INTERFERENCE EXPLOITATION PRECODING FOR MULTI-LEVEL MODULATIONS

Ang Li*, Christos Masouros†, Yonghui Li*, and Branka Vucetic*

School of Electrical and Information Engineering, University of Sydney, Sydney, Australia
Department of Electronic and Electrical Engineering, University College London, London, U.K.
Email: {ang.li2, yonghui.li, branka.vucetic}@sydney.edu.au*, c.masouros@ucl.ac.uk†

ABSTRACT
In this paper, we investigate the interference exploitation precoding for multi-level modulations in the downlink multi-antenna systems. We mathematically derive the optimal precoding structures based on the Karush-Kuhn-Tucker (KKT) conditions. Furthermore, by formulating the dual problem, the precoding problem for multi-level modulations can be transformed into a pre-scaling operation using quadratic programming (QP) optimization. Compared to the original second-order cone programming (SOCP) formulation, this transformation that finally leads to a QP optimization allows a considerable complexity reduction. Simulation results validate our derivations on the optimal precoding structure, and demonstrate significant performance improvements for interference exploitation precoding over traditional precoding methods for multi-level modulations.

Index Terms— MIMO, constructive interference, symbol-level precoding, optimization, Lagrangian.

1. INTRODUCTION

Precoding has been widely studied as a promising approach to support simultaneous multi-user data transmission in multi-antenna systems. Popular precoding approaches include theoretically capacity-achieving dirty paper coding (DPC) [1], linear precoding such as zero-forcing (ZF) and regularized ZF (RZF) [2], and non-linear precoding such as Tomlinson-Harashima precoding (THP) [3] and vector perturbation (VP) precoding [4]. In addition, downlink precoding based on convex optimization has also drawn increasing attention, among which the power minimization [5], [6] and signal-to-interference-plus-noise ratio (SINR) balancing [7]-[9] have been the most popular ones.

For the precoding methods that are described above, the channel state information (CSI) is exploited to design the precoding strategy that eliminates, avoids or limits interference. Nevertheless, the above precoding schemes have ignored the fact that the information of the data symbols can also be exploited for further performance improvements, which is known as the interference exploitation precoding [10]-[14]. It has been shown in [15], [16] that the instantaneous interference can be categorized into constructive interference (CI) and destructive interference. More specifically, CI is defined as the interference that pushes the received signals away from the detection thresholds. In the literature, CI-based precoding has been widely studied in the context of VP in [17], for PSK modulations in [18]-[20], as well as for QAM modulations in [21]. More recently, a sub-optimal closed-form CI precoder has been introduced in [22] for power minimization, and an optimal precoding structure for maximum CI precoding has been revealed in [23] for PSK modulations. Nevertheless, the extension of the results in [23] to multi-level modulations such as QAM is not trivial, due to the fact that 1) only the outer constellation points can exploit CI, which leads to a different problem formulation, and 2) the phase-rotation CI metric for PSK modulations is not applicable to QAM constellations.

Therefore in this paper, we focus on the interference exploitation precoding for multi-level modulations in the downlink multi-user multiple-input single-output (MU-MISO) system, where we consider QAM as a representative multi-level modulation type. We propose to maximize the CI effect for the outer constellation points while maintaining the performance for the inner constellation points that cannot exploit CI, which leads to a second-order cone programming (SOCP) formulation. By analyzing the optimization problem with Karush-Kuhn-Tucker (KKT) conditions, we derive the optimal precoding structure as a function of the pre-scaling vector, and obtain an equivalent optimization on the pre-scaling vector. By further formulating the dual of the equivalent optimization, we finally arrive at an equivalent quadratic programming (QP) formulation, which enjoys a reduced computational cost compared to the original SOCP formulation. Simulation results validate our formulations, and demonstrate remarkable computational performance improvements of CI precoding over traditional precoding approaches for multi-level modulations as well, as opposed to conventional sense that CI precoding is mostly effective for PSK modulations.

