UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides

Smith, MEB; Schumacher, FF; Ryan, CP; Tedaldi, LM; Papaioannou, D; Waksman, G; ... Baker, JR; + view all (2010) Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. J AM CHEM SOC , 132 (6) 1960 - 1965. 10.1021/ja908610s. Gold open access

Abstract

The maleimide motif is widely used for the selective chemical modification of cysteine residues in proteins Despite widespread utilization, there are some potential limitations, including the irreversible nature of the reaction and, hence, the modification and the number of attachment positions. We conceived of a new class of maleimide which would address some of these limitations and provide new opportunities for protein modification. We report herein the use of mono- and dibromomaleimides for reversible cysteine modification and illustrate this on the SH2 domain of the Grb2 adaptor protein (L111C) After initial modification of a protein with a bromo- or dibromomaleimide, it is possible to add an equivalent of a second thiol to give further boconjugation, demonstrating that bromomaleimides offer opportunities for up to three points of attachment The resultant protein-maleimide products can be cleaved to regenerate the unmodified protein by addition of a phosphine or a large excess of a thiol Furthermore, dibromomaleimide can insert into a disulfide bond, forming a maleimide bridge, and this is illustrated on the peptide hormone somatostatin Fluorescein-labeled dibromomaleimide is synthesized and inserted into the disulfide to construct a fluorescent somatostatin analogue These results highlight the significant potential for this new class of reagents in protein modification.

Type:Article
Title:Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides
Open access status:An open access publication
DOI:10.1021/ja908610s
Publisher version:http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2842020/?tool=pubmed
Keywords:SITE-SPECIFIC PEGYLATION, N-ETHYLMALEIMIDE, CONJUGATION, REACTIVITY, BONDS
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Biosciences (Division of) > Structural and Molecular Biology
UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry
UCL > VP Enterprise

Archive Staff Only: edit this record