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Abstract—The emergence of novel interactive multime-
dia applications with high data rate and low latency
requirements has led to a drastic increase in the video data
traffic over wireless cellular networks. Endowing the small
base stations of a macro-cell with caches that can store
some of the contents is a promising technology to cope with
the increasing pressure on the backhaul connections, and
to reduce the delay for demanding video applications. In
this work, delivery of an interactive multiview video over
an heterogeneous cellular network is studied. Differently
from existing works that focus on the optimization of
the delivery delay and ignore the video characteristics,
the caching and scheduling policies are jointly optimized,
taking into account the quality of the delivered video
and the video delivery time constraints. We formulate
our joint caching and scheduling problem via submodular
set function maximization and propose efficient greedy
approaches to find a well performing joint caching and
scheduling policy. Numerical evaluations show that our
solution significantly outperforms benchmark algorithms
based on popularity caching and independent scheduling.

I. INTRODUCTION

Video traffic, which already constitutes a significant

portion of the total mobile data traffic, is expected to

grow further with the emergence of new multimedia ap-

plications, such as virtual reality (VR), augmented reality

(AR) and interactive multiview video streaming (IMVS).

These novel multimedia technologies offer users the

possibility to interact with the application in real time,

which, however, imposes more demanding latency and

bandwidth requirements that must be met by mobile data

operators. To deal with the ever increasing amount of

mobile video data, the use of small cell base stations

(SBSs) equipped with caches has been proposed [1].

SBS caches can be exploited by placing popular contents

during off-peak hours, and serving users locally through

short range communication during peak-hours. In that

way, the use of costly backhaul links that connect the

SBSs to the core network during the peak-hours can be

alleviated, and the load on the macro cell base station

(MBS) can be reduced [2].
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In this work, we propose a novel framework for jointly

optimizing the caching and scheduling policies for the

delivery of IMVS content over a wireless cellular net-

work consisting of a MBS and multiple SBSs equipped

with caches. IMVS enables users to freely explore the

3D scene of interest from different viewpoints in real

time [3]. To offer such interactivity and enable low-

latency view switching at high quality, multiple video

streams, each corresponding to a different view, must be

delivered to users. Thus, an IMVS application typically

requires much higher bandwidth than single view video

streaming.

The optimal selection of the delivered set of views,

assuming the available bandwidth is known, has been

studied in [3]. In our scenario, users’ bandwidth re-

sources may vary depending on the density of the SBS

placement and the number of users served by these

SBSs; and therefore, must be allocated jointly with the

caching policy. Also the key objective in the context of

caching for real-time video streaming is different from

that for video-on-demand (VoD) applications [1], [2],

[4], [5]. In the latter, the users request a single file

according to some popularity distribution, and the aim

is to place the video contents to the caches in a way to

minimize the average download delay. This objective is

not suitable for real-time video streaming applications,

as it ignores the video delivery time constraints and the

quality of the delivered content. Differently from the

state-of-the-art, our framework takes into account the

time constraints of the streamed video and the quality

of the video content delivered to the users.

The goal of our joint caching and scheduling policy

is to optimally cache and deliver subsets of views in

an IMVS application in order to minimize the average

expected distortion of the users who can freely navigate

through the available set of views during a streaming

session. We formulate our problem as the maximization

of the reduction in the average expected distortion, in

which the objective function is shown to be submodular.

In order to efficiently solve the formulated optimization

problem, we adopt a greedy algorithm, and show through

numerical evaluation that our joint caching and schedul-

ing algorithm significantly outperforms benchmark algo-



Fig. 1. IMVS system with Vp cameras capturing the scene of interest
from multiple viewpoints. Captured content is transmitted to the core
network.
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Fig. 2. The multiview video is cached in the small-cell base stations
and delivered to wireless users simultaneously when the streaming
session begins.

rithms based on popularity caching and independent rate

allocation.

II. SYSTEM MODEL

We consider an IMVS application illustrated in

Fig. 1. An array of equally spaced cameras capture

the scene of interest from multiple viewpoints. Let

Vp = {v1, v2, . . . , vVp
} be the set of captured views,

where |Vp| = Vp > 2. Each camera encodes its view

independently, and transmits it to the core network,

where the compressed video streams are stored at the

content provider’s servers, to be further delivered to a

set of wireless users (Fig. 2).

Virtual views between two adjacent views vi, vi+1 ∈
Vp can be synthesized at the decoder, e.g., via the depth

image based rendering (DIBR) technique [6]. We denote

the set of virtual views as Vs. In order to virtually

synthesize a view v ∈ V , Vp ∪ Vs, a left (vl) and

a right (vr) reference views (vl, vr ∈ Vp) are required.

