

1 **Reconstruction of the murine extrahepatic biliary tree using primary**
2 **human extrahepatic cholangiocyte organoids.**

3

4 Fotios Sampaziotis^{1,2,3}, Alexander W Justin⁴, Olivia C. Tysoe^{1,2}, Stephen
5 Sawiak^{5†}, Edmund M Godfrey^{6†}, Sara S Upponi^{6†}, Richard L. Gieseck III⁷,
6 Miguel Cardoso de Brito^{1,2}, Natalie Lie Berntsen⁸, María J Gómez-Vázquez⁹,
7 Daniel Ortmann^{1,2}, Loukia Yiangu^{1,10,11}, Alexander Ross^{1,12,13}, Johannes
8 Bargehr^{1,10,11,14}, Alessandro Bertero^{1,2}, Mariëlle CF Zonneveld¹, Marianne T
9 Pedersen¹⁵, Matthias Pawlowski¹, Laura Valestrand⁸, Pedro Madrigal^{1,16},
10 Nikitas Georgakopoulos², Negar Pirmadjid², Gregor M Skeldon^{17,18}, John
11 Casey¹⁹, Wenmiao Shu^{17,18}, Paulina M Materek²⁰, Kirsten E Snijders¹,
12 Stephanie E Brown^{1,2}, Casey A Rimland^{1,2,7,21}, Ingrid Simonic²², Susan E
13 Davies²³, Kim B Jensen¹⁵, Matthias Zilbauer^{10,12,13}, William TH Gelson³,
14 Graeme J. Alexander¹¹, Sanjay Sinha^{1,14}, Nicholas RF Hannan^{24,25}, Thomas
15 A Wynn⁷, Tom H Karlsen⁸, Espen Melum⁸, Athina E. Markaki⁴, Kourosh Saeb-
16 Parsy^{2*}, Ludovic Vallier^{1,2,10,16*}

17

18 ¹Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge
19 Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge,
20 Cambridge, UK

21 ²Department of Surgery, University of Cambridge and NIHR Cambridge
22 Biomedical Research Centre, Cambridge, UK

23 ³Department of Hepatology, Cambridge University Hospitals NHS Foundation
24 Trust, Cambridge, UK

25 ⁴Department of Engineering, University of Cambridge, Cambridge, UK

26 ⁵Department of Clinical Neurosciences, University of Cambridge, Cambridge,

27 UK

28 ⁶Department of Radiology, Cambridge University Hospitals NHS Foundation

29 Trust, Cambridge, UK

30 ⁷Immunopathogenesis Section, Laboratory of Parasitic Diseases, National

31 Institute of Allergy and Infectious Diseases, National Institutes of Health,

32 Bethesda, Maryland, USA

33 ⁸Norwegian PSC Research Center, Department of Transplantation Medicine,

34 Division of Surgery, Inflammatory Diseases and Transplantation, Oslo

35 University Hospital, Rikshospitalet, Oslo.

36 ⁹Cambridge Genomic Services, Department of Pathology, University of

37 Cambridge, Cambridge, UK

38 ¹⁰Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge

39 Stem Cell Institute, University of Cambridge, Cambridge, UK

40 ¹¹Department of Medicine, School of Clinical Medicine, University of

41 Cambridge, Cambridge, UK.

50 ¹²University Department of Paediatrics, University of Cambridge, Cambridge,

51 UK

52 ¹³Department of Paediatric Gastroenterology, Hepatology and Nutrition,

53 Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

54 ¹⁴Division of Cardiovascular Medicine, University of Cambridge, Cambridge,

55 UK

56 ¹⁵Biotech Research and Innovation Centre (BRIC), University of Copenhagen,

57 Copenhagen, Denmark

58 ¹⁶Wellcome Trust Sanger Institute, Hinxton, UK
59 ¹⁷School of Engineering and Physical Sciences, Heriot-Watt University, United
60 Kingdom
61 ¹⁸Department of Biomedical Engineering, University of Strathclyde, United
62 Kingdom
63 ¹⁹Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary,
64 Edinburgh, EH16 4SU, United Kingdom
65 ²⁰NIHR Cambridge Biomedical Centre (BRC) hIPSCs core facility
66 ²¹University of North Carolina, Chapel Hill School of Medicine, Chapel Hill,
67 North Carolina, USA
68 ²²Medical Genetics Laboratories, Cambridge University Hospitals NHS Trust,
69 Cambridge, UK
70 ²³Department of Histopathology, Cambridge University Hospitals NHS
71 Foundation Trust, Cambridge, UK
72 ²⁴Center for Biomolecular Sciences, University of Nottingham, UK
73 ²⁵Nottingham Digestive Diseases Centre, National Institute for Health
74 Research (NIHR) Nottingham Biomedical Research Centre at the Nottingham
75 University Hospitals NHS Trust and University of Nottingham.
76

77 **Authorship note:** * Kourosh Saeb-Parsy and * Ludovic Vallier contributed
78 equally to this work.

79 [†]Stephen Sawiak, [†]Edmund Godfrey and [†]Sara Upponi contributed equally to
80 this work.

