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Abstract 

 
The high demand on the upper extremity during manual wheelchair use 

contributes to a high prevalence of shoulder pathology in people with spinal 

cord injury. The overall purpose of this thesis was to investigate shoulder 

muscle recruitment patterns and wheelchair kinetics in able-bodied participants 

over a range of daily activities and mobility tasks requiring manual wheelchair 

propulsion. With a complete understanding of the muscle recruitment patterns, 

physiotherapists and wheelchair users can improve rehabilitation protocols and 

wheelchair propulsion performance to prevent shoulder pathology and maintain 

comfort during locomotion.  

 

Motor unit recruitment patterns were examined first during isometric and 

isotonic contractions to determine if spectral properties from EMG and MMG 

could be related to the different motor units in biceps brachii by using wavelet 

techniques coupled with principle component analysis. The results indicated 

that motor unit recruitment patterns can be indicated by the spectral properties 

of the EMG and MMG signals.  

 

EMG activity of 7 shoulder muscles was recorded with surface electrodes on 15 

able-bodied participants over a range of manual wheelchair propulsion activities. 

Wavelet and principle component analysis was used to simultaneously 

decompose the signals into time and frequency domain. There are three main 

conclusions that can be drawn: 1) Uphill and faster speed (1.6m/s) propulsion 

required higher activity levels in the shoulder muscles and greater resultant joint 

force than did slow speed propulsion on the ergometer (0.9m/s), thus potentially 

resulting in shoulder pathology. 2) Prolonged wheelchair propulsion and greater 

muscle activity may result in fatigue and play a factor in the development of 

shoulder pain and pathology over time. 3) The instructed semicircular pattern 

has a positive effect on shoulder muscle recruitment patterns. Further 

investigations need to focus on a systematic integrated data collection and 

analysis of kinematic, kinetic, and electromyography (EMG) data from people 

with spinal cord injuries.  
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Chapter One: Introduction 

In the UK, about 2000 people suffer spinal cord injuries (SCI) leading to permanent 

paralysis every year (data from website: http://www.spinal-injury.net/). About 37,000 

Canadians currently live with spinal cord injuries; each year about 1,000 Canadians 

sustain some level of permanent paralysis or neurological deficit following some kind 

of injury. In the US there are an estimated 235,000 to 265,000 individuals with spinal 

cord injuries and an estimated additional 12,000 new injured people each year 

(Curtis et al., 1999) (http://www.fscip.org/facts.htm.) 

 

Most individuals with SCI use wheelchairs for mobility at home, school, work, and 

play (Curtis et al., 1999). Wheeled mobility as defined by the WHO (world health 

organization) considers mobility from a social context rather than a purely medical 

one (WHO, 2001). This concept balances the physical impairments associated with a 

person’s spinal cord injury with their goals and aspirations as well as the impact of 

their environment in achieving them.  The WHO International Classifictation of 

Functioning (ICF) (Fig.1.1), is in many ways the conceptual starting point many 

different aspects of research in rehabilitation and in the related issues of mobility 

restoration, activities of daily living and sports for those with a disability (van der 

Woude et al., 2006).  

 

Figure 1.1. International Classification of Functioning, Disability and Health  (ICF) 

concept of wheeled mobility, as applied to persons with a spinal cord injury (WHO, 
2001).  
 
Many wheelchair users experience upper extremity pain that interferes with essential 

activities of daily living involving wheelchair propulsion and transfer. Upper extremity 
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weight-bearing activities and chronic overuse associated with mobility have both 

been implicated in the development of soft tissue injuries and degenerative changes 

in the shoulder joints (Collinger, Boninger et al. 2008). To gain insight into the causes 

and consequences of upper extremity pain/injury associated with wheelchair 

propulsion, as well as to study propulsion techniques as such, biomechanical 

analysis is an important prerequisite (van der Woude et al., 2001). 

 
1.1 Literature review 

1.1.1 Anatomy 

Shoulder pain is quite common among those who engage in sports activities whether 

disabled or not, but it is experienced particularly often by persons in wheelchairs 

(Curtis et al., 1999; Fullerton et al., 2003). The main reason for this prevalence stems 

from the fact that this population relies entirely on the upper limb for both ambulation 

and weight-bearing tasks (Mercer et al., 2006). The shoulder is poorly designed for 

this purpose, and thus becomes exposed to excessive, repeated interarticular 

pressures in conjunction with a more abnormal distribution of stresses across the 

subacromial area. 

 

The high mechanical load on the upper extremity in manual wheelchair propulsion 

within the framework of the task (repetitiveness, peak force, limited muscle use, 

extreme joint deflections (wrist)) is exacerbated by the complex anatomy of the upper 

extremity (Fig.1.2). Discomfort is thought to be related to the necessity to stabilize the 

glenohumeral (GH) joint (usually loosely referred to as the shoulder joint) during 

wheelchair propulsion (Veeger and van der Helm, 2007). The shoulder joint has a 

greater range of motion than any other joint in the body, which comes at the price of 

an inherent instability. The radius of curvature of the humeral head is three times that 

of the glenoid socket and thus, unlike the hip joint, the shoulder relies on ligamentous 

and muscular components for its main constraints (i .e., rotator cuff). A person who 

depends exclusively on a wheelchair for ambulation is exposing his/her shoulder to 

increased stresses and muscular imbalances, predisposing it to a variety of overuse 

injuries (Miyahara et al., 1998). Participants in wheelchair sports, especially those 

involved in track events, marathon road racing, basketball, and tennis, subject their 

shoulders to even greater stresses, resulting in an even larger abundance of overuse 

problems (Burnham et al., 1993). As opposed to the lower limb in the nondisabled 

population, the upper limb in both sport and non-sport wheelchair users is the main 

weight-bearing limb. As a consequence, many wheelchair users experience upper 

extremity pain that interferes with essential activities of daily living involving 



 19

wheelchair propulsion and transfer (Curtis et al., 1999). Upper extremity weight-

bearing activities and chronic overuse have both been implicated in the development 

of soft tissue disorders and degenerative changes in the shoulder joints (Collinger et 

al., 2008).  

 

Figure1.2. Shoulder anatomy (from Google images)  

 
1.1.2  The biomechanics of manual wheelchair propulsion 

Manual wheelchair propulsion and wheelchair sports have increasingly become the 

subject of detailed biomechanical analyses. More recently, biomechanics research 

has been geared towards the musculoskeletal problems of long-term wheelchair use 

and sports (van der Woude et al., 2001).  

 

The wheelchair propulsion cycle is divided into a propulsion phase and a recovery 

phase (Fig.1.3). The propulsive phase is initiated when the hand comes into contact 

with the pushrim and continues to the point at which contact is removed at the end of 

the stroke. The recovery phase involves the motion that occurs when the hands 
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disengage from the pushrim and lasts until the upper extremities swing back to 

contact the pushrim once again. 

 

Figure1.3. Wheelchair propulsion movement and technique parameters. EA = end 

angle (°); HC = hand contact; HR = hand release; PA = push angle; SA = start angle. 

 

The propulsion phase begins with maximum shoulder extension and ends with 

maximum shoulder flexion (Lin et al., 2004). The recovery phase begins after the end 

of the propulsion phase, as the shoulder extends to return the hand to the starting 

position of propulsion (Fig. 1.4).  

 

Figure1. 4. Three dimensional musculoskeletal model of the upper extremity and trunk 

(Lin et al., 2004). 
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During wheelchair propulsion, the shoulder is maintained at approximately 70°of 

abduction. At the onset of the propulsive phase of motion, the shoulder is extended 

and internally rotated, and subsequently ends up flexed and externally rotated at the 

onset of the recovery phase. Due to these biomechanics, wheelchairs users often 

have well-developed shoulder flexors, internal rotators, and adductors, but may have 

poorly developed external rotators and thoracoscapular muscles. This muscular 

imbalance, plus the repetitive nature of the wheelchair push, predisposes the rotator 

cuff to impingement (Burnham et al., 1993). 

 

During the pushing phase, the user’s hands follow the path of the pushrim. However, 

during the recovery phase users can choose how they want to move their hands 

while preparing for the next push. A variety of different hand trajectory patterns have 

been classified during the recovery phase of the propulsion cycle, including semi-

circular, single looping (SLOP), double looping (DLOP), and arcing, illustrated in 

Fig.1.5 (Sanderson and Sommer, 1985; Veeger et al., 1989b; Boninger et al., 2002). 

Although it is not understood why users implement different strategies during 

recovery, there have been several studies investigating the potential advantages of 

the various patterns (Richter et al., 2007). 

 
Figure 1.5. Stroke pattern classifications during wheelchair propulsion (stylized 
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illustrations). The hand is constrained to follow the pushrim during the push but the 
user is free to choose how to follow through between pushes. In the arcing pattern, the 
user’s hand travels back along the pushrim between pushes(Richter et al., 
2007).Abbreviations: ARC, arcing; DLOP, double looping; SC, semi-circular; SLOP, 
single-looping.  
 

While stroke patterns are varied for level propulsion, arcing is the most popular 

pattern for pushing uphill. Based on its popularity alone, it could be hypothesized to 

be the most biomechanically efficient (de Groot et al., 2004). However, there may be 

reasons other than efficiency that draw users to the arcing pattern for pushing uphill. 

When pushing uphill, the user must maintain her/his balance and not tip backward. In 

addition, missing a push could mean losing control and rolling backward down the hill. 

When propelling uphill the ability to lean forward affects both static and inertially 

induce imbalance (instability).  For SCI patients with higher level lesions loss of 

control of trunk musculature makes prevention of rollback even more difficult. With 

the arcing pattern, the user’s hands remain close to the pushrim when coasting, 

allowing her/him to make quick corrections. The SLOP pattern was the second most 

popular choice for pushing uphill. With the SLOP pattern, the user’s hands are above 

the pushrim, which allow her to push down and grip the pushrim relatively quickly if 

necessary. Conversely, the DLOP pattern, much like the semi-circular pattern, may 

put the user at a disadvantage because her hands are well below the pushrims and 

the arms need to be lifted up against gravity to make unexpected corrections.  

 

Based on the results of the study by Boninger et al. (2002) the clinical practice 

guidelines for the Preservation of Upper Limb Function Following Spinal Cord Injury 

(Boninger et al., 2002) recommend that wheelchair users implement the semi-circular 

pattern during everyday propulsion (Boninger et al., 2005). These guidelines are 

described as a first step in the ongoing process of developing useful tools for 

preserving upper-limb function in people with spinal cord injury. However, the 

guidelines did not consider the study by de Groot et al. (de Groot et al., 2004), which 

suggests that the arcing pattern may result in greater metabolic efficiency than the 

semi-circular pattern. 

 

The study by Boninger et al showed that the semicircular pattern was associated with 

a lower cadence and the greatest time spent in propulsion relative to recovery. In 

other words, wheelchair users who followed a semicircular pattern hit the pushrim 

less frequently and used more of the pushrim to go the same speed. Therefore, 

training can be employed, for instance, to assist wheelchair users to reduce the 

stress on their arms by using a longer, smoother stroke, reducing their stroke 
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frequency, and minimizing forces. Of course, the propulsion technique is highly 

dependent on the type of wheelchair used, as well as the functional capacity of the 

user. It should be kept in mind, that almost all available kinetic information is based 

on studies focusing on daily use. 

 
1.1.3 Shoulder muscle recruitment during wheelchair propulsion 

Since a typical kinesiological EMG represents the activity of multiple motors, EMG 

analyses provide insight into muscle recruitment patterns and neuromuscular control 

of wheelchair propulsion. Several studies have examined shoulder muscle activity 

(EMG) during wheelchair propulsion by individuals with SCI using surface EMG and 

wired EMG techniques (Mulroy et al., 1996; van der Helm and Veeger, 1996; 

Niemeyer et al., 2004; Bernasconi et al., 2007; Dubowsky et al., 2008; Dubowsky et 

al., 2009). Two muscle synergies have been identified during wheelchair propulsion. 

The push phase synergy is dominated by anterior deltoid (AD), pectoralis major (PM), 

and biceps brachii (BB). These muscles are the prime movers during the push phase. 

The recovery synergy is dominated by the middle and the posterior deltoid (MD and 

PD). These muscles are responsible for returning the arm during the recovery phase.  

 

After the hand has made contact with the rim, the pull phase starts with an initial 

elbow flexion, accompanied by activity of the BB muscle. AD shows high activity at 

the beginning of hand contact, whereas PM displays a more constant activity of 

longer duration. These two muscles are considered to be the prime movers in 

wheelchair propulsion (Mulroy et al., 1996).The push phase muscles were also 

activated in the recovery phase to decelerate the back swing of the arm and to 

prepare the hand, by increasing the hand speed, for impact on the pushrim (Mulroy 

et al., 1996). Veeger et al (Veeger et al., 2002) used a musculoskeletal model to 

show that the subscapularis muscle produced the largest force during the push 

phase. The other rotator cuff muscles, supraspinatus and infraspinatus, were also 

highly active during the push phase while the triceps muscle produced less force 

than the biceps muscle during the push phase. In the recovery phase, the posterior 

deltoid produced considerably more force than all other muscles (Mulroy et al., 1996). 

 

It has been reported that at the elbow joint, BB was activated in the late recovery 

phase and continued its action over a period when elbow flexion torque would 

contribute to the propulsion (Lighthall-Haubert et al., 2009). The peak muscular 

activity of the BB muscle was found at hand contact. Muscular activity of TB 

increased progressively during the push phase, reaching maximal values at hand 
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release (Chow et al., 2009). In addition, synergy was shown between PM, AD and 

litissimus dorsi (LD). Muscular activity of these muscles increased from the end of the 

recovery phase and reached a maximum during the push phase. PD, MD together 

with superior trapezius (ST) were highly active during recovery, which illustrates their 

prime mover function.  

 
1.1.4 Research technology and wheelchair propulsion 

To study the physiological and mechanical strain of manual wheelchair propulsion 

and wheelchair sports performance, specific technologies and protocols of 

measurement are required for comprehensive biomechanical assessment. 

 

1.1.4.1 The wheelchair propulsion kinetic system 

Task-specific, standardized laboratory experiments are required to analyze 

performance capacity in wheelchair users. Often this employs customized equipment, 

which requires to be reliable and validitated. Wheelchair tests are generally 

performed to investigate physical capacity of wheelchair users, to analyze wheelchair 

propulsion technique, to assess different wheelchair designs, or to evaluate load on 

the upper extremity joints (van der Woude et al., 2006).  

 
The least standardized but most realistic testing condition is a simple wheelchair 

(racing) track (Mattison et al., 1989; Vanlandewijck et al., 1999). It is complicated to 

control experimental conditions and procedures, such as velocity and power output. 

Since the wheelchair– user combination is non-stationary, physiological measures 

and kinematics are complicated to measure, but some important parameters can be 

measured with the currently available ambulatory physiological and biomechanical 

measurement systems. 

 
Second best in terms of validity of wheelchair exercise testing is a motor-driven 

treadmill. This device is widely used for research purposes. It allows valid 

physiological exercise testing, and the study of kinematics and muscle activity (van 

der Woude et al., 1986; Veeger et al., 1989a). Power output can be determined in the 

form of a simple drag test, in which the drag force of a wheelchair–user system can 

be determined (van der Woude et al., 1986). Workload can be varied with an 

inclination of the belt, or by applying a resistance force on the back of the wheelchair 

by means of a pulley system (Veeger et al., 1989a). 

 
The final category of wheelchair ergometers is the wheelchair simulator. Most of 

them are computer-controlled devices that accurately simulate wheelchair propulsion 
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with an adjustable propulsion mechanism and/or seat configuration. It essentially 

provides a simulation of wheelchair propulsion in terms of friction (rolling resistance, 

and sometimes air friction) and slope, and simulation of inertia of the wheelchair–

user system. Most systems enable the measurement of momentary torque and 

velocity, and thus power output (Keyser et al., 1999; Rodgers et al., 2000), and 

sometimes the measurement of 3D forces applied by the hand on the propulsion 

system (Niesing et al., 1990; Keyser et al., 1999; Rodgers et al., 2000). 

 

In this thesis, the SmartWheel was used in all the test sessions for kinetic data 

collection. There is a whole range of testing related to the measurement of 

physiological parameters, such as energy consumption and metabolic efficiency that 

are not considered in detail in this thesis. The SmartWheel is a measurement device 

that mounts to most manual wheelchairs and communicates with a computer via Wi-

Fi technology to collect and report propulsion information. The major advantage of an 

instrumented wheel will be the analysis of daily activities and wheelchair-related 

tasks that cannot be met with stationary ergometry technology. However, 

SmartWheel is heavier than a traditional wheelechair wheel and requires the user to 

push on the rim. Many users especially higher level SCI push the tyre as they obtain 

higher friction against the wheel since they can’t grip the rim. 

 

    
Figure 1.6. Orientation of force and moments. The orientation of pushrim forces and 
hub moments are shown. The direction of the arrows indicates the directions of the 
forces and moments applied by the subject. Ft and Fr were calculated from Fx and Fy 
and used in the analysis (Boninger et al., 1997). 

 
The SmartWheel measures three-dimensional forces (tangential, radial, and axial) 

and moments applied to the pushrim. Its design is based on equations for a 3-beam 
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(120° apart) system for pushrim force and moments detection utilizing strain gages. 

These forces Fx, Fy, Fz and associated moments Mx, My, Mz are depicted in Fig.1.6. 

From each propulsive stroke, three moment vs time curves (Mx, My, and Mz) and 

three force vs time curves (Fr, Ft, Fz) were generated. From these curves, the peak 

forces and moments were determined.  

 

The resultant force (total force) can be calculated by Fx, Fy, and Fz.  Fx and Fy forces 

are rotated in such a way that they can be measured as a force tangential to the 

pushrim, Ft, and a force radial to the pushrim, Fr.    

 
 
The tangential force, Ft, is the only force that contributes to the forward motion of the 

wheel. The radial force, Fr, and the axial force, Fz, create the friction necessary to 

allow Ft to be applied. 

 
In this thesis, the mechanical effectiveness (ME), as a measure for the effectiveness 

of force application, was defined as: 

ME = Ft / Ftot ×100  (%) 

Veeger et al. (2002) use the term fraction effective force (FEF) when describing the 

force direction. The FEF is defined as: 

FEF= Fm×|Ftot|
−1×100  (%)  

where Fm is the tangential force component and |Ftot| is the magnitude of the 

propulsion force. FES is a slightly different definition for the ME than the one used 

here. 

 
1.1.4.2 Methods for measurement of muscular activity 

The activation pattern of the upper extremity muscles allows the force production 

during wheelchair propulsion. With a complete understanding of the muscle 

activation patterns, physiotherapists and wheelchair athletes can focus on a 

particular phase of the pushing action to train a particular muscle group. Furthermore, 

it has been shown that specific patterns of muscle activation during wheelchair 

propulsion can influence cardiovascular and metabolite responses during propulsion 

(Vanlandewijck et al., 1994; Schantz et al., 1999). Therefore, to improve rehabilitation 

protocols and wheeling performance it is of primary importance to have a complete 

knowledge of the activation patterns of the upper extremity muscles during 

wheelchair propulsion.  
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Several different methods are now used within ergonomic science to measure 

muscular activities during a work task. Two of them are electromyography and 

mechanomyography. Among other methods available are, e.g., blood flow changes 

or tendon forces. These techniques are however not applicable for detection of motor 

unit recruiment patterns and will not be further discussed here. 

 

Surface electromyography 

The majority of EMG studies concerning wheelchair propulsion have been published 

since 1989 (29 out of 129 found in Pubmed with ‘‘wheelchair”and ‘‘EMG”). This can 

be explained by recent advances in technology. Indeed, new EMG acquisition 

systems permit easy recordings of high quality surface EMG in several muscles (up 

to 16) during unrestricted movements, even in natural situations (and with wireless 

electrodes for very recent systems). In addition, advances in the development and 

application of signal processing technology to the study of the EMG signals emitted 

by active muscle now make it possible to determine which types of muscle fibre are 

active during locomotion. It is postulated that direct EMG measurements (i.e. direct 

biofeedback) would be useful (and easily used by clinicians and wheelchair users) for 

improving the activation patterns of the upper extremity muscles and thus, for 

improving rehabilitation / training programs (Mulroy et al., 1996).  

 

In 1792, Luigi Galvani published his findings that electricity could initiate muscle 

contractions. Since then, physiologists have known and acted on Galvani’s revelation 

that skeletal muscles contract when stimulated electrically and, conversely, that an 

electric current is detectable when they contract (De Luca, 1997). The extraction of 

information from the electrical signal generated by the activated muscles 

(electromyography; EMG) has been regarded as an easy way to gain access to 

physiological processes that cause the muscle to generate force, produce movement 

and accomplish functional tasks. EMG can be recorded invasively, by wires or 

needles inserted directly into the muscle, or non-invasively, by recording electrodes 

placed over the skin surface overlying the investigated muscle. An indwelling method, 

where the EMG signal is obtained by using a monopolar (i.e. only one) intramuscular 

electrode with a large contact area and a surface reference electrode, is common for 

more deeply located muscles. For the detection of activity in smaller parts of the 

muscle, bipolar indwelling configurations are often used. Bipolar configurations with 

surface EMG (SEMG) electrodes are used to record the electrical signals from larger 
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parts of superficially situated muscles. Therefore, a surface electrode may be used to 

monitor the general picture of muscle activation, as opposed to the activity of only a 

few fibres as observed when using an inserted wire. Fine wire EMG recording 

provides a more exact representation and finer resolution of the electrical activity of 

the muscle fibers than that possible with SEMG. This is because the SEMG signal is 

a result of the summation of nonsynchronous action potentials of a large number of 

muscle fibers that have been nonlinearly attenuated by body tissue due to the 

frequency - dependent electrical properties of the tissues (De Luca, 1997). There are 

several pros and cons for selecting SEMG over indwelling electromyography. The 

most compelling is the inherent risk and discomfort to the patient associated with an 

invasive procedure. Generally these types of procedures are performed in 

specialized clinics, hospital centres and experienced / qualified labs. Due to time 

constrains, associated risks and inexperience, indwelling electromyography is 

seldom used in clinical rehabilitation practice, i,e. by physiotherapists or allied 

professionals. In addition, fine wire electrodes measurement for intense functional 

activities, such as wheelchair propulsion also carry a significant risk of wire breakage, 

a particularly unacceptable risk for disabled participants who rely upon their 

shoulders for mobility or activities of daily living. Therefore, SEMG is at present the 

most established and suitable technique for recording overall muscle activity during 

wheelchair propulsion and was therefore chosen for this thesis.  

 

However, it has many limitations which must be taken into consideration for a proper 

interpretation. The main physiological factors that influence the surface EMG are 

fibre membrane properties (e.g. muscle fibre conduction velocity) and motor unit 

properties (e.g. firing rates). Crosstalk and movement artefacts are considered as 

non-physiological factors which can also influence the EMG signal. The movement 

artefacts can be reduced by wavelet analysis (wavelet 1and 2, details in Chapter 5) 

and by careful anchoring of all the cables. On the other hand, the double differential 

electrode configuration can remove the crosstalk originated from deeper muscles. 

Recommendations for correct electrode placement over the intended muscle have 

been provided by SENIAM concerted action (Hermens et al., 2000).  

 

The pattern of muscle activation during a specific movement, or during rhythmic 

movement such as wheelchair propulsion, can be analyzed in terms of activity level 

and/or activation timing. With more advanced time-frequency analysis, the spectral 

characteristics of the EMG can reflect motor unit recruitment patterns with specific 

posture and timing during locomotion. 
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� EMG amplitude 

It is well established that the amplitude of the EMG signal is stochastic (random) in 

nature and can be reasonably represented by a Gaussian distribution function. The 

amplitude of the signal can range from 0 to 10 mV (peak-to-peak) or 0 to 1.5 mV 

(rms).  

 
It is generally accepted that EMG intensity provides a reliable estimate of the volume 

of recruited muscle, if not necessarily of the developed force. Previous studies 

reported a strong correlation between EMG and force in human subjects during static 

contractions and across locomotion speeds (Kyrolainen et al., 2005; Yokozawa et al., 

2007). The muscle activity level during wheelchair propulsion is generally quantified 

with the root mean square value (RMS) of the EMG signals (Mulroy et al., 1996). In 

order to compare the muscle activity between different muscles and subjects, many 

researchers use and recommend an EMG normalization (Dubowsky et al., 2009). In 

most cases, EMG activity recorded during a test situation is expressed relative to one 

previously recorded during a brief (i.e. less than 5 s) isometric maximal voluntary 

contraction (Mulroy et al., 1996; Dubowsky et al., 2009) . The RMS is used to 

determine the activation timing of the muscle under investigation. In general it is 

believed that high frequency components predominantly result from high conduction 

velocities (Lindstrom and Magnusson, 1977; Solomonow et al., 1990). However, the 

amplitude as such does not indicate whether and to what extent it resulted from high 

or low frequency components of the EMG. 

 

� EMG timing 

Muscle activation timing is generally studied from a representative EMG profile 

obtained by averaging various consecutive cycles and by smoothing. Timing to 

define when a muscle becomes active is important information when studying human 

movements. Timing parameters generally determined from this EMG profile include 

signal onset and cessation times that identify the duration of EMG bursts (Mulroy et 

al., 1996; Dubowsky et al., 2009). Usually, an EMG threshold value (fixed at 15–25% 

of the peak EMG recorded during the cycle) is chosen for onset and cessation 

detection. Up to this point, timing measurements had not incorporated spectral 

information. Therefore, the onset of muscle activation based on the frequency 

components had not been discriminated in classical EMG analysis. However, 

wavelet-based analysis was able to show that the onset of higher frequency 

components occurred at different joint angles during a cycling movement (von 
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Tscharner, 2000). Therefore, in this dissertation, detecting a kinetic signal for contact 

with the pushrim synchronized with EMG measurements permits the display EMG 

profiles as a function of time expressed in percentage of the total duration of the 

complete cycle with respect to the onset of higher frequency components occurred at 

different phase. This would help us to investigate the type of muscle fibres recruited 

in specific phases of the wheelchair propulsion. 

 

The use of EMG to estimate the timing of muscle contraction is complicated by 

electromechanical delay, the time lag between electrical and mechanical activity of a 

muscle (Conforto et al., 2006). This delay in electromechanical coupling has been 

stated to be between 30 and 100 ms (Cavanagh and Komi, 1979). Gabaldon et al 

(2008) measured the relaxation electromechanical delay (r-EMD) in the turkey lateral 

gastrocnemius (LG) over a range of running speed (2 - 4 ms-1) and suggested that 

for a given muscle EMG timing variables can be constant over a relatively wide range 

of activities (Gabaldon et al., 2008).  

 

� EMG frequency and conduction velocity 

The usable energy of the EMG signal is limited to the 0 to 500 Hz frequency range, 

with the dominant energy being in the 50-150 Hz range. Usable signals are those 

with energy above the electrical noise level.  

 

Spectral analyses provide information that is closely associated with the conduction 

velocity of the muscle fibers and the shape of the motor unit action potential  

(Lindstrom and Magnusson, 1977; Masuda et al., 1999; Gerdle et al., 2000). Spectral 

analysis of surface EMG signals has been used to study muscle fatigue (Merletti et 

al., 1990) and to infer changes in MU recruitment (Solomonow et al., 1990; Bernardi 

et al., 1999; Wakeling, 2009b). Time–frequency analysis has been used to identify 

exercise-induced changes in the EMG signal (Bonato et al., 2001; Bonato et al., 

2003), as well as to investigate the type of MUs recruited in specific phases of the 

movement (Wakeling, 2004, , 2009a). The rationale for these applications is that 

muscle fiber diameter, and hence conduction velocities of MUs, vary systematically 

with MU type  (Lago and Jones, 1977). High - and low-frequency EMG spectra that 

have similar spectral power indicate the activity of faster and slower motor units, 

respectively. 

 

� EMG spectral characteristics and muscle fibre type 
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Recently, advances in the development and application of signal processing 

technology to the study of the electrical signals emitted by active muscle now make it 

possible to determine which types of muscle fibre are active during locomotion. The 

studies by Wakeling et al. (Wakeling et al., 2002; Wakeling and Syme, 2002) have 

shown that the spectral properties of EMG signals generated by the contracting 

muscle can be used to distinguish the activity of different types of motor units using a 

combination of wavelet decomposition and principal component analysis of the 

spectra (Wakeling and Rozitis, 2004). Their results have shown that a mechanical 

link exists between the contraction speeds of the muscle fibres and recruitment 

patterns of those fibres: in particular it has been demonstrated that the preferential 

recruitment of faster muscle fibres occurs with faster muscle strain rates when 

pedaling on a stationary bicycle (Wakeling et al., 2006). These exercise regimes 

could be used to train the faster fibres with high-speed but low intensity exercise and 

this may open up opportunities for preventative as well as rehabilitative therapy for 

muscle atrophy. Faster muscle fibre types can atrophy during disease and ageing 

and lead to loss of muscle quality and performance. The long-term goal of this 

research is to identify specific activities that promote the use and development of 

faster fibre types in order to prevent and treat such atrophy.  

 

� Muscle fatigue 

The repetitive nature of manual wheelchair propulsion places muscles that are more 

intensely active at a higher risk of fatigue. Muscular fatigue had been defined as the 

‘‘failure to maintain the force output, leading to a reduced performance”(Asmussen, 

1979). In this view, fatigue occurs suddenly at the point of task failure, but the 

maximal force-generating capacity of muscles starts to decline progressively during 

exercise so that fatigue really begins before the muscles fail to performed the 

required task (Gandevia, 2001). Hence, a more realistic definition of fatigue is ‘‘any 

exercise-induced reduction in the ability to exert muscle force or power, regardless of 

whether or not the task can be sustained”(Bigland-Ritchie and Woods, 1984). The 

evolution of fatigue may be fast or slow, depending on effort, and will lead sooner or 

later to mechanically detectable changes of performance. Many factors that 

contribute to this evolution affect the surface EMG (SEMG) signal and can be 

detected through it. 

