_s^{CP}/\Gamma_s$, assuming the $b \rightarrow c\bar{s}s$ transitions are dominated by these decays, and neglecting small

021803-3
CP-odd components [3]:
\[
\frac{\Delta \Gamma^C_P}{\Gamma_s} = 2 \mathcal{B}(B^0 \to D_s^{(*)-} D_s^{(*)+}) - \mathcal{B}(B^0 \to D_s^{-} D_s^{+})
\]

(1)

The inclusive measurement of the $B^0 \to D_s^{(*)-} D_s^{(*)+}$ decay rate has been reported previously [4] using $B^0 \to \phi \phi X$ correlations. In this Letter we present the first observation of the exclusive decay $B^0 \to D_s^- D_s^+$ [5], measure the ratio of its branching fraction with respect to that for $B^0 \to D^- D_s^+$, and set a lower bound on $\Delta \Gamma^C_P/\Gamma_s$. We use CDF II detector data corresponding to 355 pb^{-1} of integrated luminosity of $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$ at the Fermilab Tevatron [6].

This analysis depends primarily on the charged particle tracking systems. Charged particle tracks are reconstructed using the hits in the silicon microstrip detector system and the central outer tracker (COT) in the pseudorapidity range $|\eta| \leq 1.0$, where η is defined as $-\ln \tan(\theta/2)$ and θ represents the angle between the particle and the proton beam direction [7]. Both detectors are inside a 1.4 T uniform magnetic field. The silicon tracker is composed of L00 (single layer of silicon microstrip sensors close to the beam pipe), the silicon vertex detector (SVX II) (five cylindrical layers of double-sided sensors), and intermediate silicon layers, providing up to 8 coordinate measurements in the r-ϕ view [8]. Surrounding the SVX is the COT, a cylindrical drift chamber with 96 layers of sense wires [9].

A sample rich in charm and beauty hadrons is selected by a three-level displaced track trigger. At level 1, tracks are reconstructed in the COT by the track trigger processor (Extremely Fast Tracker, XFT) [10]. The trigger requires two tracks with transverse momenta $p_T > 2 \text{ GeV/c}$ and the scalar sum $p_{T1} + p_{T2} > 4.0 \text{ GeV/c}$. The level 2 silicon vertex trigger [11] associates SVX II r-ϕ position measurements with Extremely Fast Tracker tracks and provides a precise measurement of the track impact parameter (d_0), the distance of closest approach of the track helix to the beam axis in the transverse plane. Decays of heavy flavor particles are identified by requiring two tracks with 0.12 mm $\leq d_0 \leq 1 \text{ mm}$ and an opening angle in the transverse plane $2^\circ \leq |\Delta \phi| \leq 90^\circ$. A requirement $L_{xy} > 0.2 \text{ mm}$ is also applied, where L_{xy} is defined as the distance in the transverse plane from the beam line to the two-track vertex projected onto the two-track momentum vector. The level 3 trigger applies the level 1 and level 2 selection requirements after a full event reconstruction.

We measure the branching fraction ratio $\mathcal{B}(B^0 \to D_s^- D_s^+) / \mathcal{B}(B^0 \to D^- D_s^+)$ in which the D_s^+ meson decay rates and part of the systematic uncertainties cancel. In searching for $B^0 \to D_s^- D_s^+$ we require the decay $D_s^+ \to \phi \pi^+$. To enhance the search sensitivity we reconstruct D_s^+ meson candidates in the $\phi \pi^+$, $K^{\ast 0} K^+$, or $\pi^+ \pi^+ \pi^- \pi^-$ decay channels for both the B^0 and B_s^0 signals. The ratio is measured independently for three D_s^+ decay modes and is calculated using

\[
\frac{\mathcal{B}(B^0 \to D_s^- D_s^+)}{\mathcal{B}(B^0 \to D^- D_s^+)} = \frac{N_{B^0} \epsilon_{B^0}}{N_{B_s^0} \epsilon_{B_s^0}} \frac{f_d}{f_s} \frac{\mathcal{B}(D^- \to K^+ \pi^- \pi^-)}{\mathcal{B}(D_s^+ \to \phi \pi^+)}
\]