The distortion at which the virtual view v (vl < v < vr)

is synthesized depends on the quality of the reference

views vl, vr, and the spatial correlation between v and

vl, vr. We adopt the distortion model proposed in [7]:

dv(vl, vr) = γeα(vr−vl)
(

eβmin{v−vl,vr−v} − 1
)

, (1)

where dv(vl, vr) is the distortion at which view v can

be reconstructed from reference views vl and vr, and α,

β, γ are video related parameters.1

1This model has been chosen due to its simplicity and accuracy. Our
optimization framework is general and can incorporate other distortion
models.

We study a streaming scenario in which the IMVS

session is initiated some time after the video content

is recorded, and focus on the operation of a single

macro-cell. Let U = {1, 2, . . . , U} denote a set of U
wireless users served by the macro-cell. The macro-cell

consists of N + 1 base stations (BSs) in total: an MBS

indexed by n = 0, and a set N = {1, 2, . . . , N} of

N SBSs located across the macro-cell. The MBS can

communicate with all the users within the cell, while the

nth SBS is assumed to serve only a subset Un of users

located within its proximity. We denote the set of BSs

that serve user u as Nu. We assume that the MBS and

the SBSs are assigned disjoint sets of subchannels, while

the neighbouring SBSs operate in orthogonal frequency

bands [1]. This permits us to ignore any interference

among the BSs. The total transmission capacity of each

BS is assumed to be limited, and equal to Rn Mbps, and

can be allocated among the users Un.

SBS n is equipped with a cache of size Cn bytes.

Since the video content is available before its dissemina-

tion to the users, part of the pre-recorded video content

can be placed into the SBS caches during low-traffic

hours. During the streaming session, the cached contents

can then be directly delivered from the local caches

to the users, avoiding the use of backhaul links, and

as a result, reducing the delivery delay. To facilitate

caching and delivery, the video stream from each camera

is partitioned into T segments of bt bytes, ∀t ∈ T =
{1, 2, . . . , T }.2 We denote the t-th segment of view v as

Bv,t. The index t also stands for the time slot in which

the segment Bv,t can be scheduled for delivery.

During the IMVS session a user can select any of the

actual camera viewpoints in the set Vp, or synthesize a

virtual view from the set Vs in real time. To enable such

interactivity at the best possible quality, the full set of

actual camera views Vp must be delivered to the user

at any given time. However, this is not always possible

in a bandwidth-limited system due to the strict delay

constraints imposed by the IMVS application. Typically

only a subset of actual camera views can be delivered

to the users. The subset of views delivered to the user

determines the distortion at which viewpoints selected by

the user and not included in the delivered set of views

can be reconstructed. Since the views requested by a user

at any given time during an IMVS session are not known

a priori, the subset of views to be cached in the SBSs

and delivered to each user has to be optimized based on

a probabilistic model of the popularity of video segments

of each view. For each segment Bv,t, we define a

popularity pv,t ∈ [0, 1], which represents the probability

that the t-th segment of view v will be requested for

viewing. The content popularity can be learned by the

content provider by analyzing the multimedia content

2We assume that the views are symmetrically coded. Hence, the size
of a segment does not depend on the view index.



[8], or the history of viewing requests [9].

In this work, we aim to find the optimal joint caching

and scheduling policy for the multiview video segments

Bv,t that minimizes the average expected distortion at

the wireless users which participate in the IMVS session.

In the next section, we provide the formal problem

formulation.

III. JOINT CACHING AND SCHEDULING PROBLEM

Let us define the ground set E as

E , {ev,tn,An
, ∀n ∈ N ∪ {0},An ⊆ Un, v ∈ Vp, t ∈ T }

The element ev,tn,An
denotes the placement of the segment

Bv,t in the nth cache and its scheduling for delivery to a

subset An ⊆ Un of the users served by BS n. Any joint

caching and scheduling policy can then be represented

by a subset S ∈ E .

The distortion function Dv,t
u (S) at user u for recon-

structing segment Bv,t under a caching and scheduling

policy S is:

D
v,t
u (S) =

{

D̃v,t
u (S)

(

1− 1{S∩Fv,t
u 6=∅}

)

, v ∈ Vp

D̃v,t
u (S), v ∈ Vs

(2)

where D̃v,t
u (S) is the minimum distortion at which

segment Bv,t can be reconstructed, and Fv,t
u ,

{ev,tn,An
, ∀n ∈ Nu,An ⊆ Un, s.t. u ∈ An}, ∀ u ∈ U ,

v ∈ Vp, t ∈ T . Set Fv,t
u represents all possible ways to

deliver segment Bv,t to user u. The indicator function

1{c} is “1” if the condition c is true, and “0” otherwise.

