Fat-fraction provides classification and treatment response assessment of metastatic lymph nodes for patients with radio-recurrent prostate cancer

Olusola Michael Adeleke1, Arash Latifoitojar1, Harbir Sidhu1,2, Manil Chouhan1,2, Athar Haroon3, Asim Afaq4, Reena Davda5, Heather Payne6, Hashim Ahmed6, and Shonit Punwani1,2

1Centre for medical imaging, University College London, London, United Kingdom, 2Dept of Radiology, University College London Hospital(UCLH), London, United Kingdom, 3Department of Radiology & Nuclear Medicine, St Bartholomew’s Hospital, London, United Kingdom, 4Institute of Nuclear Medicine (INM), University College London Hospital (UCLH), London, United Kingdom, 5Department of Oncology, University College London Hospital (UCLH), London, United Kingdom, 6Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom

Synopsis
Lesion size threshold is the most common imaging feature used to assess response to therapy. Size as an imaging feature has its limitations. Quantitative imaging biomarkers (QIBs) could identify subtle microstructural changes prior to morphological changes. In this study, we explored the use of novel whole-body MRI (WB-MRI) QIBs for nodal disease characterisation and treatment response monitoring in radio-recurrent prostate cancer (rPC). We showed signal fat fraction could discriminate between positive and negative nodes and that it can be used for response monitoring.

Introduction
Whole-body MRI (WB-MRI) offers the opportunity to provide a cost effective solution for cancer staging (1). However, attempts to use quantitative imaging biomarkers (QIBs), such as apparent-diffusion-coefficient ADC, for classification and response monitoring have met with limited success [2,3] and are rarely applied in the clinical arena. Lymph nodes are composed of a predominantly fatty hilum surrounded by a cellular rim [4]. Replacement of the fatty components of lymph node by cancer cells is commonly seen in patients with metastatic prostate cancer [5]. Recent studies in multiple myeloma have shown that mDixon signal fat-fraction (sFF) is a repeatable and useful QIB for classification and treatment response (6). In this study, we explored the value of sFF as a nodal status classifier and response marker in patients with radio-recurrent prostate cancer (rPCa).

Methods
Patients with suspicion of rPCa as per Phoenix criteria (7) underwent prostate multi-parametric MRI, 18F-choline-PET-CT, 99mTc bone scan as routine imaging. For research purposes, a baseline 3T WB-MRI was performed (fig 1). Patients underwent treatment guided by routine imaging. All patients were re-imaged with follow-up WB-MRI at 1 year. Of 120 patients with 1-year follow-up WB-MRI, 40 were randomly selected for quantitative analysis. Up to 10 anatomically distributed nodes were selected for analysis for each patient. sFF for each node was derived as previously described (8) : SIpre-contrast-F / (SIpre-contrast-F + SIpre-contrast-w ). An enhanced-reference-standard (ERS) fig.2 was applied to each node (using a combination of choline PET-CT, nodal size change between baseline and follow-upWB-MRI (See Fig 3) and PSA kinetics. Nodes were classified as positive, negative or unknown based on the ERS. Baseline WB-MRI node size (short axis diameter) and sFF were compared between positive and negative using the Mann-Whitney test. Receiver-operating-characteristic (ROC)area-under-curve (AUC) calculated for assessment of sFF as a classifier of nodal disease status. Positive nodes were identified in 14/40 patients(fig 4). 13/14 patients were treated with androgen deprivation therapy (ADT). Patients were divided into responder and non-responder groups based on PSA PCWG-2 response criteria (9). Baseline and follow-up (post-treatment) sFF of nodes within these 13 patients was extracted. Baseline size and sFF, and percentage change in (delta)sFF after treatment were compared between responder and non-responder groups using the Mann-Whitney test. ROC analysis of (delta)sFF was performed.

