Recruiting patients to medical research: double blind randomised trial of "opt-in" versus "opt-out" strategies

Cornelia Junghans, Gene Feder, Harry Hemingway, Adam Timmis and Melvyn Jones

BMJ 2005;331:940-; originally published online 12 Sep 2005;
doi:10.1136/bmj.38583.625613.AE

Updated information and services can be found at:
http://bmj.com/cgi/content/full/331/7522/940

These include:

References
This article cites 12 articles, 8 of which can be accessed free at:
http://bmj.com/cgi/content/full/331/7522/940#BIBL

Rapid responses
One rapid response has been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/331/7522/940#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/331/7522/940

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
Randomized Controlled Trials: examples (387 articles)
Health Services Research (508 articles)
Informed Consent (412 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjjournals.com/subscriptions/subscribe.shtml
Primary care

Recruiting patients to medical research: double blind randomised trial of “opt-in” versus “opt-out” strategies
Cornelia Junghans, Gene Feder, Harry Hemingway, Adam Timmis, Melvyn Jones

Abstract
Objective To evaluate the effect of opt-in compared with opt-out recruitment strategies on response rate and selection bias.
Design Double blind randomised controlled trial.
Setting Two general practices in England.
Participants 510 patients with angina.
Intervention Patients were randomly allocated to an opt-in (asked to actively signal willingness to participate in research) or opt-out (contacted repeatedly unless they signalled unwillingness to participate) approach for recruitment to an observational prognostic study of patients with angina.
Main outcome measures Recruitment rate and clinical characteristics of patients.
Results The recruitment rate, defined by clinic attendance, was 38% (96/252) in the opt-in arm and 50% (128/258) in the opt-out arm (P = 0.014). Once an appointment had been made, non-attendance at the clinic was similar (20% opt-in arm v 17% opt-out arm; P = 0.86). Patients in the opt-in arm had fewer risk factors (44% v 60%; P = 0.053), less treatment for angina (69% v 82%; P = 0.010), and less functional impairment (9% v 20%; P = 0.023) than patients in the opt-out arm.
Conclusions The opt-in approach to participant recruitment, increasingly required by ethics committees, resulted in lower response rates and a biased sample. We propose that the opt-out approach should be the default recruitment strategy for studies with low risk to participants.

Introduction
Recruiting unbiased patient samples with high response rates is vital for the scientific rigour of much medical research. The traditional means of participant recruitment assumes that patients are potentially willing to participate, and non-response to an initial approach can be followed up with further communication (the so called “opt-out” approach). However, research ethics committees and institutional review bodies increasingly stipulate that investigators refrain from repeated contact with potential participants, unless these patients actively signal willingness to consider participation (the so called “opt-in” approach). The opt-in approach is increasingly applied to different aspects of study design, including consent for use of routine patient data and patient recruitment to studies. Opting in is deemed ethically more defensible, as it relies on active participation of individuals, and some evidence shows that this is what patients expect. The opt-out method has come under scrutiny as it relies on both inertia and the moral assumption that most people are willing to help researchers in principle. Whether patients find continued communication from researchers acceptable if they do not respond to an initial enquiry is unclear.

No evidence exists to show that the traditional opt-out approach for initial patient contact is in any way harmful. On the other hand, a low response rate and selection bias have obvious implications for study design, cost, and applicability of results. No study has examined the impact on response rate and patients’ characteristics when the opt-in method is used to approach patients for recruitment into a research study. In medical research, in which no new data are collected, the opt-in requirement has been associated with a poor response rate and a selected study population. A poor response rate has also been found with an opt-in approach in screening clinics and when asking for direct consent to participation in a study. In this study, we compared the opt-in and opt-out methods of approaching patients for research in a randomised controlled trial of recruitment to a pilot study of patients with angina.

Methods
Design and randomisation
We obtained approval in 2002 to carry out a randomised controlled trial of patient recruitment comparing opt-in and opt-out approaches in a pilot of an observational study investigating the prognosis of angina. Patients were eligible for the pilot cohort study if they had angina within the previous three years. These patients were also eligible for this trial. We recruited patients from two general practices with comparable list sizes in Barking and Havering and in east London. We identified 999 patients by using search terms for prescription of nitrate, diagnosis of angina, or referral to a cardiologist within the previous three years on the Egton Medical Information System (EMIS) general practice computer systems. Two clinicians (GF and MJ) independently verified the computer search by checking the case notes, using a low threshold for inclusion. A total of 527 patients were verified, of whom 17 were deemed unsuitable for research by their general practitioner because of death, important comorbidity, severe mental illness, or personal reasons such as recent bereavement.