 

Undetected fatigue can cause injury - often irreversible - to wheelchair users. The 

long-term use of a wheelchair and its consequences on the musculoskeletal system 
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has become an important issue in manual wheelchair research. The consequences 

of fatigue occurring during wheelchair propulsion are of particular concern because 

propulsion in and of itself is a demanding activity involving repetitive loading of the 

upper extremities through a precarious range of motion (Rodgers et al., 1994). The 

ability to measure shoulder muscle fatigue can enhance the understanding of 

shoulder muscle function and potentially provide a tool for fatigue assessment and 

strength training for wheelchair users.  

 

EMG is a useful and reliable method to evaluate muscle fatigue. Changes during 

muscle fatigue have been successfully evaluated by EMG parameters such as 

median frequency (MDF), mean power frequency (MPF) and root mean square 

(RMS)(Petrofsky and Lind, 1980; Stulen and De Luca, 1982), an example being, a 

decrease in frequency and MDF as well as an increase in RMS due to low-force load 

on the upper trapezius muscle (Mamaghani et al., 2002).  

 

In the recent past, time-scale methods (wavelet transform) have been used for the 

analysis of nonstationary signals. The “wavelet function” is both dilated and 

translated in time undertaking a two-dimensional cross correlation with the time 

domain SEMG signal. This method can be seen as a mathematical microscope that 

provides a tool to detect and characterize a short time component within a 

nonstationary signal. It is a technique that provides information related to the time-

frequency variation of the signal. In the past, the authors have successfully used 

WTs and neural networks to classify the SEMG for fatigue (Kumar and Pah, 2000). In 

this thesis, a wavelet analysis that is well-defined in time and frequency resolution, 

with the non-linear scaling adjusted to the physiological response time of the muscle, 

was used to decompose non-stationary EMG signals during wheelchair propulsion.  

 

Mechanomyography  

When a muscle contracts, the skin surface close to the muscle comes into vibration. 

It is believed that it is excited by slow bulk movements of the muscle, vibrations at the 

muscle’s eigenfrequency (Barry, 1987; Frangioni et al., 1987) and pressure waves 

caused by muscle fibre dimensional changes (Orizio 1993). The muscle contraction 

can thereby be detected via this vibration by mounting accelerometers or 

microphones on the skin surface. This measurement technique is called 

mechanomyography (MMG). The MMG is currently not as widely used as EMG in 

ergonomic sciences. Recent studies have shown that MMG may be useful as a 

complement to EMG for e.g. detection of the mechanical activity of the muscle and 
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muscle fatigue (Madeleine et al. 2001, 2002). Nevertheless, in terms of detecting MU 

firing patterns, EMG so far shows an advantage over MMG owing to the relative 

simplicity of mounting electrodes intramuscularly and thereby achieving a high spatial 

resolution of the signals.  

 

In contrast to the large body of literature devoted to the investigations of EMG 

regarding the muscle activation patterns, few studies have been done on the MMG 

as a function of muscle activation. With this in mind, one of the purposes of this 

thesis was to investigate the muscle activation pattern during wheelchair propulsion 

by using MMG. 

 

The muscles of the body are continually contracting and relaxing. During contraction, 

they generate sounds. Under ordinary conditions these sounds are not heard, but if 

you place both thumbs in your ears and make a fist, you will hear a low rumble. In 

1810, the British physicist, physician and chemist, William Hyde Wollaston, 

compared the muscle sounds to the distant rumble of carriages over the cobblestone 

streets of London. He calculated the muscle sounds to be about 25 Hz, which is at 

the lower limit of human hearing (Barry, 1990). However, the exact origin(s) of the 

sound was not clearly understood, and research in the area was limited primarily by 

the inability to adequately detect the signal and describe its properties (Beck et al., 

2005c). The advent of electronic sensors (hydrophones, condenser microphones, 

piezoelectric contact sensors, and accelerometers) and digital computers in the early 

1980s greatly improved the ability to record, quantify, and process the muscle sound 

signal (Orizio et al., 2003), and a number of studies were conducted to examine the 

characteristics of the sound waves produced by different muscles under a variety of 

conditions. Piezoeelectric contact sensors (Orizio et al., 1990; Barry, 1991), 

condenser microphones (Bolton et al., 1989; Maton et al., 1990; Stokes and Dalton, 

1991b), and accelerometers (Barry, 1992; Orizio et al., 1996) have been widely used 

to detect MMG. The detection and measurement of the sound waves has been 

referred to variously as accerlerometermyography,  muscle sound (Oster and Jaffe, 

1980), acoustic myography (Barry et al., 1985), soundmyography (Orizio et al., 1989), 

vibromyography (Keidel and Keidel, 1989), and phonomyography (Neri, 1955). 

Eventually, the term ‘‘mechanomyography’’ (MMG) was adopted to adequately 

describe the mechanical nature of muscle sound and avoid confusion regarding the 

transducers used to detect it. Although the waveform of the MMG signal is dependent 

on the type of sensor used to detect it (Orizio, 1993), Orizio et al (2003) have 

suggested that its pattern is similar to the small oscillations in force that occur during 
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an isometric muscle action (Orizio et al., 2003). However, it has been shown that the 

characteristics of MMG signals recorded with microphones and accelerometers have 

important differences, which should be taken into account when comparing results 

from different studies (Barry, 1992; Beck et al., 2006a). 

 

� MMG amplitude 

Investigations of MMG muscle sounds have shown that the MMG is useful as a 

noninvasive technique to quantify muscle force development in humans (Esposito et 

al., 1998; Ebersole et al., 1999; Orizio et al., 1999a). A relationship was observed 

between muscle force and MMG amplitude during isometric, eccentric, concentric, 

and dynamic contractions. MMG amplitude increased from the 20% to 80% of a 

maximum voluntary contraction (MVC) during isometric contractions, but decreased 

at higher force level due to the fusion of motor units in biceps brachii (BB) (Orizio et 

al., 2003; Nonaka et al., 2006; Ryan et al., 2008). MMG amplitude increases with 

force production during concentric and eccentric muscle actions (Evetovich et al., 

1998; Madeleine et al., 2001; Coburn et al., 2004a), as well as with increases in 

power output during incremental cycle ergometry (Stout et al., 1997; Housh et al., 

2000; Perry et al., 2001a; Perry et al., 2001c; Perry et al., 2001b). These responses 

suggest that MMG may provide information regarding the level of muscle activity that 

is required to perform an exercise task (Smith et al., 1998).  

 

� MMG frequency and motor units firing rate  

Muscles that are composed of a large percentage of fast-twitch fibres typically 

demonstrate higher values for MMG mean power frequency (MPF) or peak frequency 

than those that consist primarily of slow-twitch fibres (Akataki et al., 2002).Orizio 

(1993) suggested that recruitment of fast-twitch muscle fibers with short contraction 

times could result in ‘‘. . .shorter MUSS [motor unit sound spikes],’’ that would 

increase MMG frequency (Orizio, 1993). In addition, several studies have examined 

the power spectra of MMG and suggested the MMG power density spectrum may 

contain information regarding the global firing rates and contractile properties of the 

unfused activated motor units (Orizio et al., 2003; Beck et al., 2006b; Beck et al., 

2007a). Specifically, increases in the firing rates of individual motor units may result 

in an increase in the global motor unit firing rate, thereby resulting in a higher 

frequency MMG signal (Akataki et al., 2003). Furthermore, increases in the firing 

rates of individual motor units may result in an increase in the global motor unit firing 

rate, thereby resulting in a higher frequency MMG signal (Akataki et al., 2003).   
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In contrast to the large body of literature devoted to the investigations of EMG 

regarding the muscle activation patterns, few studies have been done on the MMG 

as a function of muscle activation. With this in mind, one of the purposes of this 

thesis was to investigate the muscle activation pattern during wheelchair propulsion 

by using MMG.  

 

� Simultaneous recording of sEMG and MMG  

Simultaneous recording of sEMG and MMG can be aimed at many different 

objectives, such as the analysis of the force – EMG / MMG relationship in isometric, 

eccentric and concentric contractions (Dalton and Stokes, 1991; Stokes and Dalton, 

1991a; Madeleine et al., 2001); the motor unit recruitment patterns during various 

contractions (Esposito et al., 1998; Akataki et al., 2004; Kimura et al., 2004; Beck et 

al., 2006b; Coburn et al., 2006), identification of muscle degeneration or abnormal 

behaviour (Barry et al., 1990; Orizio et al., 1997; Hu et al., 2007), and muscle fatigue 

(Orizio et al., 1999b; Weir et al., 2000; Tarata, 2003; Jaskolski et al., 2007; 

Kawczynski et al., 2007).  

 

Traditionally, EMG and MMG signals were analyzed by Fourier-based procedures, 

which requires stationary (or at least quasi-stationary) signals in order to extract 

meaningful frequency information from the power spectrum (Bonato, 2001). In most 

of these applications the signal recording conditions can be controlled quite carefully. 

An isometric condition is generally required to avoid motion artefacts, to insure that 

the recording is made from a pre-defined portion of the muscle and to guarantee that 

the signal remain stationary. An isometric ramp muscle action, on the other hand, is a 

single, nonstationary linear increase in force over a short period. Isometric step 

muscle actions are performed with discrete, stationary contractions held for 4–6 s at 

targeted percentages of the MVC. Akataki et al. (2001) and Orizio et al. (2003) have 

suggested that ramp muscle actions may provide higher resolution throughout the 

force spectrum, require less time for data acquisition, and reduce the susceptibility to 

fatigue.  

 

In dynamic contractions, signal properties may change at a much faster rate because 

of rapid recruitment and derecruitment of motor units and changes in joint angle. 

Measurement of muscle activation patterns during dynamic concentric and eccentric 

contractions is important for understanding the basic mechanisms underlying motor 
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control of limb movement, and is very useful for constructing models of the 

neuromuscular control systems (Stein et al., 1995; Rosen et al., 1999).  

 

Wavelet analyses allow the components of a non-stationary signal to be analyzed.  

A principal component analysis (PCA) analysis can consider the frequency 

components (wavelets) as variables, the analysis creates a set of “principal 

frequency components” that indicate those features of frequency components that 

best explain the experimental responses. It provides a quantitative method for 

identifying changes in the spectral properties.  

 

Therefore, the purpose of studying isometric, eccentric, and concentric contractions 

in this dissertatin was to:  

1) apply wavelet and principal component analysis to quantify the spectral 

properties of the surface EMG and MMG signals from biceps brachii isometric 

ramp and step muscle contractions. This allows to compare the recruitment 

patterns of ramp contractions with those of step contractions.  

2) compare the motor unit recruitment patterns during isometric ramp and step 

muscle contractions by using EMG and MMG of the biceps brachii;  

3) describe and examine the variations in muscle activation throughout a range 

of joint motion during eccentric and concentric contractions against constant 

external loadings. 

These studies would provide support for the more complex wheelchair propulsion 

tasks, which involved isometric, eccentric and concentric contractions. 

 

1.1.4.3 Other technologies used in the study of wheelchair propulsion  

In this thesis, the focus was on the shoulder muscle recruitment patterns during 

wheelchair propulsion examined by EMG and SmartWheel. However, developments 

in computer technology human movement sciences, biology, engineering and 

electronics have resulted in the interdisciplinary field of biomechanics, which has 

advanced the design and availability of precise and fast measurement technologies 

in wheelchair propulsion studies (van der Woude et al., 2006).  

 

Several researchers have recorded shoulder movement patterns during propulsion 

for various groups of wheelchair users. Many of the earlier studies presented a two-

dimensional (2D) analysis of shoulder kinematics (Sanderson and Sommer, 1985; 

Bednarczyk and Sanderson, 1994), whereas more recently, three-dimensional (3D) 

analyses have been performed with axial rotation as a third articulation of the 
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humerus (Rao et al., 1996; Boninger et al., 1998; Davis et al., 1998). These studies 

have documented that during the propulsion phase of the cycle, the shoulder exhibits 

internal rotation, abduction, and flexion and extension. In addition, movement 

patterns vary depending on wheelchair type, level of injury, and speed (Newsam et 

al., 1999; Morrow et al., 2003). An investigation by Kulig et al., (1998) which focused 

on shoulder joint kinetics and kinematics during the push phase of wheelchair 

propulsion, concluded that to determine the true demands on the shoulder during 

wheelchair propulsion, the effects of kinematics, kinetics, and EMG need to be 

considered together. While there have been multiple studies that compare a 

combination of participant kinematics, kinetics, and electromyography, all three 

parameters together should be combined in the future study. 

 
Apart from the common use of questionnaires for (in-) activity and lifestyle research, 

the use of small computer-based activity sensors has recently allowed research to 

enter into activity monitoring as well as into the fields of (Steele et al., 2003; Haeuber 

et al., 2004). Accelerometer monitoring of home- and community-based ambulatory 

activity during and after rehabilitation allow to study quantity of movement (Walker et 

al., 1997; Motl et al., 2006; Maccioni et al., 2007; Giansanti et al., 2008; Harris et al., 

2009), thus opening ways to stimulate and advise on activity and lifestyle. Only few 

physical activity questionnaires are available for specific use in rehabilitation 

populations (van der Ploeg et al., 2004), while the sensor-based techniques require 

elaborate validation and reliability research for different subpopulations in 

rehabilitation.  

 

Much work still has to be done to further help improve mobility in both sedentary and 

athletic lower-limb disabled individuals, but different elements for a research agenda 

on rehabilitation technology and patient-related (experimental and prospective) 

research are suggested (van der Woude et al., 2006). 

 

1.2 Research Aims 

A physically active lifestyle—including sports—during and after rehabilitation is 

becoming an increasingly important issue on the rehabilitation research agenda 

(Cooper et al., 1999; Rimmer and Braddock, 2002). Understanding the underlying 

mechanisms and processes of adaptation and/or the compensation of function and 

functioning is the core of rehabilitation research: ‘To restore function and functionality, 

and to stimulate optimal activity and participation’, is the multi-causal and multi-

layered rehabilitation paradigm underlying research(van der Woude et al., 2006). 
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Therefore, to improve rehabilitation protocols and wheelchair propulsion performance 

it is of primary importance to have a complete knowledge of the activation pattern of 

shoulder muscles during wheelchair propulsion. The overall purpose of this thesis 

was to investigate the shoulder muscle recruitment patterns and wheelchair kinetics 

over a range of daily activities and mobility tasks requiring manual wheelchair 

propulsion. With a complete understanding of the muscle recruitment patterns during 

wheelchair propulsion and wheelchair biomechanics, physiotherapists and 

wheelchair users can improve wheelchair propulsion skills to prevent shoulder 

injuries and maintain comfort during locomotion. This information would also be 

useful for developing the strength training and rehabilitation programs for wheelchair 

users.  

 

1.2.1 The specific aims 

1. Isometric, eccentric and concentric contractions 

Hypothesis:   

� if the observation holds true for humans that higher and lower EMG and 

MMG frequencies are generated by faster and slower muscle fibre types it 

should be expected that the EMG and MMG signals during a ramp and step 

isometric and eccentric-concentric contractions would contain sequentially 

higher frequency components as the faster motor units become recruited.  

� EMG and MMG spetrum may contain different information regarding motor 

unit recruitment pattern during isometric, eccentric, and concentric 

contractions 

 

2. To investigate how the semicircular propulsion pattern affects muscle recruitment 

patterns and wheelchair kinetics compared to a self-selected stroke pattern 

during the initial learning stage of wheelchair propulsion. 

Hypothesis:  a short session of instruction in the proper wheelchair propulsion 

technique could result in biomechanically more economical wheelchair propulsion 

and a better coordinated muscle recruitment pattern of the shoulder muscles. 

 

3. To investigate the shoulder muscle recruitment patterns from unimpaired 

individuals during wheelchair propulsion under various propulsion conditions.  

Hypothesis: the motor unit recruitment patterns within individual muscles and 

between synergistic muscles would change with different propulsion conditions.  

 



 39

4. To investigate the effect of mild fatigue on changes in motor unit recruitment 

within individual shoulder muscles and in the coordination of shoulder muscles as 

well as in wheelchair kinetics.   

 Hypothesis:  the wavelet analysis combined with principal analysis is sensitive to the 

muscle fatigue during fatiging wheelchair propulsion.  

 
1.2.2 Research protocol 

1.2.2.1 Recruitment of participants 

The study of wheelchair propulsion is complicated by the strong variability in 

functionality among the disabled population. Attempts to study muscle activation in 

wheelchair users would likely result in large inconsistencies in activation patterns.  

 

To initially overcome the inherent problem of the considerable heterogeneity of 

wheelchair users, it seems appropriate to study non-wheelchair users first, since they 

will be equally well trained or untrained for all tested conditions and obviously will 

physically be quite homogeneous(van der Woude et al., 2001). Although the results 

may not be completely transferable to people with SCI (Brown et al., 1990; Kamper 

et al., 2000; Hintzy et al., 2002), the recruitment of able-bodied participants is a 

useful beginning strategy for further clinical study (de Groot et al., 2003; Roux et al., 

2006). The information that can be gathered from this study is a starting point for 

developing a future shoulder muscle recruiment pattern for wheelchair users with 

spinal cord injury.  

 

In order to ascertain an appropriate sample size for this thesis a power analysis was 

performed. This was based on a study conducted by Kabada et al, in which they 

looked at the repeatability of electromyographic data from 10 muscles from both the 

upper and lower extremity (Kadaba et al. 1989). The mean coefficient of multiple 

correlation (0.8448) and standard deviation (0.0645) were used with an anticipated 

effect size of 10% (0.76032).  To calculate the sample size the comparison of 2 

means formula was utilized, with a power of 90% and a significance level of 5%. This 

yielded a value of 12.24 and hence 15 participants will be required for the study.  

Inclusion criteria: 

� Participants will be able-bodied participants. 

� Approximately equal number of male and females participants will be 

recruited 

� The age-range of the participants will be 18-40 years of age 

� For this study no attempt is made to represent the demographic composition 
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of specific patients groups for which these techniques might be applied in due 

course.  If these techniques prove effective in the convenience sample 

proposed, a more extensive study will be undertaken to include people with 

disabilities and over a representative age range. 

Exclusion criteria: 

� Neuromuscular condition e.g. multiple sclerosis, motor neuron disease 

� Pre-existing injury or pain during exertion in upper extremities by using PAR-

Q questionnair 

� Prescribed drugs for neuro-musculoskeletal pain or which have related side-

effects 

 

1.2.2.2 Choice of muscle region 

The most common shoulder problem after a spinal cord injury is shoulder bursitis, 

also known as impingement syndrome. Neer (1972) described the impingement 

syndrome as compromise of the space between the humeral head and the 

coracoacromial arch (Neer, 1972). In the classic case, the coracoacromial ligament 

and the anterior inferior aspect of the acromion are compressed against the bursal 

side of the rotator cuff during forward flexion of the shoulder. There have been many 

studies aimed at investigating the shoulder muscles, including the rotator cuff, deltoid, 

and scapular muscles. 

 

In the present thesis, shoulder muscle activity was documented with surface EMG on 

anterior, middle, and posterior portions of the deltoid (AD, MD, PD), the pectoralis 

major (PM), upper trapezius (UT), and long heads of biceps brachii (BB) and triceps 

brachii (TB). 

 

The rotator cuff muscles are not located superficially, so surface EMG is not suitable 

to detect these muscles. Wired EMG on these muscles is recommended in future 

studies.  

 

1.2.2.3 Wheelchair protocol and configuration  

A rigid-frame, lightweight wheelchair (Quickie GP, Sunrise Medical, Longmont, CO, 

USA) was used through all the propulsion trials. The configuration of the wheelchair 

(seat cushion, seat height, and axle position, footrest height) was the same for each 

participant. The right side of the test wheelchair was instrumented with a SmartWheel. 

The resulting moment signals were synchronized with an EMG / MMG data 
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acquisition system and used to identify the timing of the push and recovery phase of 

the propulsion cycle (PC). A custom wheelchair ergometer served as the testing 

platform. It consisted of a supporting frame, a data acquisition system and split rollers 

that obligated the participant to propel each rear wheel separately. The rear wheels 

of the wheelchair were positioned on the ergometer’s rollers while the wheelchair 

was secured to the supporting frame of the ergometer (details in Chapter 2). Before 

data acquisition, participants were allowed to become familiar with the ergometer by 

propelling the test wheelchair for several minutes.  

 
Several studies have indicated that wheelchair configuration has a significant effect 

on wheelchair propulsion performance (Morrow et al., 2003; Cowan et al., 2009; Lin 

et al., 2009). Cowan’ study (2009) showed that the axle position relative to the 

shoulder is associated with significant differences in pushrim biomechanics. Hughes 

and associates’ (1992) tested the effect of seat position on wheelchair propulsion 

biomechanics. They found that biomechanics changed with seat position (Hughes et 

al., 1992). Lin et al (2009) found that users could produce greater propulsive moment 

at the position they preferred. Since the participants were inexperienced and able-

bodied in the present studies, these parameters were not controlled. In future studies, 

we would recommend testing of individuals with SCI in their own wheelchairs. 

Wheelchair user characteristics, such as height and years with SCI, or wheelchair 

setup would also be of concern. Kinematics should be involved in future studies to 

record the movement of the upper extremity.  

 

1.3 Thesis Structure 

This thesis comprises research that addresses each of these specific aims. A general 

introduction is presented in Chapter 1. Chapter 2 describes the instruments and 

methods. After a methodological explanation of EMG and MMG signal acquisition 

and processing, the study shows how shoulder muscle activity patterns respond to 

the demands of the different propulsion tasks. The specific aims of this thesis were 

addressed in Chapter 3-8, respectively. Chapter 3 applies the combined wavelet and 

principal component analysis (PCA) to well-controlled static contractions. Chapter 4 

applies the combined wavelet and principal component analysis to well-controlled 

dynamic eccentric-concentric contractions. Chapter 5 investigates the muscle 

recruitment patterns for different propulsion patterns. Chapter 6 applies combined 

wavelet and principal component analysis to 3 conditions of wheelchair propulsion: a 

slow speed (0.9 m/s), a fast speed (1.6 m/s) and a ramp (7 meters long, self-selected 

speed). Chapter 7 investigates the muscle recruitment patterns at two speeds by 
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using MMG. Chapter 8 examines the changes in surface EMG signals and kinetics 

associated with progression of mild fatigue at two speeds. The conclusions, 

limitations, and recommendations are summarized in Chapter 9.   
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Chapter Two: Methods and instruments 

2.1 Wheelchair ergometer 

2.1.1 Ergometer 

The ergometer used in this study consists of two independent, tubular steel rollers 
(diameter: 0.16meter; mass: 32.37kg), one for each wheel (Fig.2.1 and Fig.2.2). Two 
tachometers were mounted on the frame attached to the rollers. Contact between the 
roller and tachometer was maintained using a spring-loaded mount and a rubber 
roller (Fig.2.3).  

 

Figure 2.1. Wheelchair dynamometer with the platform removed to display the rollers 
and tachometer sensors. 

 

Figure 2.2. Wheelchair with SmartWheel attached to the wheelchair ergometer. 
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Figure 2.3. Roller and tachometer connection.  

 
2.1.2 Visual Speed feedback system 

In order to provide visual feedback to allow the person to propel the wheelchair at the 

required speed during a wheelchair propulsion test (Fig.2.4), an independent visual 

speed feedback system was developed and calibrated.  

 
Figure 2.4. Diagram of the ergometer and wheelchair.    

 

2.1.2.1 Speed Sensors 

Tachometer  

A D.C. tachometer generator, which converts rotational speed into an isolated analog 

voltage signal, used to measure the rollers’ rotation speed (Fig. 2.5).  

 

The wheelchair is propelled by the person sitting in it, who applies manual force to 

the wheel. Force is then transmitted by the wheel to the roller it sits on. The roller in 

turn imparts force to the wheel mounted on the tachometer shaft. The tachometer, 

which thus rotates at the same angular velocity as the wheelchair wheel, generates a 
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voltage in direct proportion to that angular velocity. Wheelchair angular speed is 

demonstrated in units of voltage. 

 
Figure 2.5. D.C.Tachometer and tachometer wheel.  

 
The wheelchair is propelled by the person sitting in it, who applies manual force to 

the wheel. Force is then transmitted by the wheel to the roller it sits on. The roller in 

turn imparts force to the wheel mounted on the tachometer shaft. The tachometer, 

which thus rotates at the same angular velocity as the wheelchair wheel, generates a 

voltage in direct proportion to that angular velocity. Wheelchair angular speed is 

demonstrated in units of voltage. 

 

Magnetic field sensor 

To measure linear speed and calibrate the reading of the tachometer voltage output, 

two magnetic field sources (magnets) were attached near the rim of the roller 

(Fig.2.6), so that the resolution could be counted with a magnetic field sensor. The 

magnetic field sensor was mounted on a stationary arm close to the rim of the roller 

(Fig. 2.7). As the magnets rotate past the sensor, the occurring electric spikes were 

recorded. The distance between two magnets is known, and the travel time between 

two magnets was calculated by peak to peak pulse with known a sampling rate. So 

the linear speed was calculated by:  

 
V = d / t     
 
d is the distance between the two magnets 
t is the travel time between the two magnets.  
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Figure 2.6. Two magnets are attached on surface of the roller. The distance between 
the two magnets is 10cm (left). A pulse is generated when the magnet is passing by the 
magnetic field sensor (right).  

 

  
Figure 2.7. The magnetic field sensor is taped on the bar that is mounted flush against 
the roller 

 

2.1.2.2 Data acquisition  

The output wires of the tachometer and magnetic field sensor were connected to a 

12-bit Analog to Digital Converter (PCI ST300, Data translation, UK). The data 

acquisition was carried out in LabVIEW (National Instruments). The tachometer and 

magnet data were sampled at 500 Hz. The configuration of the program is shown in 

Fig.2.8.  
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Figure 2.8.  Front panel of LabVIEW program used to record the signals from magnetic 
field sensor and tachometer. A single ended channel was use, and the sampling rate 
was 500Hz per channel.  

 
2.1.2.3 Protocol 

The deceleration or "coast-down" test was done manually accelerating the roll to a 

steady-state speed, and then removing the input while recording the speed as a 

function of time as the device decelerates to zero. Therefore, the rollers were 

animated up to a high velocity and then the system was allowed to decelerate to a 

complete standstill. During this period, the output voltage signal of the tachometer 

and  the output spike signal of the magnetic field sensor were recorded 

simultaneously (Fig.2.9).  
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Figure 2.9. The output voltage signal of the tachometer and the output spike signal of 

the magnetic field sensor were recorded simultaneously. 

 
Once the speed at a certain time had been calculated, we found the corresponding 

voltage. A linear regression line was calculated on the speed and voltage values (Fig. 

2.10).  
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Because of differences between the right and left side of the system, the roller speed 

was recorded separately for right and left. The velocity and voltage were used in 

conjunction with a linear regression analysis in order to determine the system 

parameters for the visual speed feedback.  

 

So the conversion of voltage and speed was based on:  

Y = mx + b        
  m – Scale 
  b – Offset  

  

y = 0.8086x + 0.0175

R2 = 0.9968
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Figure 2.10.The regression line of roller speed and tachometer voltage. Left roller (left), 
Right roller (right)  

 

According to rotational theory, if v represents the linear speed of a rotating object, r 

its radius and ω its angular velocity in units of radians per unit of time, then 

v = rω      

The linear speed of the roller is the same as that of the tachometer wheel.  Since the 

tachometer shaft is attached directly to the tachometer wheel, it rotates exactly as the 

tachometer wheel does: every full revolution of the tachometer wheel means a full 

revolution of the shaft. Since the output voltage is proportional to the angular speed 

of shaft, there also is a linear relationship between the linear speed of roller and the 

output voltage (Table 2.1).  

 

Table 2.1.  Rotational-Linear Parallels 

 Linear motion Rotational motion  
  S Arc length 

  rg Radius of gyration 
Position x θ Angular position 

Velocity v ω = v/rg Angular velocity 

Acceleration a or at (tangential 
acceleration) 

α = at/rg Angular 
acceleration 

Motion equations x = vt θ = ϖt Motion equations 
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 v = vo+at ω = ωo+ αt  

 x = vot + ½at2 θ = ωot + ½αt2  

 v2 = vo
2 + 2ax ω

2 = ωo
 2+ 2αθ  

Mass (linear 
inertia) 

M I Moment of inertia 

Newton’s 2nd law F = ma τ = Iα Newton’s 2nd law 

Momentum P = mv L = Iω Angular 
momentum 

Work Fd τθ Work 

Kinetic energy ½mv2 ½Iω2 Kinetic energy 

Power Fv τω Power 

 

The resulting speed, as recorded by the tachometer and then calibrated by linear 

regression analysis, was compared with the speed recorded by the SmartWheel to 

ensure the two recording systems matched each other (Fig. 2.11).  There was a 

close match for both measured speeds. 

 

The coefficients used to calculate the visual speed feedback: 

Left roller:  V * 0.81 + 0.0175  

Right roller: V * 0.76 + 0.0201 

    V - Voltage recorded by the tachometer.  
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Figure 2.11. Speed recorded by the tachometer (left) and the SmartWheel (right). 

 
Once the calibration coefficients were determined, A LabVIEW program was coded 

for providing the visual speed feedback.  



 50

 

Figure 2.12. A monitor with the LabVIEW program was set in front of the wheelchair to 
provide visual feedback. 

 
Braking force of roller at constant velocity with no added resistance 
 
F = ma 
 
From roller data 
 
Regression of speed m/s vs sample number = 0.0014 Left = 0.7m/s/s 
Regression of speed m/s vs sample number = 0.0006 Right = 0.30m/s/s 
 
 
F = 32.37 x 0.32 = 9.7N (Right) and 22.7N (Left) 
 
Total rolling resistance = 32.4N 

 

 

2.2 EMG data acquisition system 

In the study of muscle physiology, neural control of excitable muscle fibres is 

explained on the basis of the action potential mechanism. The electrical model for the 

motor action potential reveals how EMG signals provide us with a quantitative, 

reliable, and objective means of accessing muscular information. There are several 

commercially available EMG data acquisition systems. BagnoliTM is one of the widely 

used EMG measurement and data acquisition systems.  