Notations: n, a, and A denote scalar, column vector and matrix, respectively; (·)∗, (·)T, (·)H, and (·)−1 denote conjugate, transposition, conjugate transposition, and inverse, respectively. R and ℂ take the real and imaginary part, respectively, and j is the imaginary unit. diag(·) is the transformation of a column vector into a diagonal matrix, and ⊗ is the Kronecker product. Cm×n and Cm×m represent an m × n matrix in the complex and real set, respectively. card{·} returns the cardinality of a set. IKn denotes the K × K identity matrix, and ek represents the i-th column of the identity matrix.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We study a downlink MU-MISO system, where the BS with Nt transmit antennas communicates with K single-antenna users simultaneously, where K ≤ Nt. The data symbol vector is assumed to be from a normalized QAM constellation, denoted as s ∈ CKn×1. The received signal at user k can then be expressed as

\[r_k = h_k^H W s + n_k, \quad \forall k \in K, \] (1)

where K = {1, 2, ⋯, K}, h_k ∈ CKn×1 denotes the flat-fading Rayleigh channel vector with each entry following the standard complex Gaussian distribution, W ∈ CKn×K is the precoding matrix, and n_k is the additive Gaussian noise at the receiver with zero mean and variance σ2. As we focus on the analytical precoding structure for CI precoding, perfect CSI is assumed throughout this paper.
It is known that the conventional phase-rotation CI metric introduced in [18] is not applicable to QAM constellation [21]. Therefore, we employ the symbol-scaling CI metric [17, 24], where we first decompose each constellation point along their detection threshold, expressed as
\[s_k = s_k^A + s_k^B, \]
where \(s_k^A \) and \(s_k^B \) are the bases that are parallel to the detection thresholds. Specifically for QAM, we further obtain
\[s_k^A = \Re \{ s_k \}, \quad s_k^B = j \cdot \Im \{ s_k \} = s_k^\circ. \]
For a generic expression of \(s_k^A \) and \(s_k^B \) for \(M \)-PSK modulations, we refer the interested readers to [25], where we note that the decomposition of QAM is equivalent to that of QPSK. We further decompose each received signal along the detection threshold, given by
\[h_k^T W s = \alpha_k^A s_k^A + \alpha_k^B s_k^B, \]
where \(\alpha_k^A \geq 0 \) and \(\alpha_k^B \geq 0 \) are two introduced real scalars that represent the effect of interference.

For multi-level modulations such as QAM, CI can only be exploited by the outer constellation points, while all the interference for the inner constellation points is destructive. To be more specific, when QAM modulation is considered, as shown in Fig. 1 below where we employ the 1st quadrant of a 16QAM constellation as an example, CI can only be exploited by the real part of the constellation point ‘B’, the imaginary part of ‘C’, and both real and imaginary part of ‘D’, respectively. Therefore, we propose to maximize the CI effect for the outer constellation points while maintaining the performance for the inner constellation points, and by further expressing
\[\Omega_k = \begin{bmatrix} \alpha_k^A & \alpha_k^B \\ \alpha_k^B & \alpha_k^B \end{bmatrix}^T, \quad s_k = \begin{bmatrix} s_k^A \\ s_k^B \end{bmatrix}^T, \]
the optimization problem can be constructed as
\[\mathcal{P}_1: \max_{W, t} \quad t \]
\[\text{s.t.} \quad \mathcal{C}_1: h_k^T W s = \Omega_k^T s_k, \quad \forall k \in \mathcal{K}, \quad \mathcal{C}_2: t \leq \alpha_m^O, \quad \forall \alpha_m^O \in \mathcal{O}, \quad \mathcal{C}_3: t = \alpha_m^I, \quad \forall \alpha_m^I \in \mathcal{I}, \quad \mathcal{C}_4: \|W s\|^2 \leq \rho_0 \]
where \(\mathcal{O} \) consists of the real scalars corresponding to the real or imaginary part of outer constellation points that can exploit CI, while \(\mathcal{I} \) consists of the real scalars corresponding to the real or imaginary part of outer constellation points that cannot exploit CI. Accordingly, we obtain
\[\mathcal{O} \cup \mathcal{I} = \{ \alpha_1^A, \alpha_1^B, \alpha_2^A, \alpha_2^B, \cdots, \alpha_K^A, \alpha_K^B \}. \]
\(\mathcal{P}_1 \) belongs to the SOCP optimization, and can be solved via existing convex optimization tools.

