Production and Decay of Ξ_b^0 at BABAR

(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
3Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4Institute of High Energy Physics, Beijing 100039, China
5University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Bralun University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA

PRL 95, 142003 (2005) PHYSICAL REVIEW LETTERS week ending 30 SEPTEMBER 2005

142003-2
Using 116.1 fb\(^{-1}\) of data collected by the BABAR detector, we present an analysis of \(\Xi_c^0\) production in \(B\) decays and from the \(c\bar{c}\) continuum, with the \(\Xi_c^0\) decaying into \(\Omega^- K^+\) and \(\Xi^- \pi^+\) final states. We measure the ratio of branching fractions \(B(\Xi_c^0 \to \Omega^- K^+)/B(\Xi_c^0 \to \Xi^- \pi^+)\) to be \(0.294 \pm 0.018 \pm 0.016\), where the first uncertainty is statistical and the second is systematic. The \(\Xi_c^0\) momentum spectrum is measured on and 40 MeV below the \(Y(4S)\) resonance. From these spectra the branching fraction product \(B(B \to \Xi_c^0 X) \times B(\Xi_c^0 \to \Xi^- \pi^+)\) is measured to be \((2.11 \pm 0.19 \pm 0.25) \times 10^{-4}\), and the cross-section product \(\sigma(e^+ e^- \to \Xi_c^0 X) \times B(\Xi_c^0 \to \Xi^- \pi^+)\) from the continuum is measured to be \((388 \pm 39 \pm 41)\) fb at a center-of-mass energy of 10.58 GeV.

DOI: 10.1103/PhysRevLett.95.142003

PACS numbers: 13.25.Hw, 13.30.Eg, 14.20.Lq

In this Letter we present a study of the \(\Xi_c^0\) [1] charmed baryon through two decay modes: \(\Xi_c^0 \to \Omega^- K^+\) and \(\Xi_c^0 \to \Xi^- \pi^+\) [2], the former of which is expected to proceed almost entirely via internal \(W\) exchange. We determine the ratio of branching fractions of these decay modes, which has been measured previously to be \(0.50 \pm 0.21 \pm 0.05\) [3,4]. It was predicted to be 0.32 with a quark model calculation in which no spin information is exchanged between quarks other than through a single \(W\) boson [5].

We also study \(\Xi_c^0\) production by measuring the spectrum of the \(\Xi_c^0\) momentum in the \(e^+ e^-\) center-of-mass frame \((p^*)\). A number of theoretical predictions for \(\Xi_c^0\) production in \(B\) decays have been made [6–9]. There are several possible production mechanisms, principally \(b \to c\bar{c}s\) weak decays, \(b \to c\bar{c}d\) weak decays in which an \(s\bar{s}\) pair is produced during fragmentation, and Cabibbo-suppressed \(b \to c\bar{u}s\) weak decays. At this point there is insufficient experimental evidence to determine which of these is the dominant mechanism, and no clear theoretical consensus. Insight into the contributing processes can be gained by studying the distribution of the \(p^*\) spectrum. Evidence for \(\Xi_c^0\) production in \(B\) decays was presented previously by the CLEO collaboration, with a statistical significance of \(3\sigma\) in the \(\Xi_c^0 \to \Xi^- \pi^+ \pi^+\) decay mode and \(\approx 4\sigma\) in the \(\Xi_c^0 \to \Xi^- \pi^+ \pi^-\) decay mode [10].

The data for this analysis were collected with the BABAR detector at the SLAC PEP-II asymmetric energy \(e^+ e^-\) collider; the detector is described in detail elsewhere [11]. A total integrated luminosity of 116.1 fb\(^{-1}\) is used, of which 105.4 fb\(^{-1}\) was collected at the \(Y(4S)\) resonance [1] (corresponding to \(1.6 \times 10^6\) \(B\bar{B}\) pairs) and 10.7 fb\(^{-1}\) was collected at a center-of-mass energy of 10.54 GeV, which is below the \(B\bar{B}\) production threshold. These are referred to as the on-resonance and off-resonance data samples, respectively.