In order to eliminate the potentially much greater noise signal from power line 

sources and crosstalk, double differential detecting surface electrodes were applied 

in the present study (BagnoliTM, Delsys Inc., Boston, MA, USA). The Double 

Differential Sensor contains three contacts, each separated by a distance of 10 mm. 

The sensor performs a two-stage subtraction: the first stage establishes the voltage 

between contact “V1” and contact “V2” as well as the voltage between contact “V2” 

and contact “V3” (Fig.2.13).  The second stage then performs the subtraction 

between these differences.  
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Figure 2.13. DE-3.1 EMG Sensor. The DE-3.1 Double Differential Sensor performs a two 
stage subtraction: the first stage establishes the differential voltages at the input; the 
second stage removes those components of the signals that are common. Sourced 
from BagnoliTM, Delsys Inc., http://www.delsys.com/KnowledgeCenter/FAQ.html 

 

The second differential subtraction will remove those signals which are common to all 

sensor contacts while propagating those signals that exhibit potential differences 

across the contacts.  EMG signals originating from muscles that are not immediately 

below the surface of the skin will have a larger latency than those immediately below 

the surface.  They will appear in a similar pattern in all bars, and will thus be 

subtracted from the final sensor measurement (Fig. 2.14).  

   

Figure 2.14. Removing EMG crosstalk: the signals originating from deep muscles, 
depicted by location "C" disperse as they travel to the skin surface and are detected by 
all sensor contacts. The signals originating from the fibers immediately below the skin 
surface (depicted by locations "A" and "B"), are only detected by the contact-pair 
directly above. The signal components originating from location "C" are common to all 
bars, and are removed in the double differential subtraction, while those components 
from locations "A" and "B " are preserved. The figure on the right side demonstrates 
the effectiveness of the DE-3.1 sensor in removing EMG crosstalk from flexor and 
extensor activity. Sourced from BagnoliTM, Delsys Inc., 
http://www.delsys.com/KnowledgeCenter/FAQ.html 

 
2.3 MMG data acquisition system  

2.3.1 MMG signal origin 

Although the physiological mechanism(s) that generate the MMG signal have not yet 

been thoroughly identified, the origins of the MMG signals have been suggested by 



 52

Barry and Cole (1990) and Orizio (1993) as: (a) the gross lateral movement of the 

muscle at the initiation of the muscle action (Fig. 2.15), (b) smaller subsequent lateral 

oscillations occurring at the resonant frequency of the muscle, and (c) dimensional 

changes of the active fibers (Barry and Cole, 1990; Orizio, 1993). It has been widely 

reported in the literature that these dimensional changes in the muscle result in not 

only a physical displacement of tissue, but also a mechanical oscillation of the 

muscle - tendon - adipose - skin complex with subsequent development of pressure 

waves from this oscillation (Orizio et al., 1996; Watakabe et al., 1998; Akataki et al., 

2001; Watakabe et al., 2001; Yoshitake et al., 2002; Cescon et al., 2004b). 

 

Figure 2.15. Schematic representation of the hypothesized MMG generation process 
(Barry and Cole, 1990). 

 

Muscle contraction produces tension at the tendon level because of changes in 

muscle fibre geometry related to sarcomere shortening. The dimensional changes of 

several active fibres, depending on the number of recruited motor units (MUs), are 

transmitted to the connective tissue leading to macroscopic changes in muscle 

thickness or muscle surface displacement (Orizio et al., 2003). It has been 

demonstrated that during an electrically-stimulated isometric twitch, isolated frog 

gastrocnemius muscle oscillates laterally in directions perpendicular to its long axis 

(Barry, 1987; Frangioni et al., 1987). The variations of the longitudinal or transverse 

dimensions have been sporadically regarded as a motor response of the muscle. The 

follow-up research indicated that the first oscillation was usually the largest in 

amplitude, followed by progressively smaller oscillations that occurred at the 

resonant frequencies of the muscle. 

 

Orizio et al. recorded the MMG and the force signal simultaneously during voluntary 

contraction of biceps brachii. The force output presented ripples which reflect the 

bulk movement of the muscle during the sustained effort.  Allum et al. (1978) and 

Homberg et al. (1986) suggested that the asynchronous activities of the recruited 

MUs could be summated in the force ripple and that the main information contained 
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in this signal could be related to the overall firing rate of the MUs (Allum et al., 1978; 

Homberg et al., 1986). The asynchronous motor unit activities generate pressure 

waves that contribute to the muscle surface oscillations underlying the MMG signal. It 

has been indeed demonstrated that the second derivative of the ripple of the force 

output compared with the MMG shows overlapping time and frequency domain 

properties (Fig.2.16). Therefore, this muscle surface ripple, independently from the 

transducer used to detect it, is termed as mechanomyography to reflect its 

mechanical origin compare to the electrical origin of electromyography.  

 

The surface MMG is generally considered a ‘‘compound’’ signal that is generated by 

many motor units. The mechanical activities of individual motor units are summated 

at the skin surface over the muscle detectable as MMG (Orizio et al., 1996). Recent 

studies demonstrated that individual motor units can be extracted from the MMG 

signal recorded during a voluntary isometric muscle action (Petitjean and Maton, 

1995; Cescon et al., 2004a). However, the contribution of each motor unit appears to 

be influenced by the degree to which its twitches are fused (Bichler, 2000; Bichler 

and Celichowski, 2001; Yoshitake et al., 2002). The fusion of motor units reduces the 

muscle fibers’ dimensional changes and the pressure waves towards the muscle 

surface, and in turn the muscle surface vibrations. It has been reported that no MMG 

signal is observed during a fully fused titanic contraction in rat (Bichler, 2000). 

Collectively, these findings have indicated that the MMG signal is generated by the 

mechanical activities of the unfused, activated motor units during voluntary muscle 

contractions, and, therefore, may contain information regarding motor control 

strategies (i.e. relative contributions of recruitment and firing rate) (Beck et al., 

2007a). 
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Figure 2.16. Voluntary isometric effort at 30% MVC. The EMG, force ripple and 
accelerometer output. These signals can be considered as the outcomes of the 
unfused mechanical activities of the recruited motor units.  

 

2.3.2 Selection of MMG transducers 

Piezoeelectric contact sensors (Orizio et al., 1990; Barry, 1991), condenser 

microphones (Bolton et al., 1989; Maton et al., 1990; Stokes and Dalton, 1991b), and 

accelerometers (Barry, 1992; Orizio et al., 1996) have been widely used to detect 

MMG. Condenser microphones acting as displacement meters are more often 

applied, but they require a coupling, for example, air or gel between the muscle and 

the microphone. The volume of the air chamber influences the amplitude and the 

frequency content of the recorded MMG signal (Watakabe et al., 2001). 

Accelerometers reflect the acceleration of body surface vibration, but measurement 

is complicated by the movement artifacts during dynamic contractions (Watakabe et 

al., 1998). Recently, laser displacement sensors have also been used, since they 

make it possible to study muscle dimensional changes without additional inertial load 

(Orizio et al., 2000; Orizio et al., 2008). 

 

As acknowledged by Orizio (1993), the most important characteristic of the sensor is 

its frequency response (Orizio, 1993). Specifically, Orizio recommended that the 

"...low frequency cut-off has to be around 1 to 2 Hz," and "the upper cut-off has to be 

chosen so that the greater part of the power is well below 100 Hz."  Another 

important characteristic is the mass of the sensor. Previous studies have indicated 
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that lightweight sensors might be more appropriate for detecting surface MMG. The 

light mass (12.5g) of the piezoelectric contact sensor used in the present studies has 

provided reliable signals. Several researcher recommended that when the contact 

pressure sensor is used to detect the MMG signal, the contact pressure must remain 

constant across trails (Bolton et al., 1989; Smith et al., 1997). In the present studies, 

a medical bandage was used to ensure consistent contact pressure. Furthermore, 

the MMG data have been normalized to allow for comparisons between different 

subjects.  

 

Piezo-electric transducers (Fig. 2.17) (23mm diameter, 12.5g weight, frequency 

range 2-2kHz, GRASS technologies, Rhode Island, USA,) were used in the present 

studies to measure the pressure waves generated during muscle contractions. A 

custom-built piezoelectric sensor signal conditioner was developed for signal 

detecting and collecting.  

 

Figure 2.17. A Piezoelectric transducer 

 

2.3.3 Piezoelectric sensor signal conditioner 

Piezo is from the Greek word piezein, meaning to press or squeeze. Piezoelectricity 

refers to the generation of electricity or of electric polarity in dielectric crystals 

subjected to mechanical stress and conversely, the generation of stress in such 

crystals subjected to an applied voltage. The basic theory behind piezoelectricity is 

based on the electrical dipole. At the molecular level, the structure of a piezoelectric 

material is typically an ionic bonded crystal. At rest, the dipoles formed by the 

positive and negative ions cancel each other due to the symmetry of the crystal 

structure, and an electric field is not seen. When stressed, the crystal deforms, 

symmetry is lost, and a net dipole moment is created. The dipole moment causes an 

electric field to be formed across the crystal. In this manner, the materials generate 

an electrical charge that is proportional to the pressure applied. 
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In this application the signals generated by the sensor are in the low frequency range 

of 2-100 Hz and therefore the capacitance of connectors and cables is relatively 

insignificant.  On the other hand the input impedance (principally resistance) of the 

measurement electronics can profoundly affect the performance of the sensors.  

These resistances produce the equivalent of a high-pass R-C filter (Fig. 2.18) and 

have the potential to eliminate lower frequency components of the signal. 

 

Figure 2. 18. Voltage mode amplifier circuit.  

 

To compensate for these effects a high impendence amplifier (Analog Device AD623) 

was used, presenting an input impedance of approximately 10GΩ to the sensor.  In 

this respect the amplifier approximates to a charge amplifier.  With the application of 

a pressure signal to the sensor a charge builds at the inputs and may saturate the 

amplifier. 

 

The introduction of resistance between the amplifier differential inputs and ground 

(Fig.2.18) provides the means to control the rate of discharge of the inputs and 

prevent movement artefacts from saturating the amplifier. Using trial and error, we 

found that 200Ω resistors at the input to the AD623 provided the optimum resistance 

to control movement artefacts saturation from typical muscle contractions (0-2 Hz).   

 

Caution should be exercised in connecting the piezo-electric sensor directly into an 

AD converter or other signal acquisition devices as its response will depend upon the 

input impedance (resistance) of the device, and major differences in performance as 

well as cross-talk effects may be observed. 

 

2.4 EMG and MMG measurement  

The components used in the data acquisition are as follows and can be seen in 

Fig.2.19: 

1. DE-3.1 eletrodes (BagnoliTM, Delsys Inc., Boston, MA, USA). 

2. 8-chanel EMG main amplifier (BagnoliTM, Delsys Inc., Boston, MA, USA). 

3. 8-chanel EMG input module (BagnoliTM, Delsys Inc., Boston, MA, USA). 
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4. Input module cable (7.5m long, BagnoliTM, Delsys Inc., Boston, MA, USA) 

5. Piezoelectric transducers (GRASS technologies, Rhode Island, USA))  

6. 4-channel MMG input module (custom built) 

7. Piezoelectric sensor signal conditioner (custom built, details in [Piezoelectric 

sensor signal conditioner] 

8. BNC Connection box (NI, type BNC-2111)  

9. BNC Connecting cables  

10. MMG extension cable (7.5m long) 

 

The EMG signal was amplified by an EMG amplifier (Gain 1000), low-pass filtered 

(20-500Hz), and sampled with a sampling frequency of 2000 Hz. While the MMG was 

amplified by custom-built MMG signal conditioner (Gain 1), and sampled at 2000Hz. 

A computer with a NI PCI-6221E 12-bit data acquisition card was use for data 

acquisition.  

 

Figure 2.19.  Main equipments for EMG and MMG measurement. 

 

In order to collect 16 channels of simultaneous EMGs and MMGs and view them in 

real time, a customized labVIEW data acquisition program was designed (Fig.2.20). 

This program enabled the continuous recording and visual inspection of each trial 

during testing sessions.  
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Figure 2.20.  Screen dump of measurement program. Channels 1 - 4 were used to 
collect MMG data, Channel 5-12 were used to collect EMG data. 

2.5 Signal processing 

Methods for processing EMG and MMG using time and frequency domain analysis 

have been established (De Luca, 1993; Orizio et al., 2003). Both time and frequency 

domain approaches (and a combination of the two) have been attempted in the past. 

Fourier transform (FFT) and short time Fourier transform (STFT) provide the SEMG 

spectrum and information related to muscle fatigue status, size of motor units, 

synchronous activity between motor units, and rate of stimulation of the muscle. The 

nondeterministic, nonstationary nature of the SEMG and MMG signals provides a 

challenge to the consideration of optimized transform domain signal processing. The 

STFT, with relatively short time windows can attempt to track spectral variations in 

time but it does not adopt an optimal time or frequency resolution for the 

nonstationary signal. In addition, the time frequency domain resolution tradeoff of a 

window is constrained by the Heisenberg uncertainty principle. 

 

Root mean squared (RMS) values are generally used in the time-domain, while 

Fourier-based procedures can be used for determining the frequency characteristics 

of EMG and MMG signals (Beck et al., 2005b). The Fourier transform is a powerful 

tool for processing stationary signals that are made up of some combination of sine 

and cosine signals. One of the limitations of this method is that the signal is assumed 

to be continuous with constant amplitude; therefore when these assumptions are not 

met there may be errors in the calculation of the frequency content. The Fourier 

transform is orthogonal, such that information is either contained in the frequency or 
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the time domain, therefore, when the signal is transformed into frequency domain, 

the time information is lost.  

 

The wavelet theory is a relatively recent mathematical development. Its application is 

a potentially promising and exciting area of research. Wavelet decomposition 

provides separation of time and frequency components. Successively higher-

frequency wavelets span successively smaller portions of the datastream, thus 

enabling variable amplification of a particular frequency band along the temporal axis. 

The wavelet's time-frequency resolution capability enables analysis of even very 

short, nonconstant signals, and is able to resolve discontinuities, spikes, or signals 

which vary in time-frequency content. 

 

In the present thesis, the intensity analysis of wavelets was similar but not equal to 

the multiresolution wavelet analysis. The wavelets were defined in frequency space, 

and wavelets in time space were obtained applying the inverse Fourier transform. 

The wavelets were functions of the frequency defined by the parameters, center 

frequency fc and scale. The characteristics of Wavelets analysis (von Tscharner, 

2000; Beck et al., 2008):  

1. Time-resolution was adjusted to a range appropriate to the time period of 

events in the EMG and MMG signals. 

2. The signal intensity calculated as a function of time closely approximated the 

power of the signal within a given frequency band. 

3. A Gauss filter with a width sufficiently large to eliminate oscillations presented 

in the processing methods but small enough not to alter significantly the time-

resolution used for further filtering. 

4. A compromise between time- and frequency-resolution was adopted by using 

a fine-tuning with a damping factor 

The intensity analysis involved three steps: 1) computing the wavelet-transformed 

EMG signal using a filter bank of wavelets that include the intensity and damping 

factors, 2) computing the intensity of the wavelet-transformed signal by adding its 

square and the square of its time derivative divided by the fc, and 3) applying a 

Gaussian filter to the wavelet-transformed signal. These wavelet analysis steps were 

presented in detail previously (von Tscharner, 2000; Wakeling et al., 2001; Wakeling 

et al., 2002; Beck et al., 2008).  

 

Custom programs (Mathematica 6.0, Wolfram Research, Inc., Champaign, IL, USA) 

were written for time-frequency analysis of the EMG and MMG signals to resolve 
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signal intensity into time and frequency space simultaneously. The wavelets were 

characterized by their center frequency (frequency where the power spectrum of the 

wavelet was maximal), the bandwidth of the filter (the width of the power spectrum of 

the wavelet at 1/e of its maximum) and the time resolution (the time of the wavelet’s 

intensity to decay to 1/e) (Table 3.1). For EMG signals, a filter bank of 16 non-linearly 

scaled wavelets was used, index by k, with center frequency, fc, ranging from 7 Hz 

(wavelet 0) to 804 Hz (wavelet 15). For MMG signals, a set of 10 nonlinearly scaled 

wavelets were used with center frequency, fc, ranging from 1.7Hz (wavelet 0) to 83Hz 

(wavelet 9). 

 

PCA is a powerful statistical method which may reduce the dimensionality of a large 

data set to a smaller more manageable form, leading to a better understanding of the 

data and drawing attention to important features in the data (Ramsay and Silverman, 

1997). A PCA analysis can consider the frequency components (wavelets) as 

variables, the analysis creates a set of “principal frequency components” that indicate 

those features of frequency components that best explain the experimental 

responses. It provides a quantitative method for identifying changes in the spectral 

properties. It can generate new hypotheses regarding the relationships between the 

variables and identify some variables as being redundant because they contribute 

little information, such as movement artifacts. PCA also identifies relationships 

between the variables which may help to understand the problem being investigated. 

Wavelet techniques combined with principal component analysis  has been 

successfully applied in a number of studies using of surface EMG collected in 

humans during ramp contractions of leg muscles (Wakeling and Rozitis, 2004; 

Wakeling et al., 2006), running (Wakeling, 2004), and walking(Wakeling et al., 2007). 

 

Principal component analysis (PCA) followed the techniques previously 

reported(Wakeling and Rozitis, 2004). The data set consists of a p x N matrix. Where 

p = wavelet domains and N =participants*trials.  A PCA was carried out on this 

dataset matrix using the customized written program in Mathematica. The principal 

components (PCs) were calculated from the covariance matrix of the dataset matrix 

with no prior subtraction of the mean data. So The PCs describe the components of 

the entire signal (Wakeling and Rozitis, 2004). The first principal component (PCI) 

accounts for as much of the variation in the original data as possible. Subsequent 

components are derived in decreasing order of importance: the second (PCII) 

accounts for as much of the remaining variation as possible and so on for the other 

components.  
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The principal component weighting is given by the eigenvector, and can be displayed 

graphically as a function of the centre frequencies of the corresponding wavelets. 

The principal component loading score is given by the eigenvalue, and is a scalar 

value that describes the amount of each eigenvector in each measured spectrum 

(Hodson-Tole and Wakeling, 2007). Each spectrum can be reconstructed by a linear 

combination of the principal component weightings and their loading scores, and the 

relative PCI and PCII loading scores give a measure of the frequency of the signal 

(Wakeling and Rozitis, 2004). PCI loading scores provide a good measure of the 

signal intensity. The results reported here show that PCI loading scores were highly 

correlated with the total intensity of EMG and MMG spectra and explained the 

majority of the signal in EMG and MMG. In the present thesis, θ is defined as the 

angle between PCI and PCII loading scores. It has been shown that the θ is very 

sensitive to the frequency shift that corresponds to spectral difference between types 

of MUs in both fine wire (Hodson-Tole and Wakeling, 2007) and surface EMG 

(Wakeling, 2004; Wakeling and Rozitis, 2004; Wakeling et al., 2006). It has been 

shown that a higher value of θ represents relatively more low frequency signal 

content and it can be associated with the recruitment of slower MUs (Wakeling, 

2009b). A smaller θ value, associated with relatively more high frequency content, 

can be associated with the recruitment of faster MUs.  
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Chapter Three: Spectral properties of Electromyographic 
and Mechanographic signals during isometric ramp and 

step contractions in biceps brachii 

3.1 Introduction 

Surface mechanomyography (MMG), the recording at the skin surface of the 

pressure waves from low frequency oscillations generated by active skeletal muscle 

fibers (Orizio, 1993; Orizio et al., 2003), is generally considered to be the 

“mechanical counterpart” of motor unit electrical activity measured by the surface 

electromyogram (EMG)(Barry and Cole, 1990; Orizio et al., 1999b). MMG has been 

used to study the mechanical activity of a contracting muscle, and the time and 

frequency domain parameters of the MMG reflect motor unit recruitment and firing 

rates, respectively (Orizio et al., 2003; Beck et al., 2005c; Beck et al., 2007a).   

 

Simultaneous measurements of MMG and EMG have been used to characterize the 

motor unit recruitment strategies that modulate muscle force production (Madeleine 

et al., 2001; Beck et al., 2005b, , 2006b; Shima et al., 2007). Methods for processing 

EMG and MMG using time and frequency domain analysis have been established 

(De Luca, 1993; Orizio et al., 2003).  Root mean squared values are generally used 

in the time-domain, while Fourier-based procedures can be used for determining the 

frequency characteristics of EMG and MMG signals (Beck et al., 2005b). The 

success of these techniques for extracting features during step isometric contractions 

provided initial insight into motor unit (MU) recruitment strategy and firing 

rate(Matheson et al., 1997; Ebersole et al., 1999; Madeleine et al., 2001; Coburn et 

al., 2004b). More recently, “ramp” isometric contractions have been utilized to 

investigate motor unit recruitment patterns by gradually increasing force over several 

seconds(Akataki et al., 2001, , 2003; Orizio et al., 2003; Akataki et al., 2004; Ryan et 

al., 2008). It has been suggested that ramp isometric contractions may follow the 

influence of motor unit recruitment strategies better than step contractions and are 

less affected by fatigue. However, it has been suggested that EMG and MMG signals 

analyzed with a Fourier transform must remain stationary in the time and frequency 

domains in order to extract meaningful frequency information from the power 

spectrum(Bonato, 2001).  Therefore, recent studies have used time-frequency 

methods, such as the wavelet transform to examine the frequency properties of non-

stationary EMG and MMG signals from isometric ramp contractions (Karlsson and 

Gerdle, 2001; Beck et al., 2005b). Wavelet transformation allows the representation 

of general functions in terms of simple blocks at different frequencies and times. In 
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this study, a wavelet analysis that is well-defined in time and frequency resolution, 

with the non-linear scaling adjusted to physiological response time of the muscle, 

was used to decompose non-stationary EMG and MMG signals from isometric ramp 

and step contractions (von Tscharner, 2000).  Principal component analysis (PCA) is 

a powerful technique that can identify changes in spectral properties (Ramsay and 

Silverman, 1997). A PCA analysis can consider the frequency components (wavelets) 

as variables, the analysis creates a set of “principal frequency components” that 

indicate those features of frequency components that best explain the experimental 

responses. It provides a quantitative method for identifying changes in the spectral 

properties. Wavelet techniques combined with principal component analysis  has 

been successfully applied in a number of studies using of surface EMG collected in 

humans during ramp contractions of leg muscles(Wakeling and Rozitis, 2004; 

Wakeling et al., 2006), running(Wakeling, 2004), and walking(Wakeling et al., 2007). 

However, to our knowledge, no previous studies have applied wavelet and principal 

component analysis to both ramp and step isometric contractions by using EMG and 

MMG simultaneously in biceps brachii. Therefore, the purpose of the present study 

was to: 1) apply wavelet and principal component analysis to quantify the spectral 

properties of the surface EMG and MMG signals from biceps brachii isometric ramp 

and step muscle contractions when it can be assumed that different motor units have 

been recruited; 2) compare the motor unit recruitment patterns during isometric ramp 

and step muscle contractions by using EMG and MMG of the biceps brachii. 

 

3.2 Materials and Methods 

3.2.1 Participants 

20 healthy participants (10 males and 10 females with a mean age of 34 ± 10.7) with 

no history of any neuromuscular disorder gave informed written consent to participate 

in the experiments.  The protocol and consent procedures were approved by the 

Royal National Orthopedic Hospital NHS Research Ethics Committee (Stanmore, 

UK). 

 

3.2.2 Protocol 

The participant sat in a chair with the non-dominant arm prepared for measurement. 

Before the test, several practice trials were performed so that the participant could 

become familiarized with the test procedure, particularly how to maintain the force 

level. A mechanical support was developed for the upper limb. This support was 

designed to be highly adjustable so that it could be correctly fitted to the dimensions 
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of each subject relative to the right shoulder articulation, when keeping 60 degree 

abduction (Fig. 3.1), and the forearm was parallel to the ground. Wrist force was 

measured with a force transducer (Model LCCB-1K, OMEGA Engineering, Stamford, 

CT, USA) and connected to a laptop computer(Dell Latitude D505, Dell Computers, 

Round Rock, USA) via a USB A/D converter sampling at 5kHz using VEE Pro 

(Version 6.0, Agilent Technologies, Santa Clara, California, USA). A graphical 

visualization of the force signal was provided to the participant as real-time feedback 

during the isometric contractions.  

 

Figure 3.1. Isometric MVC test setup. Electromyographic (EMG) and 
mechanomyographic (MMG) sensor were placed in the middle line of biceps brachii. A 
bandage was used to ensure constant pressure of the sensors over the muscle. 

 

Following warm-up, participants were asked to maintain maximal effort of isometric 

elbow flexion for approximately 3s. Force signals obtained at 100% MVC were used 

to normalize the contraction levels. Five different isometric contraction levels in 20% 

increments starting in order from 0% to 80% of the MVC level were performed with 

an elbow angle of 150° (signals at 0% MVC were used to monitor the EMG and MMG 

measurement baseline).  Each contraction level was held for 10 s and repeated 3 

times. The display generated to provide visual force feedback was marked at 

deflection levels corresponding to 80%, 60%, 40%, 20% MVC. 3 minutes of rest was 

given between contractions of different force levels. For the ramp isometric 

contractions, the participants were asked to gradually increase the force from zero to 

maximum (using visual feedback) over 4-s period. Force was expressed as % 

maximum voluntary contractions (MVC).  



 65

Bipolar electromyographic signals (SEMG) (12mm diameter, 18mm inter-electrode 

distance, Medical Grade Stainless Steel, Motion Lab Systems, Inc., Los Angeles, 

USA) and a piezoelectric transducer (23mm diameter, 12.5g weight, GRASS 

technologies, Rhode Island, USA) were recorded on biceps brachii.  These two 

sensors were as close to the midline and centre of the muscle belly whilst 

maintaining zero contact between the two electrodes. Sensors were fixed with 

Micropore tape (3M, St Paul, Minnesota, USA), a bandage was used to ensure 

consistant  contact pressure on sensor.  

The raw EMG and MMG signals were amplified using a custom-built instrument 

(Department of Medical Physics and Bioengineering, UCL, London, UK) and sampled 

at 5 KHz.  The EMG, MMG, and force signals were recorded simultaneously with a 

12 bit USB analogue to digital converter (DT9002, Data Translation, Malboro, 

Massachusetts, USA) during each isometric contraction. For signal recording and 

participant feedback, VEE Pro software (Version 6.0, Agilent Technologies, Santa 

Clara, California, USA) was used.  All data analyses were performed off-line. 

 

3.2.3 Signal processing 

3.2.3.1 Wavelet analysis of EMG and MMG signals 

All signal processing was performed using custom programs written in Mathematica 

(version 6.0, Wolfram Inc., Champaign, IL, USA). The EMG and MMG signals were 

resolved into their intensities in time-frequency space using wavelet techniques (von 

Tscharner, 2000; Beck et al., 2008). The wavelets were characterized by their center 

frequency (frequency where the power spectrum of the wavelet was maximal), the 

bandwidth of the filter (the width of the power spectrum of the wavelet at 1/e of its 

maximum) and the time resolution (the time of the wavelet’s intensity to decay to 1/e) 

(Table 3.1)(von Tscharner, 2002).  The method has been described in detail in 

previous papers (Wakeling and Syme, 2002; Wakeling and Rozitis, 2004). The 

intensity is a close approximation to the power of the signal contained within a given 

frequency band, and the intensity spectrum is equivalent to the power spectrum from 

the signals. For EMG signals, a filter bank of 16 non-linearly scaled wavelets was 

used, index by k, with center frequency, fc, ranging from 7 Hz (wavelet 0) to 804 Hz 

(wavelet 15). For MMG signals, a set of 10 nonlinearly scaled wavelets were used 

with center frequency, fc, ranging from 1.7Hz (wavelet 0) to 83Hz (wavelet 9). The 

mean frequency (MF) was calculated by:  



 66

∑

∑
=

k

k

k

k

c

i

ikf

MF

)(

 

Total intensity was given by summing the intensities over the selected wavelets. 

Total intensity is a measure of the time-varying power within the signal and is 

equivalent to twice the square of the root-mean-square. MF and total intensity were 

calculated across the frequency band (EMG: 10-350 Hz, k = 1-9; MMG: 3-90Hz, k = 

1-9). For step isometric contractions, the total intensity and MF were calculated for a 

4-s time period with visual inspection to assure the signal was measured at the stable 

and desired force level. For the ramp isometric contractions, for each trial, the 

intensity spectra for each sample point were pooled into bins according to the force 

level: 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100% MVC. 

The mean intensity for each participant for the 80% step isometric contraction trials 

was calculated and used to normalize the spectra for the respective participants (Fig. 

3.2).  

Table 3.1. Characteristics of the wavelets used for the EMG and MMG wavelet 
analysis. 

(EMG: scale = 0.3, q = 1.45 and r = 1.959; MMG: scale = 1.2, q = 1.45 and r = 1.959)  

Wavelet 
index (k) 

Center 
frequency (Hz) 

Time 
resolution (ms) 

Bandwidth(Hz) 
Product of bandwidth and 

time resolution 
 EMG MMG EMG MMG EMG MMG EMG MMG 

0 7 2 76 299 10 3 0.75 0.90 
1 19 5 59 196 16 4 0.92 0.88 
2 38 9 40 171 21 6 0.87 1.11 
3 62 16 32 129 27 8 0.86 1.10 
4 92 23 26 102 35 10 0.91 1.04 
5 128 32 22 86 41 13 0.88 1.03 
6 170 43 20 80 47 14 0.91 1.10 
7 218 54 16 69 53 16 0.87 1.08 
8 271 68 15 60 58 18 0.88 1.08 
9 330 83 14 58 66 20 1.90 1.14 

 

3.2.3.2 Principal component analysis 

Principal component analysis (PCA) followed the techniques previously 

reported(Wakeling and Rozitis, 2004). The data set consists of a p x N matrix. Where 

p = wavelet domains and N =participants*trials* *force bins.  A PCA was carried out 

on this dataset matrix using the customized written program in Mathematica. The 

principal components (PCs) were calculated from the covariance matrix of the 

dataset matrix with no prior subtraction of the mean data. So The PCs describe the 

components of the entire signal(Wakeling and Rozitis, 2004). The first principal 

component (PCI) accounts for as much of the variation in the original data as 

possible. Subsequent components are derived in decreasing order of importance: the 
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second (PCII) accounts for as much of the remaining variation as possible and so on 

for the other components.  