(2)

where N_{B^0} and $N_{B_s^0}$ are the measured signal yields, $\epsilon_{B^0}/\epsilon_{B_s^0}$ is the ratio of reconstruction and trigger efficiencies extracted from Monte Carlo simulation, f_d/f_s is the ratio of b quark fragmentation fractions into B^0 and B_s^0 mesons, and $\mathcal{B}(D^- \to K^+ \pi^- \pi^-)/\mathcal{B}(D_s^+ \to \phi \pi^+)$ is the ratio of branching fractions determined by other experiments.

All tracks used in reconstruction must have $p_T > 350 \text{ MeV/c}$ and are assumed to be either pions or kaons depending on the specific reconstruction hypothesis. The reconstruction of $B^0 \to D^- (K^+ \pi^- \pi^-) D_s^+ (\phi \pi^+)$, for example, begins by searching for $D_s^+ \to \phi \pi^+$ candidates. We require two oppositely charged tracks to form $\phi \to K^+ K^-$ and then add a third track to form $D_s^+ \to \phi \pi^+$. The reconstruction of D_s^+ mesons uses the $D^- \to K^+ \pi^- \pi^-$ mode. We reconstruct $B^0 \to D^- D_s^+$ candidates by applying a fit to six tracks with constraints on a primary B meson decay vertex, two secondary D meson decay vertices, and the masses of the D mesons.

Monte Carlo simulations are used to optimize the selection requirements, to derive fitting functions for signal and background, and to determine the trigger and reconstruction efficiencies. Single B hadrons are generated without fragmentation products of underlying event particles, and their decays are simulated using EVTGEN [12]. The detector response, including the trigger, is modeled using the CDF simulation package [13]. The selection requirements are optimized by maximizing the significance of the Monte Carlo simulated signal, scaled to the expected yield, relative to the combinatorial background using a method valid for low statistics [14]. Combinatorial background is fitted in the interval [5.4, 6.0] GeV/c2 and extrapolated into a 60 MeV/c2 wide signal region centered around the appropriate B meson mass. Selection requirements are made on the minimum p_T of the tracks, the impact parameter of the B meson, and the χ^2 masses of ϕ and $K^{\ast 0}$ candidates. We also make requirements on the significance of the L_{xy} measurement, $L_{xy}/\sigma(L_{xy})$, where $\sigma(L_{xy})$ is the L_{xy} uncertainty, of B and D meson vertices, and of the displacement of the D meson vertices with respect to the B meson vertex. For decays involving resonant states, we require $1010 \text{ MeV/c}^2 < m(K^+ K^-) < 1029 \text{ MeV/c}^2$ for ϕ candidates and $840 \text{ MeV/c}^2 < m(K^{\ast 0}) < 940 \text{ MeV/c}^2$ for $K^{\ast 0}$ candidates. The background from $B^0 \to D^- (K^+ \pi^- \pi^-) D_s^+ (\phi \pi^+)$ is removed from the $B^0 \to D_s^+ (\phi \pi^+) D_s^+ (K^{\ast 0} K^+)$ signal by reconstructing $D_s^+ \to K^{\ast 0} K^+$ as $D^- \to K^- \pi^+ \pi^-$ and removing events with the D^+ candidate mass in the range $1845 \text{ MeV/c}^2 < m(K^- + \pi^+ + \pi^-) < 1893 \text{ MeV/c}^2$.

