UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

On the uniqueness of steady flow past a rotating cylinder with suction

Buldakov, EV; Chernyshenko, SI; Ruban, AI; (2000) On the uniqueness of steady flow past a rotating cylinder with suction. Journal of fluid mechanics , 411 213 - 232. 10.1017/S0022112099008162.

Full text not available from this repository.

Abstract

The subject of this study is a steady two-dimensional incompressible flow past a rapidly rotating cylinder with suction. The rotation velocity is assumed to be large enough compared with the cross-flow velocity at infinity to ensure that there is no separation. High-Reynolds-number asymptotic analysis of incompressible Navier-Stokes equations is performed. Prandtl's classical approach of subdividing the flow field into two regions, the outer inviscid region and the boundary layer, was used earlier by Glauert (1957) for analysis of a similar flow without suction. Glauert found that the periodicity of the boundary layer allows the velocity circulation around the cylinder to be found uniquely. In the present study it is shown that the periodicity condition does not give a unique solution for suction velocity much greater than 1/Re. It is found that these non-unique solutions correspond to different exponentially small upstream vorticity levels, which cannot be distinguished from zero when considering terms of only a few powers in a large Reynolds number asymptotic expansion. Unique solutions are constructed for suction of order unity, 1/Re, and 1/sqrt{Re}. In the last case an explicit analysis of the distribution of exponentially small vorticity outside the boundary layer was carried out.

Type:Article
Title:On the uniqueness of steady flow past a rotating cylinder with suction
DOI:10.1017/S0022112099008162
Publisher version:http://dx.doi.org/10.1017/S0022112099008162
Language:English
Additional information:© 2000 Cambridge University Press
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Civil, Environmental and Geomatic Engineering

Archive Staff Only: edit this record