Evidence for $B \to \phi\phi$

(Belle Collaboration)

1Aomori University, Aomori
2Budker Institute of Nuclear Physics, Novosibirsk
3Chiba University, Chiba
4Chuo University, Tokyo
5University of Cincinnati, Cincinnati, Ohio 45221
6University of Hawaii, Honolulu, Hawaii 96822
7High Energy Accelerator Research Organization (KEK), Tsukuba
8Hiroshima Institute of Technology, Hiroshima
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute for Theoretical and Experimental Physics, Moscow
12J. Stefan Institute, Ljubljana
13Kanagawa University, Yokohama
14Korea University, Seoul
15Kyoto University, Kyoto
16Kyungpook National University, Taegu
17Institut de Physique des Hautes Energies, Université de Lausanne, Lausanne
18University of Ljubljana, Ljubljana
19University of Maribor, Maribor
20University of Melbourne, Victoria
21Nagoya University, Nagoya
22Nara Women’s University, Nara
23National Kaohsiung Normal University, Kaohsiung
24National Lien-Ho Institute of Technology, Miao Li
25Department of Physics, National Taiwan University, Taipei
26H. Niewodniczanski Institute of Nuclear Physics, Krakow
27Nihon Dental College, Niigata
28Niigata University, Niigata
We report evidence for the decay mode $B \rightarrow \phi \phi K$ based on an analysis of 78 fb$^{-1}$ of data collected with the Belle detector at KEKB. This is the first example of a $b \rightarrow s\bar{s}s\bar{s}$ transition. In the standard model (SM), this decay channel requires the creation of an additional final $s\bar{s}$ quark pair than in $b \rightarrow s\bar{s} s$ processes, which have been previously observed in modes such as $B \rightarrow \phi K$. In addition to improving our understanding of charmless B decays, the $\phi \phi K$ state may be sensitive to glueball production in B decays, where the glueball decays to $\phi \phi$ [1]. Furthermore, with sufficient statistics, the decay $B \rightarrow \phi \phi K$ could be used to search for a possible non-SM CP-violating phase in the $b \rightarrow s$ transition [2]. Direct CP violation could be enhanced to as high as the 40% level if there is sizable interference between transitions due to non-SM physics and decays via the η_c resonance.

We use a 78 fb$^{-1}$ data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- (3.5 on 8 GeV) collider [3] operating at the $Y(4S)$ resonance ($\sqrt{s} = 10.58$ GeV). The sample contains 85.0×10^9 produced $B\bar{B}$ pairs. The Belle detector is a large-solid-angle magnetic spectrometer consisting of a three-layer silicon vertex detector, a 50-layer central drift chamber (CDC), a system of aerogel threshold Čerenkov counters (ACC), time-of-flight scintillation counters (TOF), and an array of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to identify K^0_S and muons. The detector is described in detail elsewhere [4].

We select well measured charged tracks that have impact parameters with respect to the nominal interaction point (IP) that are less than 0.2 cm in the radial direction and less than 2 cm along the beam direction (z). Each track is identified as a kaon or a pion according to a K/π likelihood ratio, $L_K/(L_\pi + L_K)$, where $L_{K(\pi)}$ are likelihoods derived from responses of the TOF and ACC systems and dE/dx measurements in the CDC. We select kaon candidates by requiring $L_K/(L_\pi + L_K) > 0.6$. This requirement has a kaon efficiency varying from $89.6 \pm 1.0\%$ for momentum of 500 MeV to $86.9 \pm 0.4\%$ for momentum of 3 GeV and a mismeasurement rate from pions of 8.5%. Kaon candidates that are electronlike according to the information recorded in the CsI(Tl) calorimeter are rejected.

Candidate ϕ mesons are reconstructed via the $\phi \rightarrow K^+K^-$ decay mode; we require the K^+K^- invariant mass to be within ± 20 MeV/c^2 (± 4.5 times the full width) of the ϕ mass [5]. For the $B^0(B^0) \rightarrow \phi \phi K^0_S$ decay mode, we use $K^0_S \rightarrow \pi^+\pi^-$ candidates in the mass window 482 MeV/$c^2 < M(\pi^+\pi^-) < 514$ MeV/c^2 ($\pm 4\sigma$), where the distance of closest approach between the two daughter tracks is less than 2.4 cm, the magnitude of the impact parameter of each track in the radial direction exceeds 0.02 cm, and the flight length is greater than...
0.22 cm. The difference in the angle between the pion-
pair vertex direction from the IP and its reconstructed
flight direction in the x-y plane is required to be less than
0.03 radians.

