Improved Evidence for Direct CP Violation in $B^0 \to \pi^+ \pi^-$ Decays and Model-Independent Constraints on ϕ_2

(Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3Chonnam National University, Kwangju
4University of Cincinnati, Cincinnati, Ohio 45221
5Gyeongsang National University, Chinju
6University of Hawaii, Honolulu, Hawaii 96822
7High Energy Accelerator Research Organization (KEK), Tsukuba
8Hiroshima Institute of Technology, Hiroshima
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute for Theoretical and Experimental Physics, Moscow
12J. Stefan Institute, Ljubljana
13Kanagawa University, Yokohama
14Korea University, Seoul
15Kyungpook National University, Taegu
16Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
17University of Ljubljana, Ljubljana
18University of Maribor, Maribor
19University of Melbourne, Victoria
20Nagoya University, Nagoya
21Nara Women’s University, Nara
22National Central University, Chung-li
23National United University, Miao Li
24Department of Physics, National Taiwan University, Taipei
25H. Niewodniczanski Institute of Nuclear Physics, Krakow
26Nippon Dental University, Niigata
27Niigata University, Niigata
We present a new measurement of the time-dependent CP-violating parameters in $B^0 \to \pi^+ \pi^-$ decays with 275×10^6 $B\bar{B}$ pairs collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider operating at the $Y(4S)$ resonance. We find 666 ± 43 $B^0 \to \pi^+ \pi^-$ events and measure the CP-violating parameters: $S_{\pi \pi} = -0.67 \pm 0.16\text{(stat)} \pm 0.06\text{(syst)}$ and $A_{\pi \pi} = +0.56 \pm 0.12\text{(stat)} \pm 0.06\text{(syst)}$. We find evidence for large direct CP violation with a significance greater than 4 standard deviations for any $S_{\pi \pi}$ value. Using isospin relations, we obtain 95.4% confidence intervals for the Cabibbo-Kobayashi-Maskawa quark-mixing matrix angle ϕ_2 of $0^\circ < \phi_2 < 19^\circ$ and $71^\circ < \phi_2 < 180^\circ$.

Kobayashi and Maskawa (KM) pointed out in 1973 that CP violation can be incorporated as an irreducible complex phase in the weak-interaction quark mixing matrix in the standard model framework \cite{1}. The KM model predicts CP-violating asymmetries in the time-dependent rates of neutral B meson decays to the CP eigenstate $\pi^+ \pi^-$ \cite{2}. In the decay chain of $Y(4S) \to B^0 \bar{B}^0 \to (\pi^+ \pi^-)(f_{\text{tag}})$, one of the neutral B mesons decays into $\pi^+ \pi^-$ at time $t_{\pi \pi}$ and the other decays at time t_{tag} to a final state f_{tag} that distinguishes its flavor. The time-dependent decay rate is given by

$$
\mathcal{P}_{\pi \pi}(\Delta t) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B^2} \left[1 + q\{S_{\pi \pi} \sin(\Delta m_d \Delta t) + A_{\pi \pi} \cos(\Delta m_d \Delta t)\} \right],
$$

where $\Delta t = t_{\pi \pi} - t_{\text{tag}}$, τ_B is the B^0 lifetime, Δm_d is the mass difference between the two neutral B mass eigenstates, and $q = +1 (-1)$ for $f_{\text{tag}} = B^0 (\bar{B}^0)$. We measure $S_{\pi \pi}$ and $A_{\pi \pi}$, which are the mixing-induced and direct CP-violating parameters, respectively. In the case where only a $b \to u$ “tree” transition contributes to the decay $B^0 \to \pi^+ \pi^-$ \cite{3}, we would have $S_{\pi \pi} = \sin 2\phi_2$ and $A_{\pi \pi} = 0$. Because of possible contributions from $b \to d$ “penguin” transitions that have different weak and strong phases, $S_{\pi \pi}$ may deviate from $\sin 2\phi_2$, and direct CP violation, $A_{\pi \pi} \neq 0$, may occur. Our previous measurement based on a 140 fb$^{-1}$ data sample indicated large $S_{\pi \pi}$ and $A_{\pi \pi}$ values \cite{4}, while no significant CP asymmetry was observed by the BABAR Collaboration \cite{5}. It is therefore important to measure the CP-violating parameters with larger statistics.

