UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of K-ATP channel activation

Brennan, JP; Southworth, R; Medina, RA; Davidson, SM; Duchen, MR; Shattock, MJ; (2006) Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of K-ATP channel activation. CARDIOVASC RES , 72 (2) 313 - 321. 10.1016/j.cardiores.2006.07.019.

Full text not available from this repository.

Abstract

Objective: Both K-ATP channel opening drugs and ischaemic preconditioning have been suggested to protect the ischaemic heart by acting on K-ATP channels in the inner mitochondrial membrane, uncoupling the proton gradient and partially dissipating the mitochondrial membrane potential. The aim of these studies was to use low concentrations of FCCP, a mitochondrial protonophore, to bypass the mitochondrial K-ATP channel and partially uncouple the mitochondria and establish whether this activates protective pathways within the rat heart analogous to K-ATP channel openers or preconditioning.Methods: Isolated, Langendorff-perfused rat hearts were subjected to 25 min global zero-flow ischaemia and functional recovery assessed. Hearts were pretreated with FCCP (30-300 nM) in the presence or absence of glibenclamide (1 mu M), 5-hydroxydecanoate (5-HD: 100 mu M), N-acetyl cysteine (4 mM), or N-2-mercaptopropionyl glycine (1 mM). The metabolic consequences of FCCP perfusion in isolated hearts were studied using P-31 NMR, and reactive oxygen species (ROS) production was measured using DCF fluorescence in isolated rat ventricular myocytes.Results: FCCP exerted a dose-dependent cardioprotective effect, with 100 nM FCCP being the optimal concentration. This effect could not be blocked by glibenclamide or 5-HD, but was completely attenuated by N-acetyl cysteine and N-2-mercaptopropionyl glycine. Perfusion with FCCP (100 nM) did not deplete bulk ATP during the pretreatment period but significantly depleted phosphocreatine. In ventricular myocytes, FCCP caused an antioxidant-sensitive increase in ROS production but diazoxide was without effect.Conclusions: In the isolated rat heart, partial mitochondrial uncoupling with low-dose FCCP significantly improves post-ischaemic functional recovery via a ROS-dependent pathway. This cardioprotection is not mediated via the depletion of cellular ATP or mitochondrial K-ATP channel activation. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Type:Article
Title:Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of K-ATP channel activation
DOI:10.1016/j.cardiores.2006.07.019
Keywords:mitochondria, preconditioning, cardioprotection, isolated heart, rat, ischaemia, reperfusion, metabolic inhibition, FCCP, signalling, RAT VENTRICULAR MYOCYTES, NADPH OXIDASE, OXIDATIVE-PHOSPHORYLATION, POTASSIUM CHANNELS, OXYGEN RADICALS, PIVOTAL ROLE, HEART, MYOCARDIUM, MECHANISM, RABBIT
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Biosciences (Division of) > Cell and Developmental Biology
UCL > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science

Archive Staff Only: edit this record