 

The principal component weighting is given by the eigenvector, and can be displayed 

graphically as a function of the centre frequencies of the corresponding wavelets (Fig. 

3.5, Fig.3.7). The principal component loading score is given by the eigenvalue, and 

is a scalar value that describes the amount of each eigenvector in each measured 

spectrum (Hodson-Tole and Wakeling, 2007). Each spectrum can be reconstructed 

by a linear combination of the principal component weightings and their loading 

scores, and the relative PCI and PCII loading scores give a measure of the frequency 

of the signal(Wakeling and Rozitis, 2004). 

 

3.2.4 Statistics 

Previous studies have examined the relationship between EMG and MMG amplitude 

and mean frequency vs. %MVC during ramp and step contractions by using 

regression analysis. In the this study, a combination of regression analysis and 

analysis of variance (ANOVA), analysis of covariance (ANCOVA) was used to 

determine the differences in contraction type from EMG and MMG signals in terms of 

total intensity, MF, PCI and PCII loading scores.  

 

Differences between contraction type (ramp or step) for total intensity, MF, PCI, and 

PCII were tested using general linear model analysis of covariance (ANCOVA) for 

EMG and MMG, respectively, with % MVC as covariates (20%, 40%, 60%, and 80% 

MVC were selected from ramp contractions to match the respective step 

contractions). Ramp–step was the fixed factor and total intensity, MF, PCI, and PCII 

were the dependent variables. The relationship between total intensity and PCI 

loading score was analyzed using partial correlation analysis.  SPSS software 

version 16 (SPSS inc., Chicago, IL, USA) was used for all statistical analyses. All 

data are presented as mean ± standard error of the mean (S.E.M) unless otherwise 

stated. An alpha level of 0.05 was considered statistically significant for all tests.  

 

3.3 Results 

3.3.1 EMG  

The EMG activity showed a qualitative increase during isometric ramp contractions. 

Time-frequency analysis showed a progressive increase in the high frequency 

components of EMG intensity with the increases in force (Fig. 3.2D)   
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Figure 3.2. An example of the Force (A), electromyographic (EMG) (B), and 
mechanomyographic (MMG) (C) signals from the biceps brachii during an isometric 
ramp contraction for 1 participant.  Time-frequency analysis of EMG (D) and MMG (E) 
showed the progressive increases in the high frequency components of the intensities 
with increases in force (mean values of each force level from 20 subjects). Increasing 
intensities are shown by darker regions  

 

The ANCOVA analysis showed that EMG total intensity, which was calculated across 

the power spectra from 19Hz to 395Hz (Fig.3.3A), increased linearly for both ramp 

and step contractions(r2=0.336,  r2 =0.658, respectively ) with increased force level. 

The ANCOVA also showed the EMG total intensity was not significantly different 

between ramp and step contractions.  
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Figure 3.3. (A)EMG total intensity vs. force (%MVC) for ramp (solid line) and step (grey 
dotted line) contraction for Biceps brachii. (B) EMG Mean frequency vs. force (%MVC) 
for ramp (solid line) and step (grey dotted line) contraction for Biceps brachii. Values 
are mean±S.E.M 

 

Fig.3.3B shows the EMGMF vs. force (%MVC) for ramp and step contractions. The 

EMGMF for ramp contraction increased rapidly from 0 to 40% and plateaued from 

40% to 50% and then increased from 50% to 70% and decreased and plateaued 

from 70% to 90%. The EMGMF for step contraction slightly increased from 20% to 

40% and increased from 40% to 60% and then decreased from 60% to 80%. The 

ANCOVA analysis showed that there was no significant difference of the EMG MF 

between ramp and step isometric contraction.  

 
3.3.2 MMG  

Time-frequency analysis showed a graded increase in high frequency components of 

MMG intensity with the increased force (Fig.3.2E). MMG intensity spectra from each 

force level (% MVC) of the step (Fig.3.4A) and ramp (Fig. 3.4B) contractions are 

shown in Fig.3.4. The MMG total intensity for the step contraction increased from 

A 

B 
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20% to 60% MVC and decreased from 60 to 80% MVC. The MMG total intensity for 

the ramp contraction increased from 0% to 60% and then decreased from 60% to 

90% (Fig.3.4A). The ANCOVA analysis showed that MMG total intensity was not 

significantly different between ramp and step contractions.  
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Figure 3.4. (A)MMG Total intensity vs. force (%MVC) for ramp (solid line) and step (grey 
dotted line) contraction for the biceps brachii.  (B) Mean frequency vs. force (%MVC) 
for ramp (solid line) and step (grey dotted line) contraction for Biceps brachii.  Values 
are mean±S.E.M. 

The MMG MF for step contraction increased with the increased force from 

13.75±0.75Hz (20%MVC) to 16.14±0 .57Hz (80%MVC), whereas the mean 

frequency for ramp contractions increased rapidly from 10.70±0.42Hz to 

21.00±1.02Hz over the 3-s ramp contraction (Fig. 3.4B). The ANCOVA analysis 

showed there was a significant difference in the MMG mean frequency between 

ramp and step contractions (P<0.001).  

 

B 

A 
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3.3.3 PCA analysis  

The principal component analysis showed that over 95% of the spectral properties of 

the EMG could be explained by the first two principal components (PCs). The first 

principal component was positive for all frequencies with a similar form to the power 

spectrum. The second principal component contained negative weightings and 

positive weightings, which transitioned at approximately 70Hz (Fig. 3.5). The partial 

correlation analysis shows that the principal component scores of the first component 

(PCI) are highly correlated with the total intensity (r2=0.945) by controlling the force 

level.  
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Figure 3.5. Principal Component weightings from the EMG power spectra for the first 
two principal components (PC) with the relative proportion of the total signal that they 
describe. 

 

Each force level was characterized by PCI and PCII loading scores.  One was along 

the PCI loading score and another along the PCII loading score. This provides a map 

of how the force levels relate to each other. The ramp and step contractions showed 

similar patterns, with increases in the scores for the higher levels of contraction.  PC 

loading scores from the same force level ramp and step contraction were located 

closely together which shows the similarity in the intensity spectra (Fig. 3.6). 

ANCOVA showed significant increases in the PCI and PCII scores as the force level 

increased during ramp and step contractions, and there was no significant difference 

in PCI and PCI loading scores between ramp and step contraction.  
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Figure 3.6. Principal component loading scores from the EMG intensity spectra for the 
isometric ramp (open diamonds) and step (solid circles) contractions. The points 

denote the mean±±±±S.E.M. scores for each force level for biceps brachii. The numbers 

denote the % MVC. 

 

The principal component analysis showed that over 84% of the spectral properties of 

the MMG could be explained by the first two principal components (PCs). The PCI 

weighting was similar in form to an MMG power spectrum, with positive weighting for 

all the frequencies.  The PCII weightings had negative and positive regions with a 

cross over about 14Hz (Fig. 3.7).  
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Figure 3.7. Principal component weightings from the MMG power spectra for the first 
two principal components (PC) with the relative proportion of the total signal that they 
describe. 

 
The changes in the MMG can be visualized by their PC loading scores during ramp 

and step isometric contraction (Fig. 3.8).  The PCI loading score progressively 
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increased with the higher levels of contraction from 0% to 60% MVC and then 

decreased from 60% to 90% MVC, its trend being similar to that of MMG total 

intensity.  A correlation analysis showed a strong correlation (r2=0.919) between PCI 

and the total intensity. The PCII loading score increased from 20% to 40%MVC, with 

negative scores from 0% to 40% and positive scores from 50% to 90%.  As for the 

step contraction, the PCI loading scores increased from 20% to 60% MVC and then 

decreased at 80% MVC, while PCII loading scores were stable from 20% to 60% and 

then increased rapidly from 60% to 80% MVC. The ANCOVA analysis showed there 

was a significant difference in the MMG PCI loading scores between ramp and step 

contractions (P=0.032), while PCII loading scores were not significantly different 

between ramp and step contractions.  
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Figure 3.8. Principal Component loading scores from the MMG intensity spectra for the 
isometric ramp (open diamonds) and step (solid circles) contractions. The points 
denote the mean ±S.E.M. scores for each force level for biceps brachii. The numbers 
denote the % MVC. 

 
3.4 Discussion 

3.4.1 EMG  time-frequency response during isometric ramp and step muscle 
contractions 

EMG time-frequency response during isometric ramp and step muscle contractions 

It is known that the motor unit(MU) activation pattern of the biceps brachii during 

increasing isometric force production recruits motor units up to 80% MVC(Orizio et al., 

2003). The slow motor units in biceps brachii are mostly recruited below 25% MVC, 

then a rapid recruitment of the fast motor units occurs up to 60%-80% MVC,  and 

increasing firing rate of active motor units is generally thought to be responsible for 

an increase in force beyond this point (Orizio et al., 2003; Ryan et al., 2008).  
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The total intensity values of the EMG are influenced by motor unit recruitment and 

firing rate of the active motor units. The intensity increases progressively from low 

levels of contraction up to 90% MVC (Fig. 3.3A).  The value of the mean frequency is 

strongly influenced by the number and the shape (amplitude and duration) of the 

single motor unit action potentials (MUAP) (De Luca, 1985; Orizio et al., 2003). 

Action potentials of the faster motor units have higher conduction velocities(CV) 

(Kakuda et al., 1992; Kupa et al., 1995; Wakeling and Syme, 2002) and would 

contribute higher frequency components within the EMG signal. The results show 

progressively higher frequencies appearing in the EMG intensity spectra (Fig.3.2D), 

which correspond to the progressively faster motor units recruited from low level to 

MVC. The EMG mean frequency increased from low levels up to 60% MVC during 

both ramp and step muscle contractions, then plateaued and decreased at higher 

force levels during the step and ramp muscle contractions (Fig. 3.3B).  It should be 

noted that there was a rapid increase in the low frequency components (50-100Hz) 

for the EMG intensity spectra (Fig. 3.2D) from 60% MVC to 90% MVC, which caused 

a local decrease of the mean frequency. The lower frequency components that 

appeared in the EMG intensity spectrum from 60% MVC might be associated with 

the contribution of newly recruited deep, large, and high CV motor units, which were 

attenuated by the low-pass filter effect of body skin and subcutaneous 

tissues(Lindstrom and Magnusson, 1977). Another possible explanation for the larger 

contribution of low frequency components at higher force levels is the higher firing 

rate of the active motor units.  At high force levels motor unit firing is more in-phase 

and they motor units are more synchronized with each other (Solomonow et al., 1990; 

Hermens et al., 1992), hence a decrease in the number of independent impulses and 

increase the superposition of action potentials (Yao et al., 2000).  

 

There is abundant literature on the use of surface EMG to examine motor unit 

recruitment(De Luca et al., 1982b, 1982a; De Luca, 1985; Solomonow et al., 1990; 

Akataki et al., 2004; Wakeling et al., 2006).  EMG time-frequency parameters, 

amplitude and mean and/or median frequency (MF) are commonly used variables to 

investigate motor unit recruitment patterns during isometric contraction with 

increasing force. But the results have been often contradictory. Different studies 

report that the mean or median frequency increases (Gerdle et al., 1991; Gerdle and 

Karlsson, 1994), remains stable(Farina et al., 2002; Coburn et al., 2005) or 

decreases(Komi and Vitasalo, 1976; Masuda et al., 1999) with increasing force. The 

variation among studies may be due to differences in fiber composition and size, 
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muscle specific relationships (Akasaka et al., 1997), and the techniques to detect 

changes in MF (Beck et al., 2005a). Higher values of the median or mean power 

frequency of the EMG power spectrum are observed for muscles with a greater 

percentage of faster fibers (Solomonow et al., 1990; Wakeling, 2009b) or a greater 

relative area of faster fibers. On the other hand, some studies indicate that the MU 

activation strategy varies among different muscles in relation to their morphology and 

histochemical type (De Luca et al., 1982a; Akasaka et al., 1997; Akataki et al., 2003). 

Smaller muscles rely primarily on firing rate and larger muscles rely primarily on 

recruitment to modulate their force (De Luca, 1985). For instance, the deltoid 

muscles are known to recruit motor units throughout the entire force range while the 

firing rate of the active units is continuously increasing (De Luca et al., 1982b, 1982a). 

This control strategy should yield a continuous MF increase throughout the force 

generation phase. In recent studies, wavelet techniques have been used, which allow 

a more detailed analysis and better resolution of the EMG MF changes during 

isometric contractions. And the results suggested that the inconsistencies may 

associated with the technique used to detect changes in mean frequency (Karlsson 

and Gerdle, 2001).  

 

3.4.2 MMG time-frequency response during isometric ramp and step muscle 
contractions 

MMG total intensity increased with increased force to 60% MVC and then decreased 

at higher force levels for the biceps brachii during both ramp and step isometric 

contractions. These findings are consistent with those of previous studies that have 

examined the MMG amplitude during step and ramp isometric contractions for the 

biceps brachii(Orizio et al., 2003). Some studies have suggested that fast fibers 

produce greater MMG and a higher frequency than slow fibers (Beck et al., 2007b). 

Consequently, fast motor unit recruitment causes an increase in the MMG total 

intensity and MF between 30 and 60% MVC (Fig.3.4A, Fig. 3.4B). The decrease in 

total intensity from 70% to 90% MVC with higher firing rate may be due to fusion of 

the MU mechanical activity (Bichler and Celichowski, 2001; Yoshitake et al., 2002; 

Orizio et al., 2003; Kimura et al., 2004).  As all available motor units are recruited 

(near 60–80% MVC), increases in the firing rate are responsible for further increases 

in force production. The higher motor unit firing rates may result in a progressive 

fusion of motor unit twitches that would increase muscle stiffness and reduce 

dimensional change in active muscle fibers.  On the other hand, MMG mean 

frequency increased from low force levels to high force levels, which may be 

associated with an increasing firing rate through the entire force range(Orizio et al., 
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2003; Akataki et al., 2004; Beck et al., 2006b).  MMG intensity spectra showed a 

progressive increase of higher frequency components with increased %MVC, which 

was attributed to the increased recruitment of motor units and increased firing rates 

(Fig. 3.2E).  A high intensity contour for low frequencies (5-12Hz) appeared near 60-

70% MVC indicating fusion of motor unit twitches at high firing rates (Fig. 3.2E).  

 

The relationship between MMG amplitude and force level during isometric 

contraction has been reported. The results are varied. Some authors report that 

MMG amplitude increases with increasing MVC(Stokes and Dalton, 1991a; Coburn 

et al., 2004b), while others show that MMG amplitude increases to 50–80% MVC 

followed by a plateau or decrease at higher force levels (Matheson et al., 1997; 

Orizio et al., 2003; Beck et al., 2004a). For the relationship between MMG mean 

frequency and force level, some studies show that the mean frequency increased 

linearly when the motor units were orderly recruited (Coburn et al., 2004b; Coburn et 

al., 2004a), while others observed mean frequency increases to 60% MVC and is 

then followed by a steeper increase at higher forces (Akataki et al., 2001, , 2003; 

Orizio et al., 2003; Beck et al., 2004a). The discrepancy may have the same reasons 

as those proposed for EMG responses, such as muscle composition (Mealing et al., 

1996), the signal processing techniques used(Beck et al., 2005b), and different motor 

unit recruitment strategies(Akataki et al., 2003).  Moreover, muscle stiffness and/or 

intramuscular fluid pressure could impair the lateral muscle fiber oscillations that 

generate the MMG signal(Orizio, 1993; Beck et al., 2004a; Coburn et al., 2004b). 

Some authors have also suggested that inter- and intra-subject differences in muscle 

morphology may contribute some degree of variability (Ryan et al., 2007). 

 

3.4.3 Principal component analysis of EMG and MMG spectra 

The present study showed that the principal components PCI and PCII may be used 

to quantify features of muscle activity with increasing force.  

 

It has been shown that the electrical properties of the sarcolemma vary between fast 

and slow fiber types within mammals(Luff and Atwood, 1972), and it has been 

suggested that faster fibers have faster conduction velocities and hence generate 

higher EMG frequencies (Gerdle et al., 1988; Wakeling and Syme, 2002). Studies 

have shown that distinct EMG frequency bands can characterize activity from 

different types of muscle fibers across a range of species and recording 

systems(Wakeling et al., 2002; Wakeling and Syme, 2002; Wakeling and Rozitis, 
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2004). High and low frequency components in the EMG spectra indicate the activity 

of faster and slower motor units, respectively(Wakeling et al., 2001; Wakeling, 2004).  

 

The MMG is the summation of the activity of signal motor units. Each motor unit is 

related to the pressure waves generated by the active muscle fibers(Orizio et al., 

2003). Orizio suggested that recruitment of fast fibers with short contraction time 

could result in “shorter motor unit sound spikes”, which would increase MMG 

frequency(Orizio, 1993). Studies recorded MMG from human muscles with known 

fiber composition showed that muscles with a large proportion of slow fibers generate 

MMG signals which contain an increased percentage of low frequencies as 

compared to muscles with a mixed population of fast and slow fibers(Mealing et al., 

1996; Akataki et al., 2003).  

 

For EMG, PCI had a similar form to the EMG power spectrum. PCI loading scores 

increased as the force level increased during both the step and ramp isometric 

contractions. This shows that as the muscle activation was progressively increased 

then increases occurred in the fundamental spectra intensity.  

 

The EMG PCII scores were positive for all force levels, which indicate that the mean 

frequency was greater than the transition frequency (Fig.3.5). The PCII scores 

increased with increased force level from 0% to 70%. Increases in the positive 

frequency bands (greater than 90Hz) of the PCII weighting are reflected in a increase 

of PCII loading scores, whereas PCII loading scores decreased from 80% to 90% 

MVC, indicating a more rapid increase of the negative frequency bands (less than 

90Hz). The frequency shift at higher force level may be attributed to the 

synchronization of the motor units because of higher firing rate(Solomonow et al., 

1990) (Fig. 3.6).  

 

For MMG, PCI took a similar shape to the power spectrum and its scores were highly 

correlated with the total intensity. MMG PCI scores increased with the force level 

from 20% to 60% MVC, and then decreased with higher MU firing rates, due to the 

fusion of the MU mechanical activity at higher force levels. PCII had negative and 

positive weightings for MMG (Fig. 3.7). The PCII loading scores for lower force levels 

were negative, and the associated mean frequencies were lower than 14Hz, which 

corresponded to the transition between the negative and positive PCII weightings 

(Fig. 3.8). This indicates a proportionally higher amount of low frequency content in 
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the power spectrum at lower force levels. The positive PCII loading scores at higher 

force levels indicate a higher distribution of high frequency content.  

 

In this study we applied principal component analysis to identify and quantify 

differences in frequency spectra associated with motor unit recruitment patterns 

during isometric ramp and step muscle contractions. PCI loading scores have been 

shown to correlate with total signal intensity and provide a good measure of EMG 

and MMG activity, while PCII loading scores relative to PCI loading score provide a 

measure of the relative frequency content within the signal (Wakeling and Rozitis, 

2004; Hodson-Tole and Wakeling, 2007). The higher values of PCII are associated 

with relatively higher frequency signal components and low values associated with 

relatively more low frequency components. The advantage of PCA is that the most 

significant, systematic sources of variation are condensed into the first few scores, 

while the noise components are relegated to lower scores. So the movement 

artifacts(De Luca, 1997), anatomical variations in the soft-tissues, and individual 

physiological variation can be separated from the first two PCs. Therefore, the main 

PCs contain a significant proportion of the spectra without being skewed by 

confounding effects. By contrast, the mean frequency considers all portions of the 

spectrum and so the main spectral features will be partly obscured by measurement 

noise and physiological variations(Wakeling, 2009b). Additionally, mean frequency 

dose not offer a sensitive measure of motor unit recruitment(Farina et al., 2002).  It 

can be due to an increase of the mean frequency could be caused by an increase in 

the number of faster motor unit or may result from de-recruitment of a number of 

faster motor units(Hodson-Tole and Wakeling, 2007).  

 
3.4.4 Ramp vs. step muscle contractions 

In the present study, the EMG total intensity, mean frequency, PCI and PCII loading 

scores show no significant difference between isometric ramp and step contractions. 

PC loading scores from the same force level ramp and step contractions were 

located together, representing similarities in EMG spectra.  

 

ANOVA analysis shows a significant difference in MMG PCI loading scores and the 

mean frequency between isometric ramp and step contractions. The mean values of 

PCI loading scores and mean frequency were greater for the ramp than step muscle 

actions across the force levels. These findings suggest that motor unit firing rates 

may have been higher during the ramp than the step muscle actions.  
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It has been suggested that ramp and step muscle contractions may require different 

motor control strategies(De Luca et al., 1982b; De Luca, 1985; Beck et al., 2004a), in 

particular, that firing rates generated during linearly increasing isometric contractions 

differ from those produced at increasing levels of static force (De Luca et al., 1982a).  

 

It is known that the majority of the power in the surface EMG spectrum lie beyond the 

motor unit firing rate range. Under certain conditions analysis of MU firing statistics 

show that the dominant firing rate of the MU's can be recognized by a distinct 

maximum in the 10-40 Hz frequency range(Van Boxtel and Schomaker, 1983, , 

1984). So the surface EMG time frequency parameters, RMS and mean or median 

frequency calculated from EMG power spectra are hardly sensitive to the variation of 

firing rate in stimulated and experimental studies(Zhou and Rymer, 2004).  In this 

study, the PCII loading scores decreased at high force levels, which is caused by the 

rapid increase in the contribution of low frequency components, and may be 

associated with the increasing MU firing rate. However, we were unable to directly 

detect firing rate changes associated with increasing force by using surface EMG in 

this study.  

 

Many studies have suggested that the MMG spectrum contains some information 

regarding motor unit firing rates(Orizio et al., 2003; Beck et al., 2007a). It has been 

proposed that the surface MMG spectrum reflects the global motor unit firing 

frequency, rather than the firing rates of a particular group of motor units (Beck et al., 

2007a). The increase in firing rate needed to obtain more force when recruitment had 

been completed was shown by decreased PCI loading scores because of the 

progressive fusion of muscle twitches, and thereby reduced dimensional change in 

active muscle fibers. Meanwhile the increased PCII loading scores indicated a higher 

percentage of higher frequency components in the MMG spectra. This may be 

associated with the higher initial firing rates of fast motor units (Hannerz, 1974), and 

fast motor units may require greater stimulation rates to achieve complete fusion of 

motor unit twitches than slow motor units(Bichler and Celichowski, 2001; Beck et al., 

2007a).  

 

3.5 Conclusion 

In this study, we applied wavelet analysis coupled with principal component analysis 

to determine motor unit recruitment patterns during isometric ramp and step 

contractions. Wavelet and principal component analysis offers a quantitative 

measure of the contribution of high and low frequency content within the EMG and 



 80

MMG. Furthermore, the results of this study indicate that EMG total intensity, mean 

frequency, PCI and PCIl loading scores from isometric ramp muscle contractions 

were not significantly different from isometric step contractions. However, there were 

significant differences in MMG mean frequency and PCI loading scores between 

ramp and step contractions. MMG spectrum may reflect global motor units firing rate, 

which may be related to the different motor unit recruitment strategies applied to 

isometric ramp and step contractions in biceps brachii. 

 

The size principle was supported in the isometric contractions in this study. The next 

chapter tested this hypothesis in the dynamic eccentric-concentric contractions.  
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Chapter Four: Spectral properties of electromyographic 
and mechanographic signals during dynamic concentric 

and eccentric contractions of biceps brachii muscle 

4.1 Introduction 

Contraction of skeletal muscle produces low-frequency lateral oscillations of muscle 

fibers which can be detected by accelerometers, piezoelectric transducers and 

microphones on the surface of the skin (Orizio, 1993; Orizio et al., 2003). This 

mechanical oscillation, regardless of which type of transducer is used to detect it, 

was termed as surface mechanomyography (MMG) to reflect its mechanical origin 

(Orizio et al., 2003). Gordon and Holbourn (1948) suggested that MMG reflect the 

mechanical counterpart of the motor unit (MU) electrical activity as measured by 

electromyography (EMG) (Gordon and A.H.S., 1948). Simultaneous measurements 

of MMG and EMG have been used to examine the force-amplitude relationship and 

MU recruitment strategies during ramp and step isometric muscle actions and 

concentric and eccentric muscle actions (Dalton and Stokes, 1991; Orizio et al., 2003; 

Akataki et al., 2004). During dynamic contractions, the number of active MUs 

changes rapidly, which would imply non-stationary spectra.  Wavelet analysis with 

well-defined time and frequency resolution has been shown to provide a highly 

sensitive method of assessing non-stationary EMG and MMG data (Wakeling and 

Rozitis, 2004; Hodson-Tole and Wakeling, 2007; Beck et al., 2008). 

 

MUs are recruited in an orderly fashion from slow to fast MUs. Starting with the 

smallest MUs, progressively larger units are recruited with increasing strength of 

muscle contraction (Mendell, 2005). This size principle was described first by 

Hennenman in 1965 (Henneman and Olson, 1965; Henneman et al., 1965a, 1965b) 

and it has been shown to be valid in isometric and stimulated contractions 

(Henneman et al., 1965a, 1965b). However, selective recruitment of fast MUs during 

voluntary isotonic eccentric muscle actions has been reported (Nardone and 

Schieppati, 1988; Nardone et al., 1989).  More recently, electromyographic studies of 

humans running (Wakeling, 2004) and cycling (Wakeling et al., 2006) and running 

rats (Hodson-Tole and Wakeling, 2008a, 2008b) have also reported preferential 

recruitment of faster MUs. An understanding of which fiber types are activated during 

a movement is important due to marked differences in the performance capability 

and the adaptability of the different fiber types (Bottinelli and Reggiani, 2000; Pette, 

2002). 
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According to the length-tension relationship, the maximum isometric tension 

generated by muscle occurs at its resting length when there is optimal overlap of 

actin and myosin (Gordon et al., 1966). However, Muscle forces constantly change at 

different joint angles throughout the range of motion which results in a torque curve 

(Knapik et al., 1983). Within a joints range of motion there is an optimal angle at 

which the muscle moment will be greatest (Kawakami et al., 1994; Ettema et al., 

1998; Mohamed et al., 2002).Measurement of muscle activation patterns during 

dynamic concentric and eccentric contractions is important for understanding the 

basic mechanisms underlying motor control of limb movement, and is very useful for 

constructing models of the neuromuscular control systems(Stein et al., 1995; Rosen 

et al., 1999).  

 

Therefore, in the present study, we compared the recruitment patterns of MUs in 

biceps brachii (BB) during submaximal dynamic concentric and eccentric 

contractions by using surface EMG, MMG, and a combination of wavelet analysis 

and principal component analysis (PCA) of the EMG and MMG spectra. The purpose 

was to describe and examine the variations in muscle activation through a range of 

joint motion during eccentric and concentric contractions against constant external 

loadings. 

 

4.2 Materials and Methods 

4.2.1 Participants  

12 participants (6 males and 6 females with a mean age of 30 ± 8.5) with no history 

of any neuromuscular disorder gave informed written consent to participate in the 

experiments. The protocol and consent procedures were approved by the Royal 

National Orthopedic Hospital NHS Research Ethics Committee (Stanmore, UK). 

 

4.2.2 Protocol 

The participant sat in a chair with the non-dominant upper limb supported by a 

mechanical device. This support was designed to be highly adjustable to enable it to 

be correctly fitted to the dimensions of each participant relative to the right shoulder 

articulation, when keeping 60 degree abduction (Fig.4.1) and the forearm was in a 

neural position. Before the test several practice trials were performed so that the 

participant could become familiarized with the test procedure. The elbow angle was 

measured with electrogoniometer (clinical goniometer fitted with a rotary optical 

encoder, ENA1J-B28-L00128, Bourns, Inc., Riverside, CA, USA). The elbow angle 
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signal was provided to the participant as a real-time feedback during the concentric 

and eccentric contractions.  

 

Figure 4.1. A eccentric-concentric contraction test. An electronic goniometry was 
attached at the fulcrum to measure elbow joint position. A bandage was used to ensure 
consistent pressure of the contact sensor. 

 
Figure 4.2. An example of the angle (A), mechanomyographic (MMG) (B), and 
electromyographic(EMG) (C) signals from the biceps brachii during concentric and 
eccentric contracions for 1 participant.   

Maximal voluntary contraction (MVC) was defined as the maximal loading the 

participant could overcome while moving through the range of motion. Each dynamic 

contraction began at 150° elbow flexion and involved a 3-s concentric contraction 

from 150° to 60° (muscle shortening), followed by a 3-s eccentric contraction from 

60° to 150° (muscle lengthening)(Fig.4.2). Participants performed a set of three 

concentric-eccentric contractions at each loading: 20%, 40%, 60%, and 80% 

maximal concentric load at 30° /s. 3 minutes of rest was given between contractions 

of different loading. One session of 80% maximum isometric contraction performed at 

elbow angle of 150° was recorded to normalize the EMG and MMG signals.  