The measurement in this Letter is based on a 253 fb$^{-1}$ data sample containing 275×10^6 $B\bar{B}$ pairs collected with the Belle detector at the KEKB $e^+ e^-$ asymmetric-energy (3.5 on 8 GeV) collider \cite{6} operating at the $Y(4S)$ resonance. The $Y(4S)$ is produced with a Lorentz boost factor of $y_B = 0.425$ along the z axis, which is antiparallel to the positron beam direction. Since the two B mesons are produced nearly at rest in the $Y(4S)$ center-of-mass system (CMS), the decay time difference Δt is determined from the distance between the two B meson decay positions along the z direction (Δz): $\Delta t \equiv \Delta z/c\beta y$, where c is the velocity of light.

The Belle detector \cite{7} is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters, and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K^0_S mesons and to identify muons. A sample containing $152 \times 10^6 B\bar{B}$ pairs (Set I) was collected with a 2.0 cm radius beam pipe and a 3-layer silicon vertex detector, while a sample with $123 \times 10^6 B\bar{B}$ pairs (Set II) was collected with a 1.5 cm radius beam pipe, a 4-layer silicon detector, and a small-cell inner drift chamber [8].

We employ the identical analysis procedure as the previous publication [4]. We reconstruct $B^0 \rightarrow \pi^+ \pi^-$ candidates using oppositely charged track pairs that are positively identified as pions by combining information from the ACC and the CDC dE/dx measurements. The pion detection efficiency is 90%, and 11% of kaons are misidentified as pions. We select B meson candidates using the energy difference $\Delta E = E_B - E_\text{beam}$ and the beam-energy constrained mass $M_{bc} = \sqrt{(E_\text{beam})^2 - (p_B^*)^2}$, where E_beam is the CMS beam-energy, and E_B and p_B^* are the CMS energy and momentum of the B candidate. We define the signal region as 5.271 GeV/c$^2 < M_{bc} < 5.287$ GeV/c2 and $|\Delta E| < 0.064$ GeV, which corresponds to ± 3 standard deviations (σ) from the central values.

We identify the flavor of the accompanying B meson from inclusive properties of particles that are not associated with the reconstructed $B^0 \rightarrow \pi^+ \pi^-$ decay. We use q defined in Eq. (1) and r to represent the tagging information. The parameter r is an event-by-event, Monte Carlo (MC) determined flavor-tagging dilution factor that ranges from $r = 0$ for no flavor discrimination to $r = 1$ for unambiguous flavor assignment. It is used only to sort data into six r intervals. The wrong tag fractions for the six r intervals, w_i ($i = 1,6$), and the differences between B^0 and \bar{B}^0 decays, Δw_i, are determined from data [9,10].

To suppress the continuum background ($e^+e^- \rightarrow q\bar{q}; q = u, d, s, c$), we apply the technique used in Ref. [4]. We form a likelihood function $L_{S(B)}$ for the signal (background) based on event topology variables and impose requirements on a likelihood ratio $LR = L_S/(L_S + L_B)$ to suppress continuum events. The LR requirement is determined by optimizing the expected sensitivity using MC signal events and events in the sideband region in 5.20 GeV/c$^2 < M_{bc} < 5.26$ GeV/c2 or $+0.1$ GeV $< \Delta E < +0.5$ GeV. We accept events having LR > 0.86. In order to include additional events with LR < 0.86, we optimize LR separately for each of the r bins, as the r also suppresses continuum events. We then lower the LR thresholds of 0.50, 0.45, 0.45, 0.45, 0.45, and 0.20 for the six r bins. There are thus 12 distinct bins of LR r for selected events.