81 **Correspondence:** Ludovic Vallier, Laboratory for Regenerative Medicine,
82 West Forvie Building, Robinson Way, University of Cambridge. Cambridge

83 CB2 0SZ, United Kingdom. Telephone: 44.1223.747489; Fax:
84 44.1223.763.350; E-mail: lv225@cam.ac.uk.

85

86 **Keywords:** Cholangiocytes, bile duct, bio-engineering, tissue engineering,
87 organoids, regenerative medicine, cell-based therapy, biliary atresia, PGA
88 scaffold, collagen scaffold, densified collagen

89

90 **Abstract**

91 The treatment of common bile duct disorders such as biliary atresia or
92 ischemic strictures is restricted by the lack of biliary tissue from healthy
93 donors suitable for surgical reconstruction. Here, we report a novel method for
94 the isolation and propagation of human cholangiocytes from the extrahepatic
95 biliary tree in the form of Extrahepatic Cholangiocyte Organoids (ECOs) for
96 regenerative medicine applications. The resulting ECOs closely resemble
97 primary cholangiocytes in terms of transcriptomic profile and functional
98 properties. We explore the regenerative potential of these organoids *in vivo*
99 and demonstrate that ECOs self organize into bile duct-like tubes expressing
100 biliary markers following transplantation under the kidney capsule of
101 immunocompromised mice. In addition, when seeded on biodegradable
102 scaffolds, ECOs form tissue-like structures retaining biliary characteristics.
103 The resulting bioengineered tissue can reconstruct the gallbladder wall and
104 repair the biliary epithelium following transplantation in a mouse injury model.
105 Furthermore, bioengineered artificial ducts can replace the native common
106 bile duct with no evidence of cholestasis or lumen occlusion. In conclusion,
107 ECOs can successfully reconstruct the biliary tree providing proof-of-principle
108 for organ regeneration using human primary cholangiocytes expanded *in vitro*.

109

110 Disorders of the extrahepatic bile ducts carry considerable morbidity and
111 mortality. Indeed, 70% of pediatric liver transplantations are performed to treat
112 biliary atresia¹, Primary Sclerosing Cholangitis (PSC) alone accounts for 5%
113 of US liver transplantations² and biliary complications are the leading cause of
114 graft failure following deceased liver transplantation^{3,4}. Treatment options
115 remain limited^{5,6} due to the lack of healthy **donor** tissue that can be used to
116 reconstruct and replace diseased bile ducts. In vitro expansion of native
117 cholangiocytes could address this challenge and provide cells suitable for
118 tissue engineering applications such as biliary reconstruction. However, the
119 culture of primary biliary epithelium remains problematic⁷. Here we report a
120 novel method for the isolation and propagation of primary human
121 cholangiocytes from the extrahepatic biliary tree, compatible with regenerative
122 medicine applications. The resulting Extrahepatic Cholangiocyte Organoids
123 (ECOs) express key biliary markers such as Cytokeratin 7 (KRT7 or CK7),
124 Cytokeratin 19 (KRT19 or CK19), Gamma Glutamyl-Transferase (GGT),
125 Cystic fibrosis transmembrane conductance regulator (CFTR) and maintain
126 their functional properties in vitro including Alkaline Phosphatase (ALP), GGT
127 activity and responses to secretin and somatostatin. The potential of ECOs for
128 tissue engineering and clinical applications is further illustrated by their
129 capacity to populate biodegradable scaffolds, organize into a functional biliary
130 epithelium and rescue a murine model of extrahepatic biliary injury (EHBI).

131

132 **Results**

133 **Human extrahepatic cholangiocytes can be propagated as organoids**

134 We first focused on identifying optimal conditions to isolate primary
135 cholangiocytes from the biliary epithelium which forms a monolayer covering
136 the luminal surface of the biliary tree⁸. We tested several approaches for
137 recovering these cells (**Supplementary Fig. 1a-c**) and mechanical
138 dissociation by brushing or scraping the bile duct lumen was associated with
139 improved survival compared to enzymatic digestion (**Fig. 1a** and
140 **Supplementary Fig. 1a**). Furthermore, the majority of the resulting cells co-
141 expressed the biliary markers CK7 and CK19 ($94.6 \pm 2.4\%$, SD; $n = 3$); while
142 no contamination from mesenchymal cell types was detected
143 (**Supplementary Fig. 1d**). Consequently, mechanical dissociation constitutes
144 the optimal method for harvesting extrahepatic cholangiocytes.

