Strong Evidence for ZZ Production in p ¯p Collisions at \(\sqrt{s} = 1.96 \) TeV

200801 (2008) PHYSICAL REVIEW LETTERS week ending 23 MAY 2008

© 2008 The American Physical Society
Diboson production provides a sensitive probe of new physics, including anomalous trilinear gauge couplings [1], new particles such as the Higgs boson [2], and large extra dimensions [3]. Important tests of electroweak physics have been made recently at the Fermilab Tevatron with $\sqrt{s} = 1.96$ TeV collected with the Collider Detector at Fermilab II detector. In the $\ell\ell\nu\nu$ channel, we observe three ZZ candidates with an expected background of $0.096^{+0.003}_{-0.002}$ events. In the $\ell\ell\nu\nu$ channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of $\ell\ell\nu\nu$ and $\ell\ell\nu\nu$ channels, we observe an excess of events with a probability of 5.1×10^{-6} to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is $\sigma(p\bar{p} \rightarrow ZZ) = 1.4^{+0.7}_{-0.6}$ (stat + syst) pb, consistent with the standard model expectation.

DOI: 10.1103/PhysRevLett.100.201801 PACS numbers: 12.15.Ji, 13.40.Em, 13.85.Qk, 14.70.Hp

Measurements of heavy vector boson pair production (WW, WZ, ZZ) are of great importance because they test the electroweak sector of the standard model (SM). Diboson production provides a sensitive probe of new physics, including anomalous trilinear gauge couplings [1], new particles such as the Higgs boson [2], and large extra dimensions [3]. Important tests of electroweak physics have been made recently at the Fermilab Tevatron with $\sqrt{s} = 1.96$ TeV collected with the Collider Detector at Fermilab II detector. In the $\ell\ell\nu\nu$ channel, we observe three ZZ candidates with an expected background of $0.096^{+0.003}_{-0.002}$ events. In the $\ell\ell\nu\nu$ channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of $\ell\ell\nu\nu$ and $\ell\ell\nu\nu$ channels, we observe an excess of events with a probability of 5.1×10^{-6} to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is $\sigma(p\bar{p} \rightarrow ZZ) = 1.4^{+0.7}_{-0.6}$ (stat + syst) pb, consistent with the standard model expectation.

DOI: 10.1103/PhysRevLett.100.201801 PACS numbers: 12.15.Ji, 13.40.Em, 13.85.Qk, 14.70.Hp
the first observation of WW production in hadron collisions \cite{4,5} and the first observation of WZ production \cite{6}. The production of Z pairs has been observed in $e^+ e^-$ collisions at LEP \cite{7}, but not in hadron collisions. As a window to new physics, ZZ production is particularly interesting because of the absence of $ZZ\gamma$ and ZZZ couplings in the SM, and because of the very low backgrounds in the four charged-lepton channel.

The full process that we consider in this search is $p \bar{p} \rightarrow Z/\gamma^*Z/\gamma^*$, For brevity, we denote $Z/\gamma^*Z/\gamma^*$ as ZZ throughout this Letter. The most sensitive previous search for ZZ production in hadron collisions was reported by the D0 Collaboration using data corresponding to 1 fb$^{-1}$ of integrated luminosity. That search used only the four charged-lepton channel and set a limit on the cross section integrated luminosity. That search used only the four charged-lepton channel and set a limit on the cross section.

In this Letter, we report a signal for ZZ production in hadron collisions which has a probability of 5.1×10^{-6} to be due to the expected background. The production is observed in $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using a data sample corresponding to 1.9 fb$^{-1}$ of integrated luminosity collected by the CDF II detector. We consider both $ZZ \rightarrow \ell\ell\ell'$ and $ZZ \rightarrow \ell\ell\nu\nu$ decays, where ℓ and ℓ' are electrons or muons directly from Z decay or from the leptonic decay of τ's when one or both Z bosons decay to τ leptons. In the $ZZ \rightarrow \ell\ell\ell'$ channel, we have a small sensitivity to the γ^* contribution and its interference with the Z boson, while this sensitivity is negligible for the $ZZ \rightarrow \ell\ell\nu\nu$ channel.