We extract 2820 signal candidates by applying the above requirements and the vertex reconstruction algorithm used in Ref. [10] to the data sample. Figure 1 shows the ΔE distributions for the events with (a) LR > 0.86 and (b) LR < 0.86 in the M_{bc} signal region. The $B^0 \rightarrow \pi^+ \pi^-$ signal yield is determined from an unbinned two-dimensional maximum likelihood fit to the $\Delta E-M_{bc}$ distribution in the range of $M_{bc} > 5.20$ GeV/c2 and -0.3 GeV $< \Delta E < +0.5$ GeV with signal events plus contributions from misidentified $B^0 \rightarrow K^+ \pi^-$ events, the continuum background, and three-body B decays. We use a single Gaussian for the signal and $B^0 \rightarrow K^+ \pi^-$ events in ΔE and M_{bc}. The continuum background shapes in ΔE and M_{bc} are described by a first-order polynomial and an ARGUS function [11], respectively. For the three-body B decay background shape, we employ a smoothed two-dimensional histogram obtained from a large MC sample. The fit to the subset with LR > 0.86 yields 415 $\pm 27 \pi^+ \pi^-$ events and 154 $\pm 19 K^+ \pi^-$ events in the signal region, where the errors are statistical only. The $K^+ \pi^-$ contamination is consistent with the $K \rightarrow \pi$ misidentification probability, which is measured independently. Extrapolating from the size of the continuum background in this fit, we expect 315 ± 3 continuum events in the signal region. We use MC-determined fractions as in [4] to calculate the numbers of decays for LR < 0.86, since the fit to the low LR events gives large statistical fluctuation because of the poor signal-to-noise ratio. We expect 251 $\pm 16 \pi^+ \pi^-$, 93 $\pm 12 K^+ \pi^-$, and 1592 ± 15 continuum events in the signal region. The contribution from three-body B decays is negligibly small in the signal region.

We determine $S_{\pi\pi}$ and $A_{\pi\pi}$ by applying an unbinned maximum likelihood fit to the distribution of proper-time difference Δt. The probability density function (PDF) for the signal events is given in Eq. (1) modified to incorporate the effect of incorrect flavor assignment w_i and Δw_i. The distribution is convolved with the proper-time interval resolution function $R_{\text{sig}}(\Delta t)$ in order to take into account the finite position resolution [10,12]. The PDF for $B^0 \rightarrow K^+ \pi^-$ is $P_{K^+\pi^-}^{\text{eff}}(\Delta t, w_i, \Delta w_i) = (1/4\sqrt{\pi})e^{-|\Delta t|/\tau_{CP}}[1-qw_i + q(1-2w_i)A_{\text{eff}}^{\pi+, \pi^-}\cos(\Delta m_\pi \Delta t)]$. We use $A_{\text{eff}}^{\pi+, \pi^-} = (A_{K^+ \pi^-} + A_{\pi^-})/(1 + A_{K^+ \pi^-}A_{\pi^-})$, where $A_{K^+ \pi^-} = -0.109 \pm 0.019$ is the measured direct CP-violating parameter in $B^0 \rightarrow K^+ \pi^-$ decays [13], and A_{π^-} is the difference in the product of the pion efficiency and kaon misidentification probability between $\pi^+(K^-)$ and $\pi^-(K^+)$ divided by

![Figure 1. ΔE distributions in the M_{bc} signal region for $B^0 \rightarrow \pi^+ \pi^-$ candidates with (a) LR > 0.86 and (b) LR < 0.86.](101801-3)
their sum [14]. The inclusion of A_{ϵ} changes the $A_{K\pi}$ value by 11%. We make use of the same resolution function $R_{q\pi}(\Delta t)$ for the $B^0 \to K^+\pi^-$ events. The PDF for the continuum background events is $P_{q\pi}(\Delta t) = 1/2(1 + qA_{q\pi}|(f_1 + 2f_2)e^{-|\Delta t/\tau_{q\pi}|}(1 - \delta(\Delta t)))$, where f_1 is the fraction of the background with effective lifetime $\tau_{q\pi}$, and δ is the Dirac delta function. We use $A_{q\pi} = 0$ as a default. A fit to the sideband events yields $A_{q\pi} = +0.01 \pm 0.01 (-0.00 \pm 0.01)$ for the data in Set I (II). This uncertainty in the background asymmetry is included in the systematic error for the $S_{\pi\pi}$ and $A_{\pi\pi}$ measurement. The background PDF $P_{q\pi}$ is convolved with a background resolution function $R_{q\pi}$. All parameters in $P_{q\pi}$ and $R_{q\pi}$ are determined from sideband events.