Electronic goniometer
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Surface electromyographic signals (SEMG) (Bipolar electrode, 12mm diameter, 

18mm inter-electrode distance, Medical Grade Stainless Steel, Motion Lab Systems, 

Inc., Los Angeles, USA) and mechanomographic signals (piezoelectric transducer, 

23mm diameter, 12.5g weight, GRASS technologies, Rhode Island, USA) were 

recorded on biceps brachi (BB).  These two sensors were as close to the midline and 

centre of the muscle belly whilst maintaining zero contact between the two electrodes 

(Fig.4.3). Sensors were fixed with Micropore tape (3M, St Paul, Minnesota, USA), a 

bandage was used to ensure consistent pressure of the contact sensor. The EMG 

and MMG signals were amplified (custom built EMG amplifier: Department of Medical 

Physics and Bioengineering, UCL, London, UK) and sampled at 5 KHz.  The EMG, 

MMG, and goniometry signals were recorded simultaneously with a 12 bit USB 

analogue to digital converter (DT9002, Data Translation, Malboro, Massachusetts, 

USA) during each concentric and eccentric contraction. For signal recording and 

visualizing signals for participant feedback, VEE Pro software (Version 6.0, Agilent 

Technologies, Santa Clara, California, USA) was used. All data analyses were 

performed off-line.  

 

4.2.3 Signal processing 

The EMG and MMG signals were resolved into their intensities in time-frequency 

space using wavelet techniques (von Tscharner, 2000). Please see details in 

Chapter 3. 

 

The range of motion  60-150° was partitioned into nine 10° sections (145°, 135°, 125°, 

115°, 105°, 95°, 85°, 75°, 65°), based on the electric goniometry data. The mean 

spectra of EMG and MMG were then calculated for each section. The mean intensity 

of the signals for each participant at 80% sustained isometric contraction trials was 

calculated and used to normalize the spectra for the respective participant. The first 

wavelet of MMG covered a frequency band of 0-3 Hz, which is typically associated 

with movement artifacts. We reduced the effects of movement and muscle 

dimensional changes due to dynamic contractions by removing first wavelet from 

spectra. So the final analysis considered the total frequency band of 3 – 90Hz.  

 

4.2.4 Principal component analysis 

Principal component analysis (PCA) employed the techniques previously reported by 

Wakeling and Rozitis (Wakeling and Rozitis, 2004) The data set consists of a p x N 

matrix. Where p = 9 wavelet domain (the first wavelet may contain movement 
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artifacts, so did not calculated) and N =2608 (subjects*trials*contraction types*elbow 

angle bins).  A PCA was carried out on this matrix using the customized written 

programs in Mathematica. The principal components (PCs) were calculated from the 

covariance matrix of the dataset matrix with no prior subtraction of the mean data, so 

the PCs describe the components of the entire signal (Wakeling and Rozitis, 2004). 

The first principal component accounts for as much of the variation in the original 

data as possible. Subsequent components are derived in decreasing order of 

importance: the second accounts for as much of the remaining variation as possible 

and so on for the other components.  

 

The principal component weighting is given by the eigenvector, and can be displayed 

graphically as a function of the centre frequencies of the corresponding wavelets. 

The principal component loading score is given by the eigenvalue, and is a scalar 

value that describes the amount of each eigenvector in each measured 

spectrum(Hodson-Tole and Wakeling, 2007). Each spectrum can be reconstructed 

by a linear combination of the principal component weightings and their loading 

scores. PCI loading scores have been shown to correlate with total signal intensity, 

while PCII loading scores relative to PCI loading scores provide a measure of the 

relative frequency content within the signal (Wakeling and Rozitis, 2004; Hodson-

Tole and Wakeling, 2007). A quantitative measure of the contribution of high and low 

frequency content within the signal is thus given by the angle θ formed between the 

PCI and PCII loading scores (Wakeling, 2004; Wakeling and Rozitis, 2004; Hodson-

Tole and Wakeling, 2007). Large angles of θ represent a relatively large low 

frequency signal component, while small angles of θ represent a relatively large high 

frequency signal component.  

 

4.2.5 Statistics 

Differences in EMG and MMG total intensity, PCI (PCIEMG and PCIMMG), PCII (PCIIEMG 

and PCIIMMG), and θ (θEMG and θMMG) for different loads, elbow angles, and 

contraction types were analyzed using general linear model ANOVA in SPSS (SPSS 

version 16, SPSS Inc. Chicago, USA). Loads, elbow angles, and contraction types 

were defined as fixed factors. The relationship between total intensity and PC I 

loading score was analyzed using partial correlation analysis, the elbow angles, 

contraction type, and loads were controlled. Multiple comparisons between elbow 

angles (N=10) and loads (N=4) were made according to Bonferroni’s method with a 

significance level of P<0.05. Mean values are presented as mean ± standard error of 

sample mean (S.E.M) 
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4.3 Results 

4.3.1 Changes in EMG and MMG intensity at different elbow angles 

The results indicated that EMG total intensity varied with elbow angles during both 

concentric and eccentric contractions. Fig. 4.3 compares the total intensity for 

concentric (Fig.4.3A) and eccentric (Fig.4.3B) contractions at different elbow angles 

and different intensities. Total intensity increased with increased elbow angle except 

in the largest one (145°) for both concentric and eccentric contractions and for the 

different loads conditions. The smaller elbow angles (65°, 75°, 85°, 95°, flexed 

position) had significantly lower total intensity values than the larger elbow angles 

(115°, 125°, 135°,145° extended position) (GLM ANOVA: p<0.001; Bonferroni post 

hoc: p<0.001 both cases). There was no significant change in θEMG at different elbow 

angles (Fig.4 .4).  
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Figure 4.3. (A)EMG total intensity vs elbow angle at different loadings for concentric 
contractions for biceps brachii. (B) EMG total intensity vs elbow angle at different 
loadings for eccentric contractions for biceps brachii. Values are mean±S.E.M 
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Figure 4.4. (A) θEMG vs elbow angle at different loadings for concentric contractions for 
biceps brachii. (B) θEMG vs elbow angle at different loadings for eccentric contractions 
for biceps brachii. Values are mean ± S.E.M 

 

The pattern was similar for MMG total intensity. The small elbow angles (65°, 75°, 

85°, flexed position) had significantly lower total intensity values than the larger elbow 

angles (95°,105°, 115°, 125°, 135°,145°, extended position) (Fig. 4.5) (GLM ANOVA: 

p<0.001; Bonferroni post hoc: p<0.001 both cases). The elbow angles 95° and 105° 

had significantly lower θMMG values than the elbow angle 65°, 75°, 135° and 145° (Fig. 

4.6) (GLM ANOVA: p<0.001; Bonferroni post hoc: p<0.001 both cases).  

B 
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Figure 4.5. (A)MMG total intensity vs elbow angle at different loadings for concentric 
contractions for biceps brachii. (B) MMG total intensity vs elbow angle at different 
loadings for eccentric contractions for biceps brachii.Values are mean ± S.E.M 

 

4.3.2 Changes in EMG and MMG intensity at different loading 

As shown in Fig.4.3, the 3-way ANOVA shows that the EMG total intensity increased 

significantly with increased loads. The 20% MVC had significant lower θEMG than 80% 

MVC, but the θEMG did not differ significantly between 40, 60 and 80% MVC.  

A 
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Figure 4.6. (A)EMG θ vs elbow angle at different loadings for concentric contractions 
for biceps brachii. (B) EMG θ vs elbow angle at different loadings for eccentric 
contractions for biceps brachii.Values are mean ± S.E.M 

 

The MMG total intensity increased significantly with increase loads, which showed 

the similar pattern as EMG total intensity (Fig. 4.5). For θMMG comparison between 

loading levels, the θMMG in the 20 and 40% MVC were significantly higher than the 

values in 60 and 80% MVC, whereas the changes in θMMG were not significant 

between 20% and 40 % MVC.  

There was a significant interaction between elbow angles and loads on total intensity, 

and this interaction was greater for both EMG and MMG total intensity in the larger 

elbow angles (145°, 135°, 125°, 115°, 105°, 95°) than smaller elbow angles(Fig.4.3, 

Fig.4.5). Total intensity values of smaller elbow angles were lower than the values of 

B 

A 
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the larger elbow angles for both EMG and MMG. However, there was no significant 

interaction between elbow angles and loads for θEMG and θMMG.  

4.3.3 Changes in EMG and MMG intensity for different contraction types 

EMG total intensity was significantly greater in the concentric than the eccentric 

contractions, while θEMG was generally lower in the concentric than the eccentric 

contractions (Fig.4.4).  

 

For MMG, the eccentric contractions had higher total intensity than the concentric 

contraction, whereas there was no significant difference in θMMG between these two 

contractions types (Fig.4.6).   

 

4.3.4 PCA plot of EMG and MMG intensity spectra 

The first two PCs of the EMG-intensity spectra describe 95% of the EMG signal (Fig. 

4.7). Fig. 4.8 shows a plot of the first principal component (PCI) loading scores 

against the second component (PCII) loading scores for EMG intensity-spectra. In 

addition there was a significant positive correlation between EMG intensity and the 

PC I loading score (p<0.001, r2=0.99). PCI-PCII loading scores for each loading show 

a clockwise direction start with elbow angle 145°. The overall pattern has an 

underlying curvature with the values of PCI loading scores increasing initially with 

high negative scores on PCII and then decreasing at high positive values of PCII 

from elbow angle from 145 to 65 degree. The PCI and PCII loading score 

progressively increased as the loads increased.  
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Figure 4.7. Principal component weightings from the EMG power spectra for the first 
two principal components (PC) with the relative proportion of the total signal that they 
describe.  
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Figure 4.8. (A) Principal component loading scores from the EMG intensity spectra for 
the concentric contractions. (B) Principal component loading scores from the EMG 

intensity spectra for the eccentric contractions. The points denote the mean ±±±± S.E.M. 

scores for each force level for biceps brachii. The numbers denote the % MVC. 
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Figure 4.9. Principal component weightings from the MMG power spectra for the first 
two principal components (PC) with the relative proportion of the total signal that they 
describe.  
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Fig.4.10 shows a plot of the PCI loading scores against the PCII loading scores for 

MMG intensity-spectra. The first two PCs of the MMG-intensity spectra explain 88% 

of the MMG signal (Fig. 4.9). PCI was strongly correlated to MMG total intensity 

(p<0.001, r2 = 0.98).  In general, the MMG PCI-PCII plane took the similar pattern as 

EMG PCI-PCII plane. The PCI-PCII loading scores were similar for all load conditions 

at the elbow angles 60°, 70°, 80°, 90°, but for the rest of elbow angles they diverged 

with higher load conditions resulting in greater curvatures to their traces. The MMG 

PCI loading scores increased with increased loads.   
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Figure 4.10. (A) Principal component loading scores from the MMG intensity spectra 
for the concentric contractions. (B) principal component loading scores from the MMG 

intensity spectra for the eccentric contractions. The points denote the mean ±±±± S.E.M. 

scores for each force level for biceps brachii. 
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4.4 Discussion 

4.4.1 Changes in EMG and MMG intensity at different loading conditions 

PCA is a powerful statistical method which may reduce the dimensionality of a large 

data set to a smaller more manageable form, leading to a better understanding of the 

data and drawing attention to important features in the data (Ramsay and Silverman, 

1997). It can generate new hypotheses regarding the relationships between the 

variables and identify some variables as being redundant because they contribute 

little information, such as movement artifacts. PCA also identifies relationships 

between the variables which may help to understand the problem being investigated. 

PCI loading scores provide a good measure of the signal intensity. The results 

reported here show that PCI loading scores were highly correlated with the total 

intensity of EMG and MMG spectra and explained the majority of the signal in EMG 

and MMG. In the present study, θ is defined as the angle between PCI and PCII 

loading scores. It has been shown that the θ is very sensitive to the frequency shift 

that corresponds to spectral difference between types of MUs in both fine wire 

(Hodson-Tole and Wakeling, 2007) and surface EMG (Wakeling, 2004; Wakeling and 

Rozitis, 2004; Wakeling et al., 2006). It has been shown that a higher value of θ 

represents relatively more low frequency signal content and it can be associated with 

the recruitment of slower MUs (Wakeling, 2009b). A smaller θ value, associated with 

relatively more high frequency content, can be associated with the recruitment of 

faster MUs.  

 

It is known that the electrical properties of the sarcolemma vary between fast and 

slow fiber types within mammals (Luff and Atwood, 1972), and it has been suggested 

that faster MUs have faster conduction velocities and hence generate higher EMG 

frequencies (Gerdle et al., 1988; Gerdle et al., 1991; Wakeling et al., 2002), and a 

higher proportion of faster fibers is associated with a greater mean power frequency 

(Akasaka et al., 1997). On the other hand, MMG is the summation of the activity of 

single MUs. Each active MU generates pressure waves (Orizio et al., 2003). Orizio 

suggested that recruitment of fast fibers with short contraction time could result in 

“shorter motor unit sound spikes”, which would increase MMG frequency (Orizio, 

1993). Moreover, the oscillations from faster MUs may be damped to a lesser degree 

by the surrounding tissues than slow MUs (Smith et al., 1997), potentially resulting in 

greater total intensity in MMG spectra.  Studies recording MMG from human muscles 

with known fiber composition have shown that muscles with a higher proportion of 

slow fibers generate MMG signals which contain an increased percentage of low 
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frequencies as compared to muscles with a mixed population of fast and slow fibers 

(Mealing et al., 1996; Akataki et al., 2003). Therefore, the changes in EMG and MMG 

signal frequency component as a result of altered recruitment pattern between 

different MUs were quantified by θ in the present study. The value of θ was 

significantly higher in the 20%MVC than in 80%MVC for both EMG and MMG, the 

high θ values during 20% MVC concentric and eccentric contractions may have been 

due to fewer and slower MUs being activated. Fast MUs are more superficially 

distributed in BB than slow MUs (Johnson et al., 1973; Kukulka and Clamann, 1981), 

as the external loading was increased, additional MUs with faster fibers were 

successively recruited, yielding higher frequency contents of EMG and MMG power 

spectra and smaller θ values.  

 
For both concentric and eccentric contractions, EMG and MMG total intensity 

increased significantly with increased loading. This was consistent with the results of 

previous studies of the EMG and MMG during dynamic contractions, which indicated 

that EMG and MMG amplitude reflect force changes during both concentric and 

eccentric contractions (Dalton and Stokes, 1991; Beck et al., 2004b). The EMG 

intensity is dependent on both the MU recruitment and firing rate. The increase of 

firing rate may contribute more low frequency components in EMG spectra, which 

would increase the θEMG. Our results show that the θEMG , (although not significantly), 

decreased from 40 to 80% MVC, which may be associated with the recruitment of 

more faster MUs for higher force production. On the other hand, The intensity of the 

MMG increases with the number of recruited MUs, whereas it decreases with higher 

firing rate due to fusion of the MU mechanical activity (Stokes and Cooper, 1992; 

Orizio, 1993; Bichler, 2000). Moreover, the MMG spectral may contain information 

about the MU firing rate. The increase of firing rate at the higher force level has been 

demonstrated by a steeper increase of MMG mean frequency coupled with a 

decrease of MMG amplitude versus %MVC relationship (Diemont et al., 1988; Orizio 

et al., 1989). In the present study, the MMG total intensity increased significantly 

throughout the entire loading range from 20% to 80% MVC, whereas the θMMG 

decreased significantly at higher loadings, which may be attributed to the recruitment 

of faster MUs and an increased firing rate. Our findings tentatively suggested that the 

increased muscle force during dynamic concentric and eccentric contractions may be 

reflected more in recruitment than in MUs firing rate. This would be consistent with 

previous studies of dynamic isokinetic muscle actions, which indicate that the MU 

recruitment may be the primary MU control strategy for increasing torque (Kossev 

and Christova, 1998; Beck et al., 2004a).   
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4.4.2 Changes in elbow angles on EMG and MMG spectra 

In this study, the EMG and MMG total intensities of the smaller elbow angles (65°, 

75°, 85°, 95°, flexed position) were significantly lower than that of the larger elbow 

angles (115°, 125°, 135°, 145°, extended position), and there were no total intensity 

differences in the range between 65 and 85 degree for both concentric and eccentric 

contractions. Furthermore, in the flexed position, the total intensity was similar in 

concentric and eccentric contractions, although the mean total intensity in concentric 

contractions was significantly higher than in eccentric contractions throughout the 

motion. These results indicate that the activation of BB muscle increased as the 

elbow joint was extended; therefore more MUs may have been recruited at extended 

elbow angles.  

 

Our results show that values of θ were lower at the elbow angles 105°, 115°, 125°, 

135°, which indicate there was a shift to higher EMG and MMG frequencies when the 

BB was extended. And this pattern was similar for all the loading conditions, except 

20% MVC. Rome et al., suggested that generating mechanical power at a high 

efficiency is best achieved by using faster MUs(Rome et al., 1988). It is interesting to 

note that the values of θ of elbow angles 145° and 135° were higher than the values 

of 105°, 115° during concentric contractions. According to the size principle, slow 

MUs are the first to be recruited, followed by faster MUs. So the initiation of the 

concentric contractions at elbow angle 145° was developed by recruiting of a high 

proportion of slow MUs, which was indicated by the high θ values. It is possible that 

once a muscle is initially activated, according to the size principle, modulation of 

force production occurs on the basis of the mechanical properties of the respective 

MUs. One of the proposed functional advantages of the size principle is that it 

provides a strategy by which a smooth increment in force magnitude can be achieved 

(Wakeling et al., 2006). Slow MUs which develop relatively low tension may be active 

continuously while fast MUs which develop high tensions may only be needed to be 

activated for brief periods of exertion according to the mechanical demands on the 

muscle.  For instance, low intensity contractions, 20% MVC in the present study, use 

the slow MUs, so there was little change of θ in both concentric and eccentric 

contractions.  

 

Both physiological and mechanical advantages play a role in muscle contraction and 

maximum torque generated. The length-tension relationship shows that the 

maximum tension generated by the muscle occurs at its resting length when there is 
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the greatest number of cross bridges between myosin and actin. Previous 

investigations have also reported that the pattern of motor-unit activity is related to 

muscle length (Vander Linden et al., 1991; Christova et al., 1998; Kennedy and 

Cresswell, 2001).  The results indicated that higher firing rates and increased motor-

unit recruitment occurred when muscle fascicles were shortened (Bigland-Ritchie et 

al., 1992). However, the mechanical advantage was found to be affected by the 

elbow angle (Akazawa and Okuno, 2006). There are optimal elbow angles at which 

the maximum moment of torque can be generated throughout a joint range of motion 

(van Zuylen et al., 1988). In the present study, we found that the joint angle had a 

significant effect on concentric and eccentric contractions with constant external 

loadings, so this suggested that the activation of MUs depends on the mechanical 

advantage in such a way that different types of MU are recruited according to the 

mechanical demands on the whole muscle.  

 

4.4.3 Changes in EMG and MMG spectra during concentric and eccentric 
contractions 

Previous studies have indicated that the MU activation strategies may be different 

during concentric and eccentric contractions. With respect to MU activity during 

concentric and eccentric contractions, differences involving recruitment patterns, MU 

firing rates, and onset patterns were investigated. Nardone and colleagues reported 

that selective recruitment of fast-twitch MUs concurrent with slow-twitch unit de-

recruitment occurred during eccentric contractions (Nardone et al., 1989). The soleus 

muscle which has a high proportion of slow fibers was deactivated during eccentric 

contraction. Concurrently, the gastrocnemius muscle which contains more fast fibers 

was selectively activated when the plantar flexor muscles performed eccentric 

contraction but not with concentric contractions at moderate to faster velocities 

(Nardone and Schieppati, 1988). Furthermore, some studies have reported that the 

firing rates examined by intramuscular EMG during eccentric contractions were 

significantly lower than during concentric contractions. Hence, it is possible that the 

physiological mechanisms driving muscle contraction during eccentric contraction 

differs from that during concentric contractions.   

 

In the present study, the EMG total intensity was greater for concentric than for 

eccentric contractions, which is consistent with the results of previous studies of the 

BB muscle (Dalton and Stokes, 1991). Del Valle, et al reported that the strongest 

eccentric contractions of triceps brachii were far from maximal compared to 

maximum isometric and concentric contractions, because lengthened muscle fibers 
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can exert far more force than when they shorten or contracts isometrically. So it is 

not necessary to fully activate the muscle to match the maximum force of the 

concentric contractions (Del Valle and Thomas, 2005).  

 

On the other hand, our results show that MMG total intensity was greater during 

eccentric than during concentric contractions. However, Dolton et al (1991) reported 

a lower level of MMG activity recorded during eccentric contraction in BB. This 

difference may be due to the higher %MVC levels that were used in the present 

study, which may cause muscle tremor. It has been reported that eccentric exercise 

increased force fluctuation during isometric contractions (Lavender and Nosaka, 

2006; Semmler et al., 2007), which may have been due to greater physiological 

tremor and/or increase edema in the muscle fibers (Bajaj et al., 2002). Irregular 

spikes in MMG during eccentric contractions were evident in raw MMG signals at 

higher %MVC levels in the present study (Fig.4.2B), which may have been attributed 

to higher MMG total intensity.  

 

BB muscle is a mixed muscle with 50% slow and 50% fast twitch fiber, and 57.7% 

fast twitch fibers are located at the surface. If fast fibers are selectively recruited in 

eccentric contractions, lower values of θEMG, which reflect the relative higher 

proportion high frequencies, could be expected. Our results demonstrated the θEMG 

was lower for concentric than for eccentric contractions in BB. This is similar to other 

studies which have reported lower mean power frequencies during eccentric 

contractions compared with concentric contractions (Komi et al., 2000; Linnamo et al., 

2001, , 2002). However, McHugh reported that the mean frequency of the SEMG 

was higher for eccentric than for concentric contractions for 25, 50, 75% MVC in 

hamstring muscles(McHugh et al., 2002). In addition, it has been hypothesized that 

preferential recruitment of faster MUs would also result in a relative shift of the MMG 

signal to higher frequencies. Our results show that θMMG was similar in both 

contractions. Some other studies also found no difference between MMG mean 

power frequency when comparing the lengthening and shortening movements 

(Dalton and Stokes, 1991; Madeleine et al., 2001). These results, however, are 

difficult to interpret because there are multiple factors that can affect the EMG and 

MMG frequency contents during movement, and so there is uncertainty regarding the 

causes of the changes seen (Chalmers, 2008).  

 

One potential factor that could have influenced the EMG and MMG concentric-

eccentric relationship is selective activation of synergistic muscles and possible 
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differences in the contribution of synergistic muscles at the elbow joint angles 

(Nakazawa et al., 1993; Nakazawa et al., 1998; Kasprisin and Grabiner, 2000). In 

addition to the BB muscle, which is the main contributor to the elbow flexion torque, 

other muscles, such as the flexor brachialis, brachioradialis, and the extensor triceps 

brachii also contribute to elbow flexion. Although we cannot rule out the possibility of 

a greater contribution of any one of these muscles during concentric and eccentric 

contractions, which could have reduced the contribution of the BB, this should have 

other minor effect on our results. Indeed, Nakazawa et al found that the EMG activity 

in brachioradialis relative to BB during concentric contractions was greater than that 

during eccentric contractions at larger elbow angles (Nakazawa et al., 1993).  

 

There remains the interesting question as to how and why different populations of 

MUs are used for different movement tasks. It has been proposed that the neural 

commands controlling concentric and eccentric contractions are different(Enoka, 

1996).Grabiner (2002) investigated the surface EMG muscle activity signal prior to 

movement onset and indicated that the initial differences between the EMG of 

maximum voluntary concentric and eccentric knee extensor contractions are selected 

a priori (Grabiner and Owings, 2002). In addition, it has been demonstrated, by using 

EEG, that cortical activity during the planning for concentric and eccentric 

contractions differ (Fang et al., 2001). Compared to a concentric maximum voluntary 

contraction (MVC), an eccentric MVC is usually associated with a lower activation 

level as measured by surface EMG (Del Valle and Thomas, 2005). It has been 

suggested that the eccentric contraction may follow the modulation rate of 

economical tension in order to use more elastic energy and less MU recruitment  

(Enoka, 1996; Chalmers, 2008). However, the underlying neural and mechanical 

mechanisms that give rise to activation differences in concentric and eccentric 

contractions need to be characterized in future studies.  
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Chapter Five: Pushrim kinetics and patterns of shoulder 
muscle recruitment on wheelchair propulsion for different 

propulsion patterns 

 
5.1 Introduction 

Individuals undergoing treatment for a spinal cord injury (SCI) learn to use a 

wheelchair as soon as they are stable and able to sit up without complications. 

However the use of a wheelchair, which is intended to restore mobility, may not be 

without risk. Over time, shoulder joints associated with the upper limbs of manual 

wheelchair users (MWU) inevitably deteriorate. A possible link between wheelchair 

propulsion and upper limb injuries has been the subject of many studies (Rodgers et 

al., 1994; Rodgers et al., 2001; van der Woude et al., 2001; Boninger et al., 2003; 

Mercer et al., 2006). Shoulder injuries associated with wheelchair propulsion may be 

hastened by the propulsion technique used. In addition, ineffective biomechanics can 

decrease the economy of wheelchair operation and lead to excessive metabolic and 

cardiopulmonary demand (van der Woude et al., 1998). So far, very little time is 

spent on instructing patients on the proper propulsion techniques that would reduce 

these risks.  

 

Because upper limbs of wheelchair users are subjected to unnatural loading 

conditions and repetitions of use, suitable propulsion mechanics are very important in 

preventing injuries and maintaining comfort during locomotion. Previous studies on 

able-bodied subjects have showed that wheelchair-practice programs (subjects self-

discovered comfortable and optimal wheelchair propulsion pattern) have a favorable 

effect on temporal variables (push frequency, push time, and cycle time) and gross 

mechanical efficiency (de Groot et al., 2002; de Groot et al., 2003; de Groot et al., 

2008). Therefore, an improved propulsion technique may help to alleviate the 

development of overuse injuries. The propulsion pattern chosen for instruction 

sessions is the semicircular pattern, recommended in the clinical practice guidelines 

for the Preservation of Upper Limb Function Following Spinal Cord Injury (Boninger 

et al., 2005). The semicircular pattern is readily observed with the hands passing 

below the pushrim during the recovery phase.  

 

The present study examined the effect of a short propulsion technique instruction 

session on wheelchair biomechanics, in particular, shoulder muscle activity. Normal 

shoulder function predominantly relies on precise recruitment and muscle 

coordination (Veeger and van der Helm, 2007).  Electromyography (EMG) has 



 100

revealed details of the timing and magnitude of muscle activation for the specific 

muscles or groups of muscles involved in wheelchair propulsion (Mulroy et al., 1996; 

Mulroy et al., 2004; Yang et al., 2006; Dubowsky et al., 2009). Kinetics and 

kinematics analysis of propulsion patterns have provided some indications of the 

mechanical loads on the shoulder joints (Boninger et al., 2002; Richter et al., 2007). 

Monitoring EMG pattern during wheelchair propulsion can be used to determine a 

preferred propulsion technique where the subject demonstrates the most appropriate 

EMG activation patterns throughout the propulsion cycle. This information will provide 

evidence to support instruction sessions for appropriate propulsion techniques 

intended to decrease the risk of shoulder injuries in persons with SCI.    

 

Able-bodied subjects were recruited in the current study to provide a homogenous 

subject group compare to available wheelchair-dependent participants in the early 

stages of rehabilitation (de Groot et al., 2003). Although the results may not be 

completely transferable to people with SCI, the information should help in designing a 

brief wheelchair propulsion instruction session for newly injured patients. The 

purpose of the present study was to determine how the semicircular propulsion 

pattern affects muscle recruitment patterns and wheelchair kinetics compare to a 

self-selected stroke pattern during the initial learning stage of wheelchair propulsion.  

Our hope is that a short session of wheelchair technique instruction in the proper 

propulsion technique would result in biomechanically more economical wheelchair 

propulsion and a better coordinated muscle recruitment pattern of the shoulder 

muscles.  

 

5.2 Methods 

5.2.1 Participants 

15 able-bodied participants (8 males, 7 females, age: 30±4 years, weight: 65±12 Kg) 

volunteered to participate in this study. They all gave their informed consent in 

accordance with the procedures approved by the University of Alberta ethics 

committee. None reported any previous history of upper extremity pain or any 

neuromuscular disorder. None of the subjects had been using a wheelchair in any 

prior instance. 

 

5.2.2 Surface electromyography  

Surface electromyography (SEMG) activity of upper extremity muscles was recorded 

using parallel-bar EMG Sensors (DE-3.1 double differential sensor, 1mm in diameter 
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and separated by 10 mm, BagnoliTM, Delsys Inc., Boston, MA, USA). SEMG signals 

were detected on seven muscles: anterior deltoid (AD), middle deltoid (MD), and 

posterior deltoid (PD), pectoralis major (PM), upper trapezius (UT), biceps brachii 

(BB), and triceps brachii (TB) on the right shoulder after prior removal of the hair and 

cleaning with alcohol swipes. Sensor placement was confirmed by testing elevation 

(anterior, middle, and posterior deltoid), external rotation (upper trapezius, and 

posterior deltoid), internal rotation (pectoralis major), and arm flexion (biceps and 

triceps). The EMG signals were amplified and sampled at 2000Hz.  

 

5.2.3 Kinetic system  

The SmartWheel (Three Rivers Inc., LLC, Mesa, AZ, USA) was used for the 

collection of kinetic data. The SmartWheel is a modified mag-wheel capable of 

measuring three-dimensional forces and moments occurring at the pushrim. The 

pushrim kinetic data were collected at 240 Hz. The SmartWheel was placed on the 

right side of the test wheelchair (Quickie GP, Sunrise Medical, Longmont, CO, USA) 

with a standard foam cushion. This test wheelchair was mounted on an ergometer, 

which was connected to a LCD display placed in front of the participant to provide 

visual speed feedback. Kinetic and EMG recordings and were synchronized.  

