UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Neural decoding of movements: From linear to nonlinear trajectory models

Yu, BM; Cunningham, JP; Shenoy, KV; Sahani, M; (2008) Neural decoding of movements: From linear to nonlinear trajectory models. In: Ishikawa, M and Doya, K and Miyamoto, H and Yamakawa, T, (eds.) NEURAL INFORMATION PROCESSING, PART I. (pp. 586 - 595). SPRINGER-VERLAG BERLIN

Full text not available from this repository.

Abstract

To date, the neural decoding of time-evolving physical state for example, the path of a foraging rat or arm movements - has been largely carried out using linear trajectory models, primarily due to their computational efficiency. The possibility of better capturing the statistics of the movements using nonlinear trajectory models, thereby yielding more accurate decoded trajectories, is enticing. However, nonlinear decoding usually carries a higher computational cost, which is an important consideration in real-time settings. In this paper, we present techniques for nonlinear decoding employing modal Gaussian approximations, expectatation propagation, and Gaussian quadrature. We compare their decoding accuracy versus computation time tradeoffs based on high-dimensional simulated neural spike counts.

Type:Proceedings paper
Title:Neural decoding of movements: From linear to nonlinear trajectory models
Event:14th International Conference on Neural Information Processing (ICONIP 2007)
Location:Kitakyushu, JAPAN
Dates:2007-11-13 - 2007-11-16
ISBN-13:978-3-540-69154-9
Keywords:nonlinear dynamical models, nonlinear state estimation, neural decoding, neural prosthetics, expectation-propagation, Gaussian quadrature, GOAL-DIRECTED MOVEMENTS, HIPPOCAMPAL PLACE CELLS, CORTICAL CONTROL, KALMAN FILTER, ALGORITHMS, SIGNALS, ARM, RECONSTRUCTION, PROSTHETICS, PREDICTION
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neuroscience Unit

Archive Staff Only: edit this record