UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

IDENTIFICATION OF A NOVEL, N-ETHYLMALEIMIDE-SENSITIVE CYTOSOLIC FACTOR REQUIRED FOR VESICULAR TRANSPORT FROM ENDOSOMES TO THE TRANS-GOLGI NETWORK INVITRO

GODA, Y; PFEFFER, SR; (1991) IDENTIFICATION OF A NOVEL, N-ETHYLMALEIMIDE-SENSITIVE CYTOSOLIC FACTOR REQUIRED FOR VESICULAR TRANSPORT FROM ENDOSOMES TO THE TRANS-GOLGI NETWORK INVITRO. J CELL BIOL , 112 (5) 823 - 831.

Full text not available from this repository.

Abstract

We have recently described a cell-free system that reconstitutes the vesicular transport of 300-kD mannose 6-phosphate receptors from late endosomes to the trans-Golgi network (TGN). We report here that the endosome --> TGN transport reaction was significantly inhibited by low concentrations of the alkylating agent, N-ethylmaleimide (NEM). Addition of fresh cytosol to NEM-inactivated reaction mixtures restored transport to at least 80% of control levels. Restorative activity was only present in cytosol fractions, and was sensitive to trypsin treatment or incubation at 100-degree-C. A variety of criteria demonstrated that the restorative activity was distinct from NSF, an NEM-sensitive protein that facilitates the transport of proteins from the ER to the Golgi complex and between Golgi cisternae. Cytosol fractions immunodepleted of greater-than-or-equal-to 90% of NSF protein, or heated to 37-degrees-C to inactivate greater-than-or-equal-to 93% of NSF activity, were fully able to restore transport to NEM-treated reaction mixtures. The majority of restorative activity sedimented as a uniform species of 50-100 kD upon glycerol gradient centrifugation. We have termed this activity ETF-1, for endosome --> TGN transport factor-1. Kinetic experiments showed that ETF-1 acts at a very early stage in vesicular transport, which may reflect a role for this factor in the formation of nascent transport vesicles. GTP hydrolysis appears to be required throughout the transport reaction. The ability of GTP-gamma-S to inhibit endosome --> TGN transport required the presence of donor, endosome membranes, and cytosol, which may reflect a role for guanine nucleotides in vesicle budding. Finally, ETF-1 appears to act before a step that is blocked by GTP-gamma-S, during the process by which proteins are transported from endosomes to the TGN in vitro.

Type:Article
Title:IDENTIFICATION OF A NOVEL, N-ETHYLMALEIMIDE-SENSITIVE CYTOSOLIC FACTOR REQUIRED FOR VESICULAR TRANSPORT FROM ENDOSOMES TO THE TRANS-GOLGI NETWORK INVITRO
Keywords:CELL-FREE SYSTEM, ENDOPLASMIC-RETICULUM, PROTEIN-TRANSPORT, SUCCESSIVE COMPARTMENTS, FUSION PROTEIN, BINDING, RECONSTITUTION, SECRETION, YEAST, GTP

Archive Staff Only: edit this record