DETECTION, CHARACTERISATION AND QUANTIFICATION OF MYCOBACTERIUM LEPRAE DNA FROM ARCHAEOLOGICAL MATERIAL

Helen D. Donoghue, Petr Velemínky, Jakub Likovsky, Virginie Garclin, G. Michael Taylor
University College London, UK, National Museum, Prague, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Université Bordeaux 1, France

Demonstration of pathogen DNA in human remains is valuable in confirming paleopathological diagnosis and expanding our understanding of the host/pathogen relationship. This study examined how additional molecular techniques, such as Real-Time(RT)-PCR increase the information that is recoverable from the rare specimens with evidence of infectious disease.

The skeleton of a 12-14 year-old individual from the medieval (9th-10th century) Prusánky burial ground showed signs of periostitis consistent with leprosy or treponemal disease. DNA was extracted from nasal scrapings, radial epiphysis, fibula and rib. PCR was performed using primers for the Mycobacterium leprae repetitive element RLEP (37 copies/cell) and the single-copy 18 k-Da antigen locus. RT-PCR and a specific probe for the 18 k-Da antigen locus were used to quantify the amount of M. leprae DNA, and genotyping was also performed.

The probe and RT-PCR demonstrated M. leprae DNA in all specimens, with a significantly greater quantity in the fibula and nasal scrapings. In the DNA extraction, pre-incubation with N-phenacylthiazolium bromide (PTB) facilitated DNA strand separation and increased M. leprae DNA recovery. RT-PCR is a convenient rapid technique and also enables PCR inhibition to be assessed. We confirmed the diagnosis of leprosy in the skeletal remains examined; demonstrated that the individual had disseminated, therefore lepromatous leprosy; and showed differential localisation of M. leprae DNA within the body.