We define a likelihood value for each (ith) event as a function of $S_{\pi\pi}$ and $A_{\pi\pi}$:

$$L_i = (1 - f_{\text{stat}}) \int_{-\infty}^{+\infty} \left[(f_{\pi\pi} P_{\pi\pi}(\Delta t', w_i, \Delta w_i; S_{\pi\pi}, A_{\pi\pi})
+ f_{\text{sig\pi}} P_{\text{sig\pi}}(\Delta t', w_i, \Delta w_i) R_{q\pi}(\Delta t_0 - \Delta t')
+ f_{q\pi} P_{q\pi}(\Delta t') R_{q\pi}(\Delta t_0 - \Delta t') \right] d\Delta t' + f_{\text{sys\pi\pi}} P_{\text{sys\pi\pi}}(\Delta t).$$

(2)

Here, the probability functions $f_{\pi\pi}(k = \pi\pi, K\pi, \text{or q\pi})$ are determined on an event-by-event basis as functions of ΔE and M_{bc} for each LR-r bin ($m = 1, 12$). A small number of signal and background events that have large values of Δt is accommodated by the outlier PDF, P_{ol}, with a fractional area f_{ol}. In the fit, $S_{\pi\pi}$ and $A_{\pi\pi}$ are the only free parameters and are determined by maximizing the likelihood function $L = \Pi_i L_i$, where the product is over all the $B^0 \to \pi^+\pi^-$ candidates.

The unbinned maximum likelihood fit to the 2820 $B^0 \to \pi^+\pi^-$ candidates containing $666 \pm 43\pi^+\pi^-$ signal events (1486 B^0 tags and 1334 B^{-} tags) yields $S_{\pi\pi} = -0.67 \pm 0.16\text{(stat)} \pm 0.06\text{(sys)}$ and $A_{\pi\pi} = +0.56 \pm 0.12\text{(stat)} \pm 0.06\text{(sys)}$. The correlation between $S_{\pi\pi}$ and $A_{\pi\pi}$ is $+0.09$. In this Letter, we quote the usual fit errors from the likelihood functions, called the MINOS errors, as statistical uncertainties [15]. Figures 2(a) and 2(b) show the Δt distributions for the 470 B^0- and 414 $B^-\tagged$ events in the subset of data with LR > 0.86. We define the raw asymmetry A_{CP} in each Δt bin by $A_{CP} = (N_+ - N_-)/(N_+ + N_-)$, where $N_+(-)$ is the number of observed candidates with $q = +1(-1)$. Figures 2(c) and 2(d) show the raw asymmetries for two regions of the flavor-tagging parameter r.

The main contributions to the systematic error are due to the uncertainties in the vertex reconstruction (± 0.04 for $S_{\pi\pi}$ and $\pm 0.03^{+0.00}_{-0.01}$ for $A_{\pi\pi}$) and event fraction (± 0.02 for $S_{\pi\pi}$ and ± 0.04 for $A_{\pi\pi}$); the latter includes the uncertainties in $A_{q\pi}$ and final state radiation. We include the effect of tag side interference [16] on $S_{\pi\pi}(\pm 0.01)$ and $A_{\pi\pi}(\pm 0.02)$. Other sources of systematic error are the uncertainties in

![FIG. 2. Δt distributions for the 884 $B^0 \to \pi^+\pi^-$ candidates with LR > 0.86 in the signal region: (a) 470 candidates with $q = +1$, (b) 414 candidates with $q = -1$. Raw asymmetry, A_{CP}, in each Δt bin with (c) $0 < r < 0.5$ and (d) $0.5 < r < 1.0$. The solid lines show the results of the unbinned maximum likelihood fit to the Δt distribution of the 2820 $B^0 \to \pi^+\pi^-$ candidates.](image-url)
Ref. [4] that takes into account both statistical and systematic errors. The hypothesis of CP symmetry conservation, \(S_{\pi^+\pi^-} = A_{\pi^+\pi^-} = 0 \), is ruled out at a confidence level (C.L.) of 1 - C.L. = 5.6 \times 10^{-8}, equivalent to a 5.4\sigma significance for one-dimensional Gaussian errors. The case of no direct CP violation, \(A_{\pi^+\pi^-} = 0 \), is also ruled out with a significance greater than 4.0\sigma for any \(S_{\pi^+\pi^-} \) value.