In Eq. (2), we distinguish the following two cases.

When view v belongs to the set of actual views Vp, the

distortion for reconstructing the segment Bv,t at user u
is 0, if the segment is delivered to user u by at least

one of the BSs in Nu. Otherwise, the distortion is equal

to the minimum distortion D̃v,t
u (S). When view v is a

virtual view, the segment Bv,t is not delivered to user

u, and is synthesized using the corresponding segments

of the closest left and right views according to the joint

caching and scheduling policy S. The minimum distor-

tion D̃v,t
u (S) at which user u can reconstruct segment

Bv,t when it is not delivered is

D̃v,t
u (S) =

∑

vl<v

∑

vr>v

dv(vl, vr)·

1{S∩Fvl,t
u 6=∅}

∏

vl<vl′<v

(1− 1{S∩Fv
l′

,t

u 6=∅})·

︸ ︷︷ ︸

A

1{S∩Fvr,t
u 6=∅}

∏

v<vr′<vr

(1− 1{S∩Fv
r′

,t

u 6=∅})

︸ ︷︷ ︸

B

.

(3)

Expression A in Eq. (3) is equal to “1” if the segment

Bvl,t is delivered to user u by at least one BS, and

v′l < vl < v for all other segments Bv′

l,t delivered to

user u. Similarly, expression B in Eq. (3) is equal to

“1” if the segment Bvr ,t is delivered to user u by at

least one BS, and v′r > vr > v for all other segments

Bv′

r ,t delivered to user u. The product A · B is non-

zero only for a unique (vl, vr) pair. To guarantee the

reconstruction of any view within set V at a minimum

quality, we assume that views v1 and vVp
are always

delivered to users by the MBS.

Our goal is to devise a joint caching and scheduling

policy that minimizes the average expected distortion of

the wireless users. Equivalently, we can maximize the

average expected distortion reduction. To this aim, we

define the distortion reduction at user u for reconstruct-

ing segment Bv,t as:

∆D
v,t
u (S) = Dmax −D

v,t
u (S), ∀S ⊆ E , (4)

where Dmax is the maximum distortion experienced

by users when the corresponding segment cannot be

reconstructed.

When the element ev,tn,An
is included in the joint

caching and scheduling policy S, the segment Bv,t is

placed in the cache of BS n consuming a total space of

bt bytes and a rate of |An|r Mbps is allocated by the

BS n to transmit it to the users in An. Thus, with each

element ev,tn,An
, we associate a caching cost of bt bytes

and a rate cost of |An|r Mbps. We define the cache cost

cn(S) and rate cost rtn(S) functions as:

cn(S) =
∑

e
v,t

n′,A
n′

∈S

cn(e
v,t

n′,An′
),

(5)

r
t
n(S) =

∑

e
v,t′

n′,A
n′

∈S

r
t
n(e

v,t′

n′,A
n′
)

(6)

where cn(e
v,t
n′,An′

) = bt if n′ = n, and 0 otherwise, and

rn(e
v,t
n′,An′

) = |An|r if n′ = n, t′ = t, and 0 otherwise.

The constant r denotes the video rate. Since we consider

symmetric coding of the views, the video rate is the same

for all captured views. We also define the cost function

fv,t
n (S) as:

f
v,t
n (S) =

∑

e
v′ ,t′

n′,A
n′

∈S

f
v,t
n (ev

′,t′

n′,An′
) (7)

where fv,t
n (ev

′,t′

n′,An′
) = 1 if n′ = n, v′ = v, t′ = t,

and 0 otherwise. Essentially, function fv,t
n (S) counts the

number of times segment Bv,t is placed in the cache of

BS n.

