UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Spatially coherent clustering using graph cuts

Zabih, R; Kolmogorov, V; (2004) Spatially coherent clustering using graph cuts. In: PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2. (pp. 437 - 444). IEEE COMPUTER SOC

Full text not available from this repository.

Abstract

Feature space clustering is a popular approach to image segmentation, in which a feature vector of local properties (such as intensity, texture or motion) is computed at each pixel. The feature space is then clustered, and each pixel is labeled with the cluster that contains its feature vector. A major limitation of this approach is that feature space clusters generally lack spatial coherence (i.e., they do not correspond to a compact grouping of pixels). In this paper, we propose a segmentation algorithm that operates simultaneously in feature space and in image space. We define an energy function over both a set of clusters and a labeling of pixels with clusters. In our framework, a pixel is labeled with a single cluster (rather than, for example, a distribution over clusters). Our energy function penalizes clusters that are a poor fit to the data in feature space, and also penalizes clusters whose pixels lack spatial coherence. The energy function can be efficiently minimized using graph cuts. Our algorithm can incorporate both parametric and non-parametric clustering methods. It can be applied to many optimization-based clustering methods, including k-means and k-medians, and can handle models which are very close in feature space. Preliminary results are presented on segmenting real and synthetic images, using both parametric and non-parametric clustering.

Type:Proceedings paper
Title:Spatially coherent clustering using graph cuts
Event:Conference on Computer Vision and Pattern Recognition
Location:Washington, DC
Dates:2004-06-27 - 2004-07-02
ISBN:0-7695-2158-4
Keywords:IMAGE SEGMENTATION, EXPECTATION-MAXIMIZATION, ALGORITHM
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record