The CDF II detector is described elsewhere \cite{10}. We specify the geometry using the azimuthal angle ϕ and the pseudorapidity $\eta \equiv - \ln[\tan(\theta/2)]$, where θ is the polar angle with respect to the proton beam axis. The pseudorapidity of a particle assumed to originate from the center of the detector is referred to as η_d. The branching fraction of the ZZ state to four e or μ leptons, including those from leptonic τ decays, is only 0.51%. When coupled with the small SM cross section, only a small number (~ 14) of $ZZ \rightarrow \ell\ell\ell'$ are expected to be produced in 1.9 fb$^{-1}$ at the Tevatron. The finite CDF II acceptance further reduces the expected number of observed $ZZ \rightarrow \ell\ell\ell'$ events.

We use the lepton identification strategy developed for the WZ observation analysis \cite{6}, which was designed to have high acceptance for multilepton final states. The lepton candidates are divided into seven exclusive categories: three for muons, three for electrons, and one for tracks that project to detector regions with insufficient calorimeter coverage for energy measurement. One of the muon categories uses the muon chambers and the other two consist of minimum ionizing tracks that use either the central ($|\eta_d| < 1.1$) or forward ($1.2 < |\eta_d| < 2.0$) calorimeters. The three electron categories are central ($|\eta_d| < 1.1$), forward ($1.2 < |\eta_d| < 2.0$) with a matched silicon-based track, and forward ($1.2 < |\eta_d| < 2.8$) without a matched silicon-based track.

To suppress jets being misidentified as leptons, all lepton candidates are required to pass a calorimeter-based isolation requirement such that the sum of the E_T for the calorimeter towers not associated with the lepton in a cone of $\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} < 0.4$ around the lepton direction is less than 10% of the E_T for electrons or p_T for muons and track lepton candidates. The transverse energy E_T of an EM cluster or calorimeter tower is $E \sin \theta$, where E is the associated energy. Similarly, p_T is the track momentum transverse to the beam line.

To infer the presence of neutrinos in $ZZ \rightarrow \ell\ell\nu\nu$ decay, we use missing transverse energy $E_T = E_{T,\ell\ell\nu}$, where $E_{T,\ell\ell\nu}$ is the transverse component of the unit vector pointing from the interaction point to calorimeter tower i. The E_T calculation is corrected for muons and track leptons, which do not deposit all of their energy in the calorimeter. We analogously define the scalar sum $E_{T,\ell\ell\nu} = \sum E_{T,i}$, applying the same corrections.

We require events to pass at least one of four trigger selection criteria. The central electron trigger requires an EM energy cluster with $p_T > 18$ GeV matched to a track with $p_T > 8$ GeV/c. For the $ZZ \rightarrow eee\nu\nu$ channel only, a trigger for forward electrons requires an EM energy cluster with $p_T > 20$ GeV and an uncorrected, calorimeter-based measurement of $E_T > 15$ GeV. Two muon triggers are based on stubs from the corresponding muon detectors matched to a track with $p_T > 18$ GeV/c. Trigger efficiencies are measured in leptonic W and Z boson data samples \cite{11}.

The $ZZ \rightarrow \ell\ell\ell'$ candidates are selected from events with exactly four charged-lepton candidates using requirements that were optimized with Monte Carlo simulation without reference to the data. At least one lepton is required to satisfy the trigger criteria and have $E_T > 20$ GeV ($p_T > 20$ GeV/c) for electrons (muons). We loosen this requirement to 10 GeV (GeV/c) for the other leptons to increase the ZZ kinematic acceptance. We require at least two same-flavor, opposite-sign lepton pairs in the event. Trackless electrons are considered to have either charge, and track-only leptons either flavor. One pair must have invariant mass $M_{\ell\ell}$ in the range $[76, 106]$ GeV/c2, while the requirement for the other pair is extended to $[40, 140]$ GeV/c2 to increase the acceptance for off-shell Z decays.

The acceptance for the ZZ process is determined using PYTHIA \cite{12} followed by a GEANT-based simulation \cite{13} of the CDF II detector. An efficiency correction, of up to 10% per lepton, is applied to the simulation based on measurements of the lepton reconstruction and identification efficiencies using observed $Z \rightarrow \ell^+\ell^-$ events.