The reconstruction of \(\Xi_c^0\) candidates takes place as follows. A \(\Lambda\) candidate is reconstructed by identifying a proton and combining it with an oppositely charged track interpreted as a \(\pi^-\), fitting the tracks to a common vertex. The \(\Lambda\) candidate is then combined with a negatively charged track interpreted as a \(\pi^- (K^-)\) to form a \(\Xi^- (\Omega^-)\) candidate. For each intermediate hyperon, the invariant mass is required to be within \(3\sigma\) of the central value, where \(\sigma\) is the fitted mass resolution. The invariant mass is then constrained to the nominal value [1]. Each resulting \(\Xi^- (\Omega^-)\) candidate passing the selection criteria is then combined with a positively charged track interpreted as a \(\pi^+ (K^+)\) to form a \(\Xi_c^0\) candidate. For the \(\Omega^- K^+\) final state, the two \(K^\pm\) tracks must be identified as kaons. Particle identification is performed with \(dE/dx\) and Cherenkov angle measurements [11].

Additional selection criteria, described below, are used to improve the signal-to-background ratio. As a precaution against selection bias, these are optimized with subsamples of the data: 20 and 40 fb\(^{-1}\) for the \(\Xi^- \pi^+\) and \(\Omega^- K^+\) final states, respectively. A minimum decay distance of 2.5 mm \((1.5\) mm\) between the event primary vertex and the \(\Xi^- (\Omega^-)\) decay vertex in the plane perpendicular to the beam direction is required. The distance between the \(\Omega^-\) and \(\Lambda\) decay vertices is required to be at least 3 mm. In addition, the relative positioning of vertices is required to be causally connected: we reject candidates in which the \(\Xi^-\) decays further from the primary vertex than its daughter \(\Lambda\) does, or where the displacement vector from the \(\Omega^-\) decay point to the \(\Lambda\) decay point is antiparallel to the \(\Lambda\) momentum vector [12]. The invariant mass distributions for the \(\Xi_c^0\) candidates in the full data set satisfying these criteria are shown in Figs. 1(a) and 1(b) for \(\Xi^- \pi^+\) and \(\Omega^- K^+\) combinations, with signal yields of approximately 8100 and 1000 events, respectively.

Simulated events with the \(\Xi_c^0\) decaying into the two desired final states are generated for the processes \(e^+ e^- \to c\bar{c} \to \Xi_c^0 X\) and \(e^+ e^- \to Y(4S) \to B\bar{B} \to \Xi_c^0 X\), where \(X\) represents the rest of the event. The PYTHIA simulation package [13], tuned to the global BABAR data, is used for the \(c\bar{c}\) fragmentation and for \(B\) decays to \(\Xi_c^0\), and GEANT4 [14] is used to simulate the detector response. For \(c\bar{c}\) production, samples of 90 000 events for the \(\Xi^- \pi^+\) final state and 60 000 for the \(\Omega^- K^+\) final state are generated. For \(B\bar{B}\) production, samples of 255 000 and 120 000 events are used, respectively.

Additional generic Monte Carlo events are used to investigate possible background contributions. The sample sizes are equivalent to 245, 64, and 33 fb\(^{-1}\) for \(e^+ e^- \to B\bar{B}, c\bar{c}, \) and \(q\bar{q}\), respectively, where \(q = u, d, s\). Excluding signal contributions, the mass distribution varies smoothly throughout the region near the \(\Xi_c^0\) mass.
To measure the ratio of branching fractions, a further requirement that $p^* > 1.8$ GeV/c is imposed on the Ξ^0 candidates in order to suppress combinatoric background and improve the signal purity. Additionally, the candidates are required to be within the region of high Ξ^0 reconstruction efficiency $-0.8 \leq \cos \theta^* \leq 0.6$, where θ^* is the polar angle of the Ξ^0 candidate with respect to the collision axis in the center-of-mass frame. After these criteria, the signal yields for the $\Xi^-\pi^+$ and Ω^-K^+ modes are approximately 3650 and 650, respectively. The efficiency is calculated from signal Monte Carlo events as a function of p^* and $\cos \theta^*$ for each of the decay modes. For each mode, a 15-parameter fit gives a smooth parameterization of the efficiency with small statistical uncertainty. The efficiency is then corrected by weighting each candidate by the inverse of its efficiency, and the efficiency-corrected mass spectrum is fitted with a double Gaussian with a common mean for signal plus a linear background function. Including efficiency loss due to the Ξ^0 and Λ branching fractions, we obtain 25 889 ± 516 weighted events in the $\Xi^-\pi^+$ mode and 7615 ± 443 weighted events in the Ω^-K^+ mode. The χ^2 fit probabilities are 65% and 5%, respectively. In each case, the wider Gaussian contributes approximately one quarter of the yield.