 

5.2.4 Procedure 

5.2.4.1 Wheelchair propulsion on ergometer 

Participants were given several minutes to get used to propelling the wheelchair on 

the ergometer and to establish a comfortable propulsion technique. The data were 

recorded at the speed of 0.9m/s for 1min as self-selected pattern data. Then the 

participants were advised to apply semicircular propulsion pattern (Fig. 5.1). Start 

with the arm back a bit so the hand is behind the body (Fig.5.2A), keep the hand on 

the pushrim until it is past the body, and don’t let go until the elbow is nearly straight 

(Fig.5.2B). The semicircular pattern is recognized by the hands falling below the 

pushrim in the recovery phase. Participants were given ample time to become 

acclimated to this pattern prior to data collection. Then the data were recorded at the 

speed of 0.9m/s for 1min as self-selected pattern data. 
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Figure 5.1. Semicircular hand trajectory. After the user release the pushrim and are 

coasting, let the hand drift down between the pushrim and the wheel axle. This is 
called a “semicircular propulsion pattern.” 

 

  
Figure 5.2. Semi-circular propulsion technique. (A) pushing start posture, (B) pushing 
end posture. 
5.2.5 Data analysis 

5.2.5.1 Kinetic data analysis 

Kinetic variables from all the cycles collected at steady state were determined. For 

each participant, 10 continuous cycles in the self-selected and semicircular stroke 

pattern were used for data analysis. The key kinetic variables calculated were 

average resultant force (Ftot), average tangential force (Ft), and average moment (Mz).  

The resultant force (Ftot) is the total force applied to the pushrim. The tangential force 

(Ft) is the force directed tangential to the pushrim. Mechanical effectiveness (ME) 

was calculated by Ft / Ftot. Mz is the moment acting to cause forward motion. Peak 

negative Ftot and peak negative Mz are the peak resultant force and propulsive 
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moment to brake the wheelchair. In addition, by using the output of the SmartWheel, 

the push frequency (push/second), push length in degree, and push time were 

determined.  

 

5.2.5.2 Wavelet analysis of the EMG signal 

The method has been described in detail in previous Chapters 

 

5.2.6 Statistical Analysis 

Mean values were calculated from each propulsion cycle and each subject. Statistical 

analysis was performed using SPSS (SPSS 16, SPSS, Inc., Chicago, IL, USA). The 

Shapiro-Wilk statistic was used to determine the normality of the variables.  Paired t 

tests were conducted to test for the significant differences between the two sessions. 

Significant level was set at p< 0.05 for all statistical procedures.  

 

5.3 Results 

5.3.1 Kinetics variables 

The tangential forces and propulsive moment for the semicircular pattern and self-

selected pattern are presented in Fig.5.3. No significant differences were found in the 

pushrim forces and moments (Table 5.1). The normalized push phase and recovery 

phase were similar in the two sessions, with the push phase extending to the 40% of 

the propulsion cycle and recovery phase to the remaining 60% of the propulsion 

cycle (Fig. 5.3). The semicircular pattern did not lead to a change in the mechanical 

effectiveness.  There were significant differences in push frequency, push length, 

push time, and push distance (P<0.01 for all comparisons). The push frequency was 

significantly lower in the semicircular pattern than in the self-selected pattern, while 

the push length, push time, and push distance were significantly longer in 

semicircular than in the self-selected pattern (Table 5.1). 
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Table 5.1. The stroke patterns and propulsion biomechanics. Data were 
reported as mean ± SD.  

Condition / variable Semicircular pattern Self-selected pattern Sig. (2 tailed) 

Peak Ftot (N) 49.51±15.10 51.18±13.56 0.66 

Ave Ftot (N) 35.56±11.25 37.28±10.84 0.54 

Ave Ft (N) 24.72±4.11 25.10±1.06 0.75 

Peak negative Ft (N) -5.23±1.29 -6.72±3.08 0.15 

Peak negative Mz (N*m) -1.34±0.33 -1.73±0.79 0.15 

Mechanical Effectiveness 0.72±0.14 0.70±0.15 0.55 

Push frequency (1/s) 0.83±0.11 1.29±0.33 0.00 

Push length (degree) 61.50±7.39 43.85±3.20 0.00 

Push time (s) 1.23±0.16 0.83±0.25 0.00 

Push distance (m) 1.03±0.18 0.71±0.24 0.00 

Abbreviation: Peak Ftot, peak total force; Ave Ftot: average total force; Ave Mz: average Mz; 
Ave Ft, average tangential force; % push  

 

5.3.2 Muscle activity 

No significant differences were found in the EMG intensity in the seven muscles 

(Table 5.2). The onset, cessation, and duration of EMG activity for AD, PM, BB, and 

TB were similar between the two sessions. UT and PD displayed significantly earlier 

onset and cessation of EMG activity in the self-selected pattern than in the 

semicircular pattern (P<0.05 both cases). MD showed a significantly earlier cessation 

and longer duration of EMG activity in the self-selected pattern than in the 

semicircular pattern (Table 5.2).  

Table 5.2. Timing of EMG activity of self-selected stroke pattern vs semicircular 
pattern during wheelchair propulsion. Data were reported as mean ± SD.  

Onset (SD) % of cycle 
Cessation(SD)  

% of cycle 
Duration(SD) % of cycle 

Muscle 

SC SS SC SS SC SS 

AD 89(6) 82(14) 28(7) 38(26) 39(10) 46(13) 
PM 94(8) 83(16) 32(9) 24(17) 37(5) 41(9) 
BB 80(17) 69(34) 17(8) 37(32) 35(16) 41(9) 
TB 97(3) 92(14) 42(10) 35(17) 45(8) 42(9) 
UT 37(15)* 17(12)* 91(12)* 75(12)* 54(10) 58(6) 
MD 22(11) 13(9) 97(4)* 82(13)* 75(9)* 68(8)* 
PD 25(10)* 15(9)* 95(5)* 81(14)* 69(8) 65(8) 

Abbreviations: AD, anterior deltoid; PM,  pectoralis major; BB, biceps brachii; TB, triceps 
brachii; UT, upper trapezius; MD, middle deltoid; and PD, posterior deltoid.  SC, semicircular 
pattern; SS, self-select pattern 
*significant difference for P<0.01, group mean data. 
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5.4 Discussion 

5.4.1 Wheelchair Kinetics  

Although the force and moment variables showed no statistically significant 

difference between two sessions, the peak Ftot, average Ftot, and the average Ft were 

slightly lower in the semicircular pattern than in the self-selected pattern. The results 

were consistent with previous studies showing that the forces generated at the 

pushrim do not vary by propulsion pattern, as the propulsion patterns differ from each 

other during recovery not during propulsion. It is recommended by the clinical 

guideline that the forces should be minimized during wheelchair propulsion (Boninger 

et al., 2005). The relationship between high shoulder kinetics and shoulder 

pathologies has been reported in several previous studies; individuals who propelled 

with higher shoulder forces and moments were more likely to have shoulder injuries 

(Boninger et al., 2000; Boninger et al., 2003).  

 

A slight improvement in the negative peak Ft and Mz was found in the semicircular 

pattern (Fig.5.3). Negative forces and moments would reduce overall performance 

because they imply braking (Veeger et al., 1992). Although no significant decrease 

was found in the negative forces and moments after short-term training in the present 

study, it has been shown that a longer practice period could bring a significant 

improvement in the negative dip before and after the push (de Groot et al., 2002).  
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Figure 5.3. Pushrim moment (Mz) (A) and tangential force (Ft) (B) for the semicircular 
pattern (grey line) and self-selected pattern (black line). Each trace shows the mean 
(think line) + S.E.M. (thin line). Time was normalized to was normalized to 100% of 
propulsion cycle. Illustration of the definition of the push phase, recovery phase, 
negative Mz, and Negative Ft.  

 

In the present study, a slight improvement of the mechanical effectiveness (ME) was 

found in the semicircular pattern compared with the self-selected pattern. The 
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mechanical effectiveness is given as the ratio between Ft and Ftot. The tangent force 

is the only component that contributes directly to the forward motion of the wheel. 

The ratio gives an indication of the effectiveness of propulsion from a mechanical 

point of view. It has been demonstrated that experienced wheelchair users showed a 

higher mechanical efficiency compared with less experienced able-bodied subjects. 

In a 3-weeks wheelchair propulsion practice study, there was a significantly increase 

of the mechanical efficiency, which indicated that the training / leaning may improve 

wheelchair propulsion techniques, so much less energy will be spent (de Groot et al., 

2002). However, Desroches et al (2008) reported that a force simulated tangent to 

the wheel yielded major increases in the shoulder kinetics (Desroches et al., 2008). 

The authors thus suggested that the small improvement of mechanical effectiveness 

could be beneficial for the users, “as it would increase the mechanical performance 

of propulsion without exerting a higher demand on his joints”.  

 
The changes in push length, push frequency, push time, and push distance appear to 

be linked. The longer push length is attributed to the reduction of push frequency. 

The push frequency decreased significantly in the semicircular pattern. De Groot et al 

(2002) reported a further reduction of push frequency after 3 weeks practice (de 

Groot et al., 2002), whereas an even longer period of practice may not have a 

significant effect on the push frequency, which is basically dictated by the mechanical 

constraints of the task and the physical characteristics of the musculoskeletal system. 

Boninger (1999) stated a relationship between push frequency and impaired median 

nerve function, an increased push frequency was significantly related to lower 

median amplitude (Boninger et al., 1999). Therefore, it is recommended that the push 

frequency should be minimized during wheelchair propulsion(Boninger et al., 1999). 

In addition, Goosey et al. (2000) reported that the push frequency had an effect on 

pushing economy, with lower push frequency being associated with greater pushing 

economy (defined as oxygen uptake at a given propulsion speed) (Goosey et al., 

2000). A high push frequency leads to more shifts in deceleration and acceleration 

and inertial moments of the limb segments, thus influencing muscle activity and 

coordination and subsequently energy cost and efficiency, whereas a slower push 

frequency may provide the wheelchair users with more force on the hand rim with 

less muscular effort.  
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5.4.2 Muscle recruitment patterns: self-selected propulsion pattern versus 
semicircular propulsion pattern 

The shoulder muscle complex allows for a large range of motion, with a great 

variability in muscle activity (Veeger and van der Helm, 2007). What limits this 

variability is the linking of muscles together into a muscle synergy – a temporally 

coherent and task-dependent grouping of muscles controlled by the central nervous 

system (CNS) as one degree of freedom (Bernstein, 1967; Krstulovic et al., 2006). 

Since typical kinesiological EMG represents the activity of multiple motor units it 

provides insight into muscle recruitment patterns and neuromuscular control of 

wheelchair propulsion. Two muscle synergies have been identified during wheelchair 

propulsion, push phase synergy and recovery phase synergy(Mulroy et al., 1996). 

The push phase synergy is dominated by the anterior deltoid (AD), pectoralis major 

(PM), and biceps brachii (BB) (Mulroy et al., 1996; Mulroy et al., 2004), whereas 

upper trapazius (UT), middle deltoid (MD) and posterior deltoid (PD) have their 

primary activity during the recovery phase. The push phase muscles are responsible 

for generating the propulsive forces required for forward motion in the push phase. In 

the propulsion phase the subjects are required to follow the path of the pushrim, 

whereas in the recovery phase the subjects can choose among many paths to return 

the arms and hands to the initial push position. Therefore, it is expected that the 

recruitment patterns of the push phase muscles were similar for both stroke patterns. 

However, the recruitment pattern for the recovery synergy was significantly different 

between the self-selected and semicircular pattern. The EMG onset of the recovery 

muscles, PD, MD, and UT was shift into the push phase in the self-selected pattern. 

The activity of these muscles in the push phase would not be useful for improving 

propulsive force, because their role may be to stabilize the shoulders during the 

wheelchair propulsion. These co-activation patterns may lead to poor functional 

locomotion, and at the same time, enhance the rate of fatigue. Whereas in the 

semicircular pattern, synergistic muscles were recruited in the distinct phases and 

displayed a more specific multimuscle sequencing, this may thereby economize force 

production. It has been reported that more skilled control of movement and muscle 

activation is characterized by decreased muscle coactivation (Carson and Riek, 

2001).  

 

In the present study, the semicircular stroke pattern was adopted as the pattern 

taught. This pattern is recommended by clinical practice guidelines based on the 

results of the study by Boninger et al (Boninger et al., 2002). These guidelines are 

described as a first step in the ongoing process of developing useful tools for 
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preserving upper-limb function in people with spinal cord injury. However, the 

guidelines did not consider the study by de Groot et al. (de Groot et al., 2004), which 

suggests that the arcing pattern may result in greater metabolic efficiency than the 

semi-circular pattern. The semicircular pattern is used widely in experienced 

wheelchair users while inexperienced implemented the arcing pattern for everyday 

mobility (Sanderson and Sommer, 1985; Veeger et al., 1989b). Our results show a 

positive effect of the semicircular pattern on the wheelchair kinetics and shoulder 

muscle recruitment patterns in inexperienced able-bodied subjects. However, In the 

de Groot study (2004), 24 inexperienced wheelchair users were asked to propel on a 

stationary ergometer using each of 3 stroke patterns, arcing, semicircular, and single 

looping over propulsion (SLOP). A lower push frequency and a greater push time 

were found in the semi-circular pattern compared to the arcing pattern. The arcing 

pattern however was found to have less metabolic demand than the semi-circular 

pattern, suggesting that reducing push frequency and maximizing metabolic 

efficiency may be competing interests. As the semicircular pattern is likely to be more 

efficient than the other stroke patterns during level propulsion, subjects tended to 

change their stroke pattern for pushing uphill.  The semicircular pattern was less 

used during uphill wheelchair propulsion, while the majority of the subjects adopted 

the arcing pattern (Richter et al., 2007). Of course, the propulsion technique is highly 

dependent on the type of wheelchair used, as well as the functional capacity of the 

user. Clinical professionals should be aware of the physical environment that the 

wheelchair users have to cope with, so the proper propulsion techniques are 

recommended according to the mechanical requirements of the propulsion tasks and 

specific propulsion environments. In addition, developing a way to monitor the 

appropriateness of muscle activation patterns with changes in training sessions may 

lead to greater gains in prevention of shoulder pain and injuries. 
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Figure 5.4. EMG intensity for the semicircular pattern (A) and self-selected pattern (B) 
from the tested 7 shoulder muscles. Data are the mean from all trials and all subjects. 
EMG intensity scales are normalized to the maximum intensity for each muscle in the 
range of [0, 1] where the color map represent the intensity of EMG signal. Time base of 
propulsion cycle was normalized to 100% with push phase denoting hand-on-hand-off 
moment of the pushrim.  
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Chapter Six: Shoulder muscle recruitment patterns during 
wheelchair propulsion for different propulsion speeds and 

incline 

 
6.1 Introduction 

People with spinal cord injuries (SCI) usually rely on their ability to propel a manual 

wheelchair for independent mobility. Wheelchair propulsion requires a person to 

impart a tangential force to the wheelchair pushrim to move forward. As a result, the 

joints of the upper limb are subject to repeated loads as the manual wheelchair user 

goes about activities of everyday life. A large amount of data now exists from various 

epidemiological studies linking manual wheelchair propulsion along with transfers 

and lifts to a variety of shoulder problems including soft tissue injuries and 

degenerative changes (Gellman et al., 1988b; Burnham et al., 1993; Curtis et al., 

1999; Veeger et al., 2002). Gellman et al have highlighted the fact that the advances 

in the treatment and rehabilitation of SCI patients have greatly improved their quality 

of life and participated in a wide range of activities that require effective mobility 

(Gellman et al., 1988a). A comprehensive investigation into the causes of shoulder 

problems along with a look at possible methods of prevention may thus lead to 

further improvement, particularly for people with SCI reaching old age when 

problems with upper extremity pain can progressively increase dependency.  

 

A non-invasive method for the study of muscle activity is surface electromyography 

(SEMG), which is used widely in physiological research. The shoulder muscles are 

activated for distinct periods within each propulsion cycle. Two muscle synergies 

have been identified during wheelchair propulsion (Mulroy et al., 1996). The push 

phase synergy was dominated by the anterior deltoid (AD), pectoralis major (PM), 

and biceps brachii (BB) (Mulroy et al., 1996; Mulroy et al., 2004). These muscles 

decelerate arm extension in the late recovery phase and then contribute to shoulder 

flexion in the push phase(Mulroy et al., 2004). After the follow-through part of the 

push phase, the shoulder motions reversed direction in the recovery phase.  The 

recovery muscles, i.e. middle deltoid (MD), posterior deltoid (MD), and upper 

trapezuis (UT), contracted eccentrically first to restrain shoulder flexion and then 

contracted concentrically to return the arm to its starting position (Mulroy et al., 1996).  

 

Human muscles contain a mixture of muscle fiber types facilitating effective 

movement over a wide range of speeds and loads (Broman et al., 1985; Bottinelli and 

Reggiani, 2000). The skeletal muscles generate a range of EMG intensities and 
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frequencies during locomotion (Wakeling, 2004). It has been shown that EMG 

response is proportional to demand. The relative intensity of the EMG increases as 

the demand torque becomes greater, and then as the demand lessens, the EMG 

also diminishes. Additionally, higher-frequency source spectra are generated by 

faster motor units due to the faster conduction velocity of their motor unit action 

potentials (Wakeling and Rozitis, 2004; Wakeling, 2009b). Today’s advanced signal 

processing techniques enable a more detailed analysis of recruitment patterns of 

different motor units within a muscle. Wavelet analysis as defined by von Tscharner 

(2002) offers possibilities to consciously optimize the analysis with respect to time- 

and frequency-resolution respecting the limits given by the uncertainty principal of 

signal processing. The changes in EMG spectra were expected to be subtle, and so 

principle component analysis was chosen as the method for quantifying the signals. 

The combined use of wavelet and principal component analysis has been 

successfully applied in a number of reports of surface EMG collected from humans 

during a range of tasks (Wakeling et al., 2002; Wakeling, 2004; Wakeling et al., 2006; 

Wakeling, 2009b, 2009a). These studies have shown that distinct high and low 

frequency components of the EMG signal can be associated with activity in fast and 

slow motor units, respectively (Wakeling and Rozitis, 2004).  

 

The shoulder consists of several joints that function optimally when there are precise 

recruitment and coordination of the muscles attaching to these joints (An, 2002; 

Veeger and van der Helm, 2007). Shoulder joint forces and moments have been 

shown to increase at faster speeds (Kulig et al., 1998; Koontz et al., 2002; Mulroy et 

al., 2005; Mercer et al., 2006) and when the wheelchair is pushed up a ramp (Cowan 

et al., 2008). The changes in the recruitment patterns over the different shoulder 

muscles would be expected to match the different mechanical demands for assorted 

wheelchair propulsion conditions.  Within each of these muscles the changes in force 

production throughout the propulsion cycle would require the selective recruitment of 

motor units. It has indeed been shown that in synergistic muscles with different 

contractile properties, the fast motor units were selectively used for faster and high 

level force requirement tasks (Wakeling, 2004; Wakeling et al., 2006). The purpose 

of the present study was thus to investigate, using EMG and kinetics, the shoulder 

muscle recruitment patterns from unimpaired individuals during wheelchair 

propulsion under various propulsion conditions with a view of designing shoulder 

muscle stimulations patterns for actual wheelchair users with spinal cord injuries.  
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6.2 Methods 

6.2.1 Participants 

Fifteen able-bodied participants (8 males, 7 females, age: 30±4 years, weight: 65±12 

Kg) volunteered to participate in this study. They all gave their informed consent in 

accordance with the procedures approved by the University of Alberta ethics 

committee. None reported any previous history of upper extremity pain or any 

neuromuscular disorder. Participants were instructed not to perform any exercise 48 

h before measurements.  

 

6.2.2 Surface electromyography  

Surface electromyography activity of upper extremity muscles was recorded using 

parallel-bar EMG Sensors (DE-3.1 double differential sensor, 1mm in diameter and 

separated by 10 mm, BagnoliTM, Delsys Inc., Boston, MA, USA). SEMG signals were 

detected on seven muscles: anterior deltoid (AD), middle deltoid (MD), and posterior 

deltoid (PD), pectoralis major (PM), upper trapezius (UT), biceps brachii (BB), and 

triceps brachii (TB) on the right shoulder after prior removal of the hair and cleaning 

with alcohol swipes. Sensor placement was confirmed by testing elevation (anterior, 

middle, and posterior deltoid), external rotation (upper trapezius, and posterior 

deltoid), internal rotation (pectoralis major), and arm flexion (biceps and triceps). The 

EMG signals were amplified and sampled at 2000Hz.  

 
6.2.3 Kinetic  

The SmartWheel (Three Rivers Inc., LLC, Mesa, AZ, USA) was used for the 

collection of kinetic data. The SmartWheel is a modified mag-wheel capable of 

measuring three-dimensional forces and moments occurring at the pushrim. The 

pushrim kinetic data were collected at 240 Hz.  

 

The SmartWheel was placed on the right side of the test wheelchair (Quickie GP, 

Sunrise Medical, Longmont, CO, USA) with a standard foam cushion. This test 

wheelchair was mounted on an ergometer, which was connected to a LCD display 

placed in front of the participant to provide visual speed feedback. Kinetic and EMG 

recordings and were synchronized.  
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6.2.4 Procedure 

6.2.4.1 Maximum voluntary Isometric (MVIC) test  

To facilitate comparison between studies, the EMG signals were normalized by the 

use of a maximum voluntary isometric contraction (MVIC). A force transducer (Model 

LCCB-1K, OMEGA Engineering, Stamford, CT, USA) was used to measure the force 

generated from isometric contractions. The force signals were sampled at 2K Hz.   

 

After a 2-5min warm up, a total of 4 muscle tests in a seated position were performed 

following the methods described by Boettcher (Boettcher et al., 2008) and Kelly 

(Kelly et al., 1996). The test order was block randomized. Each contraction was 

performed for 8 s with a gradual increase of contraction over 2 s, a sustained 

maximum for 5 s, and a gradual release over the final second. Two repetitions of 

each test were performed, with a minimum rest interval of 2min between repetitions. 

A minimum 5-min rest period preceded each new test position. During the contraction, 

participants were provided with visual feedback of their performance on the computer 

monitor displaying their force trace and raw EMG.  LabVIEW software (Version 8.5, 

National Instrument Inc., Austin, Texus, USA) was used for signal recording and 

participant feedback. 

1. Anterior deltoid, middle deltoid, and posterior deltoid: elevation at 90° of 

scapular elevation and -45° of humeral rotation, resistance applied above 

the wrist.  

2. Upper trapezius: 125° shoulder flexion, resistance applied above the 

elbow, the participant sitting in an erect posture with no back support.  

3. Pectoralis major: Internal rotation at 0° of scapular elevation and neutral 

humeral rotation, 90° elbow flexion, resistance applied against the front of 

the wrist with midprone position of forearm.  

4. Triceps: shoulder fully adducted against the body, 90° elbow flexion, 
resistance applied under the wrist with the forearm supinated. 

 
6.2.4.2 Wheelchair propulsion at ergometer and ramp 

Wheelchair ergometer: the wheelchair with each participant was aligned and secured 

over the rollers of an ergometer. Participants were given several minutes to get used 

to propelling the wheelchair and established a comfortable propulsion technique.  

The participants were advised to apply semicircular propulsion pattern (Boninger et 

al., 2002; Boninger et al., 2005), which is recommended by clinical practice guideline 

(Boninger et al., 2005). The semicircular pattern is characterized by the hands falling 

below the propulsion pattern during the recovery phase (details in Chapter 5). 
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Participants were given ample time to practice the semicircular pattern. The 

participant then performed 2 trials of wheelchair propulsion, one at 0.9 m/s and the 

second at 1.6 m/s for 1 min.  

 

Ramp: A wooden ramp of 4° was constructed. It was 4.1m long and 1.3m wide. The 

ramp led to a 1.3m*1.2m platform.  Each participant performed 2 trials of propulsion 

along the ramp at a self-selected speed.  

 
6.2.5 Data analysis 

6.2.5.1 Kinetics data analysis 

SmartWheel provided forces and moments in 3 global reference planes. A complete 

propulsion cycle is defined as palm strike to palm strike.  The push phase is defined 

as palm strike to palm off, and the recovery phase is defined as palm off to palm 

strike at the pushrim for next cycle.  For this study, the onset of propulsion was 

defined as the point at which a propulsive moment (Mz) was applied to the 

SmartWheel, and the end of propulsion was defined as the point at which the 

moment returned to zero (Boninger et al., 1997). The recovery phase was defined as 

the end of propulsion to the next onset of propulsion, when the SmartWheel moment 

was zero.   

 

For each condition, variables from all the cycles were collected at steady state. For 

each participant, the average of the 10 continuous cycles at the fast and the slow 

speed condition was used for data analysis, while the average of 5 cycles for the 

ramp condition was used in subsequent analyse.  The key kinetic variables 

calculated were average resultant force (Ftot), average tangential force (Ft), and 

average moment (Mz).  The resultant force (Ftot) is the total force applied to the 

pushrim. The tangential force (Ft) is the force directed tangential to the pushrim. Mz 

is the moment acting to cause forward motion. In addition, by using the output of the 

SmartWheel, the push frequency, push length in degree, and push time were 

determined.  

 

6.2.5.2 Wavelet analysis of the EMG signal 

All signal processing was performed using custom programs written in Mathematica 

(version 6.0, Wolfram Inc., Champaign, IL, USA). EMG data were normalized to 

percentage of cycle time and synchronized with kinetic data. The method has been 

described in detail in previous chapters (Chapter 3).  
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To determine the onset and cessation of EMG activity, a threshold was computed for 

each muscle and each subject. The onset of EMG activity was defined as the time 

when the EMG total intensity remained above a threshold. The cessation of the EMG 

activity was defined as the time when EMG total activity remained below the 

threshold level. The duration of EMG activity was then calculated as the time 

difference between the onset and cessation of the EMG activity. The peak EMG 

activity was defined as the time then the EMG total intensity was highest. The results 

are reported as percentage of cycle.  

 

6.2.5.3 Principal component analysis 

The data set consists of a p x N matrix. Where p = 9 wavelet domain and N =5000 

(subjects*trials*20 partitioned windows) for each muscle.  The principal component 

weighting is given by the eigenvector, and can be displayed graphically as a function 

of the centre frequencies of the corresponding wavelets. The principal component 

loading score is given by the eigenvalue, and is a scalar value that describes the 

amount of each eigenvector in each measured spectrum (Hodson-Tole and Wakeling, 

2007). PCI loading scores have been shown to correlate with total signal intensity, 

while PCII loading scores relative to PCI loading scores provide a measure of the 

relative frequency content within the signal (Wakeling and Rozitis, 2004; Hodson-

Tole and Wakeling, 2007). A quantitative measure of the contribution of high and low 

frequency content within the signal is thus given by the angle θ formed between the 

PCI and PCII loading scores  (Wakeling, 2004; Wakeling and Rozitis, 2004; Hodson-

Tole and Wakeling, 2007). Large angles of θ represent a relatively large low 

frequency signal component, while small angles of θ represent a relatively large high 

frequency signal component. To determine changes in motor unit recruitment over 

time course of a propulsion cycle data from each push were partitioned into 20 equal 

time windows and mean values calculated for each time window. Principal 

component were calculated for each of the 20 partitioned time windows within the 

propulsion cycle, enabling the relative signal frequency content to be defined for 

different time points within the propulsion cycle. 

 

6.2.6 Statistical Analysis 

Mean values were calculated from each propulsion cycle and each subject. Statistical 

analysis was performed using SPSS (SPSS 16, SPSS, Inc., Chicago, IL). One-way 

ANOVA were conducted to compare kinetic performance, EMG onset, cessation, and 
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duration among the three test conditions. Significant differences in EMG intensity, 

PCI loading scores, and θ of each propulsion condition and propulsion time window 

were analyzed within each muscle using full- factorial general linear model ANOVA, 

with the condition and time windows defined as fixed factors. When a significant 

difference was indentified, post hoc Bonferroni tests were applied to identify the 

differences. In each statistical analysis results were considered to be significant when 

p<0.05.  

 

6.3 Results 

6.3.1 Kinetics 

The average total force (Ftot), average tangential force (Ft), and average moment (Mz), 

push length, push time, push frequency, and mechanical effectiveness from two 

testing speeds and the ramp condition are shown in table1. Ftot, Ft, Mz, push length 

increased significantly with increased speed and also on the incline (Table 6.1). 

There were significant differences in push time and % push phase among the testing 

conditions. The ramp condition shows a significantly longer %push cycle than both 

the slow and fast speed conditions; the fast speed shows the shortest %push cycle. 

No significant differences were found in the mechanical effectiveness among the 

three conditions.  

Table 6.1. Kinetics parameters for 3 conditions of wheelchair propulsion. Data were 
reported as mean ± SD.  

Speed(m/s) 0.9 m/s 1.6 m/s Ramp (self-selected speed) 
Ave Ftot (N)* 33.75 (9.94)

§
 45.83 (11.65) 

§
 83.35(17.47) 

§
 

Ave Mz (N.m)* 6.21(1.12) 
§
 8.31(1.05)§ 17.47(2.80) 

§
 

Ave Ft (N)* 24.14(4.36) 
§
 32.33(4.10) 

§
 67.93(12.17) 

§
 

Push Length (degree) 
§
 60.10(7.32) 

§
 64.19(4.92) 67.52(12.17) 

§
 

Push time (s)* 1.10(0.16) 
§
 0.89(0.14) 

§
 1.08(0.23) 

Push frequency(1/s)* 0.93(0.14) 
§
 1.16(0.17) 

§
 0.98(0.19) 

Mechanical Effectiveness 0.74(0.11) 0.73(0.13) 0.82(0.10) 
% push phase* 42.95(6.43) 35.27(6.64) 67.17(6.96) 

Abbreviation: Ave Ftot: average total force; Ave Mz: average Mz; Ave Ft, average tangential force; % 
push phase, percentage of push phase 
*significant difference for P<0.01 
§significant difference for P<0.05 

 

6.3.2 EMG activity 

Sample EMG signals and propulsion moment (Mz) from the 7 shoulder muscles for 

one subject are shown in Fig.6.1 for the 3 conditions. The timing of EMG activity of 7 

muscles during wheelchair propulsion is shown in Table 6.2.  
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Figure 6.1. Excerps of raw EMG traces from one subject from 2 speeds. Each panel 
show 5 seconds of activity. The scale is the same for each muscle across the three 
conditions. AD, anterior deltoid; PM,  pectoralis major; BB, biceps brachii; TB, triceps 
brachii; UT, upper trapezius; MD, middle deltoid; and PD, posterior deltoid. Mz, the 
propulsion moment from z direction.   