Equipped with the above notation and definitions,

we can now write our joint caching and scheduling

optimization problem as follows:

SOPT = argmax
S⊆E

1

U

1

T

∑

u∈U

∑

t∈T

∑

v∈V

∆D
v,t
u (S)pv,t (8)

s.t. cn(S) ≤ Cn, ∀n ∈ N , (9)

r
t
n(S) ≤ Rn, ∀n ∈ N ∪ {0}, t ∈ T , (10)



f
v,t
n (S) ≤ 1, ∀n ∈ N ∪ {0}, ∀v ∈ Vp}, ∀t ∈ T , (11)

e
v1,t

0,U0
, e

vVp
,t

0,U0
∈ S , ∀t ∈ T . (12)

Constraint (9) is the cache capacity constraint and

upper bounds the total amount of data stored in an

SBS’s cache. Constraint (10) is the transmission capacity

constraints, which states that the total rate of content de-

livered by an SBS in each time slot t must not exceed its

transmission capacity. Constraint (11) guarantees that the

segment Bv,t will be placed in the cache of BS n only

once. This constraint is necessary since neither the cache

cost function nor the rate cost function can distinguish

between two elements ev,tn,An
and ev,tn,A′

n
associated with

the same segment Bv,t. In other words, for two elements

ev,tn,An
and ev,tn,A′

n
∈ S the required cache space calculated

by the cache cost function is 2bt, and the required rate

calculated by the rate cost function is (|An| + |A′
n|)r.

In practice, however, the two elements ev,tn,An
and ev,tn,A′

n

can be replaced with an equivalent element ev,tn,An∪A′
n

.

Hence, the actual cache space needed is bt, and the

actual rate needed is |An∪A
′
n|r. Constraint (11) ensures

that only a unique element ev,tn,An
for segment Bv,t will

be included in the solution set. Finally, constraint (12)

ensures that all the users can reconstruct any segment at

a minimum quality.

IV. GREEDY ALGORITHMS

It can be shown that the optimization problem in (8) -

(12) has the form of submodular function maximization

subject to multiple knapsack constraints [10]. To solve it,

we propose two greedy algorithms, namely the uniform

cost greedy algorithm (UC) [11] and the weighted cost-

benefit greedy algorithm (WCB) [12]. Both algorithms

exploit the submodularity property of the objective func-

tion, and select greedily the next element to be included

in the solution set.

The UC and WCB greedy algorithms are summarized

in Algorithm 1. The UC algorithm takes as input the

ground set E , a value query oracle ∆D(S) that returns

the value of the objective function in (8) for some subset

S of the ground set, the cost functions (5), (6) and (7),

and the values of the total cache capacity Cn and rate

Rn. The WCB algorithm also takes as input the weights

λ1, λ2, and λ3. The UC algorithm starts with a solution

set E0 = {ev1,t0,U0
, e

vVp ,t

0,U0
} (due to constraint (12)), and at

the j-th iteration picks the element from the ground set

that maximizes the gain with respect to the solution set at

step j−1 (step 5 of Algorithm 1). If this choice satisfies

the problem constraints specified in (9) - (11) and the

gain is positive, the element is added to the solution

set. Otherwise, the solution set is not updated and the

element is removed from the ground set. This procedure

is repeated until all elements from the ground set have

Algorithm 1 UC and WCB greedy algorithms

1: Input: E , value query oracle ∆D(S), Cn, Rn, cost
functions cn, rtn, fv,t

n , weights λ1, λ2, λ3

2: Initialization: S0 ← {e
v1,t

0,U0
, e

vVp
,t

0,U0
}, k ← 0

3: while E\Sk 6= ∅ do
4: k ← k + 1
5: UC: ek ← argmax

e
v,t
n,An

∈Ek−1\Sk−1

∆k−1(e
v,t

n,An
)

WCB: ek ← argmax
e
v,t
n,An

∈Ek−1\Sk−1

λ1

∆k−1(e
v,t

n,An
)

cn(e
v,t

n,An
)

+λ2

∆k−1(e
v,t

n,An
)

rn(e
v,t

n,An
)

+ λ3

∆k−1(e
v,t

n,An
)

f
v,t
n (ev,tn,An

)

θk ← ∆k−1(ek)
where ∆k−1(e) = ∆D(Sk−1 ∪ e)−∆D(Sk−1)

6: if cn(Sk) ≤ Cn, rtn(Sk) ≤ Rn, fv,t
n (Sk) ≤ 1 and

θk > 0 then
7: Sk ← Sk−1 ∪ e

v,t

n,An

8: else
9: E ← E\ev,tn,An

10: end if
11: end while
12: Output: S ← Sk

been either included in the solution set or removed from

the ground set. The WCB algorithm works similarly,

but instead of selecting the element that maximizes the

reduction in distortion, it maximizes a weighted sum

of the gain divided by the costs defined in Eqs. (5),

(6) and (7), where the weights λ1, λ2, and λ3 satisfy

λ1 + λ2 + λ3 = 1 (step 5 of the Algorithm 1).