To isolate the signal, we form the beam-constrained
mass, \(M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_{\text{recon}}|^2} \), and the energy difference \(\Delta E = E_{\text{recon}} - E_{\text{beam}} \). Here \(E_{\text{beam}} \) is the beam energy,
and \(E_{\text{recon}} \) and \(\vec{p}_{\text{recon}} \) are the reconstructed energy and
momentum of the signal candidate, in the Y(4S) center-
of-mass frame. The signal region for \(\Delta E \) is \(\pm 30 \) MeV
which corresponds to \(\pm 3.1 \sigma \), where \(\sigma \) is the
resolution determined from a Gaussian fit to the Monte Carlo
(MC) simulation and verified using the decay of \(B^+ \to
D^0 \pi^+ \) and \(D^0 \to K^+ \pi^- \pi^+ \pi^- \). The signal region for
\(M_{bc} \) is 5.27 GeV/c\(^2\) < \(M_{bc} \) < 5.29 GeV/c\(^2\).
The beam-constrained mass resolution is 2.8 MeV/c\(^2\), which is
mostly due to the beam energy spread of KEKB.

The major background for the \(B \to \phi \phi K \) process is
from continuum \(e^+ e^- \to qq \) production, where \(q \) is a
light quark \((u, d, s, \text{ or } c) \). Several event topology variables
are used to discriminate the continuum background,
which tends to be collimated along the original quark
direction, from the \(B \bar{B} \) events, which are more isotropic
than the former. Five modified Fox-Wolfram moments,
the \(S_2 \) variable [6], and the cosine of the thrust angle are
combined into a Fisher discriminant [7]. We form signal
and background probability density functions (PDFs) for
this Fisher discriminant and for the cosine of the \(B \) decay
angle with respect to the \(z \) axis \((\cos \theta_B) \) for the signal MC
and sideband data. The PDFs are multiplied
together to form signal and background likelihoods, \(L_S \)
and \(L_{BG} \). The likelihood ratio \(L_R = L_S / (L_S + L_{BG}) \) is
then required to be greater than 0.1. This requirement
retains 97\% of the signal while removing 55\% of the
continuum background.

Figure 1(a) shows the \(\phi \phi \) invariant mass spectrum for
events in the \(B^+ \to \phi \phi K^+ \) signal region, where a clear \(\eta_c \)
peak and some excess in the lower mass region are
evident.

To extract signal yields, we apply an unbinned,
extended maximum likelihood (ML) fit to the events
with \(|\Delta E| < 0.2 \) GeV and \(M_{bc} > 5.2 \) GeV/c\(^2\). The
extended likelihood for a sample of \(N \) events is
\(L = e^{-\left(N_S + N_B\right) \mu \vec{P}^2} \prod_{i=1}^{N_S} N_S \left(\chi_i^2 + N_B \right) P_i^{(B)} \), where \(P_i^{(B)} \) describes
the probability for candidate event \(i \) to belong to the
signal (background), based on its measured \(M_{bc} \) and \(\Delta E \)
values. The exponential factor in the likelihood accounts
for Poisson fluctuations in the total number of observed
events \(N \). The signal yield \(N_S \) and the number of
background events \(N_B \) are obtained by maximizing \(L \). The
statistical errors correspond to unit changes in the
quantity \(\chi^2 = -2 \ln L \) around its minimum value. The significance
of the signal is defined as the square root of the
change in \(\chi^2 \) when constraining the number of signal
events to zero in the likelihood fit; it reflects the probability
for the background to fluctuate to the observed event
yield.

The probability \(P \) for a given event \(i \) is calculated as
the product of independent PDFs for \(M_{bc} \) and \(\Delta E \). The
signal PDFs are represented by a Gaussian for \(M_{bc} \) and
a double Gaussian for \(\Delta E \). The background PDF \(P \) is a
linear function; for the \(M_{bc} \) background we use a phase-
space-like function with an empirical shape [8]. The
parameters of the PDFs are determined from high-
statistics MC samples for the signal and sideband data
for the background.