The dominant backgrounds to the $ZZ \rightarrow \ell\ell\ell'$ selection are the Drell-Yan Z/γ^* process (DY) with two jets...
misidentified as leptons \((Z + \text{jets})\) and DY with an additional photon and a jet, both misidentified as leptons \((Z\gamma + \text{jets})\). The \(Z + \text{jets}\) and \(Z\gamma + \text{jets}\) background contributions are estimated from data by extrapolating from a sample of events that contain three identified leptons and a jet \(j_1\) containing a track or EM energy cluster similar to those required in the lepton identification. The contribution of each event to the total yield is scaled by the probability that the \(j_1\) is identified as a lepton. This probability \(p(j_1)\) is determined from multijet events collected with jet-based triggers and is a function of the \(j_1 p_T\) and type of lepton. A correction to \(p(j_1)\) is applied for the small real lepton contribution using Monte Carlo simulation of single \(W\) and \(Z\) boson processes. In this background sample, one of the three identified leptons is likely to be either a jet or a photon misidentified as a lepton. An event with two leptons and two \(j_1\) jets enters the three lepton plus \(j_1\) sample if either of the \(j_1\) jets is misidentified as a lepton, but will enter the four identified lepton sample only if both \(j_1\) jets are misidentified as leptons. Therefore, the contribution from this category of events is double counted. A correction for this is made by subtracting the yield of two leptons plus two \(j_1\) jets scaled by \(p(j_{1,1}) \times p(j_{1,2})\). As the three lepton plus \(j_1\) sample has significant contributions from the \(ZZ \rightarrow \ell\ell\ell\ell\) signal itself when one of the leptons is not fully identified but is counted as a \(j_1\), an anti-isolation requirement of \(>20\%\) (see previous definition of calorimeter-based isolation) is applied to the \(j_1\) selection.

As a cross-check, we estimate the \(Z\gamma + \text{jets}\) background contribution in an alternative way using the yield of three lepton plus \(j_1\) events in simulated \(Z\gamma + \text{jets}\) data scaled by \(p(j_1)\). We correct this with the ratio of data to simulation for an analogous calculation of two identified leptons and one \(j_1\) scaled by \(p(j_1)\) in \(Z + \text{jets}\) events. This estimate of the \(Z\gamma + \text{jets}\) background is in good agreement with the nominal estimate based solely on the data.

We separate the \(ZZ \rightarrow \ell\ell\ell\ell\) candidates into two exclusive categories based on whether or not they contain at least one forward electron without a track because the background from \(Z\gamma + \text{jets}\) is much larger in candidates with a forward trackless electron. The expected signal and background yields, assuming \(\sigma(ZZ) = 1.4 \pm 0.1 \text{ pb}\), and the observed yields are shown in Table I.

The statistical significance of the \(ZZ \rightarrow \ell\ell\ell\ell\) yield is determined using a maximum likelihood fit with two bins, one for each of the \(ZZ \rightarrow \ell\ell\ell\ell\) categories. We define \(\Delta \ln L\) as the logarithm of the likelihood ratio between this fit and the no signal hypothesis. In \(10^7\) background-only Monte Carlo experiments, only 109 have larger \(\Delta \ln L\) than that observed in data. This corresponds to a background-only probability \((p\) value\) of \(1.1 \times 10^{-5}\) and a signal significance equivalent to 4.2 standard deviations.

The \(ZZ \rightarrow \ell\ell\nu\nu\) candidates are selected from events with exactly two lepton candidates excluding events with forward electrons without a track which are contaminated by large \(W\gamma\) backgrounds. At least one lepton is required to satisfy the trigger and have \(E_T > 20 \text{ GeV}\) \((p_T > 20 \text{ GeV}/c)\) for electrons (muons). This requirement is loosened to 10 GeV \((\text{GeV}/c)\) for the other lepton. We apply a track-based isolation selection in which the sum of the \(p_T\) of the tracks not associated with the lepton within a cone of \(\Delta R < 0.4\) around the lepton is required to be less than 10% of the momentum of the track associated with the lepton.

Aside from \(ZZ\) production, other SM processes that can lead to two high-\(p_T\) leptons include events from DY, a \(W\) decay with photon \((W\gamma)\) or jet \((W + \text{jets})\) misidentified as a lepton, and \(t\bar{t}\), \(WW\), and \(WZ\) production. The DY background is suppressed by requiring sufficiently large \(E_T\) in the event to remove contributions from mismeasured leptons and/or jets. This is achieved by requiring \(E_{T,\text{rel}}> 25 \text{ GeV}\), where

\[
E_{T,\text{rel}} = \frac{E_T}{\sin(\phi_{E_T, (\ell, \text{jet})})} \quad \text{if} \quad \Delta \phi_{E_T, (\ell, \text{jet})} > \frac{\pi}{4},
\]