6.3.2.1 Push muscle activities 

Anterior deltoid (AD), pectoralis major (PM), biceps brachii (BB), and triceps brachii 

(TB) have their primary activity during the push phase (Fig.6.2). These muscles are 

defined as push muscles in the present study. At the fast speed, AD showed a 

significantly longer EMG duration than at the slow speed, while no significant speed 

related differences in EMG duration were found in any of other push muscles, 

including PM, BB, and TB. The timing of EMG onset, cessation and peak were 

similar in these push muscles at the two speeds (Table 6.2).   

 

In the ramp condition, the cessation of EMG activities of the push muscles, AD, PM, 

BB, TB, occurred significantly later than in either the fast or the slow speed condition. 

In addition, AD, PM, BB displayed significantly longer EMG duration in the ramp 

condition than in the fast or the slow speed condition. The timing of peak EMG 

activity was significantly later in AD and TB for the ramp condition than for the fast 

and slow speed condition. TB showed a significantly shift of EMG onset in the ramp 

condition (Table 6.2).  

BB 

AD 

UT 

MD 

PD 

PM 

TB 

Mz 

-5

30

-5

30

-5

30

0.9m/s 1.6m/s ramp 
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Table 6.2.  Timing of EMG activity of 3 conditions of wheelchair propulsion. Data were 
reported as mean ± SD.  

Onset (SD) 

(% of cycle) 

Cessation (SD) 

(% of cycle) 

Duration (SD) 

(% of cycle) 

Peak (SD) 

(% of cycle) 

Muscle 

0.9 

(m/s) 

1.6 

(m/s) 
ramp 

0.9 

(m/s) 

1.6 

(m/s) 
ramp 

0.9 

(m/s) 

1.6 

(m/s) 
ramp 

0.9 

(m/s) 

1.6 

(m/s) 
ramp 

AD 

n=11 

89 

(8) 

80 

(6) 

90 

(13) 

28 

(6) 

31 

(11) 

56 

(13)* 

40 

(9)* 

52 

(12)* 

69 

(10)* 

10 

(8) 

11 

(8) 

33 

(20)* 

PM 

n=12 

86 

(8) 

85 

(7) 

91 

(10) 

31 

(10) 

34 

(9) 

58 

(15)* 

45 

(8) 

50 

(11) 

67 

(10)* 

19 

(22) 

33 

(37) 

27 

(11) 

BB 

n=11 

84 

(14) 

78 

(17) 

88 

(12) 

18 

(7) 

18 

(7) 

35 

(15)* 

33 

(13) 

40 

(18) 

47 

(12)* 

93 

(10) 

93 

(11) 

6 

(11)* 

TB 

n=11 

97 

(3) 

92 

(9) 

22 

(19)* 

43 

(10) 

40 

(10) 

67 

(10)* 

45 

(8) 

48 

(12) 

45 

(15) 

22 

(13) 

14 

(7) 

50 

(11)* 

UT 

n=12 

35 

(9)* 

27 

(7)* 

50 

(15)* 

92 

(4)* 

87 

(7)* 

92 

(6) 

55 

(10) 

59 

(8) 

41 

(10)* 

68 

(10) 

58 

(11) 

71 

(11) 

MD 

n=12 

26 

(5)* 

18 

(7)* 

41 

(14)* 

92 

(4) 

88 

(5) 

96 

(8) 

66 

(8) 

70 

(10) 

54 

(10)* 

71 

(11)* 

50 

(20)* 

71 

(8) 

PD 

n=12 

30 

(7)* 

20 

(9)* 

46 

(15)* 

93 

(4) 

89 

(4) 

96 

(8) 

62 

(8) 

68 

(11) 

50 

(11)* 

72 

(12)* 

54 

(18)* 

69 

(9) 

*significant difference for P<0.01, group mean data. 
Abbreviations: AD, anterior deltoid; PM,  pectoralis major; BB, biceps brachii; TB, triceps 
brachii; UT, upper trapezius; MD, middle deltoid; and PD, posterior deltoid.   
 

On the other hand, for the push muscles, AD and PM, the EMG intensity and PCI 

loading scores increased significantly with increased speed and also on the incline 

(P<0.01), with greatest EMG intensities and PCI loading scores occurring in the ramp 

condition (Fig.6.3. For BB and TB, the slow speed showed significantly lower EMG 

intensity and PCI loading scores than the fast speed and the ramp condition, while 

there was no significant difference in EMG intensity and PCI loading scores between 

the fast speed and the ramp condition. The ramp conditions showed the greatest 

EMG intensity and PCI loading scores among the three conditions for all the push 

muscles (Fig.6.3).  The value of theta was significantly lower in the ramp condition for 

AD, PM and BB than in the slow and fast speed condition, whereas there was no 

significant difference in theta between fast and slow speed.   

 

6.3.2.2 Recovery muscles activities 

The upper trapezius (UT), middle deltoid (MD), and posterior deltoid (PD) were active 

mainly during the recovery phase (Fig.6.2). They are defined as recovery muscles in 

the present study. There were significant differences in the EMG onset and timing of 
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EMG peak activity among the three conditions in UT, MD, and PD (Table 6.2). The 

fast speed exhibited significantly earlier EMG onset and peak activity in these 

recovery muscles than the other two conditions, whereas EMG onset and peak 

activities occurred significantly later in the ramp condition than at the fast speed.  The 

ramp condition also showed a significantly shorter EMG duration in UT, MD, and PD 

than either the slow speed or the fast speed. 

 

For the EMG intensity and PCI loading scores, the ramp condition showed 

significantly lower EMG intensity and PCI loading scores in MD than the slow and 

fast speed (Fig.6.3). While the PD had significantly higher EMG total intensity and 

PCI in the ramp condition than in the slow speed. The value of theta was significantly 

higher in the ramp condition for MD and PD than in the slow and fast speed condition. 

No significant differences were found in EMG intensity and theta for UT between 

conditions. 
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Figure 6.2. Total EMG intensity and pushrim moment during each propulsion stroke for 
the different muscles. Each trace shows the mean (think line) + S.E.M. (thin line). The 
black dotted line shows data for the trials at 0.9m/s; the solid black line for 1.6m/s. the 
grey line shows data from the trials on the ramp. AD, anterior deltoid; PM,  pectoralis 
major; BB, biceps brachii; TB, triceps brachii; UT, upper trapezius; MD, middle deltoid; 
and PD, posterior deltoid.   
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Figure 6.3. Principal component loading scores for PCI (ordinate) and PCII (abscissa ) 
from different shoulder muscles during wheelchair propulsion at slow speed (open 
circle), fast speed (solid circle), and at self-selected speed ramp (grey triangles). There 
are 20 points on each graph which represent the 20 time windows within each 
propulsion cycle. 
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6.4 Discussion 

6.4.1 Motor control strategies between muscles in different propulsion 
conditions  

The kinetic data showed a significantly shorter %push phase in the fast speed 

condition, which was consistent with Koontz et al’s (2002) study of shoulder 

kinematics and kinetics during two speeds of wheelchair propulsion (Koontz et al., 

2002). Participants executed the push phase faster to maintain increased speed. As 

for the propulsion up a ramp, the participants adapted the forward lean posture to 

help prevent backward tipping. They used shorter strokes and moved their hands 

back more rapidly to avoid rolling backward between pushes; this action would 

explain that the longest % push cycle was found in the ramp condition.  

 

The present study shows the differences in EMG activity patterns of superficial 

shoulder muscles at different propulsion condition. There were significant changes in 

the EMG timing of shoulder activities during the three propulsion conditions. These 

results suggest that there were different muscle activation strategies present in 

different wheelchair propulsion conditions. The muscle recruitment patterns can be 

altered by propulsion speed change and posture.  

 

The patterns of push phase muscles recruitment were significantly different between 

the two propulsion speeds. The EMG activity duration of these muscles were longer 

in fast speed than in the slow speed, which is associated with earlier onset and later 

cessation. The prolonged EMG activity in the push muscles may go with an effort to 

improve velocity. The significantly longer EMG duration of the push muscles in the 

ramp condition was coincident with the longer %push phase, which demonstrates an 

effective adaptive response of the synergistic muscles to the external requirements. 

These results together suggest that the faster and the ramp propulsion condition 

require prolonged muscle activity in the push muscles. In addition, EMG intensity 

increased with increased speed and on the incline, with the greatest intensities 

occurring in the ramp condition. This corresponds with the kinetic data total force 

output for the 3 conditions. The findings of this study thus indicate that fast and ramp 

wheelchair propulsion places higher load on these push muscles and hence requires 

higher muscle activation levels.  

After the hand terminates its contact with the pushrim, recovery muscles, UT, MD, 

and PD, contribute to the deceleration of the arm during follow-through part of the 

push phase and return the arm to its starting position. The recruitment patterns of 

these muscles in the recovery phase were remarkably different in the 3 conditions. 
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The onset and peak EMG activities of the recovery muscles were significantly earlier 

at fast speed than at slow speed, which is coincident with the significantly shorter 

%push phase at the fast speed. The ramp condition showed a significantly shorter 

%recovery phase, the EMG duration of the recovery muscles were significantly 

shorter than at both fast and slow speed.  MD and UT showed significantly lower 

EMG intensity in the ramp condition. On the other hand, the EMG intensities of 

recovery muscles were significantly higher for fast speed than for slow speed, which 

may be associated rapid movement in the recovery phase.  

 

While semicircular pattern is adopted  for level propulsion, arcing is the most popular 

pattern for pushing uphill (de Groot et al., 2004; Richter et al., 2007). When pushing 

uphill, the user must maintain her/his balance and not tip backward. In addition, 

missing a push could mean losing control and rolling backward down the hill. With 

the arcing pattern, the user’s hands remain close to the pushrim when coasting, 

allowing her/him to make quick corrections. The increased EMG intensity of PD for 

the ramp condition may be related to the forward lean trunk position. 

 

The push muscles, AD, PM, BB, and TB, the prolonged activities and higher 

activation lever contribute more propulsive force on the pushrim to meet the high 

mechanical demand for fast speed and inclination. On the other hand, the recovery 

muscles, PD, MD, and UT, recruitment patterns differed significantly between 

conditions, with an effective effort to stabilize the shoulder joints and adjust posture 

for different motor task. These two synergies worked differently between the 

conditions and indicate that coordinated motor behavior is precisely regulated to 

match the requirement for movement and to allow for highly specialized and flexible 

motion. A number of studies have identified altered muscle recruitment patterns are 

associated with musculoskeletal disorders. Szeto et al (2005) reported altered neck 

and shoulder muscle recruitment patterns in symptomatic and asymptomatic office 

workers during computer work (Szeto et al., 2005). Mulroy (2004) el al also reported 

that the level of SCI significantly affected the shoulder muscles recruitment patterns 

during wheelchair propulsion (Mulroy et al., 2004). Further EMG investigation of the 

shoulder muscles during wheelchair propulsion may highlight the influence of 

shoulder pain on the muscle recruitment patterns of the manual wheelchair users.  

 

It has been suggested that shoulder joints subjected to intensive repetitive motion are 

at high risk for injury (Delgrosso and Boillat, 1991; Hagberg et al., 1992; Loslever and 

Ranaivosoa, 1993).  Previous studies with different setups have observed increased 
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joint loading at faster propulsion speeds (Kulig et al., 1998; Koontz et al., 2002). 

Rotator cuff degeneration injuries are common among wheelchair user with shoulder 

pain and injuries (Bayley et al., 1987; Barber et al., 1996; Veeger et al., 2002; Lin et 

al., 2004). The insertion of supraspinatus tendon into the humeral head is a critical 

zone for rotator cuff injury. This critical zone has found to have smaller veins, 

capillaries and arteries. However, when fast propulsion speed requires the production 

of rapid and strenuous movements, the muscles can be activated to the extent that 

circulation is temporarily rendered ineffective because of pressure of the blood 

vessels from contracting muscle fibers. As a result, this critical zone may be at a high 

risk of injury during fast speed wheelchair propulsion. In addition, pushing a manual 

wheelchair at fast speed not only requires higher propulsion force but also faster 

repetition, which makes the shoulder muscles more susceptible to fatigue. Muscle 

fatigue could increase the risk of shoulder injury (Koontz et al., 2002). Boninger et al 

reported that wheelchair users who push with a faster cadence and load the pushrim 

more rapidly have more median nerve damage (Boninger et al., 2005). On the other 

hand, during propulsion up a ramp, the necessary downward push to avoid backward 

tipping tends to drive the humeral head up into the glenohumeral joint, and is a 

probable cause the shoulder impingement  (Boninger et al., 2003; Koontz et al., 2006; 

Chow et al., 2009).  

 
6.4.2 Motor unit recruitment patterns within an individual muscle in different 
propulsion conditions 

In this study, the EMG signals were decomposed by the wavelet technique and then 

quantified by principal component analysis. The relative signal frequency 

components were explained by PCI-PCII loading scores, with negative PCII loading 

scores indicated a relative high proportion of low frequency components, while 

positive PCII loading scores indicated a relative high proportion of high frequency 

components. PCI loading scores were highly correlated to the EMG intensity. The 

value of θ is defined as the angle between PC I and PC II loading scores. It has been 

shown that the angle θ is very sensitive to the frequency shift that corresponds to 

spectral difference between types of motor units in both fine wire (Hodson-Tole and 

Wakeling, 2007) and surface EMG (Wakeling, 2004; Wakeling and Rozitis, 2004; 

Wakeling et al., 2006). This means that a higher value of θ represents relatively more 

low frequency signal content and it can be associated with the recruitment of slower 

motor units. A smaller θ value, associated with relatively more high frequency content, 

can be associated with the recruitment of faster motor units. 
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It has been shown that, as the speed of movement increases, successively faster 

muscle fiber types are recruited in addition to (but not at the exclusion of) slower fiber 

types in vertebrate locomotion (Armstrong, 1981). Thus, slower muscle fibers are 

used to power slow- and medium-speed movements while both slow and faster fibers 

are used during rapid movement (Jayne and Lauder, 1994).  In the present study, the 

faster speed PCI-PCII planes of the 7 muscles were characterized by higher PCI-

PCII loading scores, represented by the smaller theta values. Although the mean θ 

value did not differ significantly between the propulsion speeds, the smaller θ values 

in some of the windows from the fast propulsion cycle may indicate that a relatively 

high proportion of fast MU was recruited to match contractile properties to the 

mechanical requirements of the faster motion.  

 

In the ramp condition, the PCI-PCII the patterns of the push muscles, AD, PM, and 

BB, were characterized by a higher number of positive PCII loading scores, 

represented by the smaller theta values. The significantly lower θ values in the ramp 

condition suggested a higher proportion of fast MUs recruited to generate higher 

force required for pushing along the ramp. Whereas for TB, larger θ values across all 

time windows associated with a negative contribution of the PCII loading scores, 

indicating a higher contribution of low frequency content. The selective recruitment of 

slow fibers in TB may be associated with its functional role to maintain the postural 

task for a longer duration and to overcome gravity on the ramp.  

 

EMG activities of the recovery muscles in the ramp condition were characterized by 

relatively more low-frequency content, represented by larger θ values. This reflected 

selective recruitment of slower MUs in the ramp condition. The recruitment of slow 

motor units may be associated with stabilizing the shoulder joints and maintaining the 

forward lean posture for a longer duration. It has been reported that locomotion on a 

ramp leads to a significant increase in low frequency components in EMG signal.  

 

Histochemical studies of fiber type composition show that the deltoid muscles and 

upper trapezius muscles have a high proportion of slow-oxidative (SO) fibers 

(Srinivasan et al., 2007). The posterior deltoid (PD) has the particularly high average 

SO proportion of 56%. The high proportion of slow fibers in these muscles may be 

associated with the role they play in postural maintenance and the stabilization of the 

shoulder joints. In the present study PD displayed a significantly higher EMG 

intensity and larger θ in the ramp condition than in slow speed condition, indicating a 

relatively high proportion of slow fibers recruited for the ramp condition to maintain 
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the forward lean posture for a longer time and to overcome the backward component 

of gravity (Hodson-Tole and Wakeling, 2008b). On the other hand, PD showed a 

higher EMG intensity and smaller θ at the fast speed than at the slow speed, which 

may be associated with the preferential recruitment of faster MUs for rapid movement.  

 

It is well known that neural factors play an important role in muscle activities (Rosen 

et al., 1999). Nevertheless, motor programs and plans at these higher levels have, 

ultimately, to become shaped into motor behavior via commands to the final common 

path of the motor system: the motoneurons and the muscle motor units. The basic 

idea is that of the size principle, according to which the smallest motoneurones are 

the first to be recruited, followed by successively larger motoneurones. The size of a 

motoneurone is roughly correlated with the types of muscle motor units it innervates; 

small motoneurones innervate slow motor units, while large motoneurones innervate 

fast motor units. Slow motor units develop relatively little tension and are highly 

resistant to fatigue; they can thus keep up a series of repeated contractions with little 

loss of force, for example during the maintenance of posture, while fast motor units 

which develop large tensions may only be needed to be activated for brief periods of 

exertion. In addition, it is known that fast and slow muscle fibers vary in their 

energetic properties, and it has been suggested that muscle fiber type distribution 

influences energy expenditure and the energetically optimal cadence during pedaling 

(Umberger et al., 2006). Most vertebrate muscle contains several different fiber types 

that are proposed to allow more effective movement. Faster fibers generate 

maximum power output and efficiency at higher shortening velocities than do slow 

fibers, while the slow fibers are metabolically economical in the use of posture 

maintenance contractions for long time. Thus recruiting the most appropriate motor 

unit to maximize power output or contractile efficiency may result in considerable 

energetic savings during locomotion.  
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Chapter Seven: Mechanomyographic amplitude and 
frequency response during wheelchair propulsion 

 
7.1 Introduction  

The mechanomyography (MMG) amplitude and frequency response have been 

examined extensively during well-controlled isometric-isotonic muscle 

contractions(Beck et al., 2004a; Coburn et al., 2004b; Coburn et al., 2004a; Beck et 

al., 2005c; Coburn et al., 2005; Esposito et al., 2005). However, the relationship 

between force and MMG signal has been less thoroughly studied during dynamic 

actions. Several factors can affect the MMG signal during dynamic muscle actions. 

They include the movement artefacts(Beck et al., 2005c), the thickness of the tissue 

between the muscle and the MMG sensor, the physical configuration of the MMG 

sensors (Beck et al., 2006a), and the changes in force production during dynamic 

muscle activities(Coburn et al., 2004b). These factors can confound the interpretation 

of the motor unit recruitment pattern based on the analysis of amplitude and 

frequency analysis of MMG signal. However, several studies have investigated the 

MMG amplitude and/or response during cycle ergometry (Shinohara et al., 1997; 

Stout et al., 1997; Perry et al., 2001c; Hendrix et al., 2008). The results from these 

studies suggested that MMG amplitude increased linearly with increased power 

output during incremental cycle ergometry. In addition, no significant change in MMG 

mean power frequency for the vastus lateralis muscle was found (Shinohara et al., 

1997).  

 

The previous chapters (Chapter 1 and 2) have documented the MMG time-frequency 

responses during isometric, eccentric, and concentric muscle contractions by using 

wavelets analysis. The results suggest that MMG can provide information about 

motor unit recruitment patterns. The purpose of present study was to investigate the 

MMG time-frequency response during dynamic muscle actions. The MMG activity 

was recorded in 3 shoulder muscles during two speed wheelchair propulsion.   

 
7.2 Materials and Methods 

7.2.1 Participants 

15 able-bodied participants (8 males, 7 females, age: 30±4 years, weight: 65±12 Kg) 

volunteered to participate in this study. They all gave their informed consent in 

accordance with the procedures approved by the University of Alberta ethics 
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committee. None reported any previous history of upper extremity pain or any 

neuromuscular disorder. 

 

7.2.2 Surface Mechanomyography 

Mechanomyography (MMG) was recorded using piezoelectric transducers (23mm 

diameter, 12.5g weight, GRASS technologies, Rhode Island, USA) on anterior deltoid, 

upper trapezius, and biceps brachii on the left shoulder.  MMG signals were sampled 

at 2000Hz. The MMG signals were recorded with a 16 bit analogue to digital 

converter (NI PCI 6220, National Instrument Inc., Austin, Texus, USA) during 

wheelchair propulsion. MMG signals were normalized by the use of a maximum 

voluntary isometric contraction (MVIC).  

 
7.2.3 Protocol 

Participants were given ample time to get used to propelling the wheelchair and 

established a comfortable propulsion technique.  The participants were advised to 

apply semicircular propulsion pattern (details in Chapter 5) (Boninger et al., 2002; 

Boninger et al., 2005), which is recommended by clinical practice guideline (Boninger 

et al., 2005). The semicircular pattern is characterized by the hands falling below the 

propulsion pattern during the recovery phase. The participant then performed 2 trials 

of wheelchair propulsion, one at 0.9 m/s and the second at 1.6 m/s for 1 min.  

 
7.2.4 MMG signal processing 

All signal processing was performed using custom programs written in Mathematica 

(version 6.0, Wolfram Inc., Champaign, IL, USA). MMG data were normalized to 

percentage of propulsion cycle time and synchronized with kinetic data (Fig.7.1). The 

MMG signals were resolved into  intensities in time-frequency space using wavelet 

techniques (von Tscharner, 2000). The method has been described in detail in 

previous chapters. The first two wavelets of MMG covered the frequency bands of 0-

7 Hz, which is typically associated with movement artifacts. We reduced the effects 

of movement due to dynamic contractions by removing the first two wavelets from 

spectra. Total intensity was given by summing the intensities over the selected 

wavelets (7-90 Hz, k = 1-8). Total intensity is a measure of the time-varying power 

within the signal and is equivalent to twice the square of the root-mean-square. The 

instantaneous mean power frequency (MPF) was calculated by:  

∑

∑
=

k
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k
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With fc representing the center frequency of each wavelet and the mean frequency 

calculated as the mean of the MPF values taken from whole propulsion cycle.  

 

 

 

 

 

Figure 7.1. Excerpts of raw MMG traces from one subject from 2 speeds. Each panel 
show 10 seconds of activity. The scale is the same for each muscle across the three 

conditions.  

To determine the onset and cessation of MMG activity, a threshold was computed for 

each muscle and each subject. The onset of MMG activity was defined as the time 

when the EMG total intensity remained above a threshold. The cessation of the MMG 

activity was defined as the time when MMG total activity remained below the 

threshold level. The duration of MMG activity was then calculated as the time 

difference between the onset and cessation of the MMG activity. The peak MMG 

activity was defined as the time then the MMG total intensity was highest. The results 

are reported as percentage of cycle.  

 

7.2.5 Statistical Analysis 

Mean values were calculated from each propulsion cycle and each subject. Statistical 

analysis was performed using SPSS (SPSS 16, SPSS, Inc., Chicago, IL). Paired t-

tests were conducted to test for MMG onset, cessation, duration, MMG intensity, and 

MFP between the two testing speeds. In all statistical analysis results were 

considered to be significant when p<0.05.  
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BB 
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UT 

Propulsion 
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7.3 Results 

Anterior deltoid (AD) and biceps brachii (BB) had MMG activity in both push and 

recovery phases (Fig.7.2). The MMG pattern of anterior deltoid showed onset in 

recovery phase (64±8% cycle, 70±5% cycle, at fast and slow speed, respectively) 

and cessation in the late push phase (28±10% cycle, 22±10% cycle, at fast and slow 

speed, respectively)(Table 7.1). The MMG onset of biceps brachii was in the late 

recovery phase (78±6% cycle, 81±5% cycle, at fast and slow speed, respectively), 

and the cession of MMG was in the early recovery phase (48±11% cycle, 39±18% 

cycle, for fast and slow speed, respectively). The fast speed had significantly longer 

MMG duration than that of slow speed for both anterior deltoid and biceps brachii. 

There was significant difference in MMG intensity between the two testing speeds, 

whereas the MFP did not differ between the two speeds for both muscles (Fig.7.3).  

Table 7.1. Timing of MMG activity of slow speed (0.9m/s) vs fast speed (1.6m/s) 
during wheelchair propulsion. Data were reported as mean ± SD.  

muscle N 
Onset  

%cycle (SD) 

Cessation 

%cycle(SD) 

Duration 

%cycle(SD) 

speed  0.9(m/s) 1.6(m/s) 0.9(m/s) 1.6(m/s) 0.9(m/s) 1.6(m/s) 

AD 9 70(5) 64(8) 22(10) 28(10) 52(12) * 63(8)* 

BB 9 81(5) 78(6) 39(18) 48(11) 56(12)* 70(9)* 

UT 10 98(18) 91(10) 53(9) 44(9) 53(13) 52(13) 

Abbreviations: AD, anterior deltoid; BB, biceps brachii; UT, upper trapezius;  
*significant difference for P<0.01, group mean data. 
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Figure 7.2.  Total MMG intensity during each propulsion stroke for the different 
muscles. Each trace shows the mean (think line) + S.E.M. (thin line). The grey dotted 
line shows data for the trials at 0.9m/s; the solid black line for 1.6m/s.   
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Upper trapezius showed primary activity in push phase. The MMG pattern of upper 

trapezius extended from early push phase(91±10% cycle, 98±18% cycle, at fast and 

slow speed, respectively) to mid recovery phase (53±9% cycle, 44±9% cycle, for fast 

and slow speed, respectively) (Fig.7.2). There were no significant differences in, MFP, 

MMG onset, cession, and duration between the two testing speeds. However the 

MMG intensity was significantly higher at faster speed than at slower speed (Fig.7.3).   

            

    

 
 
 

Figure 7.3. MMG spectrum for different muscles. Each trace shows the mean (think line) 
± S.E.M. (thin line). The grey dotted line shows data for the trials at 0.9m/s; the solid 
black line for 1.6m/s.  

 
7.4 Discussion 

7.4.1 MMG intensity, MPF and pattern during two speeds wheelchair propulsion 

Several studies have shown a linear relationship between MMG intensity and torque 

during submaximal concentric and eccentric muscle contractions of the BB (Dalton 

and Stokes, 1991; Beck et al., 2006b). It has been hypothesized that this linear 

relationship is due to an increase in the number of active motor units as torque 

increased (Beck et al., 2004b). In the present study, the MMG intensity was 

significantly higher at faster speed than at slower speed in AD, BB, and UT muscles. 

This indicates that the muscle activation level could be reflected in the MMG intensity.  

 

Beck et al reported MMG MPF did not change significantly across the isokinetic 

torque levels (Beck et al., 2004b). It has been suggested that the frequency content 

of the MMG signal may reflect the global firing rate of the unfused activated motor 
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units (Beck et al., 2007a). Therefore, the stable MPF during increase concentric 

isokinetic muscle contractions indicated that the global motor unit firing rate didn’t 

change with increased torque. In the present study, no significant change in MPF 

between fast and slow speed was found. Our results were consistent with previous 

studies, which suggest that recruitment may be the primary motor control strategies 

during low-moderate level dynamic muscle contractions.   

 

Compared to the EMG pattern showed in chapter 6, the MMG duration of AD and BB 

was longer than EMG duration of the same muscles. The MMG pattern of UT is 

different from the EMG pattern of UT. UT showed EMG activity mainly in the recovery 

phase, whereas UT demonstrated MMG activity in both push and recovery phase. 

The proposed origins of MMG signal are 1) gross lateral movement of the muscle as 

it moves toward, or away from, its line of pull during contraction and relaxation, 

respectively, 2) smaller subsequent lateral oscillations of the muscle at its resonant 

frequency, and 3) dimensional changes of the active fibres (Beck et al., 2007a). 

Therefore, the MMG pattern of these muscles may reflect the body movement and 

shoulder displacement during wheelchair propulsion. Further studies could compare 

MMG pattern with kinematics data of the shoulder movement and assist in the 

interpretation of these signal components.  

 

7.4.2 Limitations of the use of MMG during dynamic muscle contractions 

Movement artefacts are often present in EMG signals. For instance, the usable 

energy of the EMG signal is limited to the 0 to 500 Hz frequency range, with the 

dominant energy being in the 50-150 Hz range (De Luca, 1979). Movement artefacts 

are lower than 20 Hz in EMG, so movement artefacts do not have a large influence 

on EMG signal. In the case of MMG, lower frequency cutoff is around 2Hz as 

suggested by Orizo (Orizio, 1993), with dominant energy being around 5-60Hz.  So 

the movement artefact may affect the MMG signal during dynamic movement.  

 

Filtering MMG with appropriate cutoff frequencies have been applied to MMG signal 

processing.  Several studied have used a filter with a 5 Hz high pass cutoff frequency 

to attenuate movement artefact in MMG signal (Bajaj et al., 2002). It has been 

suggested that 5 Hz high pass filters reduced the influence of body movements and 

gross limb displacement. In the present study, the first 2 wavelets, covered the 

frequency range 0-7Hz, were removed from the spectra. Further MMG signal process 

technique studies may focus on during dynamic movement to filter the movement-

related noise without attenuation of the signal of interest. 
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Although MMG is attracting more attention in fields such as biomechanics, exercise 

physiology, and clinical studies, the literature base for MMG is probably 20-25 years 

behind that of EMG (Beck et al., 2005c). The dynamic muscle actions are often 

avoided in MMG research on the grounds that during these activities, there are too 

many confounding factors that could influence the MMG signal and render the 

resulting data uninterruptable and unusable (Beck et al., 2005c). However, there is 

substantial evident to suggest that MMG signal provides meaningful information 

regarding muscle function during dynamic muscle contractions.  Thus, it is important 

to continually examine the potential uses/ application of MMG in a variety of 

experiment situations. 
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Chapter Eight:  Changes in surface electromygraphic 
signals and kinetics associated with progression of 
fatigue at two speeds during wheelchair propulsion 

8.1 Introduction 

Manual wheelchair users (MWU) rely on their upper extremities for independent 

mobility and other critical functions, and thus shoulder pain can be debilitating. 