We evaluate several sources of systematic uncertainty in the ratio of branching fractions: the fits to the mass spectra (3.4%), the efficiency parameterization (3.1%), particle identification (2.0%), finite Monte Carlo statistics (1.4%), multiple candidates in the same event (1.0%), charge asymmetries in detection efficiency (1.0%), the $\cos \theta^*$ distribution (1.0%), and the Ω^- branching fraction (1.0%). No baryon polarization is considered and any systematic uncertainty due to this is neglected. Adding all of the uncertainties in quadrature, we obtain

$$\frac{\mathcal{B}(\Xi^0 \rightarrow \Omega^- K^+)}{\mathcal{B}(\Xi^0 \rightarrow \Xi^- \pi^+)} = 0.294 \pm 0.018 \pm 0.016.$$

After obtaining the ratio of branching fractions, we next measure the p^* spectrum of the Ξ^0 baryons in order to study the production mechanisms in both $c\bar{c}$ and $B\bar{B}$ events. The same selection criteria and data samples described above are used, except that no requirement on p^* or $\cos \theta^*$ is made. Instead, the Ξ^0 candidates are divided into intervals of p^*. The yield is then measured in each interval with two different methods: first with a fitting method, where the mass spectrum is fitted with a single Gaussian for signal plus a linear background function and the integral of the Gaussian is taken as the yield; second with a counting method, where the background is estimated from mass sidebands and the signal yield is then taken as the statistical excess above this background in a mass window around the peak. The use of two different methods serves as a cross-check.

The efficiency in each p^* interval is estimated with signal Monte Carlo events from that p^* range. For both methods, the simulated events are reconstructed and the yield is measured, then divided by the number of events generated to obtain the efficiency. Because of the different angular distributions, the efficiencies for Ξ^0 produced from $c\bar{c}$ ($\varepsilon_{c\bar{c}}$) and from $B\bar{B}$ ($\varepsilon_{B\bar{B}}$) differ slightly. In the region $1.2 < p^* < 2.0$ GeV/c where both production mechanisms are significant and the difference is approximately 8% (relative), the efficiency is taken to be $(\varepsilon_{c\bar{c}} + \varepsilon_{B\bar{B}})/2$. The systematic uncertainty on the efficiency is then $|\varepsilon_{c\bar{c}} - \varepsilon_{B\bar{B}}|/\sqrt{2}$. The angular distributions produced in PYTHIA fragmentation are assumed to be correct when calculating the efficiency; the data are fully consistent with these distributions within available statistics. The efficiency-corrected yield in each p^* interval is then calculated, including loss of efficiency due to the Λ and Ω^- branching fractions. The spectra obtained with the two methods are in good agreement; we use the counting method for the quoted results since it is more stable for low statistics.

A number of systematic uncertainties are considered, the most important of which are the uncertainties associated with the track-finding and particle identification efficiencies (5.8% and 3.5%, respectively). Uncertainties from the simulated Ξ^0 mass resolution (1%), the mass resolutions of the intermediate hyperon states (0.5%), the p^* resolution (3.4%), the effect of finite interval width (3.1%), multiple candidates (0%), nonlinearity of the background (1.0%), the signal measurement method used (2%), the finite Monte Carlo statistics available (3%), and uncertainties in the Λ and Ω^- branching fractions (0.8%, 1.0%) are all considered individually; the notation $O(%)$ indicates the typical value when the exact uncertainty.

FIG. 1. Invariant mass distributions for Ξ^0 candidates in 116.1 fb$^{-1}$ of data, for (a) $\Xi^-\pi^+$, and (b) Ω^-K^+.