Figure 1 shows the reconstructed mass spectra for $B^0 \to D_s^- D_s^+$ and $B^0 \to D^- D_s^+$ decays. The signal yields N_{B^0} and $N_{B_s^0}$ are extracted from a binned likelihood fit of these
spectra. The fitting functions for all the modes have terms describing the signal, combinatorial background, partially reconstructed B hadrons, and contributions from B decays to different D_s^+ decay modes. The combinatorial background is represented by the sum of a constant plus an exponential. The signal and partially reconstructed modes are fitted with templates that have fixed shapes derived from simulation and floating normalizations. Each signal template is parametrized by two Gaussians with different widths and a common mean.

In fitting $B_s^0 \to D_s^+ D_s^-$ distributions, we fix the signal masses to Particle Data Group values [15], and we fix the Gaussian signal widths, dominated by detector resolution, to the values obtained from Monte Carlo simulation. We also limit the mass range in the fit to value above 5.3 GeV/c2 avoiding a detailed description of the well separated physics background.

We treat the background from the decay mode $B^0 \to D^- \pi^+ \pi^+ \pi^-$ to the signal for $B^0 \to D^- (K^+ \pi^- \pi^-)$, $D^+_s \to (K^0 K^-)$, and $B^0 \to D^- (K^+ \pi^- \pi^-) D^+_s (\pi^+ \pi^-)$ modes by introducing templates normalized to the B^0 yield. Similarly, we introduce the template normalized to the B_s^0 yield to model $B_s^0 \to D_s^+ (\phi \pi^-) \pi^+ \pi^- \pi^-$ background under the signal for $B_s^0 \to D_s^+ (\phi \pi^-) \times D_s^+(\pi^+ \pi^-)$ mode. These corrections lead to a less than 2% change in the signal.

Monte Carlo studies show that a B meson signal, reconstructed in a specific D_s^+ decay mode, have contributions from misreconstructed B meson candidates decaying through other D_s channels. The decay $B^0 \to D^- D_s^+$, followed by $D_s^+ \to f_0(980)(K^- K^-) \pi^+$, contributes to the reconstructed $B^0 \to D^- (K^+ \pi^- \pi^-) D_s^+(\phi \pi^-)$. Similarly, B meson decays followed by a nonresonant $D_s^+ \to K^+ K^- \pi^+$ contribute to the B meson signal reconstructed with $D_s^+ \to K^{*0} K^+$. The $D_s^+ \to K^+ K^- \pi^+$ decay model takes into account the measured branching fractions of its resonant substructure [16]. The aforementioned effects are taken into account by introducing correction templates.

Table 1

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\phi \pi^+$</th>
<th>$\bar{K}^0 K^+$</th>
<th>$\pi^+ \pi^- \pi^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(B^0 \to D^- D_s^+)$</td>
<td>183 ± 15</td>
<td>128 ± 13</td>
<td>84 ± 13</td>
</tr>
<tr>
<td>$N(D_s^0 \to D_s^+ D_s^-)$</td>
<td>$9.2^{+0.9}_{-0.8}$</td>
<td>$6.0^{+0.3}_{-0.3}$</td>
<td>$8.3^{+0.8}_{-0.8}$</td>
</tr>
<tr>
<td>$\epsilon(B_s^0 \to D_s^+ D_s^-)/\epsilon(B^0 \to D^- D_s^+)$</td>
<td>0.88 ± 0.03</td>
<td>0.53 ± 0.02</td>
<td>0.63 ± 0.02</td>
</tr>
<tr>
<td>$\mathcal{B}(B_s^0 \to D_s^+ D_s^-)/\mathcal{B}(B^0 \to D^- D_s^+)$</td>
<td>$0.98^{+0.38}_{-0.32}$</td>
<td>$1.51^{+0.87}_{-0.70}$</td>
<td>$2.67^{+1.20}_{-0.99}$</td>
</tr>
<tr>
<td>Systematic uncertainty</td>
<td>$+0.06/-0.08$</td>
<td>$+0.15/-0.25$</td>
<td>$+0.27/-0.29$</td>
</tr>
<tr>
<td>(f_s/f_d) uncertainty</td>
<td>± 0.14</td>
<td>± 0.22</td>
<td>± 0.39</td>
</tr>
<tr>
<td>$\mathcal{B}(D_s^+ \to \phi \pi^-) / \mathcal{B}(D^- \to K^+ \pi^- \pi^-)$</td>
<td>± 0.13</td>
<td>± 0.20</td>
<td>± 0.36</td>
</tr>
</tbody>
</table>