For \(M(\phi \phi) < 2.85 \) GeV/c\(^2\), the region below the
charm thresh hold, the ML fit gives an event yield of
7.3 +3.2
with a significance of 5.1 standard deviations \((\sigma) \). Projections of the \(\Delta E \) distribution
(5.27 GeV/c\(^2\) < \(M_{bc} \) < 5.29 GeV/c\(^2\)) and of the \(M_{bc} \)
distribution (with \(|\Delta E| < 30 \) MeV) are shown in Figs. 2(a)
and 2(b). As a consistency check, a ML fit to the
projected \(\Delta E \) distribution [Fig. 2(b)] gives a signal yield
of 7.5 +3.3
with a 4.8\(\sigma \) statistical significance. Figure 1(b)
shows a scatter plot of the two \(K^+ K^- \) invariant masses for
events in the \(B \) meson signal region with the \(\phi \) mass
requirements relaxed. Here there is a clear concentration
in the overlap region of the two \(\phi \) bands. To confirm that
the observed signal is from \(B^+ \to \phi \phi K^+ \), we apply a tighter \(\phi \) mass requirement (\(\pm 10 \) MeV/c\(^2\)), which reduces
the signal efficiency by 15\%, and obtain a signal
yield of 5.6 with 4.6\(\sigma \) statistical significance. Using a
signal efficiency of 3.3\%, obtained from a large-statistics
MC that uses three-body phase space to model the \(B^+ \to
\phi \phi K^+ \) decays, we determine the branching fraction for
charmless \(B^+ \to \phi \phi K^+ \) with \(M_{\phi \phi} < 2.85 \) GeV/c\(^2\) to be
\(\mathcal{B}(B^+ \to \phi \phi K^+) = (2.6^{+1.1}_{-0.9} \pm 0.3) \times 10^{-6} \),
where the first error is statistical and the second is
 systematic.

FIG. 1 (color online). (a) \(\phi \phi \) invariant mass spectrum. The
open histogram corresponds to events from the \(B^+ \to \phi \phi K^+ \)
signal region and the shaded histogram corresponds to events
from the \(\Delta E \) sidebands. (b) \(M_{K^+ K^-} \) of one \(\phi \) meson candidate
versus \(M_{K^+ K^-} \) of the other for the events satisfying \(M_{\phi \phi} <
2.85 \) GeV/c\(^2\). Dots are for \(\phi \phi K^+ \) and squares for \(\phi \phi K_0 \).
Each event is plotted twice for combinations. The dashed box shows
the selected signal region.
quadrature to obtain the final systematic error of relaxed. The sources of systematic error are combined in $B^0(B^0)$ signal candidates. We combine the decays by redoing the fits with the $M^*/0.0030/0.0030$ and an event topology that is similar to the B^+ decays. These events have the same number of final-state particles and the shape parameters of the background. We determine an uncertainty due to the tracking efficiency (2%), likelihood ratio cut (5%), identification efficiency (4%), and the modeling of the background, estimated from the sideband, of 0.5. Using an extended Cousins-Highland method that uses the Feldman-Cousins ordering scheme and takes systematic uncertainties into account [9], we obtain a 90% confidence level (C.L.) upper limit of 3.7 signal events, which corresponds to

$$B(B^+ \rightarrow \phi \phi K^-) < 1.2 \times 10^{-6}.$$

No enhancement is observed in the $M_{\phi \phi}$ region corresponding to the $f^0_1(2220)$ glueball candidate [5], also referred to as ξ. Assuming the mass and width of $f^0_1(2220)$ to be 2230 MeV/c^2 and 20 MeV/c^2, we define a signal region of 2.19 GeV/$c^2 < M_{\phi \phi} < 2.27$ GeV/c^2, 5.27 GeV/$c^2 < M_{bc} < 5.29$ GeV/c^2, and $|\Delta E| < 30$ MeV. One event is observed in this region with an expected background, estimated from the sideband, of 0.5. Using an extended Cousins-Highland method that uses the Feldman-Cousins ordering scheme and takes systematic uncertainties into account [9], we obtain a 90% confidence level (C.L.) upper limit of 3.7 signal events, which corresponds to

$$B(B^+ \rightarrow f^0_1(2220)K^-) \times B(f^0_1(2220) \rightarrow \phi \phi) < 1.2 \times 10^{-6}.$$

