UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Temporal Diversity in Recommender Systems

Lathia, N; Hailes, S; Capra, L; Amatriain, X; (2010) Temporal Diversity in Recommender Systems. In: Chen, HH and Efthimiadis, EN and Savoy, J and Crestani, F and MarchandMaillet, S, (eds.) SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL. (pp. 210 - 217). ASSOC COMPUTING MACHINERY

Full text not available from this repository.

Abstract

Collaborative Filtering (CF) algorithms, used to build web-based recommender systems, are often evaluated in terms of how accurately they predict user ratings. However, current evaluation techniques disregard the fact that users continue to rate items over time: the temporal characteristics of the system's top-N recommendations are not investigated. In particular, there is no means of measuring the extent that the same items are being recommended to users over and over again. In this work, we show that temporal diversity is an important facet of recommender systems, by showing how CF data changes over time and performing a user survey. We then evaluate three CF algorithms from the point of view of the diversity in the sequence of recommendation lists they produce over time. We examine how a number of characteristics of user rating patterns (including profile size and time between rating) affect diversity. We then propose and evaluate set methods that maximise temporal recommendation diversity without extensively penalising accuracy.

Type:Proceedings paper
Title:Temporal Diversity in Recommender Systems
Event:33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
Location:Geneva, SWITZERLAND
Dates:2010-07-19 - 2010-07-23
ISBN-13:978-1-60558-896-4
Keywords:Recommender Systems, Evaluation
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record