Results
40 patients [median age 73 (range 65-85years) and median PSA 4.45 (range 0.24-28.3ug/L)] were identified. A total of 206 nodes across the 40 patients were analysed (per patient median number 4, range 1 to10). 75/206 were classified as unknown and excluded from sFF analysis. 30/131 were positive (short axis median size 0.8 cm, range 0.6-2.7 cm) and 101 (short axis median size 0.7 cm, range 0.3-1.2 cm) negative by ERS. As expected, positive nodes were significantly larger than negative nodes (p=0.03). The median sFF was significantly lower for positive (0.63) compared with negative nodes (0.79) (p<0.0001)(figure 5a). Nodal sFF ROC-AUC was 0.86 for classification of metastatic nodal disease. 28 nodes were included from 13 patients for treatment response analysis(fig4).10/13 patients responded to treatment and 3/13 were non-responders by PCWG-2PSA criteria; providing 21nodes in the responder and 7nodes in the non-responder groups respectively. sFF nodal characteristics for the responder and non-responder groups are given in fig5c. Baseline median sFF was lower for nodes in the responder(0.58a.u.) compared with non-responder(0.75a.u.) group(p<0.0001). Median (delta)sFF (following ADT) was 31% (range 6.1to 230.9) in the responder and -6.5% (range -24.2 to 20.6) in the non-responder group(p<0.01), see fig 5d. The ROC-AUC of (delta)sFF was 0.85.

Discussion
Our results highlight the potential of sFF as a marker of nodal disease status and treatment response in patients with rPCa. Prior work demonstrated that sFF measurements is highly repeatable and can be used to assess bone lesions (10). Here we show that sFF can provide a quantitative imaging biomarker able to(ROC-AUC of 0.85) to classify pre-treatment nodal disease status. Furthermore, we show that (delta)sFF may help identify non-
responding lymph nodes (ROC-AUC 0.86). We derived an ERS, employing follow-up WB-MRI and PSA and accounting for limitations in performance of routine imaging tests. Our initial results appear promising, prompting on-going analysis of the remaining 80 patients with follow-up WB-MRI. Future work will focus on assessing the value of sFF in bone lesions and finally in clinical decision making for patients with rPCa.

Conclusion

sFF has value as a quantitative imaging biomarker with potential to classify lymph nodes disease status and monitor treatment response in patients with rPCa.

Acknowledgements
No acknowledgement found.

References

3. Roy C et al. Value of diffusion-weighted imaging to detect small malignant pelvic lymph nodes at 3 T. Eur Radiol. 2010

Figures
Table 1. Showing MRI sequence parameters.

<table>
<thead>
<tr>
<th>WB-MRI sequence parameters on Philips Ingenia MR scanner (2 Tests)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 TSE (ms)</td>
</tr>
<tr>
<td>TR (ms)</td>
</tr>
<tr>
<td>TE (ms)</td>
</tr>
<tr>
<td>Resolution (mm)</td>
</tr>
<tr>
<td>Matrix size</td>
</tr>
<tr>
<td>Field of view (mm)</td>
</tr>
<tr>
<td>Flip angle</td>
</tr>
</tbody>
</table>

Figure 1. Showing MRI sequence parameters.

Figure 2. Showing enhanced-reference-standard (ERS) for nodal selection. This was based on the combination of PET status, pre & post treatment size and PSA changes.

To define size measurement error, 10 patients underwent repeated (2 occasions separated by 2 weeks) measurement of short axis diameter of selected nodes by an expert radiologist. Bland-Altman 95% limits of agreement (LoA) were calculated from 85 nodes (median size 0.75 cm, range 0.43-2.3 cm), median number per patient 4) as 0.2 to -0.3 cm. 95% LoA were used within the ERS as a threshold to define significant size change between baseline and follow-up WB-MRI studies. Prostate-cancer-working-group-2 PCWG2 (9) criteria (increase of ≥25% for PSA progression or a reduction ≥50% for PSA response) were used to determine significant PSA change.
Figure 4 showing PET status, size & PSA changes, fat fraction changes and outcome status of the 28 positive nodes (13 patients). 1 patient (2 positive nodes) was excluded, as the patient didn’t have systemic therapy. All patients assessed had ADT. The nodes in green are responders while those in red are non-responders.

Figure 5 showing fat fraction and size characteristics of positive vs negative nodes(5a &5b). Then the fat fraction characteristics of responder vs non-responder nodes at baseline(5c) and following treatment.