\[
E_{T,\text{rel}} = \frac{\Delta \phi_{E_T, (\ell, \text{jet})}}{\sin(\phi_{E_T, (\ell, \text{jet})})} \quad \text{if} \quad \Delta \phi_{E_T, (\ell, \text{jet})} < \frac{\pi}{4},
\]

and \(\Delta \phi_{E_T, (\ell, \text{jet})}\) is the angle between \(\vec{E}_T\) and the nearest lepton or jet. To suppress events with \(E_T\) from mismeasured unclustered energy, we require \(E_{T,\text{rel}} > 2.5 \text{ GeV}/\ell^2\). We suppress \(t\bar{t}\) background by requiring fewer than two reconstructed jets with \(E_T > 15 \text{ GeV}\) and \(|\eta| < 2.5\). In the event. We require the lepton pair to be consistent with the same-flavor, opposite-sign property of \(Z\) decay and have dilepton invariant mass \(M_\ell\ell > 16 \text{ GeV}/c^2\) to suppress QCD backgrounds.

The acceptances for the \(WW\), \(WZ\), \(ZZ\), \(W\gamma\), and \(t\bar{t}\) processes are determined using the same detector simulation as described for the \(ZZ \rightarrow \ell\ell\ell\ell\) channel. Events are simulated with the MC@NLO program for \(WW\) [14], PYTHIA for \(WZ\), \(ZZ\), and \(t\bar{t}\) [12], and the generator described in [15].

Table I

<table>
<thead>
<tr>
<th>Category</th>
<th>Candidates without a trackless electron</th>
<th>Candidates with a trackless electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>1.990 ± 0.013 ± 0.210</td>
<td>0.278 ± 0.005 ± 0.029</td>
</tr>
<tr>
<td>Z + jets</td>
<td>0.014 ± 0.007 ± 0.003</td>
<td>0.082 ± 0.009 ± 0.016</td>
</tr>
<tr>
<td>Total</td>
<td>2.004 ± 0.016 ± 0.210</td>
<td>0.360 ± 0.009 ± 0.033</td>
</tr>
</tbody>
</table>

Observed: 2
for $W\gamma$. An additional correction is applied to the $W\gamma$ background estimate based on a measurement of the photon conversion veto efficiency in data. The background from $W + $ jets is estimated from the yield of one identified lepton plus one j_i scaled by $p(j_i)$. As the sample size is sufficiently large, a loose calorimeter-based isolation cut ($< 30\%$) is applied to the j_i samples to reduce the magnitude of the extrapolation from the j_i to the fully identified lepton.

We observe 276 events in the selected region which is expected to contain 256 ± 21 events of which only 14 ± 2 are from the $ZZ \to \ell\ell\nu\nu$ process in the SM. Approximately half of the yield is due to the WW process. However, $ZZ \to \ell\ell\nu\nu$ and WW have different kinematic properties which are exploited to statistically separate the contribution of these two processes to the dataset. We calculate an event-by-event probability density for the observed lepton momenta and E_T using leading-order calculations of the differential decay rate for the processes [9]. The event probability density is

$$P(x_{\text{obs}}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{LO}(y)}{dy} e(y)G(x_{\text{obs}}, y)dy, \quad (2)$$

where the elements of y (x_{obs}) are the true (observed) values of the lepton momenta and E_T, $d\sigma_{LO}$ is the parton level cross section differential in those observables, $e(y)$ is the detector acceptance and efficiency function, and $G(x_{\text{obs}}, y)$ is the transfer function representing the detector resolution. The constant $\langle \sigma \rangle$ normalizes the total event probability to unity. The missing information due to the fact that we have two neutrinos in the final state is integrated over in this calculation. We then form a likelihood ratio discriminant LR which is the signal probability divided by the sum of signal and background probabilities $LR = P_{ZZ}/(P_{ZZ} + P_{WW})$. The distribution of $\log_{10}(1 - LR)$ for the data compared to the summed signal and background expectation is shown in Fig. 1.

For both $\ell\ell\ell'$ and $\ell\ell\nu\nu$ channels, the systematic uncertainties associated with the Monte Carlo simulation affect the WW, WZ, ZZ, $W\gamma$, and $t\bar{t}$ expectations similarly. The uncertainties from the lepton selection and trigger efficiency measurements are propagated through the analysis, giving uncertainties from 1.0% to 1.4% and 2.1% to 6.1% for the respective efficiencies of the different signal and background processes. The detector acceptance variation due to PDF uncertainties is assessed in the range 1.9%–4.1% using the 20 pairs of PDF sets described in [16]. We assign a 6% luminosity uncertainty to signal and background estimates obtained from simulation [17]. The cross section uncertainties are 10% for WW [9], WZ [9], and $W\gamma$ [18], and 15% for $t\bar{t}$ [19,20].