145 To discern appropriate conditions for the maintenance and propagation
146 of these cells, we optimized our recently established system for 3D culture of
147 human induced pluripotent stem cell-derived intrahepatic cholangiocytes^{9,10}.
148 Screening of multiple growth factors known to support expansion of
149 cholangiocytes and epithelial organoids^{11,12} (**Supplementary Fig. 1b,c**)
150 identified the combination of Epidermal Growth Factor (EGF), R-spondin and
151 Dickkopf-related protein 1 (DKK-1) as sufficient to promoted the growth of
152 primary cholangiocytes into organoids (**Supplementary Fig. 1c**). Due to the
153 paradoxical requirement for both a Wnt potentiator (R-spondin) and an
154 inhibitor (DKK-1), we characterized the canonical and non-canonical/PCP Wnt
155 pathway activity in ECOs. Our results demonstrate higher β -catenin
156 phosphorylation in ECOs compared to cells treated with R-spondin but no
157 DKK-1 (**Supplementary Fig. 1e,f**), signifying lower WNT canonical pathway
158 activity in these cells. Furthermore ECOs exhibit higher Rho Kinase activity

159 compared to cells treated with R-spondin but no DKK-1 (**Supplementary Fig.**
160 **1g**), which could be consistent with enhanced non-canonical/PCP signaling in
161 ECOs. Thus, it is possible that non-canonical Wnt signaling controls ECO
162 expansion marking a notable difference with previous organoid culture
163 conditions¹².

164 Under these conditions, we derived 8 different ECO lines (**Fig1. a-d**,
165 **Supplementary Fig. 2a-f**, **Supplementary Fig. 3a-e** and **Supplementary**
166 **Table 1**) from a variety of deceased donors aged from 33 to 77 years.
167 Notably, we obtained similar results by using cholangiocytes isolated from the
168 gallbladder or by harvesting common bile duct cholangiocytes using an
169 Endoscopic Retrograde Cholangio-Pancreatography (ERCP) brush instead of
170 scrapping the lumen (**Supplementary Fig. 2a,b**). Consequently, ECOs can
171 be derived from different areas of the extra-hepatic biliary tree and harvested
172 using peri-operative (dissection and scrapping) or minimally invasive (ERCP
173 brushings) approaches.

174

175 **ECOs maintain key biliary markers and function in culture**

176 The resulting cells were expanded in vitro for prolonged periods of time
177 (**Supplementary Fig. 4a**) while maintaining their genetic stability
178 (**Supplementary Fig 4b,c**). Electron microscopy revealed the presence of
179 characteristic ultrastructural features including cilia, microvilli and tight
180 junctions¹³ (**Supplementary Fig. 3c**), while QPCR and immunofluorescence
181 (IF) analyses established the expression of key biliary markers such as *KRT7*
182 or *CK7*, *KRT19* or *CK19*, Hepatocyte Nuclear Factor 1 beta (*HNF1B*), *GGT*,

183 Secretin Receptor (*SCTR*), sodium-dependent bile acid transporter
184 (*ASBT/SLC10A2*), *CFTR* and SRY-box 9 (*SOX9*)⁹ (**Fig. 1b,c** and
185 **Supplementary Fig. 2c,d** and **Supplementary Fig. 3d,e**). Of note, stem cell
186 markers such as *POU5F1* or *OCT4*, *NANOG*, prominin 1 (*PROM1*), leucine
187 rich repeat containing G protein-coupled receptor (*LGR*) *LGR-4/5/6*; markers
188 of non-biliary lineages including albumin (*ALB*), α 1-antitrypsin (*SERPINA1* or
189 *A1AT*), keratin 18 (*KRT18*), pancreatic and duodenal homeobox 1 (*PDX1*),
190 insulin (*INS*) and glucagon (*GCG*); and EMT markers (vimentin (*VIM*), snail
191 family transcriptional repressor 1 (*SNAI1*) and S100 calcium binding protein
192 A4 (*S100A4*) were not detected (**Supplementary Fig. 5a-c**). On the other
193 hand, $98.1\% \pm 0.9\%$ (SD; $n = 3$) of the cells co-expressed CK7 and CK19
194 following 20 passages (**Supplementary Fig. 1d**) thereby confirming the
195 presence of a near homogeneous population of cholangiocytes.

196 Transcriptomic analyses (**Fig. 1d** and **Supplementary Fig. 6** and
197 **Supplementary Table 2**) revealed that ECOs maintain a stable gene
198 expression profile over multiple passages (Pearson correlation coefficient for
199 Passage 1 (P1) vs. Passage 20 (P20) $r = 0.99$, **Supplementary Fig. 6a,b**),
200 express key biliary markers (**Supplementary Fig. 6c**) and cluster closely to
201 freshly isolated cholangiocytes (**Supplementary Fig. 6d**) (Pearson correlation
202 coefficient for Primary Cholangiocytes (PCs) vs. Passage 20 (P20) $r = 0.92$;
203 **Supplementary Fig. 6b**). Gene ontology analyses confirmed enrichment of
204 pathways characteristic for the biliary epithelium (**Supplementary Fig. 6e**).
205 Considered collectively, these results demonstrate that primary
206 cholangiocytes derived from the extrahepatic biliary tree can be expanded in
207 vitro without losing their original characteristics.

