UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Algorithms for generating arguments and counterarguments in propositional logic

Efstathiou, V; Hunter, A; (2011) Algorithms for generating arguments and counterarguments in propositional logic. INT J APPROX REASON , 52 (6) 672 - 704. 10.1016/j.ijar.2011.01.005.

Full text not available from this repository.

Abstract

A common assumption for logic-based argumentation is that an argument is a pair (Phi, alpha) where Phi is minimal subset of the knowledgebase such that Phi is consistent and Phi entails the claim alpha. Different logics provide different definitions for consistency and entailment and hence give us different options for formalising arguments and counterarguments. The expressivity of classical propositional logic allows for complicated knowledge to be represented but its computational cost is an issue. In previous work we have proposed addressing this problem using connection graphs and resolution in order to generate arguments for claims that are literals. Here we propose a development of this work to generate arguments for claims that are disjunctive clauses of more than one disjunct, and also to generate counteraguments in the form of canonical undercuts (i.e. arguments that with a claim that is the negation of the conjunction of the support of the argument being undercut). (C) 2011 Elsevier Inc. All rights reserved.

Type:Article
Title:Algorithms for generating arguments and counterarguments in propositional logic
DOI:10.1016/j.ijar.2011.01.005
Keywords:Logic-based argumentation, Computational models of argument, COMPLEXITY
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record