Observation of $B^+ \to \psi(3770)K^+$

(Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4University of Frankfurt, Frankfurt
5University of Hawaii, Honolulu, Hawaii 96822
6High Energy Accelerator Research Organization (KEK), Tsukuba
7Hiroshima Institute of Technology, Hiroshima
8Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
9Institute of High Energy Physics, Vienna
10Institute for Theoretical and Experimental Physics, Moscow
11J. Stefan Institute, Ljubljana
12Kanagawa University, Yokohama
13Korea University, Seoul
14Kyungpook National University, Taegu
15Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
16University of Ljubljana, Ljubljana
17University of Maribor, Maribor
18University of Melbourne, Victoria
19Nagoya University, Nagoya
20National Nara Women's University, Nara
21National Kaohsiung Normal University, Kaohsiung
22National United University, Miaoli
23Department of Physics, National Taiwan University, Taipei
24H. Niewodniczanski Institute of Nuclear Physics, Krakow
25Niho Dental College, Niigata
26Niigata University, Niigata
27Osaka City University, Osaka
28Osaka University, Osaka
29Panjab University, Chandigarh
30Peking University, Beijing
31Princeton University, Princeton, New Jersey 08545
32RIKEN BNL Research Center, Upton, New York 11973
33Saga University, Saga
34Zhejiang University, Hangzhou
35Zhejiang University, Hangzhou
36Fudan University, Shanghai
37Fudan University, Shanghai
38Indian Institute of Technology, New Delhi
39Indian Institute of Technology, New Delhi
40Keio University, Yokohama
41Keio University, Yokohama
42Keju University, Tokyo
43Kejun University, Tokyo
44Korea University, Seoul
45Korea University, Seoul
46Kyungpook National University, Taegu
47Lomonosov Moscow State University, Moscow
48National Institute for Fusion Science, Toki
49National Institute of Standards and Technology, Gaithersburg, Maryland 20899
50National Institute of Standards and Technology, Gaithersburg, Maryland 20899
51National Institute of Standards and Technology, Gaithersburg, Maryland 20899
52National Institute of Standards and Technology, Gaithersburg, Maryland 20899
53National Institute of Standards and Technology, Gaithersburg, Maryland 20899
54National Institute of Standards and Technology, Gaithersburg, Maryland 20899
55National Institute of Standards and Technology, Gaithersburg, Maryland 20899
56National Institute of Standards and Technology, Gaithersburg, Maryland 20899
57National Institute of Standards and Technology, Gaithersburg, Maryland 20899
58National Institute of Standards and Technology, Gaithersburg, Maryland 20899
59National Institute of Standards and Technology, Gaithersburg, Maryland 20899
60National Institute of Standards and Technology, Gaithersburg, Maryland 20899
61National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Experimental studies of the color-octet model gives a value of the mixing angle could result in comparable decay rates for those for the nearby S-wave state [6]. A large S-D-wave mixing angle could result in comparable decay rates for B mesons [5]. The decay rate for the decay $B^+ \rightarrow \psi(3770)K^+$ is reconstructed in the $D_s^0\bar{D}_s^0$ and D^+D^- decay channels. The obtained branching fraction is $\mathcal{B}(B^+ \rightarrow \psi(3770)K^+) = (0.48 \pm 0.11 \pm 0.07) \times 10^{-3}$. We have measured the branching fraction for the decay $B^+ \rightarrow D^0\bar{D}^0K^+$ to be $(1.17 \pm 0.21 \pm 0.15) \times 10^{-3}$ and set a 90% confidence level upper limit of 0.90×10^{-3} for the decay $B^+ \rightarrow D^+D^-K^+$. We also present the results of a search for possible decays to $D\bar{D}$ and $D^0\bar{D}^0\pi^0$ of the recently observed $X(3872)$ particle. The analysis is based on 88 fb$^{-1}$ of data collected at the Y(4S) resonance by the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

DOI: 10.1103/PhysRevLett.93.051803 PACS numbers: 13.25.Hw, 13.20.Gd

B decay modes with charmonium in the final state are extensively used by the Belle and BaBar Collaborations for measurements of the CP violation parameter $\sin2\phi_1$ [1,2]. Belle has recently reported the first observations of the decays $B^+ \rightarrow \chi_{c0}K^+$ [3] and $B \rightarrow \chi_{c2}X$ [4]. The decay rates for these modes were measured to be comparable to those for J/ψ and $\psi(2S)$.