Figure 3 shows the \(\Delta E \) distributions for \(B^0 \rightarrow \pi^+\pi^- \) candidates with \(LR > 0.86 \) and \(0.5 < r \leq 1.0 \) for (a) \(q = +1 \) and (b) \(q = -1 \) in the \(M_{bc} \) signal region. An unbinned two-dimensional maximum likelihood fit to the \(q = +1 \) (\(q = -1 \)) subset yields 107 ± 13(69 ± 11)\(\pi^+\pi^- \), 42 ± 9(43 ± 9)\(K^+\pi^- \), and 38 ± 1(38 ± 1) continuum events in the signal box. The \(K^+\pi^- \) and continuum background yields are consistent between the two subsets as expected, while the \(\pi^+\pi^- \) yields are appreciably different; direct CP violation in \(B^0 \rightarrow \pi^+\pi^- \) decays is visible in the contrast of the two subsets. These results also support the expectation from SU(3) symmetry that \(A_{\pi^+\pi^-} \approx -3A_{K^+\pi^-} \) [18].

To constrain \(\phi_2 \), we employ isospin relations [20] and the approach of Ref. [21] for the statistical treatment. We use the measured branching ratios of \(B^0 \rightarrow \pi^+\pi^- \), \(\pi^0\pi^0 \), and \(B^+ \rightarrow \pi^+\pi^0 \), and the direct CP asymmetry for \(B^0 \rightarrow \pi^0\pi^0 \) [13] as well as our measured values of \(S_{\pi^+\pi^-} \) and \(A_{\pi^+\pi^-} \) taking into account their correlation. Figure 4 shows the obtained C.L. as a function of \(\phi_2 \). We find an allowed range for \(\phi_2 \) at 95.4% C.L. of \(0^\circ < \phi_2 < 19^\circ \) and \(71^\circ < \phi_2 < 180^\circ \).

In summary, we have performed a new measurement of the CP-violating parameters in \(B^0 \rightarrow \pi^+\pi^- \) decays using a 253 fb\(^{-1} \) data sample. We obtain \(S_{\pi^+\pi^-} = -0.67 \pm 0.16(\text{stat}) \pm 0.06(\text{syst}) \) and \(A_{\pi^+\pi^-} = +0.56 \pm 0.12(\text{stat}) \pm 0.06(\text{syst}) \). We rule out the CP-conserving case, \(S_{\pi^+\pi^-} = A_{\pi^+\pi^-} = 0 \), at the 5.4\sigma level. We find compelling evidence for direct CP asymmetry with 4.0\sigma significance. The results confirm the previous Belle measurement of the CP-violating parameters as well as the earlier evidence for direct CP violation in \(B^0 \rightarrow \pi^+\pi^- \) decays [4].

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (Contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (Contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[3] Throughout this Letter, the inclusion of the charge conjugate decay mode is implied unless otherwise stated.
[4] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 93, 021601 (2004); see also K. Abe et al. (Belle Collaboration), Phys. Rev. D 68, 012001 (2003) for results based on a 78 fb\(^{-1} \) data sample. The results reported here supersede those of these two publications.

[15] The rms values of the $S_{\pi\pi}$ and $A_{\pi\pi}$ distributions of MC pseudoexperiments were quoted as the statistical uncertainties in the previous publications [4]. With improved statistics, we find that MINOS errors are approximately symmetric and agree well with the rms values (0.15 for $S_{\pi\pi}$ and 0.11 for $A_{\pi\pi}$).