The systematic uncertainty on the $W + $ jets background to $ZZ \to \ell\ell\nu\nu$ candidates and the $Z + $ jets and $Z\gamma + $ jets background to the $ZZ \to \ell\ell\ell'$ is estimated to be 20% from differences in the observed probability that a jet is identified as a lepton for jets collected using different jet E_T trigger thresholds. These variations correspond to changing the parton composition of the jets and the relative amount of contamination from real leptons.

For the $ZZ \to \ell\ell\nu\nu$, the systematic uncertainty on the W background yield due to the E_T resolution modeling is estimated to be 20% from comparisons of the data and Monte Carlo simulation in a sample of dilepton events. For the $W\gamma$ background contribution, there is an additional uncertainty of 20% from the detector material description and conversion veto efficiency.

We define four independent control samples based on the $ZZ \to \ell\ell\nu\nu$ selection where one of the cuts is removed or inverted to test our modeling of background-dominated data. Removing the E_T requirement produces a D-dominated sample which tests luminosity accounting, lepton reconstruction efficiency, and non-E_T related trigger efficiencies that apply to both the $\ell\ell\ell'$ and $\ell\ell\nu\nu$ final states; we observe (expect) 160 980 (160000 ± 18000) events, where the uncertainty combines statistical and systematic contributions. Inverting the charge sign requirement to select same-sign dilepton events tests our modeling of photons and jets misidentified as leptons; we observe (expect) 161 (138 ± 19) events. Inverting the $E_T/\sqrt{\Sigma E_T}$ requirement but selecting $E_{T,\text{rel}} > 25$ GeV events tests our modeling of the effect of unclustered energy on the E_T; we observe (expect) 55 (59 ± 9) events. Finally, inverting the $E_{T,\text{rel}} > 25$ GeV requirement but selecting $E_T > 25$ GeV events tests our modeling of mismeasured leptons or jets at high E_T; we observe (expect) 151 (178 ± 30) events. The observed yields are in good agreement with the expectations in each selection set.
We combine the $ZZ \rightarrow \ell \ell \nu \nu$ with the $ZZ \rightarrow \ell \ell \ell' \ell'$ results by extending the likelihood fit previously described to include the $\log_{10}(1-LR)$ distribution. The p value for the $ZZ \rightarrow \ell \ell \nu \nu$ alone is 0.12 and the combined p value is 5.1×10^{-6} corresponding to a significance equivalent to 4.4 standard deviations. This is consistent with the SM expectation. This is the first measurement of ZZ boson production at a hadron collider with a significance exceeding 4 standard deviations. We determine the $p \bar{p} \rightarrow ZZ$ cross section by fitting the data for the fraction of the expected yield in the full acceptance and scaling the zero-width cross section by that fraction. The measured cross section is $\sigma(p \bar{p} \rightarrow ZZ) = 1.4^{+0.7}_{-0.6}$ pb, consistent with the SM expectation. This is the first measurement of the ZZ cross section in hadron collisions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

\[\text{Visitor from University of Athens, 15784 Athens, Greece.} \]
\[\text{Visitor from Chinese Academy of Sciences, Beijing 100864, China.} \]
\[\text{Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.} \]
\[\text{Visitor from University Libre de Bruxelles, B-1050 Brussels, Belgium.} \]
\[\text{Visitor from University of California Irvine, Irvine, CA 92697, USA.} \]
\[\text{Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.} \]
\[\text{Visitor from Cornell University, Ithaca, NY 14853, USA.} \]
\[\text{Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.} \]
\[\text{Visitor from University College Dublin, Dublin 4, Ireland.} \]
\[\text{Visitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.} \]
\[\text{Visitor from University of Heidelberg, D-69120 Heidelberg, Germany.} \]
\[\text{Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.} \]
\[\text{Visitor from University of Manchester, Manchester M13 9PL, United Kingdom.} \]
\[\text{Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.} \]
\[\text{Visitor from University de Oviedo, E-33007 Oviedo, Spain.} \]
\[\text{Visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.} \]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79409, USA.} \]
\[\text{Visitor from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.} \]