Estimates of shoulder pain among  MWU with paraplegia range from 30% to 73% 

(Pentland and Twomey, 1991; Ballinger et al., 2000).  The high prevalence of 

musculoskeletal disorders of MWU has provoked new emphasis on the study of 

shoulder pain with long-term consequences. “Overuse syndrome” has been 

described as one potential cause for pain in MWUs (Miyahara et al., 1998; Groah 

and Lanig, 2000). To develop effective strategies to minimize the destructive effect of 

shoulder pain, it is important to first understand the physiological and mechanical 

processes that may expose tissues to the risk of injury. Such insight may lead to 

better prevention of pain or overuse of the upper extremities.   

 

It has been suggested that muscle fatigue plays a critical role in musculoskeletal 

overuse (Niemeyer et al., 2004). By examining the fatigue condition, it should be 

possible to establish a protocol that mimics conditions present with overuse injuries 

(Kumar, 2001). Several studies (Rodgers et al., 1994; Rodgers et al., 2003; Rice et 

al., 2009) have shown some biomechanical changes occurring during wheelchair 

propulsion in a fatigue state. These changes are also reflected in the EMG signals 

(Bernasconi et al., 2007). Examination of the change in the electromyographic (EMG) 

signal has been widely promoted as a valuable, noninvasive technique by which the 

development of local muscle fatigue can be evaluated during static as well as 

dynamic contractions (De Luca, 1997; Knaflitz and Bonato, 1999). It is well known 

that the myoelectrical manifestations of muscle fatigue cause a decrease in the mean 

power frequency (MPF) of the power spectrum. When dynamic contractions are 

considered, the spectral estimation technique must be carefully chosen, taking into 

account the specific type of non-stationarity exertion affecting the signal of interest.  

Wavelet analysis with well-defined time and frequency resolution has been shown to 

provide a highly sensitive method of assessing non-stationary EMG (von Tscharner, 

2000). The spectrum analysis showed a shift to higher frequencies as faster fibres 

being recruited, which indicated recruitment patterns of different types of motor unit 

are related to the mechanical requirements of the locomotor task. These methods 

make it possible to estimate muscles fibre types and characteristics that are typically 

assessed by histochemical means can also be assessed to a certain extent with the 
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wavelet analysis. In addition, It has proposed that during more strenuous activity, 

muscles surrounding a joint fatigue at differential rates (Kumar, 2001). Muscle 

coordination might change as compensatory mechanisms during fatiguing dynamic 

tasks. In deed, Bernatsconi et al reported inefficient muscle coordination occurred 

during exhaustive wheelchair propulsion (Bernasconi et al., 2007). Therefore, 

changes in the EMG characteristics and the muscle recruitment pattern may occur as 

fatigue progresses during a dynamic task. The ability to measure shoulder muscle 

fatigue can enhance our understanding of shoulder muscle function and potentially 

provide a tool for fatigue assessment.  

 
During occupational and rehabilitation tasks and daily activities the MWU do not 

necessarily perform heavy intensity propulsion and may become only mildly fatigued. 

In the present study, wheelchair propulsion to a point of mild fatigue was investigated 

at two different speeds, slow (0.9m/s) and fast (1.6m/s). Our purpose was to test the 

hypothesis that mildly fatigue causes changes in motor unit recruitment within 

individual shoulder muscles and in the coordination of shoulder muscles as well as in 

wheelchair kinetics. This information would be useful for developing the strength 

training and rehabilitation programs for wheelchair users.   

 
8.2 Materials and Methods 

8.2.1 Participants 

14 able-bodied participants (7 males, 7 females, age: 30±4 years, weight: 65±12 Kg) 

volunteered to participate in this study. They all gave their informed consent in 

accordance with the procedures approved by the University of Alberta Ethics 

Committee. None reported any previous history of upper extremity pain or any 

neuromuscular disorder. Participants were instructed not to perform any exercise 48 

h before measurements.  

 

8.2.2 Surface electromyography  

Please see details in Chapter 5. 
 
8.2.3 Kinetic  

Please see details in Chapter 5. 
 
8.2.4 Test procedure 

The test wheelchair (Quickie GP, Sunrise Medical, Longmont, CO, USA) was aligned 

and secured over the rollers of an ergometer, which connected to a monitor placed in 
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front of the participant to provide visual speed feedback. The SmartWheel was 

placed on the right side of the test wheelchair with standard foam cushion. 

Participants were given several minutes to get used to propelling the wheelchair and 

to establish a comfortable propulsion technique. Then the participants were advised 

to apply the semicircular propulsion pattern, which is recommended by clinical 

practice guidelines (Boninger et al., 2002; Boninger et al., 2005).  

 

During testing, participants were asked to perform 2 trials of wheelchair propulsion, 

the first one at 0.9 m/s, the second one at 1.6 m/s. In each case the participant would 

continue pushing at the set speed until they felt it hard to maintain. The slow speed 

0.9m/s was selected because it is close to minimally safe speed (1.06 m/s, the speed 

required to cross a street with a timed light)(Cowan et al., 2008). The fast speed 

1.6m/s was faster than the normal adult walking speed (1.3m/s) to present a 

challenging and strenuous situation for the participants.  

 
In the present study, a sufficiently challenging level of exertion was established while 

minimizing the risk of injury. To facilitate awareness and rating of signs of fatigue 

during testing, participants were given a scale of “Ratings of Perceived Exertion 

(RPE)” pertaining to both general tiredness and localized muscle fatigue. Levels 15 

to 20 on that scale were deemed to mark the highest level of effort prior to 

exhaustion. Participants felt mildly fatigued after testing. 

 

The endurance time thus registered would differ according to each participant's 

fitness level and strength. Results were normalized by setting the actual endurance 

time in each case as 100% and dividing it into 5 equal windows expressed as % 

endurance time. The last 10 propulsion cycles of each of these 5 time windows were 

selected for data analysis.  

 
8.2.5 Data analysis 

8.2.5.1 Kinetics data analysis 

Please see details in Chapter 6. 
 
8.2.5.2 Wavelet analysis of the EMG signal 

Please see details in Chapter 6. 
 

8.2.5.3 Principal component analysis 

Please see details in Chapter 6. 
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8.2.6 Statistics 

Mean values were calculated from each propulsion cycle and each subject. Statistical 

analysis was performed using SPSS (SPSS 16, SPSS, Inc., Chicago, IL, USA). 

Mixed model analysis of variance (ANOVA) was used for statistical analysis. The 

between-subject factor is speed. The within-subject factor is % endurance time. 

Repeated measures ANOVAs were used to analyze EMG total intensity, duration, 

MPF, θ, and kinetic variables. Significant level was set at p< 0.05 for all statistical 

procedures.  

 

8.3 Results 

In the present study, the prompt recognition of fatigue, either localized in a particular 

muscle or experienced as general tiredness of the whole body, allowed for a 

sufficiently challenging level of exertion while minimizing the risk of injury or overuse 

syndromes. The highest level of exertion was set at RPE 15 (out of maximum of 20).  

The average duration at the fast speed (1.6m/s) was 154±74s; the average number 

of push cycles at the fast speed was 172 ±111 cycles. The average propulsion 

duration at the slow speed (0.9m/s) was 334 ±139s; the average number of push 

cycles for the slow speed was 307±146 cycles. The participants were only mildly 

fatigue after the testing. 

 

8.3.1 Propulsion kinetics 

Fig.8.1 displays the kinetic mean values calculated at 20%, 40%, 60%, 80%, and 

100% of the endurance time during prolonged wheelchair propulsion at the slow and 

the fast speed.  Peak Ftot, Peak Ft, Ave Ftot, Ave Ft, push time, and push frequency 

were significantly different between the two speeds, whereas there is no significant 

effect of % endurance time on these kinetic variables for the two propulsion speeds. 

Push length at 20% endurance time was significantly longer than at 100% endurance 

time for both speeds, while the main effect of % endurance time had no statistically 

significant (P = 0.052) effect on push length for either speeds.   

 

8.3.2 EMG characteristics 

The EMG intensity, mean power frequency (MPF), and theta (θ) at 20%, 40%, 60%, 

80%, and 100% of the endurance time are shown in Fig.8.2. There is a significant 

effect of % endurance time on the EMG intensity for the tested muscles (P<0.05), 

except BB (P = 0.079), EMG intensity increased continuously throughout the 

propulsion duration for both speed conditions. The EMG intensities for AD, PM, BB, 
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and TB were significantly greater at the fast speed than at the slow speed (P<0.05), 

while there were no significant differences in EMG intensity for UT, MD, and PD 

between the two speeds.  Mixed model ANOVA revealed that the EMG MPF 

decreased linearly (P<0.05) with %endurance time in all the 7 muscles for both 

speed conditions, while there was no significant difference in MPF between the two 

speeds. There were no significant differences in θ between the tow speeds.  

Significantly differences (P<0.05) did exist in θ along the scale of %endurance time, 

showing that θ differed significantly over time for AD (P<0.001), PM (P<0.001), TB 

(P=0.002), UT (P<0.001), and MD (P<0.001), except in BB (P=0.160) and PD 

(P=0.077).  

 

Although shoulder muscle activity increased significantly during fatigue (Fig.8.3), 

there was no significant effect of the % endurance time on the EMG duration in the 

present study. The significant differences did however exist between the two speeds, 

showing that muscle activity differed significantly at different speed. 
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Figure 8.1. Changes in the pushrim kinetics parameter: speed, peak total force (peak 
Ftot), peak tangential force (peak Ft), average total force (Ave Ftot), push time, push 
frequency, push length in degree, and mechanical effectiveness (Ft / Ftot) as a function 
of time (expressed as a percentage of the endurance time) during the fast speed (black 
line) and slow speed (grey line) wheelchair propulsion. Values reported as mean ± 
S.E.M. 

Time (% endurance time) Time (% endurance time) 



 140

0

0.4

E
M

G
 i
n

te
n

s
it

y
    

85

125

M
F
 (

H
z
)

   
1.2

1.8

th
e
ta

 (
ra

d
)

 

0

0.7

E
M

G
 i
n

te
n

s
it

y

  
70

95

M
F

 (
H

z
)

    
1.2

1.7

th
e
ta

 (
ra

d
)

 

0

0.4

E
M

G
 i
n

te
n

s
it

y

   
85

125

M
F

 (
H

z
)

   
1.7

1.8

th
e

ta
 (

ra
d

)

 

0

0.4

E
M

G
 i
n

te
n

s
it

y

  
87

102

M
F

 (
H

z
)

   
1.4

1.7

th
e

ta
 (

ra
d

)

 

0

0.7

E
M

G
 i
n

te
n

s
it

y

  
80

100

M
F

 (
H

z
)

  
1.4

1.7
th

e
ta

 (
ra

d
)

 

0

0.9

E
M

G
 i
n

te
n

s
it

y

   
85

110

M
F

 (
H

z
)

   
1.3

1.7

th
e
ta

 (
ra

d
)

 

0

1.8

20 40 60 80 100

E
M

G
 i
n

te
n

s
it

y

85

110

20 40 60 80 100

M
F

 (
H

z
)

     

1.3

1.6

20 40 60 80 100

th
e

ta
 (

ra
d

)

 
 

 

Figure 8.2. Changes in the EMG intensity, MPF, and theta as a function of time 
(expressed as a percentage of the endurance time) during the fast speed (black line) 
and slow speed (grey line). Each point is the average value (mean ± S.E.M., n=14) of the 
10 cycles of each time window.  
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Figure 8.3. EMG intensity for 7 shoulder muscles obtained at the 20% endurance time 
window (black lines) and at the 100% endurance time window (grey lines) of the two 
speed wheelchair propulsion. Time zero indicates the hands on the pushrim. Each 
profile represents the mean(think line) ± S.E.M (thin lines) obtained from averaging 
individual data across 10 consecutive propulsion cycles of each time window. AD, 
anterior deltoid; PM,  pectoralis major; BB, biceps brachii; TB, triceps brachii; UT, 
upper trapezius; MD, middle deltoid; and PD, posterior deltoid.   
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8.4 Discussion  

8.4.1 The effect of muscle fatigue on the motor unit recruitment pattern  

The term “muscle fatigue” is used to denote a transient decrease in the capacity to 

perform physical actions (Enoka and Duchateau, 2008), and it can be measured as a 

change in electromyographic activity (Edwards, 1981). In the present study, the EMG 

signals were decomposed by the wavelet technique and then quantified by principal 

component analysis. Wavelet analysis is a technique that provides information on the 

time-frequency variation of the signal so that the amplitude, timing and frequency 

content can all be resolved simultaneously. Wavelets in non-linearly scaled time-

frequency windows can provide an optimal time or frequency resolution for the non-

stationary EMG signal during dynamic contractions. When the muscle is fatigued, a 

strengthening of low frequency components and a reduction in intensity of high 

frequency components modifies the spectrum of the SEMG signal (Singh et al., 

2007). Principal component analysis (PCA) can be applied to quantify spectra shifts. 

The relative signal frequency components associated with the contribution of high 

and low frequency content within the EMG signal were explained by the angle formed 

between the PCI and PCII loading scores(θ). Higher values of θ represent a relatively 

large low frequency component, while lower values of θ represent a relatively large 

high frequency component (Hodson-Tole and Wakeling, 2008b). It has been shown 

that the θ is very sensitive to the frequency shift that corresponds to spectral 

differences between types of MUs in both fine wire (Hodson-Tole and Wakeling, 

2007) and surface EMG (Wakeling, 2004; Wakeling and Rozitis, 2004; Wakeling et 

al., 2006).  

 

In the present study, fatigue-related changes in the EMG data were identified as an 

increase of EMG intensity and a decrease of EMG MPF as a function of %endurance 

time for the tested muscles (except BB) under both fast and slow speed conditions. 

Our findings were in agreement with previous investigations showing that a 

compression of the power spectrum to lower frequencies is typically observed during 

a fatiguing contraction (Bonato et al., 2001; Dimitrova and Dimitrov, 2003). The 

increase in EMG intensity might be due to one or more of several factors including 

the recruitment of additional MUs to compensate for the loss of force (Dimitrova and 

Dimitrov, 2003), impaired excitation-contraction coupling(Stephenson et al., 1995; 

Lamb, 2002), increased firing rate, and/or synchronization of motor unit recruitment 

(Freund, 1983; Newham et al., 1983).  
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The angle θ is formed by the first two principal components of the spectra. Principal 

component analysis extracts the important features in the signal, so some variables, 

such as movement artifacts (De Luca, 1997), were given lower order components 

and were excluded. In the present study, the first two principal components (PCI and 

PCII), accounting for more than 85% of the EMG signal, were considered. It has 

been shown that θ to be very sensitive to the frequency shift that corresponds to 

spectral differences between difference types of motor units(Wakeling, 2009b). A 

higher value of θ represents relatively more low frequency signal content and it can 

be associated with the recruitment of slower motor units. A smaller θ value, 

associated with relatively more high frequency content, can be associated with the 

recruitment of faster motor units (Hodson-Tole and Wakeling, 2008b).  

 

The time-dependent shift in mean power frequency (MPF) of electromyographic 

(EMG) signals to lower frequency components during the fatigue process was 

reflected by the changes in θ. Higher-frequency source spectra are generated by 

faster motor units due to the faster conduction velocity of their motor unit action 

potentials (Wakeling, 2009b), however, faster motor units fatigue more quickly. It is 

expected an increase in θ during fatigue, as reflected by the progressive fatigue of 

faster motor units being recruited. The θ increased almost linearly with % endurance 

time, there was a significant difference between the first and last endurance time 

window.  

  

The changes in θ during fatigue may be influenced by the initial increase of motor 

unit recruitment and subsequent de-recruitment of later-recruited faster motor units. 

The significantly higher θ values in the last endurance time window reflect the 

relatively large low frequency content, which is associated with a higher proportion of 

slow motor units. Slow motor units are more fatigue resistant and can provide 

sufficient force a longer duration. The fatiguing phase correlated with a decrease in 

MPF and an increasing degree of fatigue of faster motor units, while the mechanical 

endurance time reflected the output level of mainly slower motor units (Gerdle et al., 

1989; Minning et al., 2007).  

 

As shown in the Fig.8.2, the EMG intensity lines become progressively steeper in the 

fast speed condition than in slow speed condition as a function of % endurance time, 

which indicated the recruitment of additional motor units, particularly the fast motor 

units, to generate higher force at the fast speed. The fast speed requires a higher 

propulsive force on the pushrim than the slow speed, therefore both the number and 
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size of recruited motor units increased for the higher mechanical requirement within 

individual muscles. On the other hand, the increase in θ and decline in MPF were 

greater for the fast speed than for the slow speed, which may be due to early de-

recruitment of more fatigable faster MUs, possibly compensated by a firing rate 

increase (Freund, 1983) or by synchronization of MUs (Krogh-Lund and Jorgensen, 

1993; Holtermann et al., 2009). Faster MUs fatigue more rapidly and so would not be 

able to sustain force production over a prolonged period of time. The relation 

between size of motor unit and fatigability thus makes functional sense. Slow MUs, 

which develop relatively lower tension, are resistant to fatigue, while the fast MUs, 

which develop large tension, are fatigued quickly and may be activated for brief 

duration.  

 

MPF and θ, determined by time-frequency analysis and PCA in the present study, 

showed sensitive and consistent changes in terms of muscle fatigue at low-moderate 

levels of wheelchair propulsion. Particularly, changes in θ are associated with 

recruitment of different types and size of motor units, suggesting that the θ. has 

potential as a fatigue index.  

 

8.4.2 The effect of muscle fatigue on wheelchair biomechanics 

Wheelchair propulsion involves 2 phases, the push and the recovery phase (Mulroy 

et al., 1996; Boninger et al., 2000). The push phase is initiated when the hand makes 

contact with the pushrim and continues until it is remove from the pushrim. Anterior 

deltoid (AD), pectoralis major (PM), biceps brachii (BB), and triceps brachii (TB) have 

their primary activities during the push phase. After the hand terminates its contact 

with the pushrim, the recovery muscles, UT, MD and PD, contribute to the 

deceleration of the arm during follow-through part of the push phase and return the 

arm to its starting position. In the present study, The EMG intensities for the 

propulsive muscles, AD, PM, BB, and TB,  were significantly greater at the fast speed 

than at the slow speed (P<0.05), while there were no significant differences in EMG 

intensity for UT, MD, and PD between two speeds. As the speed increased, the time 

for the recovery phase decreased and the propulsive muscles has to push the 

recovering upper extremity back to the starting point with a higher force. It has been 

reported that force production around the joint become unbalanced in relation to the 

fatigue state of each individual muscles during lifting tasks (Kumar, 2001) and cycling 

(Kay et al., 2001) .The selective recruitment of the propulsive muscles during more 

strenuous wheelchair propulsion may contribute to the muscle imbalances. This 

situation has the potential to cause abnormal or unnatural motions of the joints, which 
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may create significant abnormal stress distributions and possibly leading to injury.  It 

has been reported that long term use of a manual wheelchair leads to muscle 

imbalance, overdevelopment, strengthening and shortening of the anterior deltoid 

and pectoralis and weakening and lengthening of the opposing muscle groups 

(Niemeyer et al., 2004). Therefore, training to improve the flexibility of the anterior 

muscles as well as the strength of the posterior muscles and shoulder depressors is 

recommended to prevent overuse injuries and pain due to muscle imbalance and 

thus to maintain functional independence of the wheelchair user.  

 

Previous studies have investigated changes in wheelchair biomechanics due to 

fatigue. Rice (2009) reported an increase in push time during an extended period of 

propulsion, while stroke frequency remained static. In the present study, no 

significant effects of kinetic variables on the endurance time of wheelchair propulsion 

were found. This might be so because the participants in the present study were 

able-bodied individuals and they only became mildly fatigue. It has been reported 

that experienced MWU compensated for fatigue differently than non-users (Rodgers 

et al., 2003). Rodgers (2003) reported a power shift from the shoulder to the elbow 

and wrist joints during fatiguing wheelchair propulsion (Rodgers et al., 2003). Our 

findings showed that the activity of elbow flexor, BB, decreased in the last endurance 

time window at the slow speed (Fig.8.2). The BB muscle was active before the hand 

reached top dead center and assisted propulsion during the push phase. During the 

recovery phase, BB muscle became active to reverse the extension. Compared to 

the increased activities of the other shoulder muscles during fatigue, the decrease in 

BB activity during strenuous wheelchair propulsion may be related to reduction of 

push length. The initiation of contact angle was closer to the top dead center in the 

fatigue stage than in the fresh stage, which reduced the activation level of BB. The 

reduction of push length associated with a decrease in the elbow and shoulder range 

of motion indicates upper extremity biomechanical adaptations to fatigue, in an effort 

to maintain the target velocity.  

 

It has been suggested that muscle coordination is affected by fatigue (Sanderson 

and Black, 2003). Bernasconi et al observed an increase of muscle burst duration for 

the propulsive muscles (PM, AD, and TB) (Bernasconi et al., 2007). Their finding 

supports the assumption that fatigue results in modifications of intersegmental 

coordination. Although the EMG duration of the shoulder muscles did not change 

significantly during fatigue in the present study, the complete EMG activity patterns 

with respect to percentage of cycle showed some indications of changes in 
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propulsion coordination (Fig.8. 3). The propulsive muscles (AD, PM, BB, TB) showed 

higher and longer activities in the 100% endurance time window than in the 20% 

endurance time window. It is possible that force production around the shoulder joint 

become unbalanced as individual muscles become fatigued.  Compared to the slow 

speed, faster speed propulsion was associated with higher and longer activities of 

these shoulder muscles as well. For instance, TB had two burst of activity with one at 

the beginning and then one at the end of propulsion cycle at the fast speed, whereas 

only one burst of activity of TB was manifest during the slow speed propulsion. It is 

evident from this example that changes in muscle’s ability to produce force effectively 

may lead to a change in its period of activity within a particular movement. The 

recovery muscles (UT, MD, and PD) changed their activation patterns during fatigue 

correspondingly. These changes in the activity patterns suggest that some 

adjustments are made in the coordination of muscles with the occurrence of fatigue.  

 

8.4.3 Limitations 

It should be kept in mind that the given disability as such may mask fatigue and/or 

injury symptoms and thereby prevent the realization that an injury is occurring. The 

present study investigated the effect of mildly fatiguing wheelchair propulsion on 

able-bodied individuals as a pilot study in a simulated environment (static ergometer). 

Future studies would have to be conducted with wheelchair users who suffer from 

shoulder pain and injuries. The physical condition of the wheelchair users, such as 

level of injury, pain history, and fitness level, should also be considered. Prevention is 

a key for the treatment of overuse injuries because wheelchair users cannot afford to 

lose their independence.  
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Chapter Nine: Conclusions, Limitations, and 
Recommendations 

 
1.1 Conclusions 

The main aim of this thesis was to investigate shoulder muscle recruitment patterns 

in association with wheelchair kinetics over a range of daily activities and mobility 

tasks requiring manual wheelchair propulsion.  

Well-controlled isometric, concentric, and eccentric contractions of biceps brachii 

were examined by using surface EMG and MMG. The results show that wavelet and 

principal component analysis of EMG and MMG signals provide more detailed 

information regarding motor unit recruitment than the traditionally used spectral 

variables. The results from dynamic contractions suggest that motor unit recruitment 

patterns were generally well-matched to the mechanical requirements of the task. 

Shoulder muscle recruitment patterns and wheelchair kinetics across a range of 

wheelchair activities were investigated. The results show that both for fast speed 

propulsion on an ergometer (1.6m/s) and propulsion ascending a ramp (4°slope, 7 

meters long) requires higher activity levels in the shoulder muscles than does slow 

speed propulsion on the ergometer (0.9m/s). For each condition the muscles contract 

at force levels that are optimized for each motor task through the selective 

recruitment of motor units. Prolonged wheelchair propulsion on the ergometer 

indicates that there is an association between characteristic changes in the 

frequency content of surface EMG data from upper extremity muscles and 

biomechanical adaptation to mild fatigue. Able-bodied participants who were 

inexperienced wheelchair users were instructed to employ a wheelchair propulsion 

technique that was semicircular in pattern during a series of wheelchair propulsion 

test sessions. The instructed semicircular pattern has a positive effect on shoulder 

muscle recruitment patterns, as demonstrated by more coordinated and balanced 

muscle activity around the shoulder. A short session of wheelchair propulsion 

instruction would be recommended if these tests were to be employed in studies of 

newly injured wheelchair users. 

 

1.2 Limitations 

1. The surface electrodes utilized throughout the study were unable to record 

activity from deep muscle tissues of upper the extremity and the rotator cuff. 

2. MMG technique only assessed the contractile properties of superficial, rather 

than the deep muscles 
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3. Repeatability of upper extremity muscle activation patterns 

Assessment of intra-session repeatability of muscle activation pattern is of 

considerable relevance for research settings, especially when used to determine 

the effects of various constraints (e.g. propulsion techniques, fatigue, body 

position, level of SCI. etc.). Even if the methodological problems, due to electrode 

replacement, are avoided when EMG measurements of a same session are 

compared (as is the case found in the major part of studies using EMG in 

propulsion), the question of whether a personal muscle strategy can be adopted 

and maintained stable throughout the experimental propulsion session still 

remains of great importance. Therefore, assessment of reproducibility of upper 

extremity muscle activation patterns during wheelchair propulsion should be 

investigated in future studies.  

4. Several parameters are not controlled in this PhD program 

• Compared to able-bodied participants in the present study, manual 

wheelchair users may use different compensation strategies for the shoulder 

muscles due to impaired upper extremity muscle functions or poor trunk 

control. This may affect the shoulder muscle recruitment patterns during 

wheelchair propulsion.  

• The stationary wheelchair ergometer may alter balance and coordination 

compared to natural everyday pushing activities 

• The physical configuration of the wheelchair (axle and height of the 

wheelchair) is the same for each participant, so sitting posture is not 

concerned in this program. Since many spinal cord-injured wheelchair users, 

in order to be stable in wheelchair propulsion and other activities, they tend to 

sit in a kyphotic posture where the scapula changes its vertical alignment. 

The contributory posture of the subject should be evaluated in the future 

studies. 

 

1.3 Recommendations 

1. Future studies should be conducted with wheelchair users who suffer from 

shoulder pain and injuries. The physical condition of the wheelchair users, 

such as level of injury, pain history, and fitness level, should also be 

considered.  

The specific aims should include attempts to answer the following queries: 

� Is there a specific pattern of pain/injuries development and 

EMG/MMG response in shoulder muscles for SCI patients, different 
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from that observed in normal controls and other patient groups with 

pain of presumed musculoskeletal origin? 

� Can the patterns of pain/injuries development and EMG/MMG 

responses provide clues as to a possible relationship between muscle 

activities and pain development for SCI patients with shoulder 

pain/injuries? 

2. Further research is also needed to understand kinematics for a range of 

wheelchair propulsion situations and including those where fatigue occurs. 

The effects of kinematics, kinetics, and EMG/MMG need to be considered 

together 

3. Future studies need to be conducted to fully establish the relationship 

between MMG variables and muscle fibre type 

4. MMG is useful in accessing musculoskeletal characteristics during functional 

electrical stimulation. MMG signals record and quantify the low-frequency 

lateral oscillations of active skeletal muscle fibres, which are not affected by 

electrical stimulation.  EMG signals on the other hand are swamped by the 

electrical fields generated during FES stimulation. MMG has the potential to 

be used as a non-invasive method to estimate stimulated muscle activity for 

paralysed people. 

The understanding of motor unit recruitment patterns during well-controlled isometric, 

eccentric, and concentric contractions as investigated by MMG would facilitate further 

studies on functional electrical stimulation (FES). MMG provides information on the 

recruitment and composition of motor units and is not affected by electrical 

stimulation.  MMG has the potential to be used during electrical stimulation to provide 

feedback information on muscle fiber composition and fatigue. An easy-to-use PDA 

(Personal Digital Assistant) MMG data acquisition system is being developed.  
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Figure 9.1 PDA data logger.  

 
A Personal Digital Assistant (PDA) based system, provided with a CF card based 

analog-to-digital converter running a PDA module for LabVIEW has been provend to 

be effective for MMG measurements (Fig.9.1). The PDA solution would make the 

system portable, and thus suitable for unsupervised clinical trials, i.e., trials in which 

the patient might take the system home to monitor muscle response during everyday 

activities. So far, our lab has developed a 4-channel pocket mechanomyographer 

and logger for use in the next phase of clinical measurements. 

 
5.  Microphones can be produced in arrays, offering the potential for using signal 

analysis techniques to localize the source of the signal in muscle groups at 

different depths and highly specific locations.  

The low frequency vibration signals generated by skeletal muscles have been known 

for more than three centuries. These vibration signals, generated by muscle 

contraction, can be detected with a contact sensor or microphone mounted on the 

skin surface over an active muscle. Theoretically, two important factors may 

influence MMG signal recording. First, the location of the sensor arrangement in 

relation to muscle fibre architecture and second, the number of detected motor units 

(MUs) contributing to MMG. Microphone arrays allow the collection of monopolar 

signals to which deep MUs are also contributing.  

 

Microphone arrays can be formed using several very closely spaced condenser 

microphones (2mm diameter each). The use of microphone arrays offers the 



 151

potential to provide high quality signals which are robust against noise, and 

interfering sources.   

 

Principal component analysis (PCA) and independent component analysis (ICA) can 

be used for microphone array signal processing. Principle component analysis (PCA) 

is a method to classify multidimensional datasets and to detect redundant information. 

It is expected that any order of spatially filtering microphones suffers from a biased 

choice of the configuration direction relative to the direction of the underlying muscle 

fibers. PCA is a useful tool for extracting the physiologically relevant information 

independent from the muscle structure. On the other hand, independent component 

analysis (ICA) is a powerful technique and is able (in principle) to separate 

independent sources linearly mixed in several sensors. When recording MMG on the 

muscles, ICA can separate out environmental noise embedded in the data since they 

are usually independent of each other.  
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