In contrast to the charmonia seen so far in B decays, the $\psi(3770)$ state is just above open charm threshold and decays dominantly to pairs of D mesons [5]. The $\psi(3770)$ is generally considered to be predominantly the 1^3D_1 charmonium state. However, it has a nonzero lepton width, which indicates that there is some mixing with the nearby $\psi(2S)$ S-wave state [6]. A large S-D-wave mixing angle could result in comparable decay rates for B decays to the $\psi(3770)$ and the $\psi(2S)$. For a pure D-wave state, an estimate of $\mathcal{B}(B \rightarrow \psi(3770)X)$ based on the color-octet model gives a value of 0.28% [7], which is as large as the measured values for J/ψ and $\psi(2S)$. Experimental studies of $\psi(3770)$ production in B decays test theoretical models and provide additional information on the structure of the $\psi(3770)$ wave function.

In this Letter, we report the first observation of the decay $B^+ \rightarrow \psi(3770)K^+$ [8]. We also report measurements of the decay $B^+ \rightarrow D^0\bar{D}^0K^+$ and $B^+ \rightarrow D^+D^-K^+$ decay modes [9] and searches for the decays $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow D\bar{D}$, and $X(3872) \rightarrow D^0\bar{D}^0\pi^0$. The analysis is performed using data collected with the Belle detector [10] at the KEKB asymmetric-energy e^+e^- collider [11]. The data sample consists of 88 fb$^{-1}$ taken at the Y(4S) resonance, which corresponds to $96 \times 10^6 BB$ pairs.

We select charged pions and kaons that originate from the region $dr < 1$ cm, $dz < 3$ cm, where dr and dz are the distances of closest approach to the interaction point in the plane perpendicular to the beam axis and along the beam direction, respectively. Charged kaons are required to satisfy $E(K)/[E(K) + E(\pi)] > 0.6$, where $E(K)/E(\pi)$ is the particle identification likelihood for the K/π hypotheses calculated by combining information from the time-of-flight system and aerogel Cherenkov counters with dE/dx measurements in the central drift chamber. Candidate π^0 mesons are identified as pairs of non-charged-track-associated electromagnetic calorimeter (ECL) clusters that have an invariant mass within ± 15 MeV/c^2 of the π^0 mass. The energy of each photon is required to be greater than 50 MeV, and the momentum of the π^0 in the center of mass system (c.m.s.) is required to be greater than 0.15 GeV/c.