208 We then further characterized ECOs by focusing on their function
209 following long-term culture (20 passages). The biliary epithelium regulates the
210 homeostasis of bile through the transport of ions, water and bile acids^{8,14}. The
211 secretory capacity of ECOs was interrogated using Rhodamine-123, a
212 fluorescent substrate for the cholangiocyte surface glycoprotein Multidrug
213 Resistance protein-1 (MDR1)^{15,16} (**Fig. 2a-c**). Rhodamine-123 accumulated in
214 the ECO lumen only in the absence of the MDR-1 antagonist verapamil,
215 thereby confirming active secretion through MDR-1 (**Fig. 2a-c**). Luminal
216 extrusion of bile acids¹⁷ was also demonstrated by showing that the
217 fluorescent bile acid Cholyl-Lysyl-Fluorescein (CLF) was actively exported
218 from ECOs (**Fig. 2d-f**). Furthermore, ECO ALP and GGT activity was
219 comparable to freshly plated primary cholangiocytes (**Fig. 2g-h** and
220 **Supplementary Fig. 2e,f**). The response of ECOs to secretin and
221 somatostatin was also assessed. Secretin promotes water secretion,
222 distending the bile duct lumen, while somatostatin negates the effects of
223 secretin¹⁸⁻²⁰. Accordingly, organoids exposed to secretin increased their
224 diameter compared to untreated controls, while somatostatin inhibited the
225 effect of secretin (**Fig. 2i-j**). Our data, therefore, demonstrate that ECOs
226 maintain their functional properties after long term culture.

227

228 **ECOs self-organize into bile duct like tubes after transplantation**

229 These results prompted us to investigate the potential of ECOs for *in vivo* use,
230 especially regenerative medicine applications. We first characterized the
231 potential of ECOs for *in vivo* engraftment and survival by transplanting cells

232 under the kidney capsule of NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl} (NSG) mice
233 (**Supplementary Fig. 7a**) for 12 weeks²¹. ECOs successfully engrafted
234 forming tubular structures expressing biliary markers such as CK19
235 (**Supplementary Fig. 7b-d**).

236 Notably, no tumor formation or markers of differentiation to other
237 lineages were detected (**Supplementary Fig. 7d**). Thus, ECOs appear to
238 maintain their basic characteristics even after prolonged engraftment *in vivo*
239 under the kidney capsule.

240

241 **ECO-populated scaffolds reconstruct the gallbladder wall**

242 To assess the potential of ECOs for tissue engineering, we first interrogated
243 their capacity for populating polyglycolic acid (PGA) biodegradable scaffolds
244 commonly used to provide the structural and mechanical support required for
245 tissue reconstruction²². Indeed, PGA is one of the most widely used synthetic
246 polymers since it does not induce inflammatory responses in the surrounding
247 tissue; it is biodegradable; and it is more flexible and easier to process
248 compared to natural polymers such as collagen²³. To facilitate tracking of the
249 cells, ECOs expressing Green Fluorescent Protein (GFP) were generated
250 through viral transduction (**Supplementary Fig. 8**). The resulting cells were
251 seeded on PGA scaffolds, attached to the PGA fibers after 24-48 hours and
252 continued to grow for 4 weeks until the scaffold was confluent (**Fig. 3a-d**). Of
253 note, primary cholangiocytes grown in 2D conditions demonstrated limited
254 expansion potential and failed to reach confluence when seeded on the
255 scaffolds (**Supplementary Fig. 9**), suggesting that the proliferative capacity of

256 ECOs is crucial for successful scaffold colonization. The populated PGA
257 scaffolds (**Fig. 3b,c**), could easily be handled with forceps and divided into
258 smaller pieces with a surgical blade. Furthermore, the cells populating the
259 scaffolds retained expression of biliary markers such as CK7 and CK19 (**Fig.**
260 **3e,f**), demonstrated no evidence of epithelial–mesenchymal transition (EMT;
261 **Fig. 3e,g**) and maintained their functional properties including ALP and GGT
262 activity (**Fig. 3h,i**). Therefore, ECOs can populate PGA scaffolds while
263 maintaining their functionality and marker expression thereby providing a
264 bioengineered tissue resembling the biliary epithelium.

265 We then decided to define the capacity of ECOs to repair the biliary
266 epithelium. For that, we developed a mouse model of extrahepatic biliary
267 injury (EHBI). More specifically, to simulate biliary tree wall defects requiring
268 biliary reconstruction²⁴, the biliary tree of healthy NSG mice was compromised
269 through a longitudinal incision in the gallbladder wall (**Fig. 4a**). The surgical
270 defect in the gallbladder wall was subsequently repaired by transplanting PGA
271 scaffolds populated with GFP-ECOs into the injured animals (**Fig. 4a-g** and
272 **Supplementary Fig. 10a-f**). Acellular PGA scaffolds and scaffolds populated
273 with GFP-expressing fibroblasts (**Supplementary Fig. 11a-d**) were used as a
274 negative controls. Animals receiving acellular scaffolds died within 24 hours of
275 the operation (**Fig. 4b**) and post-mortem examination revealed yellow
276 pigmentation of the peritoneal cavity and seminal vesicles consistent with bile
277 leak (**Supplementary Fig. 10a**); while all animals in the fibroblast-scaffold
278 group failed to reconstruct their gallbladder which was replaced by fibrotic
279 tissue incompatible with bile transport or storage (**Supplementary Fig. 11e-**
280 **g**). In contrast, animals transplanted with scaffolds containing ECOs survived