A research assistant used minimisation software to randomise the 510 remaining patients to opt-in or opt-out recruitment, balanced by sex and age (four age bands: ≤49, 50-59, 60-69, ≥70). The identity of the trial arm was kept in a sealed envelope and was known only to the research assistant, who used it to send out the appropriate invitation pack. Where people from the same household happened to be randomised to two different recruitment methods, we used the recruitment method of the husband for all people in the household (two participants changed to opt-in). After randomisation to either recruitment
method, patients were invited by a letter from their general practitioner to participate in a pilot for a longitudinal cohort study of patients with angina at a clinic at their local hospital (London) or their own surgery (Barking and Havering). All patients received an information leaflet and a reply card, but with different formats depending on which recruitment strategy they had been allocated to. Patients (in agreement with the ethics committee) were unaware of the recruitment trial but fully informed about the cohort study. At the clinic, patients gave consent for the completion of a questionnaire, cardiovascular examination, blood tests, investigations, and follow-up. The clinics ran from November 2002 to June 2003.

Intervention
We asked patients in the opt-in arm to return the reply card or to phone if they wished to participate. We then telephoned patients who opted in to arrange an appointment. We sent a reminder letter to the opt-in group after two weeks if they had not contacted the research team, after which we made no further contact unless the patient contacted us. We told patients in the opt-out arm that they would be contacted by a researcher after two weeks unless they declined participation by returning their reply card or phoning the researchers. We phoned patients who did not opt out to ask if they wanted to participate and, if appropriate, to arrange an appointment.

Sample size and outcome
The primary endpoint was the proportion of patients seen who had given written informed consent at the clinic. We did additional analyses to compare patients’ characteristics in the two arms with respect to factors that might influence prognosis.

On the basis of reported response rates in recent studies recruiting from primary care, we assumed a conservative recruitment rate of 40%. We needed 250 patients in each arm to detect a minimum 5% difference in recruitment rate with 95% power (P = 0.05, two sided). In the trial reported here, we tested the null hypothesis that recruitment rates did not differ according to the method of patient approach (opt-in versus opt-out).

Statistical analysis
We analysed all data according to the pre-specified study protocol submitted for approval. We used the χ^2 statistic to compare proportions. We presented continuous variables as medians with interquartile range and used Student’s t test to compare them. We calculated 95% confidence intervals for proportions.

Results
The figure shows the flow of patients through the trial. We recruited 299 patients from east London and 271 patients from Barking and Havering. We randomised 252 patients to the opt-in arm and 258 to the opt-out arm. Comparison of baseline characteristics of the 510 randomised patients showed that both arms had similar proportions of women (103 (41%) opt-in v 109 (42%) opt-out) and patients aged over 70 (127 (50%) opt-in v 134 (52%) opt-out).

One hundred and three patients from both practices (East London (EL) 29, Barking and Havering (BH) 74) opted in after the first letter in the opt-in arm, and 50 patients opted out in the...
Comparison of characteristics relevant to target angina population in clinic attenders recruited by opt-in and opt-out methods. Values are numbers (percentages, 95% confidence intervals)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Opt-in (n=96)</th>
<th>Opt-out (n=128)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age over 70 years</td>
<td>49 (51, 41 to 61)</td>
<td>70 (55, 46 to 63)</td>
<td>0.50</td>
</tr>
<tr>
<td>Women</td>
<td>43 (45, 35 to 55)</td>
<td>56 (44, 35 to 52)</td>
<td>0.96</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>25 (26, 18 to 36)</td>
<td>37 (29, 22 to 37)</td>
<td>0.56</td>
</tr>
<tr>
<td>Abnormal resting ECG</td>
<td>56 (58, 48 to 68)</td>
<td>73 (57, 48 to 65)</td>
<td>0.45</td>
</tr>
<tr>
<td>Maximal anti-anginal treatment*</td>
<td>66 (69, 59 to 77)</td>
<td>105 (82, 74 to 88)</td>
<td>0.010</td>
</tr>
<tr>
<td>Severe functional impairment*</td>
<td>9 (9, 5 to 17)</td>
<td>26 (20, 14 to 28)</td>
<td>0.023</td>
</tr>
<tr>
<td>Three or more coronary risk factors†</td>
<td>42 (44, 34 to 54)</td>
<td>77 (60, 52 to 68)</td>
<td>0.053</td>
</tr>
</tbody>
</table>

ECG=electrocardiogram.
*Combination of nitrates, β blocker, and calcium channel blocker.
†Canadian Cardiovascular Society class III or IV.
‡Current smoker, blood pressure ≥140/90 mm Hg, total cholesterol ≥6 mmol/l, diabetes, South Asian ethnicity, peripheral arterial disease, body mass index ≥30.

Our study is the first randomised comparison of opt-in and opt-out recruitment methods. One limitation is its focus on one condition (angina) and one study design (observational). Patients' responses to screening services differ widely by condition, which may well result in different responses to the opt-in or opt-out approach. Our study was recruiting patients to a cohort study, but patients are probably more concerned with the ease of participation and the trade-off between perceived benefits (for example, closer clinical monitoring) and personal sacrifices rather than the broad study method, and it is therefore plausible to assume that the low response rate seen with the opt-in approach would also be reflected in other study designs such as randomised controlled trials.