We select $B^+ \rightarrow \eta_c K^+$, $\eta_c \rightarrow \phi \phi$ candidates by requiring 2.94 GeV/$c^2 < M_{\phi \phi} < 3.02$ GeV/c^2. This decay has been searched by previous experiments [10]. A clear signal is evident in Figs. 2(c) and 2(d), and the fitted yield of $N_5 = 7.0^{+3.0}_{-1.1}$ events has a significance of 8.8σ. The corresponding product branching fraction is

$$B(B^+ \rightarrow \eta_c K^+) \times B(\eta_c \rightarrow \phi \phi) = (2.2^{+1.0}_{-0.7} \pm 0.5) \times 10^{-6}.$$

In addition to the previously listed source of systematic errors, here the error also includes the possible contamination from charmless $B^0 \rightarrow \phi \phi K^0$ decays, which is estimated to be less than 1.2 events. We select a signal region, and the shaded corresponds to events from the B signal region, and the shaded corresponds to events from the $M_{bc}-\Delta E$ sidebands.

![FIG. 2 (color online). Projections of M_{bc} and ΔE overlaid with the fitted curves for (a),(b) $B^0(B^0) \rightarrow \phi \phi K^- \rightarrow \phi \phi K^-$ with $M_{\phi \phi} < 2.85$ GeV/c^2, (c),(d) $B^+ \rightarrow \eta_c K^+$ and $\eta_c \rightarrow \phi \phi$, (e),(f) $B^+ \rightarrow \eta_c K^+$ and $\eta_c \rightarrow 2(K^+ K^-)$, and (g),(h) $B^+ \rightarrow J/\psi K^+$ and $J/\psi \rightarrow 2(K^+ K^-)$.

Contributions to the systematic error include the uncertainties due to the tracking efficiency (5%), particle identification efficiency (5%), and the modeling of the likelihood ratio cut (2%). The error due to the modeling of the likelihood ratio cut is determined using $B^- \rightarrow D^0(\rightarrow K^- \pi^+ \pi^- \pi^0)\pi^-$ events in the same data sample; these events have the same number of final-state particles and an event topology that is similar to the $B^0 \rightarrow \phi \phi K^0$ signal. The uncertainty due to the MC $M_{\phi \phi}$ modeling (4%) accounts for the $M_{\phi \phi}$ dependence of the detection efficiency. The systematic error in the signal yield (6%) is determined by varying the means and σ of the signal and the shape parameters of the background. We determine an upper limit of 5% on the possible contamination by non-resonant $B^+ \rightarrow \phi (K^+ K^-)_{NR} K^+$ or $B^+ \rightarrow 2(K^+ K^-)_{NR} K^+$ decays by redoing the fits with the ϕ mass requirement relaxed. The sources of systematic error are combined in quadrature to obtain the final systematic error of 12%.

For the $B^0(B^0) \rightarrow \phi \phi K^0_S$ mode, there are only four signal candidates. We combine the $B^0(B^0) \rightarrow \phi \phi K^0_S$ and $B^0(B^0) \rightarrow \phi \phi K^0_S$ modes and perform a ML fit and obtain a signal event yield of $8.7^{+3.0}_{-2.9}$ with 5.3σ statistical sign-

ificance. Assuming isospin symmetry, we obtain

$$B(B^+ \rightarrow \phi \phi K^-) = (2.3^{+0.8}_{-0.7} \pm 0.3) \times 10^{-6},$$