281 for up to 104 days without complications and were culled electively (**Fig. 4b**).
282 Notably, the reconstructed gallbladders in the ECO group were fully
283 remodeled resembling the morphology of their native counterparts (**Fig. 4c**
284 and **Supplementary Fig. 10b**). Histology (**Fig. 4d**), IF and QPCR analyses of
285 the ECO-reconstructed gallbladders (**Fig. 4e** and **Supplementary Fig. 10c,d**)
286 unveiled integration of GFP-positive ECOs expressing biliary markers, such
287 as *KRT19*, *KRT7*, *HNF1B*, *SOX9*, *CFTR* and a human-specific epitope for
288 *Ku80* (**Fig. 4e** and **Supplementary Fig. 10c**). Of note, these IF analyses also
289 showed the presence of mouse mesenchymal cells expressing vimentin and
290 endothelial cells expressing CD31 in the reconstructed biliary epithelium
291 suggesting that the scaffold is colonized by endogenous cells after
292 transplantation (**Supplementary Fig. 10c**). Furthermore, we also identified a
293 population of GFP+/vimentin+/CK19- cells, suggesting that ECOs may also
294 contribute to the scaffold stroma *in vivo*; possibly through EMT
295 (**Supplementary Fig. 10c,e**). The integrity of the reconstructed gallbladder
296 lumen and its exposure to bile through continuity with the biliary tree were
297 demonstrated using magnetic resonance cholangio-pancreatography (MRCP)
298 imaging prior to removal of the organ and was further confirmed with FITC
299 cholangiograms (**Fig. 4f,g** and **Supplementary Fig. 10f** and **Supplementary**
300 **Video 1**). Post mortem surgical examination and full body magnetic
301 resonance imaging 104 days post transplantation revealed no evidence of
302 tumor formation (**Supplementary Fig. 10f** and **Supplementary Video 2**)
303 while IF analyses revealed no GFP+ cells in the adjacent liver tissue (data not
304 shown). On the contrary, gallbladders reconstituted with fibroblast controls
305 exhibited obliteration of the gallbladder lumen (**Supplementary Fig. 11h,i**)

306 and replacement of the lumen and biliary epithelium by fibroblasts expressing
307 Fibroblast Specific Antigen S100A4 (**Supplementary Fig. 11i-j**). Considered
308 collectively, our findings demonstrate the capacity of ECOs to colonize their
309 physiological niche and regenerate part of the biliary tree without any
310 complications.

311

312 **Bioengineered bile ducts replace the native mouse bile duct**

313 Reconstruction of the gallbladder wall provided proof-of-principle for the
314 capacity of ECOs to repair the biliary epithelium after injury; however, the
315 majority of extrahepatic bile duct disorders affect the common bile duct (CBD).
316 Therefore, we focused on the generation of a tubular ECO-populated scaffold,
317 which could be used for bile duct replacement surgery. The internal diameter
318 of the mouse CBD is approximately 100 μ m with a wall thickness of less than
319 50 μ m, which precluded the use of a PGA scaffold due to mechanical
320 properties. Instead, we generated densified collagen tubular scaffolds (**Fig.**
321 **5a,b**) which were populated with GFP-expressing ECOs (**Fig. 5c-e**). The use
322 of densified collagen enabled the generation of constructs with an external
323 diameter ranging from 250 to 600 μ m and adequate strength to maintain a
324 patent lumen (**Fig. 5d**). Notably, the cells populating the collagen scaffolds
325 maintained expression of biliary markers such as *KRT19*, *KRT7*, *HNF1B*,
326 *SOX9* and *CFTR* (**Fig. 5f,g**) and exhibited GGT and ALP enzymatic activity
327 (**Fig. 5h,i**). Primary epithelial cells of different origin (human mammary
328 epithelial cells; HMEC) failed to survive and adequately populate densified
329 collagen tubes under the same conditions (**Supplementary Fig. 12a**).
330 Moreover, plated HMECs failed to survive in a 10% (vol/vol) bile solution

331 (Supplementary Fig. 12b), further confirming the unique capacity of ECOs
332 for generating bile resistant bio-engineered bile ducts. Collectively, these
333 results demonstrate the capacity of ECOs for populating tubular densified
334 collagen scaffolds without losing their original characteristics.

