Innovative Optical and Electronic Interconnect Printed Circuit Board Manufacturing Research

David R. Selviah¹, David A. Hutt³, Andy C. Walker², Kai Wang¹, F. Aníbal Fernández¹, Paul P. Conway³, Dave Milward⁴, Ioannis Papakonstantinou⁵, Hadi Baghsiahi¹, John Chappell³, Shefiu S. Zakariyah³, Aongus McCarthy², Himanshu Suyal²

¹University College London, UCL, UK, d.selviah@ee.ucl.ac.uk,
²Heriot Watt University, UK,
³Loughborough University, UK,
⁴Xyratex Technology Ltd.,
⁵Sharp Laboratories of Europe Ltd. (Formerly at UCL)
Outline

- Electronic versus Optical interconnects
- The OPCB project
- OPCB University Research Overview
 - Heriot Watt
 - Loughborough
 - UCL
- System Demonstrator

Details of the research are presented in the individual university partners papers in this conference
- We-A-1 UCL
- We-P-16 Heriot Watt
- Th-P-9 2 papers UCL, Loughborough
Copper Tracks versus Optical Waveguides for High Bit Rate Interconnects

- Copper Track
 - EMI Crosstalk
 - Loss
 - Impedance control to minimize back reflections, additional equalisation, costly board material

- Optical Waveguides
 - Low loss
 - Low cost
 - Low power consumption
 - Low crosstalk
 - Low clock skew
 - WDM gives higher aggregate bit rate
 - Cannot transmit electrical power
On-board Platform Applications
On-board Platform Applications

Reconfigurable Network Interconnections

RF/EO Sensors & comms data

Aircraft utilities

Signal concentrator

High Bandwidth Signals
The Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) project

- Hybrid Optical and Electronic PCB Manufacturing Techniques
- 8 Industrial and 3 University Partners led by industry end user
- Multimode waveguides at 10 Gb/s on a 19 inch PCB
- Project funded by UK Engineering and Physical Sciences Research Council (EPSRC) via the Innovative Electronics Manufacturing Research Centre (IeMRC) as a Flagship Project
- 2 years into the 3 year, £1.3 million project
Integration of Optics and Electronics

- Backplanes
 - Butt connection of “plug-in” daughter cards
 - In-plane interconnection
- Focus of OPCB project

- Out-of-plane connection
 - 45 mirrors
 - Chip to chip connection possible
Direct Laser-writing Setup: Schematic

- **Slotted baseplate** mounted vertically over translation, rotation & vertical stages; components held in place with magnets
- By using two opposing 45° beams we minimise the amount of substrate rotation needed
Writing sharply defined features
– flat-top, rectangular laser spot

Gaussian beam diameter = 1.1 mm

TEM_00

60 μm square aperture

Imaging system / lenses

Images of the resulting waveguide core cross-sections
Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

- Writing speed: ~75 µm / s
- Optical power: ~100 µW
- Flat-top intensity profile
- Oil immersion
- Single pass

Optical microscope image showing end on view of the 45° surfaces
Waveguide terminated with 45-deg mirror

Out-of-plane coupling, using 45-deg mirror (silver)

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT
Current Results

Laser-writing Parameters:
- Intensity profile: Gaussian
- Optical power: ~8 mW
- Cores written in oil

Polymer:
- Custom multifunctional acrylate photo-polymer
- Fastest “effective” writing speed to date: 50 mm/s

(Substrate: FR4 with polymer undercladding)
Large Board Processing: Writing

- Stationary “writing head” with board moved using Aerotech sub-μm precision stages
- Waveguide trajectories produced using CAD program

- 600 x 300 mm travel
- Requires a minimum of 700 x 1000 mm space on optical bench
- Height: ~250 mm
- Mass:
 - 300 mm: 21 kg
 - 600 mm: 33 kg
- Vacuum tabletop
The spiral was fabricated using a Gaussian intensity profile at a writing speed of 2.5 mm/s on a 10 x 10 cm lower clad FR4 substrate. Total length of spiral waveguide is ~1.4 m. The spiral was upper cladded at both ends for cutting.
Laser Ablation for Waveguide Fabrication

- Ablation to leave waveguides
- Excimer laser – Loughborough
- Nd:YAG – Stevenage Circuits

Deposit cladding and core layers on substrate
UV LASER
Laser ablate polymer
Deposit cladding layer
Nd:YAG Ablation

- Nd:YAG laser based at Stevenage Circuits
- Grooves machined in optical polymer and ablation depth characterised for machining parameters
- Initial waveguide structures prepared
Excimer Laser Ablation

- Straight structures machined in polymer
- Future work to investigate preparation of curved mirrors for out of plane interconnection
Inkjetting as a Route to Waveguide Deposition