Finally, our study was carried out in two practices in the London area, so our findings may not be generalisable to other settings. However, our response rate is similar to that of comparable studies of patients recruited from general practice lists and our findings were consistent in both practices despite the very different socioeconomic and ethnic composition of the practice populations and the fact that one clinic was held at the local hospital and one directly at the surgery.

Strengths and weaknesses

Our study is the first randomised comparison of opt-in and opt-out recruitment methods. One limitation is its focus on one condition (angina) and one study design (observational). Patients' responses to screening services differ widely by condition, which may well result in different responses to the opt-in or opt-out approach. Our study was recruiting patients to a cohort study, but patients are probably more concerned with the ease of participation and the trade-off between perceived benefits (for example, closer clinical monitoring) and personal sacrifices rather than the broad study method, and it is therefore plausible to assume that the low response rate seen with the opt-in approach would also be reflected in other study designs such as randomised controlled trials.

Finally, our study was carried out in two practices in the London area, so our findings may not be generalisable to other settings. However, our response rate is similar to that of comparable studies of patients recruited from general practice lists and our findings were consistent in both practices despite the very different socioeconomic and ethnic composition of the practice populations and the fact that one clinic was held at the local hospital and one directly at the surgery.
Primary care

In this context it is worth mentioning that the absence of a difference in ethnic backgrounds in the trial arms (P for difference = 0.16) may still conceal a bias towards English speaking patients among the 18% of patients for whom data on ethnicity was missing. In addition, ethnicity may not be able to distinguish between native and non-native English speakers. In both arms, 79% of clinic attenders were recorded as white. We did not have data on ethnicity or ability to speak English available for the population invited to participate and are unable to elucidate this issue. Future studies on selection bias and health inequalities are needed to investigate this.

Implications

The question remains whether and to what extent the opt-out method of recruitment diminishes personal autonomy and whether personal autonomy should be placed in the context of societal benefit and harm. We believe that the opt-out method is a justifiable infringement of personal autonomy if the patient is informed, every effort is made not to pressurise patients during the phone conversation, and refusal is accepted without question. Currently, the two recruitment approaches rest on opposing assumptions: that non-response is an indication of refusal (opt-in) or an indication of willingness (opt-out) to participate. The impact of either approach on the individual and society is unknown. However, the consequences for the validity and potential societal benefits of future research are potentially large: a 10% lower response, for example, might have serious scientific and financial implications for the recruitment of half a million patients to the UK Biobank programme. Given our findings, we believe that the opt-out approach to study recruitment should be the default strategy for studies that pose a low risk to patients.

We thank Gill Foster for collecting data at the clinics and Sima Kazemzadeh for administrative support.

Contributors: CJ did the analysis and wrote the final draft. GF had the idea for the study. MJ led the patient clinics. All authors contributed to study design and earlier drafts. MJ is the guarantor.

Funding: This work was funded by the Department of Health, HH was supported by a DH public health career scientist award, and further support came from the British Heart Foundation (MJ) and Westminster PCT (CJ). The funding sources had no role in the study design, data collection, data interpretation, data analysis, or writing of the report.

Competing interests: None declared.

Ethical approval: Trent multicentre research ethics committee.

Ethics committees are seeking to tighten the rules governing recruitment of patients to research studies, with an opt-in method increasingly required

Opting in is associated with poor response rates and selection bias in medical record linkage studies

How an opt-in method for patient contact affects response rates and the characteristics of the recruited study population is not known

What this study adds

Patients contacted with an opt-in method had a greater than 10% lower response rate than patients contacted with an opt-out method

Patients recruited with the opt-in method were healthier and less relevant to the study than patients recruited with the opt-out method

The opt-out approach should be the default recruitment strategy for studies that pose a low risk to patients

1. Willie T. Public opinion may force researchers to seek “opt in” consent for all studies (Commentary). BMJ 2001;322:1221.
5. Woolf SH, Rothman NJ, Johnson RE, Marsland DW. Selection bias from requiring patients to give consent to examine data for health services research. Arch Fam Med 2000;9:1114-8.

(Accepted 1 August 2005)
doi 10.1136/bmj.38583.625613.AE

Department of Epidemiology and Public Health, Royal Free and UCL Medical School, London WC1E 7HD
Cornelia Junghans research fellow in epidemiology
Harry Hemingway professor of clinical epidemiology
Centre for General Practice and Primary Care, Barts and the London, Queen Mary’s School of Medicine and Dentistry, London
Gene Feder professor of primary care research and development
Melynn Jones senior lecturer in general practice
Cardiac Directorate, Barts and the London NHS Trust, London
Adam Timmis professor of clinical cardiology
Correspondence to: C Junghans C.Junghans@ucl.ac.uk