335 We then decided to explore the possibility to replace the native CBD of
336 NGS mice with a bioengineered duct consisting of an ECO-populated
337 densified collagen tube as described above. A mid-portion of the native CBD
338 was removed and an ECO-populated collagen tube was anastomosed end-to-
339 end to the proximal and distal duct remnants (Fig. 6a). Fibroblast populated
340 tubes were used as a negative control. Biliary reconstruction was achieved in
341 all animals transplanted with ECO-populated tubes (Figure 6b,c and
342 Supplementary Fig. 13a-d), which were followed up for up to a month post
343 transplantation (Supplementary Fig. 13d). Histology and IF and QPCR
344 analyses (Fig. 6d-f and Supplementary Fig. 13a,b) revealed a patent lumen,
345 with formation of a biliary epithelium by the transplanted GFP+ cells (Fig. 6e,f
346 and Supplementary Fig 13a,b); confirmed the expression of biliary markers,
347 such as *KRT19*, *KRT7*, *HNF1B*, *CFTR*, *SOX9* (Fig. 6d,f and Supplementary
348 Fig. 13b) by the engrafted cells; but also illustrated the presence of mouse
349 stromal and endothelial cells (Supplementary Fig. 13b). Moreover, we
350 observed minimal apoptosis and proliferation in the transplanted tubes 1
351 month after transplantation, confirming the stability and integrity of the
352 reconstituted biliary epithelium (Supplementary Fig. 13b,c). Lumen patency
353 was further confirmed by Fluorescein Isothiocyanate (FITC) cholangiogram,
354 MRCP and serum cholestasis marker measurements (Fig. 6g and
355 Supplementary Fig. 13e,f and Supplementary Video 3). Accordingly

356 animals receiving ECO-populated tubes exhibited no elevation in serum
357 cholestasis markers (Bilirubin, ALP; **Supplementary Fig. 13e**) and a patent
358 lumen on imaging (**Fig. 6g** and **Supplementary Fig. 13f**); while the bio-
359 artificial common bile ducts retained their ALP activity *in vivo* (**Fig. 6h**).

360 On the contrary, all fibroblast-populated collagen tubes failed due to
361 lumen occlusion (**Fig. 6b,c,e-g** and **Supplementary Fig. 13d**), resulting in
362 high biliary pressures and bile leak through the site of anastomosis (**Fig. 6b**).
363 In conclusion, our results demonstrate the capacity of ECO-populated
364 collagen tubes to replace the native CBD *in vivo*.

365

366 **Discussion**

367 We have demonstrated that epithelial cells from the extrahepatic biliary tree
368 can be expanded and propagated *in vitro* while maintaining their
369 cholangiocyte transcriptional signature and functional characteristics. In
370 addition, our results show that primary cholangiocytes expanded *in vitro* as
371 organoids have a unique potential for organ regeneration. Indeed, our system
372 provides the first proof-of-principle for the application of regenerative medicine
373 in the context of common bile duct pathology. The capacity to replace a
374 diseased common bile duct with an *in vitro* bio-engineered ECO-tube could
375 have a considerable impact for the management of disorders such as biliary
376 atresia, which constitutes the leading cause for pediatric liver transplantation¹;
377 or ischemic strictures which are one of the most common complications
378 following transplantation³. Consequently ECO-populated scaffolds constitute a
379 novel system with high clinical relevance in the field of cholangiopathies.

380 Studies of the extrahepatic biliary epithelium have been limited by
381 technical challenges in long-term culture and large-scale expansion of primary
382 cholangiocytes. These challenges have so far precluded large scale
383 experiments such as transcriptomic and genome-wide analyses which are
384 urgently needed to better understand bile duct diseases, such as PSC and
385 cholangiocarcinoma. The capacity of ECOs for large scale expansion, could
386 address this challenge. Indeed, we demonstrate that starting from 10^5
387 extrahepatic cholangiocytes we can generate between $10^{20} - 10^{25}$ cells after
388 20 passages. Therefore, ECOs not only represent a novel source of cells for
389 cell-based therapy but also provide a unique model system for studying the
390 physiology and modeling disorders of the extrahepatic biliary tree *in vitro*.

391 Access to human tissue constitutes a considerable limitation for
392 systems based on primary cells. However, we show that ECOs can be
393 obtained not only from the common bile duct but also from the gallbladder.
394 Gallbladder tissue is easily accessible and routinely discarded following liver
395 transplantation and cholecystectomy, one of the most common surgical
396 procedures performed. Furthermore, in individuals not having surgery the
397 common bile duct can be accessed using minimally invasive procedures, such
398 as endoscopic retrograde cholangio-pancreatography (ERCP) and we
399 demonstrate that cholangiocytes can be obtained through brushings, which
400 are routinely performed to acquire histology specimens. Notably, no
401 morphological or functional differences were observed between organoids
402 obtained with these different methods. Moreover, due to the scalability of our
403 system only a small amount of starting material is required. Finally, recent
404 progress in replacing Matrigel by custom made hydrogels to grow gut

405 organoids²⁵ suggest that translating our system from Matrigel to more
406 clinically relevant good manufacturing practice could be feasible. Considered
407 together, these approaches effectively address challenges of tissue
408 availability and open the possibility of autologous as well as allogeneic cell
409 based therapy.

