UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Minimizing nonsubmodular functions with graph cuts - A review

Kolmogorov, V; Rother, C; (2007) Minimizing nonsubmodular functions with graph cuts - A review. IEEE T PATTERN ANAL , 29 (7) 1274 - 1279. 10.1109/TPAMI.2007.1031.

Full text not available from this repository.

Abstract

Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies ( e. g., submodular functions). In this survey, we review some results that show that graph cuts can be applied to a much larger class of energy functions ( in particular, nonsubmodular functions). While these results are well-known in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.

Type:Article
Title:Minimizing nonsubmodular functions with graph cuts - A review
DOI:10.1109/TPAMI.2007.1031
Keywords:energy minimization, Markov Random Fields, quadratic pseudo-Boolean optimization, min cut/max flow, texture restoration, STATISTICAL-ANALYSIS, OPTIMIZATION, ALGORITHM, IMAGES
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record