The D^0 meson is reconstructed in the $K^-\pi^+$, $K^-\pi^+\pi^0$, and $K^-\pi^+\pi^0$ modes, and the D^+ in the $K^-\pi^+\pi^0$ and $K^-\pi^-\pi^+$ modes. We use a ± 10 MeV/c2 D signal window for the charged modes ($\sim 2.5\sigma$) and ± 15 MeV/c2 for the $K^-\pi^-\pi^0$ mode ($\sim 2\sigma$). Mass- and vertex-constrained fits are applied to all D candidates to improve their momentum resolution. The B^+ candidates (i.e., $D\bar{D}$ pairs combined with the positive kaons in the event) are identified by their c.m.s. energy difference, $\Delta E = \Sigma_i E_i - E_{beam}$, and their beam-energy constrained.
quire the normalized Fox-Wolfram moment \[12\] the beam energy in the c.m.s. and applied for the cleanest subset of axis of the rest of the event. The last requirement is not \(B\) products. For the \(B\) and three-momenta and energies of the smallest value of \(B\) multiple \(B\) candidates are shown in Fig. 1, where \(bc\) thr \(K\) yield Efficiency (\(\%\)) of the resonant \(D\) \(K\) modes, \(E\) \(2\): 272, \(B\) \(K\) mass, \(M_{bc} = \sqrt{E_{\text{beam}}^2 - (\Sigma_{i} \vec{p}_i)^2}\), where \(E_{\text{beam}} = \sqrt{s}/2\) is the beam energy in the c.m.s. and \(\vec{p}_i\) and \(E_i\) are the three-momenta and energies of the \(B^+\) candidate’s decay products. For the \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) final state, we require that one \(D^0\) is reconstructed in the \(D^0 \rightarrow K^- \pi^+\) mode, which has the smallest background. We accept \(B\) candidates with \(5.272 < M_{bc} < 5.288\) GeV/\(c^2\) and \(|\Delta E| < 0.2\) GeV. To suppress the continuum background we require the normalized Fox-Wolfram moment \([12]\) \(R_2\) to be less than 0.5 and \(|\cos \theta_{\text{thr}}| < 0.8\), where \(\theta_{\text{thr}}\) is the angle between the thrust axis of the \(B\) candidate and the thrust axis of the rest of the event. The last requirement is not applied for the cleanest subset of \(B\) candidates where both \(D^0\)’s are reconstructed in the \(K\pi\) mode. In the case of multiple \(B\) candidates, we choose the candidate with the smallest value of \(\chi^2 = [(M_{bc} - M_{b^-})/\sigma_{M_{bc}}]^2\).

The \(\Delta E\) distributions for the \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) and \(B^+ \rightarrow D^+ D^- K^+\) candidates are shown in Fig. 1, where the superimposed curves are the results of the fits. The fit to the \(\Delta E\) distribution is a sum of a Gaussian with a fixed width taken from Monte Carlo (MC) simulation to describe the signal and a first order polynomial to parameterize the background \([13]\). In the fit to the \(\Delta E\) distribution, the region \(\Delta E < -0.08\) GeV is excluded to avoid contributions from other \(B^+ \rightarrow D^{(*)}\bar{D}^{(*)} K\) decays. Table I summarizes the results of the fits, the reconstruction efficiencies \([14]\), the statistical significance \([15]\) of the signals, and the calculated branching fractions. For the latter, we assume \(N(B^+ B^-) = N(B^+ B^-)\). For the \(D^+ D^- K^+\) final state, a substantial signal is not seen and we set a 90% confidence upper limit. The systematic error in the branching fraction measurement is dominated by the uncertainty in the tracking efficiency (1% per track), kaon identification efficiency (2% for each kaon), \(\pi^0\) reconstruction efficiency (6%), \(D^0\) branching fraction uncertainty (in total 8%), MC statistics (3%), and the signal and background parametrization (5%).

We plot the \(D^0 \bar{D}^0\) and \(D^+ D^-\) invariant mass distributions for events in the \(B\) signal region defined as \(5.272 < M_{bc} < 5.288\) GeV/\(c^2\) and \(|\Delta E| < 0.02\) GeV in Figs. 2(a) and 2(b), respectively. Here, for \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) candidates, when one of the \(D^0\)’s is reconstructed in the \(K^- \pi^+ \pi^0\) mode, we use a looser \(\Delta E\) requirement (\(|\Delta E| < 0.025\) GeV) to take into account the poorer energy resolution due to shower leakage in the ECL. In the case of multiple \(B\) candidates, we choose the candidate with the smallest value of \(\chi^2 = (\Delta E/\sigma_{\Delta E})^2 + [(M_{bc} - M_{bc})/\sigma_{M_{bc}}]^2\). The \(M(D^0 \bar{D}^0)\) distribution has a peak at low masses, which we attribute to the \(\psi(3770)\) signal.