3. INTERFERENCE EXPLOITATION PRECODING

Before we present our analysis, we first note that \(W s \) can be viewed as a single vector in \(\mathcal{P}_1 \), and accordingly how the power is distributed among each \(w_i s_i \) does not affect the optimal solution. Therefore without loss of generality, it is safe to assume that each \(w_i s_i \) is identical when optimality is achieved, and the power constraint can be equivalently transformed into [23]
\[\|W s\|^2 \leq \rho_0 \Rightarrow \sum_{i=1}^{K} s_i^2 w_i^H w_i s_i \leq \frac{\rho_0}{K}. \]
We further express \(\mathcal{P}_1 \) in a standard minimization form as
\[\mathcal{P}_2: \min_{W, t} \quad -t \]
\[\text{s.t.} \quad \mathcal{C}_1: h_k^T \sum_{i=1}^{K} w_i s_i - \Omega_k^T s_k = 0, \quad \forall k \in \mathcal{K}, \quad \mathcal{C}_2: t - \alpha_m^O \leq 0, \quad \forall \alpha_m^O \in \mathcal{O}, \quad \mathcal{C}_3: t - \alpha_m^I = 0, \quad \forall \alpha_m^I \in \mathcal{I}, \quad \mathcal{C}_4: \|s_i^2 w_i^H w_i s_i - \rho_0\| \leq \rho_0 \]
Accordingly, the Lagrangian of \(\mathcal{P}_2 \) is expressed as [26]
\[\mathcal{L}(w_i, t, \delta_k, \kappa_m, \tau_n, \delta_0) = -t + \sum_{k=1}^{K} \delta_k (h_k^T \sum_{i=1}^{K} w_i s_i - \Omega_k^T s_k) + \sum_{m=1}^{\text{card}(\mathcal{O})} \kappa_m (t - \alpha_m^O) + \sum_{n=1}^{\text{card}(\mathcal{I})} \tau_n (t - \alpha_n^I) + \delta_0 \left(\sum_{i=1}^{K} s_i^2 w_i^H w_i s_i - \rho_0 \right). \]
where \(\delta_k, \kappa_m, \tau_n \) and \(\delta_0 \) are the introduced dual variables, \(\delta_0 \geq 0 \), and \(\kappa_m \geq 0, \forall m \in \{1, 2, \cdots, \text{card}(\mathcal{O})\} \). The KKT conditions can be further expressed as
\[\frac{\partial \mathcal{L}}{\partial w_i} = - \sum_{k=1}^{K} \delta_k s_i - \sum_{n=1}^{\text{card}(\mathcal{I})} \tau_n s_i = 0, \forall i \in \mathcal{K} \]
\[\frac{\partial \mathcal{L}}{\partial \delta_k} = \sum_{i=1}^{K} h_k^T w_i s_i - \Omega_k^T s_k = 0, \forall k \in \mathcal{K} \]
\[\kappa_m (t - \alpha_m^O) = 0, \forall \alpha_m^O \in \mathcal{O} \]
\[t - \alpha_n^I = 0, \forall \alpha_n^I \in \mathcal{I} \]
\[\delta_0 \left(\sum_{i=1}^{K} s_i^2 w_i^H w_i s_i - \rho_0 \right) = 0 \]
We first obtain that \(\delta_0 \neq 0 \) based on (11b), which further means that \(\|W s\|^2 = \rho_0 \) when optimality is achieved. Based on (11b), we can further express \(w_i \) as
\[w_i^H = - \frac{s_i}{\delta_0 s_i s_i^H} \left(\sum_{k=1}^{K} \delta_k h_k^H \right) = - \frac{1}{s_i} \left(\sum_{k=1}^{K} \frac{\delta_k}{\delta_0} h_k^H \right). \]

![Fig. 1. The symbol-scaling metric for 16QAM](Image)
By introducing \(\vartheta_k = -\frac{\theta_k^H}{\theta_0} \), we can further express \(w_i \) as

\[
w_i = \left(\sum_{k=1}^{K} \vartheta_k \cdot h_k^* \right) \frac{1}{\bar{s}_i}, \quad \forall i \in \mathcal{K}.
\]

(13)

It is easy to verify that the expression of \(w_i \) in (13) is consistent with our premise that each \(w_i, s_i \) is identical. Based on (13), we express the precoding matrix as

\[
W = \begin{bmatrix} w_1, w_2, \cdots, w_K \end{bmatrix} = \left[h_1^*, h_2^*, \cdots, h_K^* \right] \begin{bmatrix} \vartheta_1, \vartheta_2, \cdots, \vartheta_K \end{bmatrix}^T \begin{bmatrix} \frac{1}{s_1} \frac{1}{s_2} \cdots \frac{1}{s_K} \end{bmatrix}
\]

\[
= H^H Y \bar{s}^T,
\]