142003-5
varies among \(p^* \) intervals. The total systematic uncertainty for each \(p^* \) interval is obtained by adding the individual contributions in quadrature. In addition, a systematic correction of 1.0% is applied to account for a known data-Monte Carlo discrepancy in the track-finding efficiency, and small corrections are applied to each interval to account for the broadening effect of the \(p^* \) resolution on the spectrum. The final \(p^* \) spectrum for the on-resonance data set, obtained with the counting method in the \(\Xi^- \pi^+ \) mode, is shown in Fig. 2(a). Table I shows the corresponding values.

A further check is performed by comparing the two decay modes. The \(\Omega^- K^+ \) yields are scaled by a factor of \((1/0.294)\), the ratio of branching fractions previously presented in this Letter. Because the \(\Omega^- K^+ \) signal has fewer events, wider \(p^* \) intervals are used. The spectra of the two modes show good agreement in both shape and normalization and have a \(x^2 \) probability of 80% for consistency. This serves as a cross-check both of the \(p^* \) spectrum measurement and of the ratio of branching fractions.

The double-peak structure seen in the \(p^* \) spectrum is due to two production mechanisms: the peak at lower \(p^* \) is due to \(\Xi_c^0 \) production in \(B \) meson decays and the peak at higher \(p^* \) is due to \(\Xi_c^0 \) production from the \(c\bar{c} \) continuum. This is evident from Fig. 2(b), where the \(p^* \) spectra for the on-resonance and off-resonance data sets are shown together, with the off-resonance normalization scaled by a factor of 2/3. The production of \(\Omega^- K^+ \) mesons in the decays of \(\Xi_c^0 \) produces in the decays of \(\Xi_c^0 \), for the on-resonance data set (for \(p^* \leq 2.15 \text{ GeV}/c \)) and the on-resonance data set (for \(p^* > 2.15 \text{ GeV}/c \)). The yield is then divided by the integrated luminosity (introducing a further 1.5% systematic uncertainty) to obtain

\[
\mathcal{B}(B \to \Xi_c^0 \pi^-) \times \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (2.11 \pm 0.19 \pm 0.25) \times 10^{-4}.
\]

The yield of \(\Xi_c^0 \) produced in \(c\bar{c} \) events at an energy of 10.58 GeV is calculated from the scaled off-resonance data set (for \(p^* \leq 2.15 \text{ GeV}/c \)) and the on-resonance data set (for \(p^* > 2.15 \text{ GeV}/c \)). The yield is then divided by the integrated luminosity (introducing a further 1.5% systematic uncertainty) to obtain the cross section from the con-

![FIG. 2. The \(p^* \) spectrum measurements. In (a) the \(p^* \) spectrum of \(\Xi_c^0 \) decaying via \(\Xi^- \pi^+ \) is shown for the on-resonance data sample. In (b) the on-resonance and off-resonance data samples are shown together, with the off-resonance normalization scaled to account for the difference in integrated luminosity and cross section. In each plot, the inner error bars give the statistical uncertainty and the outer error bars give the sum in quadrature of the statistical and systematic uncertainties. The vertical line at 2.15 GeV/c in (b) shows the kinematic cutoff for \(\Xi_c^0 \) produced in \(B \) decays at \(\text{Babar} \). Note that the vertical axes show events per unit \(p^* \), not events in each \(p^* \) bin as given in Table I.](image)

TABLE I. Efficiency-corrected yield and cross-section product including \(B \) production \(\sigma(e^+e^\rightarrow \Xi_c^0X) \times \mathcal{B}(\Xi_c^0 \rightarrow \Xi^- \pi^+) \), for the on-resonance data.

