UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Comparison of two- and three-dimensional reconstruction methods in optical tomography

Schweiger, M; Arridge, SR; (1998) Comparison of two- and three-dimensional reconstruction methods in optical tomography. APPL OPTICS , 37 (31) 7419 - 7428.

Full text not available from this repository.

Abstract

We present a three-dimensional (3D) image reconstruction scheme for optical near-infrared imaging of highly scattering material. The algorithm reconstructs the spatial distribution of the optical parameters of a volume Omega from transillumination measurements on the boundary of Omega. We test the performance of the method for a cylindrical object with embedded absorbing perturbation for a number of different source and detector arrangements. Furthermore, we investigate the effect of a mismatched reconstruction, using a two-dimensional (2D) reconstruction model to image a single plane of the object from 3D tomographic data obtained in a single plane. The motivation for the application of 2D models is their advantage in speed and memory requirements. We found that the difference in the measurement data between 2D and 3D models depends greatly on the measurement type used, giving a much better agreement for mean time-of-flight data than for de intensity data. Image artifacts that are due to data model mismatches can therefore be significantly reduced by use of mean time data. (C) 1998 Optical Society of America OCIS codes: 110.3080, 170.3010, 170.3880, 170.6920.

Type:Article
Title:Comparison of two- and three-dimensional reconstruction methods in optical tomography
Keywords:FINITE-ELEMENT-METHOD, NEAR-INFRARED SPECTROSCOPY, TIME-OF-FLIGHT, MEASUREMENT DENSITY-FUNCTIONS, SCATTERING MEDIA, IMAGE-RECONSTRUCTION, TURBID MEDIA, TISSUE, LIGHT, PROPAGATION
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record