(14)

where we have introduced

\[
Y = \begin{bmatrix} \vartheta_1, \vartheta_2, \cdots, \vartheta_K \end{bmatrix}^T, \quad \bar{s} = \begin{bmatrix} \frac{1}{s_1} \frac{1}{s_2} \cdots \frac{1}{s_K} \end{bmatrix}^T.
\]

(15)

We further express (4) in a matrix form, given by

\[
H W s = \begin{bmatrix} \Omega_1^T s_1, \Omega_2^T s_2, \cdots, \Omega_K^T s_K \end{bmatrix}^T = U \text{diag} (\Omega) s_E,
\]

(16)

where \(U \in \mathbb{R}^{K \times K} = I_K \otimes \{1,1\} \), and the pre-scaling vector \(\Omega \in \mathbb{R}^{2K \times 1} \) as well as the expanded symbol vector \(s_E \in \mathbb{R}^{2K \times 1} \) is given by

\[
\Omega = \begin{bmatrix} \alpha_1, \alpha_2, \cdots, \alpha_K \end{bmatrix}^T,
\]

\[
s_E = \begin{bmatrix} s_1, s_2, \cdots, s_K \end{bmatrix}^T.
\]

(17)

Then, by substituting the precoding matrix \(W \) in (14) into (17), we obtain the expression of \(Y \) as

\[
H H^T Y \bar{s}^T s = U \text{diag} (\Omega) s_E
\]

\[
\Rightarrow Y = \frac{1}{K} (H H^T)^{-1} U \text{diag} (\Omega) s_E,
\]

(18)

which further leads to the expression of the precoding matrix \(W \) as a function of the pre-scaling vector \(\Omega \) as

\[
W = \frac{1}{K} H^H (H H^T)^{-1} U \text{diag} (\Omega) \bar{s}^T.
\]

(19)

Subsequently, we substitute \(W \) obtained in (19) into the power constraint in \(\mathcal{P}_1 \), and we obtain

\[
\|W s\|^2 = p_0 \Rightarrow \left(H H^T \right)^{-1} U \text{diag} (\Omega) s_E = p_0
\]

\[
\Rightarrow \Omega^T \text{diag} (s_E^T) H H^T \frac{1}{\bar{s}^T} U \text{diag} (\Omega) = p_0,
\]

(20)

where we note \(s_E^T \bar{s}^T = \bar{s}^T s = K \). With \(T \) being symmetric and positive semi-definite and \(\Omega \) being real, (20) is equivalent to

\[
\Omega^T T \Omega = p_0 \Rightarrow \Omega^T \begin{bmatrix} \Omega & \mathcal{T} \end{bmatrix} \Omega = p_0 \Rightarrow \Omega^T \mathcal{V} \Omega = p_0,
\]

based on which we can construct an optimization on \(\Omega \), given by

\[
\mathcal{P}_3: \min_{\Omega,t} -t
\]

\[
s.t. \quad C1: \Omega^T \mathcal{V} \Omega = p_0 = 0, \quad C2: t - \alpha_m^2 \leq 0, \quad \forall m \in \mathcal{O}
\]

\[
C3: t - \alpha_n^2 = 0, \quad \forall n \in \mathcal{I}
\]

(22)

The optimal precoding matrix can then be obtained by substituting the optimal \(\Omega \) from \(\mathcal{P}_3 \) into (19).

We further analyze \(\mathcal{P}_3 \) and derive the optimal precoding structure as a function of the dual variables of \(\mathcal{P}_3 \). The Lagrangian of \(\mathcal{P}_3 \) is formulated as

\[
\mathcal{L} (\Omega, t, \bar{\delta}_0, \mu_m, \nu_n) = -t + \bar{\delta}_0 (\Omega^T \mathcal{V} \Omega - p_0)
+ \sum_{m=1}^{\text{card} (\mathcal{O})} \mu_m (t - \alpha_m^2) + \sum_{n=1}^{\text{card} (\mathcal{I})} \nu_n (t - \alpha_n^2),
\]

(23)

where \(\mu_m \geq 0, \forall m \in \{1, 2, \cdots, \text{card} (\mathcal{O}) \} \). To derive a closed-form expression, we re-order the columns and rows of the matrices and vectors included in (23). To be more specific, we first re-order the expanded symbol vector \(s_E \) into

\[
s_E \Rightarrow \tilde{s}_E = \begin{bmatrix} \tilde{s}_1^T, \tilde{s}_2^T \end{bmatrix}^T,
\]

