UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics

Rancz, EA; Franks, KM; Schwarz, MK; Pichler, B; Schaefer, AT; Margrie, TW; (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. NAT NEUROSCI , 14 (4) 527 - U169. 10.1038/nn.2765.

Full text not available from this repository.

Abstract

Single-cell genetic manipulation is expected to substantially advance the field of systems neuroscience. However, existing gene delivery techniques do not allow researchers to electrophysiologically characterize cells and to thereby establish an experimental link between physiology and genetics for understanding neuronal function. In the mouse brain in vivo, we found that neurons remained intact after 'blind' whole-cell recording, that DNA vectors could be delivered through the patch-pipette during such recordings and that these vectors drove protein expression in recorded cells for at least 7 d. To illustrate the utility of this approach, we recorded visually evoked synaptic responses in primary visual cortical cells while delivering DNA plasmids that allowed retrograde, monosynaptic tracing of each neuron's presynaptic inputs. By providing a biophysical profile of a cell before its specific genetic perturbation, this combinatorial method captures the synaptic and anatomical receptive field of a neuron.

Type:Article
Title:Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics
DOI:10.1038/nn.2765
Keywords:VISUAL-CORTEX, RABIES VIRUS, NEURONAL NETWORKS, CALCIUM INDICATOR, MAMMALIAN BRAIN, MOTOR CORTEX, STIMULATION, INHIBITION, MICROSTIMULATION, ELECTROPORATION
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Biosciences (Division of) > Neuroscience, Physiology and Pharmacology

Archive Staff Only: edit this record