for $M_{\phi \phi} < 2.85$ GeV/c^2.
TABLE I. Signal yields, efficiencies including secondary branching fractions, statistical significances, and branching fractions (or branching fraction products) of $B \to \phi K\Lambda$ and the related decays. The branching fractions for modes with $K^+ K^-$ pairs include contributions from $\phi \to K^+ K^-$. Since the J/ψ and η_c charmonium resonances decay to $2(K^+ K^-)$, we also measure branching fractions of the decays $B \to$ charmonium $+ K$ with charmonium $\to 2(K^+ K^-)$. To select $B \to 2(K^+ K^-)K$ candidates, we apply tighter particle identification and continuum suppression requirements than in the case of $B \to \phi K\Lambda$ in order to reduce the larger combinatorial background. Figure 3(a) shows the invariant mass distribution of any two pairs of $K^+ K^-$, M_{4K}, between 2.8 GeV/c^2 and 3.2 GeV/c^2 for the events in the B signal region. Significant contributions from both η_c and J/ψ intermediate states are seen.

To identify the signals from η_c and J/ψ intermediate states, we require that the invariant mass of $2(K^+ K^-)$ satisfy $2.94 \text{GeV}/c^2 < M_{4K} < 3.02 \text{GeV}/c^2$ and $3.06 \text{GeV}/c^2 < M_{4K} < 3.14 \text{GeV}/c^2$, respectively. We use yield signals from ML fits to determine branching fractions. Figures 2(e)–2(h) show the M_{bc} and ΔE projection plots with the fitted curves superimposed. Table I summarizes the yield, efficiencies, statistical significances, and the branching-fraction products. By requiring the invariant mass of one of the $K^+ K^-$ pairs to correspond to a ϕ meson, we also measure the decays of $B^0 \to \eta_c(J/\psi)K^0$ and $\eta_c(J/\psi) \to \phi K^+ K^-$. The results are included in Table I.

Using the known branching fractions $B(B^+ \to \phi K^+) = (1.01 \pm 0.05) \times 10^{-3}$ [5] and $B(B^0 \to \eta_c K^0)$, we obtain the secondary branching fractions for J/ψ and η_c decays to $2(K^+ K^-)$ and $\phi K^+ K^-$ listed in Table II.

Our measured branching fractions for $\eta_c \to \phi \phi$ and $\eta_c \to 2(K^+ K^-)$ are smaller than those of previous experiments [5], while those for J/ψ decays are consistent. The decay $\eta_c \to 2(K^+ K^-)$ proceeds dominantly through $\eta_c \to \phi K^+ K^-$ with $\phi \to K^+ K^-$. This is the first measurement of $\eta_c \to \phi K^+ K^-$. The decay of $\eta_c \to \phi \phi$ with $\phi \to K^+ K^-$ makes up approximately $1/3$ of the branching fraction of $\eta_c \to \phi K^+ K^-$. In summary, we have observed evidence for the charmless three-body decay $B \to \phi \phi K$, which is the first example of a $b \to s\pi s\pi s$ transition. The branching fraction $B(B^0 \to \phi \phi K^0) = (2.65 \pm 0.11 \pm 0.3) \times 10^{-6}$ for $M_{4K} < 2.85 \text{GeV}/c^2$, is measured with a significance of 5.1σ. No signal is observed for the decay $B \to J/\psi K^0$ with $J/\psi \to \phi \phi$. The corresponding upper limit at 90% C.L. is $B(B^0 \to J/\psi K^0) < 1.2 \times 10^{-6}$. We have also observed significant signals for $B^0 \to \eta_c K^0$ with $\eta_c \to \phi \phi$, with $\eta_c \to \phi K^+ K^-$, and with $\eta_c \to 2(K^+ K^-)$, as well as a signal for $B^0 \to J/\psi K^0$ with $J/\psi \to K^+ K^-$. We report the first measurement of $\eta_c \to \phi K^+ K^-$ with a branching fraction of $B(\eta_c \to \phi K^+ K^-) = (2.9 \pm 0.9 \pm 1.1) \times 10^{-3}$. Our measured branching fractions for $\eta_c \to \phi \phi$ and $2(K^+ K^-)$ are smaller than those of previous experiments.

