UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Large-margin structured prediction via linear programming

Wang, Z; Shawe-Taylor, J; (2009) Large-margin structured prediction via linear programming. In: (pp. pp. 599-606). Gold open access


This paper presents a novel learning algorithm for structured classification, where the task is to predict multiple and interacting labels (multilabel) for an input object. The problem of finding a large-margin separation between correct multilabels and incorrect ones is formulated as a linear program. Instead of explicitly writing out the entire problem with an exponentially large constraint set, the linear program is solved iteratively via column generation. In this case, the process of generating most violated constraints is equivalent to searching for highest-scored misclassified incorrect multilabels, which can be easily achieved by decoding the structure based on current estimations. In addition, we also explore the integration of column generation and an extragradient method for linear programming to gain further efficiency. The proposed method has the advantages that it can handle arbitrary structures and larger-scale problems. Experimental results on part-of-speech tagging and statistical machine translation tasks are reported, demonstrating the competitiveness of our approach. © 2009 by the authors.

Type: Proceedings paper
Title: Large-margin structured prediction via linear programming
Open access status: An open access publication
UCL classification: UCL > School of BEAMS
UCL > School of BEAMS > Faculty of Engineering Science
URI: http://discovery.ucl.ac.uk/id/eprint/111907
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item