UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Design and implementation of high-speed digital electronics hardware for telecommunications satellite on-board processors

Walker, M.; (2011) Design and implementation of high-speed digital electronics hardware for telecommunications satellite on-board processors. Doctoral thesis, UCL (University College London).

[img]PDF - Access restricted until 18 January 2031 - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
31Mb

Abstract

Personal mobile voice and data communications have become ubiquitous in most developed areas of the modern world, with cellular mobile phone calls and text messages being perhaps the most common examples. Satellite operators provide comparable services that are not constrained by terrestrial cellular network coverage. With sustained demand for personal mobile communications via satellite and Moore’s law continuing to provide gains in integrated circuits, communications satellite vendors have the opportunity to supply new generations of equipment to fulfil this demand. Three linked projects are presented in chronological order, covering the design and implementation of high-speed digital electronics hardware for telecommunications satellite on-board digital signal processor equipments. Novel materials and hardware architectures are used to support the latest generations of integrated circuits thus enabling significant equipment performance increases, whilst meeting the strict resource budgets and constraints placed on satellite payload equipment. A novel processor equipment hardware architecture is described, which achieves high digital electronics power densities by using large aluminium nitride substrates to provide the physical component accommodation, electrical interconnections and thermal conduction path. The substrate material properties are studied and used to develop a baseline trace geometry and stack-up, optimised for routing capacity. The proposed architectures are then evaluated for feasibility. Alternative approaches are considered and a concept study of ‘thin PCB’ hardware undertaken. The development of the phase-2 next generation processor’s digital processor module is reported, from definition and design to testing, problem characterisation and resolution. After requirements capture and PCB stack-up design, the Clos network switch fabric routing is optimised for minimum PCB layer occupancy and signal integrity. The component pin-outs are optimised and ASIC and clock device packages designed, before the PCB is designed and fabricated. The module was tested at Engineering Model (EM) and Engineering Qualification Model (EQM) quality levels. Eight flight units will see deployment in the AlphaSat satellite, currently scheduled for launch in 2013. The research for this EngD took place under different phases of the Next Generation Processor (NGP) R&D programme, co-funded by Astrium and ESA. The work was carried out by the author, whilst in full time employment at the EADS Astrium Processor Products Group, in Stevenage, England. The group designs and delivers payload equipments, which use DSP algorithms, implemented in hardware, to realise flexible telecommunications satellite payloads, including the Inmarsat 4, Skynet 5 and AlphaSat processors.

Type:Thesis (Doctoral)
Title:Design and implementation of high-speed digital electronics hardware for telecommunications satellite on-board processors
Language:English
Additional information:This thesis is subject to an NDA (non-disclosure agreement), binding between UCL, Astrium UK Ltd and the author. As such it is submitted in confidence to UCL and access shall be strictly limited to the paper copies for a period of 20 years from the date of final submission: Thursday 19th January 2011. The PDF copy shall NOT be made available during this period, without the prior written permission of either the author or a representative of the author's company, Astrium UK Ltd.
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

View download statistics for this item

Archive Staff Only: edit this record