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the National Science Foundation of China under Contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under Contract No. 2P03B 01324; the

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield</th>
<th>Efficiency (%)</th>
<th>Significance (σ)</th>
<th>B ($\times 10^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to \phi \phi K^0 (M_{4K} < 2.85 \text{GeV}/c^2)$</td>
<td>$7.3^{+5.2}_{-2.5}$</td>
<td>3.3 ± 0.3</td>
<td>5.1</td>
<td>$2.6^{+1.1}_{-0.9} \pm 0.3$</td>
</tr>
<tr>
<td>$B \to \phi K (M_{4K} < 2.85 \text{GeV}/c^2)$</td>
<td>$8.7^{+3.6}_{-2.9}$</td>
<td>2.2 ± 0.2</td>
<td>5.3</td>
<td>$2.3^{+0.9}_{-0.8} \pm 0.3$</td>
</tr>
<tr>
<td>$B^0 \to f_s(2220)K^0$, $f_s(2220) \to \phi \phi$</td>
<td><3.7</td>
<td>3.6 ± 0.3</td>
<td><1.2</td>
<td></td>
</tr>
<tr>
<td>$B \to \eta_c K^0$, $\eta_c \to \phi \phi$</td>
<td>$7.0^{+3.0}_{-2.3}$</td>
<td>3.7 ± 0.3</td>
<td>8.8</td>
<td>$2.2^{+0.5}_{-0.7} \pm 0.5$</td>
</tr>
<tr>
<td>$B^0 \to \eta_c K^0$, $\eta_c \to \phi K^+ K^-$</td>
<td>$14.1^{+5.4}_{-3.7}$</td>
<td>4.6 ± 0.4</td>
<td>7.7</td>
<td>$3.6^{+1.0}_{-0.9} \pm 0.8$</td>
</tr>
<tr>
<td>$B^0 \to \eta_c K^0$, $\eta_c \to 2(K^+ K^-)$</td>
<td>$14.6^{+5.6}_{-3.9}$</td>
<td>9.6 ± 0.9</td>
<td>6.6</td>
<td>$1.8^{+0.5}_{-0.6} \pm 0.4$</td>
</tr>
<tr>
<td>$B \to J/\psi K^0$, $J/\psi \to \phi K^+ K^-$</td>
<td>$9.0^{+5.7}_{-3.0}$</td>
<td>4.4 ± 0.4</td>
<td>5.3</td>
<td>$2.4^{+1.0}_{-0.8} \pm 0.3$</td>
</tr>
<tr>
<td>$B^0 \to J/\psi K^0$, $J/\psi \to 2(K^+ K^-)$</td>
<td>$11.0^{+5.3}_{-3.3}$</td>
<td>9.2 ± 0.9</td>
<td>4.8</td>
<td>$1.4^{+0.5}_{-0.4} \pm 0.2$</td>
</tr>
</tbody>
</table>

TABLE II. Measured branching fractions of secondary charmonium decays and the world averages [5]. The branching fractions for modes with $K^+ K^-$ pairs include contributions from $\phi \to K^+ K^-$.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>B (this work)</th>
<th>B (PDG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_c \to \phi \phi$</td>
<td>$(1.8^{+0.8}_{-0.6} \pm 0.7) \times 10^{-3}$</td>
<td>$(7.1 \pm 2.8) \times 10^{-3}$</td>
</tr>
<tr>
<td>$\eta_c \to \phi K^+ K^-$</td>
<td>$(2.9^{+0.9}_{-0.8} \pm 1.1) \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>$\eta_c \to 2(K^+ K^-)$</td>
<td>$(1.4^{+0.5}_{-0.4} \pm 0.6) \times 10^{-3}$</td>
<td>$(2.1 \pm 1.2) %$</td>
</tr>
<tr>
<td>$J/\psi \to \phi K^+ K^-$</td>
<td>$(2.4^{+1.0}_{-0.8} \pm 0.3) \times 10^{-3}$</td>
<td>$(7.4 \pm 1.1) \times 10^{-4}$</td>
</tr>
<tr>
<td>$J/\psi \to 2(K^+ K^-)$</td>
<td>$(1.4^{+0.5}_{-0.4} \pm 0.2) \times 10^{-3}$</td>
<td>$(7.0 \pm 3.0) \times 10^{-4}$</td>
</tr>
</tbody>
</table>
Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

*On leave from Fermi National Accelerator Laboratory, Batavia, IL 60510.
†On leave from Nova Gorica Polytechnic, Nova Gorica.