The superimposed hatched histogram in Fig. 2(a) shows the \(M(D^0 \bar{D}^0)\) mass distribution for events in the \(\Delta E\) sidebands \([16]\). The curve (shown as a solid line) is the result of a fit where the low-mass peak is described by a \(p\)-wave Breit-Wigner function \([17]\) with a floating mass and its natural width fixed to its nominal value of \(\Gamma(\psi(3770)) = 23.6\) MeV/\(c^2\) \([5]\). The combinatorial background along with the contribution from nonresonant \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) decays is described by the product of square root threshold factor and \((M_{\text{max}}(M(D^0 \bar{D}^0))^{1/2}\) function and is represented as a dashed line in Fig. 2(a).

The fit yields a \(\psi(3770)\) signal of \(N = 33.6 \pm 8.3\) events with a statistical significance of 5.9\(\sigma\). The mass of the \(\psi(3770)\) is found to be \(M(\psi(3770)) = 3778.4 \pm 3.0\) MeV/\(c^2\), which corresponds to a mass differ-

![Image of the plot](image-url)

FIG. 1. The \(\Delta E\) distributions for the \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) (upper) and \(B^+ \rightarrow D^+ D^- K^+\) (lower) candidates. Points with errors represent the data and curves show the results of the fits described in the text.

TABLE I. Summary of the fit results, efficiencies, statistical significance, and branching fractions for \(B^+ \rightarrow D^0 \bar{D}^0 K^+\) and \(B^+ \rightarrow D^+ D^- K^+\) decays.

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\Delta E) yield</th>
<th>Efficiency (10^{-4})</th>
<th>(\mathcal{B}(10^{-3}))</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \rightarrow D^0 \bar{D}^0 K^+)</td>
<td>97.5 ± 17.6</td>
<td>8.7</td>
<td>1.17 ± 0.21 ± 0.15</td>
<td>5.5(\sigma)</td>
</tr>
<tr>
<td>(B^+ \rightarrow D^+ D^- K^+)</td>
<td>20.7 ± 9.9</td>
<td>5.0</td>
<td>0.43 ± 0.21 ± 0.06 < 0.90 (90%) C.L.)</td>
<td>2.7(\sigma)</td>
</tr>
</tbody>
</table>

051803-3
The width of the mass measurement is evaluated by varying the back-
ground function, the width of the distribution for the events from the B-signal region. The dashed line represents the background parametrization (see the text). The hatched histogram is constructed from the ΔE sidebands. (b) Fitted $M(D^+D^-)$ distribution.

The mass exhibits a smooth behavior without peaks. We assume that the ratio $\psi(3770) \rightarrow D^0\bar{D}^0$ is 3.135 with a $10\ f{b}^{-1}$ data sample. The same selection applied to $D^0\bar{D}^0K^+$ combinations results in one event over the whole $M(D^0\bar{D}^0)$ region, which corresponds to a negligible contribution from the continuum.

The $\psi(3770) \rightarrow D^0\bar{D}^0$ helicity distribution, determined by fitting the $M(D^0\bar{D}^0)$ distribution for the $\psi(3770)$ yield in each of eight $\cos\theta_{\psi(3770)}$ bins [19], is shown in Fig. 3. The points are data, and the histogram gives the result of a fit using MC-based expectations for a $J^{PC} = 1^-\psi(3770)$ with a floating normalization. The confidence level of the fit is 10.5%.