FIG. 1 (color online). Mass spectra for $B^0 \to D^- D_s^+$ (left) and $B_s^0 \to D_s^+ D_s^-$ (right) where $D_s^+ \to \phi \pi^+$ (top), $D_s^+ \to K^{*0} K^+$ (middle), $D_s^+ \to \pi^+ \pi^+ \pi^-$ (bottom). The decomposition of the background into combinatorial background and several backgrounds from B hadron decays is shown. For B^0 decays data are represented with dots and error bars, while for the small event yield B_s^0 channels a histogram is shown.
with relative normalizations derived from Monte Carlo simulations and result in a 4% correction to the signal yield. Other b hadron backgrounds are described with templates derived from semigeneric simulations ($B \to D^{(s)}_s X$), where one of the $D^{(s)}_s$ mesons is forced to decay in the signal channel and the rest of the decay chain (X) follows the best available measurement of branching fractions.

Yields and ratios of reconstruction efficiencies extracted from signal simulations are summarized in Table I. Using Eq. (2) and the latest PDG [15] values $f_s/f_d = 0.259 \pm 0.038$, and $\mathcal{B}(D^+_s \to p \pi^-) \times \mathcal{B}(p \to K^+ K^-) = (2.16 \pm 0.28) \times 10^{-2}$, we calculate the ratio of branching fractions $\mathcal{B}(B^0 \to D^- D^+_s)/\mathcal{B}(B^0 \to D^- D^+_s)$ for the three D^+_s modes shown in Table I along with corresponding statistical uncertainties, systematic uncertainties discussed below, and the uncertainties from the measurements of f_s/f_d and $\mathcal{B}(D^+_s \to p \pi^-)/\mathcal{B}(D^- \to K^+ \pi^- \pi^-)$.

The systematic uncertainties, summarized in Table II, are evaluated from the change in the ratio of the branching fractions $\mathcal{B}(B^0 \to D^- D^+_s)/\mathcal{B}(B^0 \to D^- D^+_s)$ for each effect under consideration. Fit systematic uncertainties are estimated by varying the fit window, binning, and template parameters. The normalizations of background templates underneath the signal peaks are varied using the measured branching fractions [15] within their uncertainties and the effect is included in the fit systematics in Table II. The uncertainty due to the B meson p_T spectrum is evaluated by comparing the efficiency determined from simulation based on next-to-leading-order calculations [17] and on the measured B hadron spectrum [18]. The effect of meson lifetimes is studied by varying the world average B^0_s and B^0 lifetimes within their uncertainties in the simulations. Trigger-related systematic uncertainties are estimated from simulations. The effects due to the limited knowledge of the $D^+_s \to p \pi^- \pi^- \pi^-$ composition are studied by varying the relative branching fractions of the components of the decay within their PDG [15] uncertainties. Finally, using the combinatorial background from data to optimize the selection introduces a bias. This effect has been estimated using simulation based on the expected combinatorial background distribution.

The significance of the $B^0 \to D^- D^+_s$ signal is given by the ratio of likelihoods of the mass fits, where we use the one of full fit model divided by the one of the same model but excluding the signal component. The individual significances of the signal reconstructed with $B^0 \to D^- (p \pi^-) D^+_s (p \pi^+)$, $B^0 \to D^- (p \pi^+) D^+_s (K^0 K^-)$, and $B^0 \to D^- (p \pi^-) D^+_s (\pi^+ \pi^- \pi^-)$ decay modes are 5.8σ, 3.4σ, and 4.4σ, respectively. From the product of three likelihoods we find the combined result consistent with an observation of $B^0 \to D^- D^+_s$ at a 7.5σ significance.