- Print polymer then UV cure
- Advantages:
 - controlled, selective deposition of core and clad
 - less wastage: picolitre volumes
 - large area printing
 - low cost

Deposit Lower Cladding
Deposit Core
Deposit Upper Cladding
Challenges of Inkjet Deposition

- Viscosity tailored to inkjet head via addition of solvent
- “Coffee stain” effects
Changing Surface Wettability

Contact Angles

Core material on cladding

Core material on modified glass surface (hydrophobic)

Large wetting - broad inkjetted lines

Reduced wetting – discrete droplets

Identical inkjetting conditions - spreading inhibited on modified surface
Towards Stable Structures

Stable line structures with periodic features

Cross section of inkjetted core material surrounded by cladding (width 80 microns)

A balance between wettability, line stability and adhesion
Waveguide components and measurements

- Straight waveguides 480 mm x 70 µm x 70 µm
- Bends with a range of radii
- Crossings
- Spiral waveguides
- Tapered waveguides
- Bent tapered waveguides

- Loss
- Crosstalk
- Misalignment tolerance
- Surface Roughness
- Bit Error Rate, Eye Diagram

Copyright © 2008 UCL
Optical Power Loss in 90° Waveguide Bends

Schematic diagram of one set of curved waveguides.

• Radius R, varied between $5.5 \text{ mm} < R < 35 \text{ mm}$, $\Delta R = 1 \text{ mm}$
• Light lost due to scattering, transition loss, bend loss, reflection and back-scattering
• Illuminated by a MM fiber with a red-laser.
BPM, beam propagation method modeling of optical field in bend segments

\[w = 50 \, \mu m, \quad R = 13 \, mm \]

(left picture) in the first segment (first 10°).

(right picture) in the 30° to 40° degree segment.
Differences in misalignment tolerance and loss as a function of taper ratio

- Graph plots the differences between a tapered bend and a bend
- There is a trade off between insertion loss and misalignment tolerance
Crosstalk in Chirped Width Waveguide Array

- Light launched from VCSEL imaged via a GRIN lens into 50 μm x 150 μm waveguide
- Photolithographically fabricated chirped with waveguide array
- Photomosaic with increased camera gain towards left
Surface roughness

- RMS side wall roughness: 9 nm to 74 nm
- RMS polished end surface roughness: 26 nm to 192 nm.
Design rules for waveguide width depending on insertion loss and cross-talk

6~7dB for a 70 μm width waveguide

Copyright © 2008 UCL
Bit error rate for laterally misaligned 1550 nm 2.5 Gb/s DFB laser

(+)-Direction

(-)-Direction

- **Power at the receiver (dBm)**
 - **BER**
 - **R = 9.5 mm**
 - **R = 13.5 mm**
 - **R = 20.5 mm**
 - **Straight**
 - **No wvg.**

Copyright © 2008 UCL
Contour map of VCSEL and PD misalignment

(a) Contour map of relative insertion loss compared to the maximum coupling position for VCSEL misalignment at $z = 0$.

- Dashed rectangle is the expected relative insertion loss according to the calculated misalignments along x and y.
- The minimum insertion loss was 4.4 dB, corresponded to $x = 0$, $y = 0$, $z = 0$.

(b) Same for PD misalignment at $z = 0$. Resolution step was $\Delta x = \Delta y = 1 \, \mu m$.

Copyright © 2008 UCL
Coupling Loss for VCSEL and PD for misalignments along optic axis

- VCSEL
- Photo Detector

axial distance z (μm)

Insertion Loss (dB)
Parallel optical transceiver circuit
- Small form factor quad parallel optical transceiver
- Microcontroller supporting I²C interface
- Samtec “SEARAY™” open pin field array connector
- Spring loaded platform for optical engagement mechanism
- Custom heatsink for photonic drivers

Backplane connector module
- Samtec / Xyratex collaborate to develop optical PCB connector
- 1 stage insertion engagement mechanism developed
- Xyratex transceiver integrated into connector module
Hybrid Electro-Optical Printed Circuit Board

- Standard Compact PCI backplane architecture
- 12 electrical layers for power and C-PCI signal bus and peripheral connections
- Electrical C-PCI connector slots for SBC and line cards
- 1 polymeric optical layer for high speed 10 GbE traffic
- 4 optical connector sites
- Dedicated point-to-point optical waveguide architecture
Hybrid Electro-Optical Printed Circuit Board

- Standard Compact PCI backplane architecture
- 12 electrical layers for power and C-PCI signal bus and peripheral connections
- Electrical C-PCI connector slots for SBC and line cards
- 1 polymeric optical layer for high speed 10 GbE traffic
- 4 optical connector sites
- Dedicated point-to-point optical waveguide architecture
Acknowledgments

- BAE Systems:
 - Henry White
- Stevenage Circuits Ltd. (SCL):
 - Dougal Stewart, Jonathan Calver, Jeremy Rygate, Steve Payne
- EPSRC and all partner companies for funding

- Details of the research are presented in the individual university partners papers in this conference
- We-A-1 UCL Poster all day
- We-P-16 Heriot Watt
- Th-P-9 2 papers UCL, Loughborough
At the International Symposium on Photonic Packaging international experts from Germany and abroad will present the current state-of-the-art in this field and discuss technological aspects as well as market launch.

