UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Atomistic models of carbonate minerals: Bulk and surface structures, defects, and diffusion

Cygan, RT; Wright, K; Fisler, DK; Gale, JD; Slater, B; (2002) Atomistic models of carbonate minerals: Bulk and surface structures, defects, and diffusion. MOLECULAR SIMULATION , 28 (6-7) 475 - 495. 10.1080/08927020290030099.

Full text not available from this repository.

Abstract

We review the use of interatomic potentials to describe the bulk and surface behaivor of carbonate materials. Interatomic pair potentials, describing the Ca2+-O interactions and the C-O bonding of the CO32- anion group, are used to evaluate the lattice, elastic, dielectric, and vibrational data for calcite and aragonite. The resulting potential parameters for the carbonate group were then successfully transferred to models of the structures of rhombohedral carbonates of Mn, Fe, M, Ni, Zn, Co, and Cd. Simulations of the (10 (i) over bar4) cleavage surface of calcite, magnesite, and dolomite show that these surfaces undergo relaxation leading to the rotation and distortion of the carbonate group with associated movement of cations. The influence of water on the surface structure has been investigated for monolayer coverage. The extent of carbonate group distortion is greater for the dry surfaces compared to the hydrated surfaces, and for the dry calcite relative to that for dry dolomite or magnesite. Point defect calculations for the doping of calcite indicate an increase in defect formation energy with increasing size of the substituting divalent ion. Migration energies for Ca, Mg, and Mn in calcite suggest a strong preference for diffusion along pathways roughly parallel to the c-axis rather than along the ab-plane.

Type:Article
Title:Atomistic models of carbonate minerals: Bulk and surface structures, defects, and diffusion
Location:UNIV READING, READING, ENGLAND
DOI:10.1080/08927020290030099
Keywords:carbonate, calcite, shell model, surface, defect, diffusion, MOLECULAR-DYNAMICS SIMULATION, MARTIAN METEORITE ALH84001, ALKALI-HALIDE CRYSTALS, EFFECTIVE IONIC RADII, CALCITE SURFACES, SHELL-MODEL, POLYMORPHS CALCITE, CATION DIFFUSION, MAGNESIUM-OXIDE, ARAGONITE
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Chemistry

Archive Staff Only: edit this record