410 Notably, the derivation of primary hepatic stem cells using an organoid
411 culture system has been reported previously¹². However, the capacity of the
412 resulting cells to differentiate into functional cholangiocytes and populate the
413 biliary tree *in vivo* remains to be demonstrated. Furthermore, *in vivo*
414 applications of such platforms could be restricted by contaminating stem cells
415 with a capacity to proliferate inappropriately after transplantation and/or
416 differentiate into non-biliary cell types. Despite the association between
417 organoids and adult stem cells²⁶, we never observed the expression of
418 hepatocyte or pancreatic markers during our experiments either *in vitro* or
419 after transplantation, suggesting that the differentiation capacity of ECOs is
420 limited to their lineage of origin. Moreover, canonical WNT signaling, which is
421 crucial for the expansion of adult stem cell organoids²⁷ is blocked in our
422 culture conditions through the use of DKK-1 and further studies may be
423 required to fully elucidate the role of R-spondin in our system. Considered
424 together, these observations suggest that our culture system does not include
425 a stem cell population. However, we cannot completely exclude that these
426 cells could represent a biliary progenitor population based on their ability to
427 self-propagate and generate organoids from single cells.

428 Of note, we have recently established a system for the generation of
429 human pluripotent stem cell-derived cholangiocyte-like cells (CLCs)⁹.

430 However, it is worth underlining that there are considerable differences
431 between ECOs and CLCs. CLCs correspond to intrahepatic cholangiocytes,
432 while ECOs represent extrahepatic biliary epithelium. These two cell types are
433 distinct in terms of embryological origin and disease involvement¹⁴ and
434 therefore the two systems complement each other for studies of the biliary
435 tree. Indeed, CLCs are generated following a natural path of development and
436 maintain fetal characteristics. Therefore, they provide a unique system to
437 study human biliary development and developmental diseases which is not
438 possible using adult cells. However, CLCs may require a period of adjustment
439 and further maturation *in vivo*, while mature, functional cells, such as ECOs,
440 are required for coping with biliary injury in the acute setting and may be
441 better suited for regenerative medicine applications. Furthermore, although
442 hIPSCs provide a very good source of cells capable of generating almost any
443 tissue, initial derivation/characterization of hIPSC lines remains time
444 consuming; while variability in capacity of differentiation still constitutes a
445 challenge. ECOs can be derived in less than 24 hours with a very high
446 efficiency and can be expanded for multiple passages without losing their
447 original characteristics. Consequently, ECOs and CLCs are comparable in
448 terms of scalability and complementary in terms of applications, with the
449 mature phenotype of ECOs providing a unique advantage for regenerative
450 medicine applications in the context of tissue repair.

451 In conclusion, our results open up novel avenues for the use of
452 extrahepatic primary biliary tissue as a novel platform for *in vitro* studies,
453 disease modeling and cell based therapy applications.

454

455 **Accession codes**

456 Accession number for microarray data: E-MTAB-4591.

457

458 **Data availability statement**

459 The microarray data are open access and available online on ArrayExpress

460 (<https://www.ebi.ac.uk/arrayexpress/>)

461 **Acknowledgements:** This work was funded by ERC starting grant Relieve
462 IMDs (LV, NRFH), the Cambridge Hospitals National Institute for Health
463 Research Biomedical Research Center (LV, NRFH, SaS, FS.), the Evelyn
464 trust (NH) and the EU Fp7 grant TissuGEN (MCDB) and supported in part by
465 the Intramural Research Program of the NIH/NIAID (RLG, CAR). FS has been
466 supported by an Addenbrooke's Charitable Trust Clinical Research Training
467 Fellowship and a joint MRC-Sparks Clinical Research Training Fellowship.
468 AWJ and AEM acknowledge the support from EPSRC (EP/L504920/1) and an
469 Engineering for Clinical Practice Grant from the Department of Engineering,
470 University of Cambridge. JB was supported by a BHF Studentship (Grant
471 FS/13/65/30441).

472 The authors would like to thank J Skepper, L Carter and the University of
473 Cambridge Advanced Imaging Centre for their help with electron microscopy;
474 E Farnell and the University of Cambridge, Cambridge Genomic Services for
475 their help with microarray data processing and analysis; A Petrunkina and the
476 NIHR Cambridge BRC Cell Phenotyping Hub for their help with cell sorting; K
477 Burling and the MRC MDU Mouse Biochemistry Laboratory
478 [MRC_MC_UU_12012/5] for processing mouse serum samples; R El-Khairi
479 for her help with IF images, R Grandy for their help with providing relevant
480 references, the Cambridge Biorepository for Translational Medicine for the
481 provision of human tissue used in the study and Mr B McLeod for IT support.
482 The monoclonal antibody TROMA-III developed by R Kemler was obtained
483 from the Developmental Studies Hybridoma Bank, created by the NICHD of
484 the NIH and maintained at The University of Iowa, Department of Biology,
485 Iowa City, IA 52242.