The MC-determined efficiencies for $B^+ \rightarrow \psi(3770)K^+$ followed by $\psi(3770) \rightarrow D^0\bar{D}^0$ and $\psi(3770) \rightarrow D^+D^-$ are 10.3×10^{-4} and 5.7×10^{-4}, respectively. This gives $B(B^+ \rightarrow \psi(3770)K^+) \times B(\psi(3770) \rightarrow D^0\bar{D}^0) = (0.34 \pm 0.08 \pm 0.05) \times 10^{-3}$ and $B(B^+ \rightarrow \psi(3770)K^+) \times B(\psi(3770) \rightarrow D^+D^-) = (0.14 \pm 0.08 \pm 0.02) \times 10^{-3}$, where the first error is statistical and the second is systematic. The latter measurement corresponds to a 90% C.L. upper limit of $B(B^+ \rightarrow \psi(3770)K^+) \times B(\psi(3770) \rightarrow D^+D^-) < 0.27 \times 10^{-3}$. In addition to the sources already mentioned, the systematic error includes the uncertainties from varying the signal and background shapes in $M(D\bar{D})$ fitting (5%) and from varying the π^0 reconstruction efficiency (6%). From these two measurements we obtain the ratio $B(\psi(3770) \rightarrow D^0\bar{D}^0)/B(\psi(3770) \rightarrow D^+D^-) = 2.43 \pm 1.50 \pm 0.43$. Given the large errors, our measurement is consistent with the previous measurement of this ratio by the MARK III Collaboration of $1.36 \pm 0.23 \pm 0.14$ [20].

To extract $B(B^+ \rightarrow \psi(3770)K^+$ from the measurements of $B(B^+ \rightarrow \psi(3770)K^+) \times B(\psi(3770) \rightarrow D^0\bar{D}^0)$ and $B(B^+ \rightarrow \psi(3770)K^+) \times B(\psi(3770) \rightarrow D^+D^-)$, we assume that the $D^0\bar{D}^0$ and D^+D^- modes com-

FIG. 2. (a) The $M(D^0\bar{D}^0)$ distribution for the events from the B-signal region. The dashed line represents the background parametrization (see the text). The hatched histogram is constructed from the ΔE sidebands. (b) Fitted $M(D^+D^-)$ distribution.

FIG. 3. Helicity distribution for $B^+ \rightarrow \psi(3770)K^+$ decay followed by $\psi(3770) \rightarrow D^0\bar{D}^0$. The points with errors are obtained from fits to the $M(D^0\bar{D}^0)$ data in each $\cos\theta_{\psi(3770)}$ bin. The histogram shows the expected distribution for $B^+ \rightarrow \psi(3770)K^+$ (see text).

Table II. Result of the measurement of $\Delta m = M(\psi(3770)) - M(\psi(2S))$ (MeV/c^2) obtained in this Letter and previous measurements.

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Result (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle</td>
<td>$92.4 \pm 3.0 \pm 1.3$</td>
</tr>
<tr>
<td>MARK I</td>
<td>88 ± 3</td>
</tr>
<tr>
<td>DELCO</td>
<td>86 ± 2</td>
</tr>
<tr>
<td>MARK II</td>
<td>80 ± 2</td>
</tr>
</tbody>
</table>
completely saturate the $\psi(3770)$ decay width. Summing both measurements gives $\mathcal{B}(B^+ \to \psi(3770)K^+) = (0.48 \pm 0.11 \pm 0.07) \times 10^{-3}$.

Belle recently reported the observation of a narrow charmoniumlike state $X(3872)$ that decays to $\pi^+\pi^-J/\psi$ [21]. This state, which is seen in the exclusive decay $B \to KX(3872)$, is above $D\bar{D}$ threshold. Information about the $X(3872) \to D\bar{D}$ decay rate would be useful for determining its quantum numbers. We refitted the $D^0\bar{D}^0$ and D^+D^- invariant mass distributions including possible contributions from $B^+ \to X(3872)K^+$, $X(3872) \to D\bar{D}$ decays. The fits yield 2.1 ± 1.8 and 0.4 ± 0.8 events for the $D^0\bar{D}^0$ and D^+D^- channels, respectively. From this we determine 90% C.L. upper limits $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to D^0\bar{D}^0) < 6 \times 10^{-5}$ and $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to D^0D^-) < 4 \times 10^{-5}$. We have also searched for a possible reflection from $B^+ \to X(3872)K^+$, $X(3872) \to D^0\bar{D}^0\pi^0$ decays. This decay mode of the $X(3872)$ is interesting because it is predicted to be large if the $X(3872)$ is a $D\bar{D}^*$ multiquark "molecular state" [22]. A MC study shows that these decays produce a narrow, nearly Gaussian reflection peak ($\sigma = 9$ MeV) centered at $\Delta E = -145$ MeV. Using the $D^0\bar{D}^0$ signal described above, we require $\mathcal{M}(D^0\bar{D}^0)$ to be less than $\mathcal{M}(X(3872)) - \mathcal{M}(\pi^0) = 3737$ MeV/c2 and fit the resulting ΔE distribution to a Gaussian with mean and width fixed at the values expected for the reflection peak and a linear background contribution. The fit yields 2.2 ± 1.7 events. From this we determine a 90% C.L. upper limit $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to D^0\bar{D}^0\pi^0) < 6 \times 10^{-5}$.