(24)

where the entries in \(\tilde{s}_E \in \mathbb{R}^{\text{card} (\mathcal{O}) \times 1} \) correspond to the real and imaginary part of the data symbols that can be scaled, while \(\tilde{s}_E \in \mathbb{R}^{\text{card} (\mathcal{I}) \times 1} \) corresponds to the symbol vector that cannot exploit Cl. \(\tilde{s}_O \) and \(\tilde{s}_I \) are given by

\[
\tilde{s}_O = \tilde{s}_1, \cdots, \tilde{s}_{\text{card} (\mathcal{O})}, \quad \tilde{s}_I = \tilde{s}_1, \cdots, \tilde{s}_{\text{card} (\mathcal{I}) - 1}, \tilde{s}_{\text{card} (\mathcal{I})}. \quad \tilde{s}_E = \begin{bmatrix} \tilde{s}_1^T, \cdots, \tilde{s}_{\text{card} (\mathcal{I})} \end{bmatrix}^T,
\]

(25)

The pre-scaling vector \(\Omega \) is accordingly re-ordered into

\[
\Omega \Rightarrow \tilde{\Omega} = \begin{bmatrix} \tilde{\Omega}_O^T, \tilde{\Omega}_I^T \end{bmatrix}^T,
\]

(26)

where \(\tilde{\Omega}_O \in \mathbb{R}^{\text{card} (\mathcal{O}) \times 1} \) and \(\tilde{\Omega}_I \in \mathbb{R}^{\text{card} (\mathcal{I}) \times 1} \) are given by

\[
\tilde{\Omega}_O = \tilde{\alpha}_1, \cdots, \tilde{\alpha}_{\text{card} (\mathcal{O})}, \quad \tilde{\Omega}_I = \tilde{\alpha}_{\text{card} (\mathcal{I}) + 1}, \cdots, \tilde{\alpha}_{\text{card} (\mathcal{I})}.
\]

(27)

We further introduce a \textbf{Locator} function that returns the index of \(\tilde{s}_m \) in the original expanded symbol vector \(s_E \), given by

\[
L (\tilde{s}_m) = k, \quad \text{if } \tilde{s}_m = \tilde{s}_k.
\]

(28)

We can then express \(\tilde{s}_E \) and \(\tilde{\Omega} \) as a linear transformation of \(s_E \) and \(\Omega \), given by

\[
\tilde{s}_E = F s_E, \quad \tilde{\Omega} = F \Omega,
\]

(29)

where the transformation matrix \(F \in \mathbb{R}^{2K \times K} \) is given by

\[
F = \begin{bmatrix} e_{L(\tilde{s}_1)}, e_{L(\tilde{s}_2)}, \cdots, e_{L(\tilde{s}_{\text{card}(\mathcal{I})})} \end{bmatrix}^T.
\]

(30)

where we note that \(F \) is invertible. Similarly, the coefficient matrix \(V \) is accordingly re-ordered into

\[
\tilde{V} = F VF^T,
\]

(31)

where the multiplication of \(F \) at the left side and \(F^T \) at the right side correspond to the row and column reordering, respectively. Based on the above transformations, the Lagrangian in (23) can be simplified into

\[
\mathcal{L} (\tilde{\Omega}, t, \bar{\delta}_0, \tilde{\nu}) = (\tilde{T} \tilde{\nu} - 1) + \bar{\delta}_0 \tilde{\Omega}^T \tilde{\mathcal{V}} \tilde{\Omega} - \tilde{T} \tilde{\nu} - \bar{\delta}_0 \mathcal{P}_0,
\]

(32)

where \(\mathcal{P}_0 \) is invertible. Similarly, the coefficient matrix \(V \) is accordingly re-ordered into

\[
\tilde{v} = \begin{bmatrix} \mu_1, \mu_2, \cdots, \mu_{\text{card} (\mathcal{O})}, \nu_1, \nu_2, \cdots, \nu_{\text{card} (\mathcal{I})} \end{bmatrix}^T.
\]

(33)
The KKT conditions for \mathcal{P}_3 can then expressed as

$$\frac{\partial L}{\partial t} = u^T \tilde{u} - 1 = 0 \tag{34a}$$
$$\frac{\partial L}{\partial \tilde{\Omega}} = \tilde{\Omega}^T \tilde{V} \tilde{\Omega} - p_o = 0 \tag{34b}$$
$$\tilde{\mu}(t - \tilde{\alpha}_m) = 0, \forall m \in \{1, 2, \ldots, \text{card} \{O\} \} \tag{34c}$$
$$\tilde{\mu}_m (t - \tilde{\alpha}_m) = 0, \forall m \in \{\text{card} \{Z\} + 1, \ldots, 2K\} \tag{34d}$$