The event is open to developers and decision makers from the realms of data communication, telecommunication, medical engineering, sensor technology, and automotives.

Topics
* Roadmaps and System Requirements
* Design and Components
* System Integration and PCB Technology
* Assembly and Reliability

[Program (.pdf/48KB)](http://www.mcc-pr.de/photonics/site/)

[Register now](http://www.mcc-pr.de/photonics/site/) for Symposium and Table Top Exhibition!

Time: November 13, 2008, 9:30 am – 5:30 pm
Venue: Messe München, Hall A1, Conference Room A12
Conference language: English

Conference fees (including conference proceedings):
Speaker fee: EUR 195,-
Early bird: EUR 275,- (until September 30, 2008)
Regular: EUR 350,-

http://www.mcc-pr.de/photonics/site/

For further information don’t hesitate to contact the conference secretariat at:

MCC Public Relations GmbH
Planufer 92d
D-10967 Berlin

Tel.: +49 (30) 61 28 86 11
Fax: +49 (30) 61 28 86 88

photonics@mcc-pr.de
Program

System Design

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30-09:40</td>
<td>Welcome
Henning Schröder
Fraunhofer IZM Berlin, Germany</td>
</tr>
<tr>
<td>09:40-10:10</td>
<td>Optical Interconnect Applications for Multimode Siloxane Components
Ian H. White
University of Cambridge, Cambridge, UK</td>
</tr>
<tr>
<td>10:10-10:40</td>
<td>Design Rules for Polymer Waveguides and Measurement Mechaniques
Kai Wang
University College London, London, UK</td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>CAD of Board-Level Optical Interconnects
Jürgen Schrage
Siemens C-Lab, Faderbom, Germany</td>
</tr>
<tr>
<td>10:40-11:10</td>
<td>Coupling Light to and from Optical Boards
Peter van Daele
University of Gent, Gent, Belgium</td>
</tr>
<tr>
<td>11:40-12:30</td>
<td>Lunch break</td>
</tr>
</tbody>
</table>

Components

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30-01:00</td>
<td>240 Gbit/s Parallel Optical Transmission Using Double Layer Waveguides in Thin Glass Sheets
Henning Schröder
Fraunhofer IZM Berlin, Germany</td>
</tr>
<tr>
<td>01:00-01:30</td>
<td>Flexible Optical Interconnects
Geert van Steenberge
University of Gent, Gent, Belgium</td>
</tr>
<tr>
<td>01:30-02:00</td>
<td>Refractive Index Profiling of Polymer Planar Optical Waveguides Using Optical Coherence Tomography
David Ives
National Physical Laboratory, Middlesex, UK</td>
</tr>
<tr>
<td>02:00-02:30</td>
<td>Ink Jet Printing of Optical Waveguide Material
John Chappell and David Hutt
Loughborough University Loughborough, UK</td>
</tr>
<tr>
<td>02:30-03:20</td>
<td>Coffee break</td>
</tr>
</tbody>
</table>

Integration Technologies

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:20-03:50</td>
<td>Transfer of Polymer Waveguide Fabrication Processes to a Commercial PCB Foundry
Dougall Stewart
Stevenson Circuits Limited, Stewana, UK</td>
</tr>
<tr>
<td>03:50-04:20</td>
<td>Board-Level Optical Interconnects for Computing Applications
Bert Offreins
IBM Research Labs, Röschlikon, Switzerland</td>
</tr>
<tr>
<td>04:20-04:50</td>
<td>Pluggable Interconnect Technology for Electro-Optical PCBs
Richard Pitwon
Ynixtas, Hampshire, UK</td>
</tr>
<tr>
<td>04:50-05:20</td>
<td>Optoelectronic Printed Circuit Board Realised by Two Photon Absorption Structuring
Gregor Langer
AT&S AG, Leoben, Austria</td>
</tr>
<tr>
<td>05:20-05:30</td>
<td>Final Remarks
Henning Schröder
Fraunhofer IZM Berlin, Germany</td>
</tr>
</tbody>
</table>
20th Annual Workshop on Interconnections Within High Speed Digital Systems

3-6 May 2009

Sponsored by the IEEE Lasers & Electro-Optics Society and in cooperation with the IEEE Computer Society

REGISTRATION DEADLINE: 14 APRIL 2009