In summary, we have measured the branching fraction for $B^+ \to D^0\bar{D}^0K^+$ decay to be $\mathcal{B}(B^+ \to D^0\bar{D}^0K^+) = (1.17 \pm 0.21 \pm 0.15) \times 10^{-3}$. A search for $B^+ \to D^+D^-K^+$ decay results in an upper limit of $\mathcal{B}(B^+ \to D^+D^-K^+) < 9.9 \times 10^{-3}$ (90% C.L.). We observe a peak in the $D^0\bar{D}^0$ invariant mass spectrum from $B^+ \to D^0\bar{D}^0K^+$ decays with a mass near 3770 MeV/c2 that we attribute to exclusive $B^+ \to \psi(3770)K^+$ decay. This signal, which has a statistical significance of 5.9σ, is the first observation of this decay mode. The mass of the $\psi(3770)$ is measured to be 3778.4 ± 3.0 ± 0.8 MeV/c2. The value of $\mathcal{B}(B^+ \to \psi(3770)K^+) \times \mathcal{B}(\psi(3770) \to D^0\bar{D}^0)$ is measured to be $(0.34 \pm 0.08 \pm 0.05) \times 10^{-3}$. For $B^+ \to \psi(3770)K^+$ followed by $\psi(3770)$ we extract $\mathcal{B}(B^+ \to \psi(3770)K^+) \times \mathcal{B}(\psi(3770) \to D^+D^-) = (0.14 \pm 0.08 \pm 0.02) \times 10^{-3}$. The ratio $\mathcal{B}(\psi(3770) \to D^0\bar{D}^0)/\mathcal{B}(\psi(3770) \to D^+D^-)$ is 2.43 ± 1.50 ± 0.43. By assuming that the $D^0\bar{D}^0$ and D^+D^- modes totally saturate the $\psi(3770)$ decay width we obtain $\mathcal{B}(B^+ \to \psi(3770)K^+) = (0.48 \pm 0.11 \pm 0.07) \times 10^{-3}$, which is comparable to $\mathcal{B}(B^+ \to \psi(2S)K^+) = (6.6 \pm 0.6) \times 10^{-4}$ [5]. This result suggests a large amount of S-mixing in the $\psi(3770)$.

For the decays $B^+ \to X(3872)K^+$ followed by $X(3872) \to D^0\bar{D}^0$ and D^+D^- we have set 90% C.L. upper limits on $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to D\bar{D})$ of 6×10^{-5} and 4×10^{-5}, respectively. For the decay $B^+ \to X(3872)K^+$ followed by $X(3872) \to D^0\bar{D}^0\pi^0$ we have set a 90% C.L. upper limit of 6×10^{-5}.

We thank the KEKB group for the excellent operation of the accelerator, the KEK Cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NIH for valuable computing and SuperSINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (Contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (Contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); NSC and MOE (Taiwan); and DOE (USA).
[17] The mass resolution in the $\psi(3770)$ region was determined from MC to be 1 MeV/c^2.

[19] The helicity angle $\theta_{\psi(3770)}$ is defined as the angle between the D^0 and B^+ momenta both calculated in the $\psi(3770)$ rest frame.