V. PERFORMANCE EVALUATION

We consider a circular cell consisting of an MBS with

transmission range 400m located at the centre, 20 SBSs

with coverage radius 100m placed uniformly at random

within the cell and 200 wireless users uniformly dis-

tributed across the macro cell. The transmission capacity

of the SBSs is set to 100Mbps.

The IMVS system consists of Vp = 8 cameras. Each

view is encoded at r = 2 Mbps and divided into T = 20
segments of equal size. We assume that L = 3 virtual

views can be synthesized between every two adjacent

physical views. The users select the first segment among

the captured views uniformly at random. Then, during

the streaming session, each user can switch from view

vi to a neighbouring actual or virtual view vj with prob-

ability p(vj |vi) ∝ 1√
2πσ

e−
(vj−vi)

2

2σ2 for |vj − vi| ≤ W ,

and 0 otherwise. We set W = 8 and σ2 = 5/(L + 1).
From this model, we calculate the popularity distribution

pv,t of the video segments.

We compare the proposed greedy joint caching and

scheduling algorithms with a maximum popularity based

caching algorithm. The latter fills each SBS’s cache

with the most popular video segments. It then performs
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Fig. 3. Average expected distortion reduction vs the cache capacity.

greedy scheduling independently of the cache placement

phase.

Fig. 3 shows the average expected distortion versus

the cache capacity of the SBSs expressed as a percent

of the total size of the multiview video. UC-J and WCB-

J denote the uniform cost and weighted cost-benefit

greedy algorithms, respectively, for joint caching and

scheduling. UC-MP and WCB-MP denote the maximum

popularity caching algorithm with uniform cost and

weighted cost-benefit greedy scheduling, respectively.

We present results for a total transmission capacity of

the MBS equal to 200Mbps and 300Mbps. For the WCB

algorithm we have used λ1 = 0.2, λ2 = 0.5 and

λ3 = 0.3. The results indicate that the joint caching and

scheduling algorithms outperform the maximum popu-

larity counterparts for all values of the cache capacity.

For low values of the cache capacity, the difference in the

performance is significant as the maximum popularity

algorithm caches the same content in all SBSs; thus the

content diversity across the network is limited. Along

with the most popular content cached only in few SBSs,

the joint caching and scheduling algorithm also caches

the less popular contents, which, when delivered to the

users, improves the reconstruction quality of the views.

It is worth noting that this range of capacity values is of

great practical interest, as SBSs are typically assumed

to cache only 5-10% of the total video catalogue [13],

[14]. The performance of all the algorithms becomes

limited by the insufficient transmission capacity of the

network. Thus, even though all the SBSs can cache

almost all of the contents, they cannot be delivered to

the users. Finally, we can see that the uniform cost

and weighted cost-benefit greedy algorithms perform

identically. This is because all the video segments have

the same size in this example. We expect that in the case

of multiple multiview videos encoded at different rates,

or even asymmetrically encoded views, the performance

of the two algorithms would be different. We leave this

investigation for our future work.

In Fig. 4 we illustrate the average expected distortion

versus the total transmission capacity of the MBS for
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Fig. 4. Average expected distortion reduction vs the total transmission
rate of the MBS.

cache capacity equal to 10% and 20% of the total size of

the video. As the total transmission capacity of the MBS

increases, the average expected quality of the multview

video delivered to the users improves. We can see that

the joint caching and scheduling algorithm outperforms

the maximum popularity algorithm for all values of the

MBS transmission capacity. Although the cache capacity

of the SBSs is limited, our algorithm performs much

better compared to the maximum popularity algorithm

due to the more efficient use of the available cache

and transmission capacities. As previously, the content

diversity is higher when the caching and scheduling

policies are optimized jointly. It is worth noting that to

achieve the same average expected distortion reduction,

the maximum popularity caching algorithm requires a

much higher transmission rate to be allocated by the

MBS compared to the case of joint cache and scheduling

optimization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework for

jointly optimizing the caching and scheduling policy

for interactive multiview video delivery over a wireless

cellular network. Unlike existing works for wireless edge

caching, our scheme takes into account the quality of the

video delivered to the users and the rate requirements

for real-time video delivery. Numerical evaluation of our

scheme shows that the joint policy performs significantly

better than the independent caching and scheduling poli-

cies for the case of multiview video. In our future work,

we will investigate ways to simplify the expression for

calculating the distortion of the delivered video, with the

aim of obtaining a convex problem which can be solved

for optimality.
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