When combining the three results, the fit systematic uncertainties are weighted by the measured yields. The rest of the systematic uncertainties, except for the $D^+_s \to p \pi^- \pi^- \pi^-$ composition uncertainty, are considered common for all three modes. We find

$$\frac{\mathcal{B}(B^0 \to D^- D^+_s)}{\mathcal{B}(B^0 \to D^- D^+_s)} = 1.44^{+0.38}_{-0.31} \text{(stat)}^{+0.08}_{-0.12} \text{(syst)},$$

which we combine with $\mathcal{B}(B^0 \to D^- D^+_s) = (6.5 \pm 2.1) \times 10^{-3}$ [15] and determine

$$\mathcal{B}(B^0 \to D^- D^+_s) = (9.4^{+4.5}_{-4.2}) \times 10^{-3},$$

from which we derive a lower limit on $\Delta \Gamma^{CP}/\Gamma$:

$$\frac{\Delta \Gamma^{CP}}{\Gamma_s} = 2\mathcal{B}(B^0 \to D^- D^+_s) \geq 2\mathcal{B}(B^0 \to D^- D^+_s)$$

$$\geq 1.2 \times 10^{-2} \text{ at } 95\% \text{ C.L.}$$

In the derivation of the lower limit we take into account the Poisson statistical fluctuations of the signal yields and the Gaussian distribution for systematics uncertainties.

We have presented the first observation of the decay $B^0 \to D^- D^+_s$ and have measured its branching fraction with respect to $B^0 \to D^- D^+_s$. We set a lower bound on $\Delta \Gamma^{CP}/\Gamma_s$, which at the 95% confidence level requires a nonzero decay rate difference and agrees with theoretical predictions [2] and other experimental data: $-0.06 < \Delta \Gamma^{CP}/\Gamma_s < 0.28$ at the 95% confidence level [15].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundes-

<table>
<thead>
<tr>
<th>$B^0 \to D^- D^+_s$ fit</th>
<th>$B^0_s \to D^- D^+_s$ fit</th>
<th>B meson p_T spectrum</th>
<th>B^0 lifetime</th>
<th>$D^+_s \to \pi^+ \pi^- \pi^-$ composition</th>
<th>Optimization bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi \pi^+$</td>
<td>$K^0 K^-$</td>
<td>$\pi^+ \pi^- \pi^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 2.3</td>
<td>± 4.2</td>
<td>± 8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 4.4</td>
<td>± 8.2</td>
<td>± 4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 3.0</td>
<td>± 3.0</td>
<td>± 3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 2.0</td>
<td>± 2.0</td>
<td>± 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 1.0</td>
<td>± 1.0</td>
<td>± 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5.0</td>
<td>-13.0</td>
<td>-4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$+6.2$</td>
<td>$+9.9$</td>
<td>$+10.3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8.0</td>
<td>-16.4</td>
<td>-11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; in part by the European Community’s Human Potential Programme under Contract No. HPRN-CT-2002-00292; and the Academy of Finland.

\[The charge conjugate state is implied throughout the paper. Our notation is such that, e.g., \(B_0^+ \rightarrow D^- \) refers to \(B_0^+ \rightarrow D^- \), followed by \(D^- \rightarrow \phi \pi^- \) and \(D^- \rightarrow \phi \pi^- \), followed by \(\phi \rightarrow K^+ K^- \). \]

\[CDF II uses a cylindrical coordinate system in which \(\phi \) is the azimuthal angle, \(r \) is the radius from the symmetry axis, \(y \) points up, and \(z \) points in the proton beam direction with the origin at the center of the detector. The transverse plane is the plane perpendicular to the \(z \) axis. \]

\[G. Punzi, arXiv:0308063. \]