Based on (34b), we obtain the expression of $\tilde{\Omega}$ as

$$\tilde{\Omega} = \frac{1}{2\tilde{\alpha}_0} \cdot \tilde{V}^{-1} \tilde{u}. \tag{35}$$

By substituting the expression of $\tilde{\Omega}$ into the power constraint, we further obtain the expression of $\tilde{\alpha}_0$ as

$$\left(\frac{1}{2\tilde{\alpha}_0} \cdot \tilde{V}^{-1} \tilde{u}\right)^T \tilde{V}^{-1} \left(\frac{1}{2\tilde{\alpha}_0} \cdot \tilde{V}^{-1} \tilde{u}\right) = p_o$$

$$\Rightarrow \frac{1}{4\tilde{\alpha}_0^2} \cdot \tilde{u}^T \tilde{V}^{-1} \tilde{V}^{-1} \tilde{u} = p_o \tag{36}$$

$$\Rightarrow \tilde{\alpha}_0 = \sqrt{4p_o \cdot \tilde{u}^T \tilde{V}^{-1} \tilde{u}}.$$

For \mathcal{P}_3, it is easy to observe that the Slater’s condition is satisfied [26], and therefore \mathcal{P}_3 can be optimally solved by solving its dual problem, which is constructed as

$$\mathcal{P}_4 : \mathcal{D} = \max_{\tilde{a}, \tilde{\alpha}_0, \tilde{\Omega}, t} \min_{u} L \left(\tilde{u}, \tilde{\alpha}_0, \tilde{\Omega}, t\right). \tag{37}$$

The inner minimization of \mathcal{P}_4 is achieved with (34a) and (35), which leads to

$$\mathcal{D} = \max_{\tilde{a}, \tilde{\alpha}_0} \tilde{\alpha}_0 \cdot \tilde{\Omega}^T \tilde{V} \tilde{\Omega} + \tilde{u}^T \tilde{\Omega} - \tilde{\alpha}_0 p_o$$

$$= \max_{\tilde{a}, \tilde{\alpha}_0} \frac{\tilde{\alpha}_0}{4\tilde{\alpha}_0^2} \cdot \tilde{u}^T \tilde{V}^{-1} \tilde{V} \tilde{V}^{-1} \tilde{u} - \frac{1}{2\tilde{\alpha}_0} \tilde{u}^T \tilde{V}^{-1} \tilde{u} - \tilde{\alpha}_0 p_o$$

$$= \max_{\tilde{a}} \frac{\tilde{\alpha}_0}{4\tilde{\alpha}_0^2} \cdot \tilde{u}^T \tilde{V}^{-1} \tilde{u} - \frac{\tilde{\alpha}_0}{4\tilde{\alpha}_0^2} \cdot \tilde{a}^T \tilde{V}^{-1} \tilde{a} - \tilde{\alpha}_0 p_o$$

$$= \max_{\tilde{a}} - \frac{1}{4p_o} \cdot \tilde{u}^T \tilde{V}^{-1} \tilde{u}$$

$$= \min_{\tilde{a}} \tilde{u}^T \tilde{V}^{-1} \tilde{u},$$

and accordingly the dual problem is equivalent to

$$\mathcal{P}_5 : \min_{\tilde{a}} \tilde{u}^T \tilde{V}^{-1} \tilde{u}$$

s.t. C1: $\tilde{u}^T \tilde{u} = 1$ \hspace{1cm} (39)

$$\text{C2: } \tilde{\mu}_m \geq 0, \forall m \in \{1, 2, \ldots, \text{card} \{O\}\}$$

which is a QP optimization and can be much more efficiently solved than the original SOCP formulation \mathcal{P}_1. Moreover, based on (35) and (36), we obtain a closed-form expression of the optimal precoding matrix as a function of the dual vector \tilde{u}, given by

$$W = \frac{1}{K} \cdot H^H (HH^H)^{-1} U \text{diag} \left(\sqrt{\frac{p_o}{\tilde{u}^T \tilde{V}^{-1} \tilde{u}}} \right) S_{\text{max}} \tilde{u}^T,$$

with F given in (30).
6. REFERENCES