<table>
<thead>
<tr>
<th>(p^*) range (GeV/c)</th>
<th>Corrected yield</th>
<th>Cross-section product (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0–0.2</td>
<td>1046 ± 201 ± 128</td>
<td>10 ± 2 ± 1</td>
</tr>
<tr>
<td>0.2–0.4</td>
<td>5889 ± 446 ± 483</td>
<td>56 ± 4 ± 5</td>
</tr>
<tr>
<td>0.4–0.6</td>
<td>10681 ± 631 ± 801</td>
<td>101 ± 6 ± 8</td>
</tr>
<tr>
<td>0.6–0.8</td>
<td>10709 ± 660 ± 817</td>
<td>102 ± 6 ± 8</td>
</tr>
<tr>
<td>0.8–1.0</td>
<td>8811 ± 647 ± 679</td>
<td>84 ± 6 ± 7</td>
</tr>
<tr>
<td>1.0–1.2</td>
<td>6834 ± 573 ± 530</td>
<td>65 ± 5 ± 5</td>
</tr>
<tr>
<td>1.2–1.4</td>
<td>2954 ± 501 ± 252</td>
<td>28 ± 5 ± 2</td>
</tr>
<tr>
<td>1.4–1.6</td>
<td>2429 ± 470 ± 212</td>
<td>23 ± 4 ± 2</td>
</tr>
<tr>
<td>1.6–1.8</td>
<td>2252 ± 424 ± 202</td>
<td>21 ± 4 ± 2</td>
</tr>
<tr>
<td>1.8–2.0</td>
<td>2159 ± 350 ± 217</td>
<td>20 ± 3 ± 2</td>
</tr>
<tr>
<td>2.0–2.2</td>
<td>2375 ± 347 ± 205</td>
<td>23 ± 3 ± 2</td>
</tr>
<tr>
<td>2.2–2.4</td>
<td>2743 ± 340 ± 227</td>
<td>26 ± 3 ± 2</td>
</tr>
<tr>
<td>2.4–2.6</td>
<td>3537 ± 315 ± 285</td>
<td>34 ± 3 ± 3</td>
</tr>
<tr>
<td>2.6–2.8</td>
<td>3920 ± 282 ± 306</td>
<td>37 ± 3 ± 3</td>
</tr>
<tr>
<td>2.8–3.0</td>
<td>4595 ± 294 ± 359</td>
<td>44 ± 3 ± 3</td>
</tr>
<tr>
<td>3.0–3.2</td>
<td>4873 ± 263 ± 401</td>
<td>46 ± 2 ± 4</td>
</tr>
<tr>
<td>3.2–3.4</td>
<td>4442 ± 244 ± 348</td>
<td>42 ± 2 ± 3</td>
</tr>
<tr>
<td>3.4–3.6</td>
<td>4084 ± 223 ± 355</td>
<td>39 ± 2 ± 3</td>
</tr>
<tr>
<td>3.6–3.8</td>
<td>2282 ± 171 ± 189</td>
<td>22 ± 2 ± 2</td>
</tr>
<tr>
<td>3.8–4.0</td>
<td>2095 ± 155 ± 166</td>
<td>20 ± 1 ± 1</td>
</tr>
<tr>
<td>4.0–4.2</td>
<td>1168 ± 123 ± 177</td>
<td>11 ± 1 ± 2</td>
</tr>
<tr>
<td>4.2–4.4</td>
<td>233 ± 53 ± 32</td>
<td>2.2 ± 0.5 ± 0.3</td>
</tr>
<tr>
<td>4.4–4.6</td>
<td>88 ± 37 ± 21</td>
<td>0.8 ± 0.3 ± 0.2</td>
</tr>
<tr>
<td>4.6–4.8</td>
<td>5 ± 13 ± 7</td>
<td>0.0 ± 0.1 ± 0.1</td>
</tr>
<tr>
<td>4.8–5.0</td>
<td>24 ± 17 ± 16</td>
<td>0.2 ± 0.2 ± 0.1</td>
</tr>
</tbody>
</table>
We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also with Università della Basilicata, Potenza, Italy.
†Deceased.
[2] Charge conjugate reactions are implied throughout.
[4] Throughout this Letter, the first uncertainty is statistical and the second is systematic.
[12] For comparison, the mean transverse flight distances at BABAR for Ξ^{-} and Ω^{-} which are produced in these Ξ^{0}_{c} decays in $c\bar{c}$ events are 5.3 and 2.3 cm, respectively, and the mean flight distance of Λ in these decays is 11.1 cm. The corresponding resolutions are 0.7, 0.7, and 0.8 mm, respectively.