486

487 **Author Contributions** F.S. conceived and designed the study, performed
488 experiments, acquired, interpreted and analyzed the data, developed and
489 validated the protocols described, generated the figures and wrote and edited
490 the manuscript. A.W.J generated the densified collagen tubular scaffolds and
491 conceived and developed the manufacturing technique. O.C.T. contributed to
492 cell culture and performed animal experiments including kidney capsule
493 injections, provision and harvesting of mouse tissue. St.S. performed the
494 Magnetic Resonance Imaging (MRI) experiments. E.M.G. and S.S.U.
495 reviewed and reported the MRI images. R.L.G. performed experiments
496 including animal experiments, IF, and tissue histology. M.C.D.B. contributed
497 to cell culture, generated viral particles, performed viral transduction
498 experiments and generated GFP-ECOs. N.L.B. and La.V. performed animal
499 experiments. M.J.G.-V. and P.M. performed bioinformatics analyses. D.O.
500 performed flow cytometry analyses; L.Y. performed Western blot analyses.
501 A.R. performed IF and QPCR analyses and provided positive controls for IF
502 and QPCR. A.B. performed flow cytometry analyses and provided
503 bioinformatics support. J.B. contributed to tissue histology and IF
504 experiments. M.C.F.Z. contributed to the PGA scaffold preparation and
505 population with cells. M.T.P. generated viral particles, performed viral
506 transduction experiments and generated GFP-ECOs. M.P. generated viral
507 particles. G.M.S. contributed to the scaffold generation. P.M.M. and K.E.S.
508 maintained and provided fibroblast controls. N.P. contributed to tissue culture.
509 N.G. and C.A.R contributed to harvesting and provision of primary tissue. I.S.
510 performed the karyotyping and CGH analyses. S. E. D. reviewed and reported

511 the histology images. W.S., J.C., K.B.J., Mat.Z., Sa.S., W.T.H.G., G.J.A.,
512 S.E.B., T.A.W., T.H.K., E.M. contributed through critical revision of the
513 manuscript for important intellectual content. N.R.F.H. contributed to the
514 design and concept of the study and provided early study supervision. A.E.M.
515 contributed to the design of the densified collagen scaffold and contributed
516 through critical revision of the manuscript for important intellectual content.
517 K.S.-P. provided primary tissue, performed animal experiments, including
518 biliary reconstruction surgery, contributed to the design and concept of study,
519 supervised the study, interpreted the data, wrote and edited the manuscript.
520 L.V. Designed and conceived the study, supervised the study, interpreted the
521 data, wrote and edited the manuscript. All the authors approved the
522 manuscript.

523

524 **Conflict of financial interests statement:** LV is a founder and shareholder
525 of DefiniGEN. The remaining authors have nothing to disclose.

526 **References**

527 1. Murray, K. F. & Carithers, R. L. AASLD practice guidelines: Evaluation
528 of the patient for liver transplantation. *Hepatology* **41**, 1407–1432
529 (2005).

530 2. Perkins, J. D. Are we reporting the same thing?: Comments. *Liver*
531 *Transplant.* **13**, 465–466 (2007).

532 3. Skaro, A. I. *et al.* The impact of ischemic cholangiopathy in liver
533 transplantation using donors after cardiac death: The untold story.
534 *Surgery* **146**, 543–553 (2009).

535 4. Enestvedt, C. K. *et al.* Biliary complications adversely affect patient and
536 graft survival after liver retransplantation. *Liver Transpl.* **19**, 965–72
537 (2013).

538 5. Gallo, A. & Esquivel, C. O. Current options for management of biliary
539 atresia. *Pediatr. Transplant.* **17**, 95–98 (2013).

540 6. Felder, S. I. *et al.* Hepaticojjunostomy using short-limb Roux-en-Y
541 reconstruction. *JAMA Surg* **148**, 253–7–8 (2013).

542 7. Sampaziotis, F., Segeritz, C.-P. & Vallier, L. Potential of human induced
543 pluripotent stem cells in studies of liver disease. *Hepatology* **62**, 303–
544 311 (2015).

545 8. Kanno, N., LeSage, G., Glaser, S., Alvaro, D. & Alpini, G. Functional
546 heterogeneity of the intrahepatic biliary epithelium. *Hepatology* **31**, 555–
547 61 (2000).

548 9. Sampaziotis, F. *et al.* Cholangiocytes derived from human induced

549 pluripotent stem cells for disease modeling and drug validation. *Nat.*
550 *Biotechnol.* 1–11 (2015). doi:10.1038/nbt.3275

551 10. Sampaziotis, F. *et al.* Directed differentiation of human induced
552 pluripotent stem cells into functional cholangiocyte-like cells. *Nat.*
553 *Protoc.* **12**, 814–827 (2017).

554 11. LeSage, G., Glaser, S. & Alpini, G. Regulation of cholangiocyte
555 proliferation. *Liver* **21**, 73–80 (2001).

556 12. Huch, M. *et al.* Long-Term Culture of Genome-Stable Bipotent Stem
557 Cells from Adult Human Liver. *Cell* **160**, 299–312 (2014).

558 13. Masyuk, A. I., Masyuk, T. V & LaRusso, N. F. Cholangiocyte primary
559 cilia in liver health and disease. *Dev. Dyn.* **237**, 2007–12 (2008).

560 14. Tabibian, J. H., Masyuk, A. I., Masyuk, T. V., O'Hara, S. P. & LaRusso,
561 N. F. Physiology of cholangiocytes. *Compr. Physiol.* **3**, 541–565 (2013).

562 15. Cízková, D., Morký, J., Micuda, S., Osterreicher, J. & Martínková, J.
563 Expression of MRP2 and MDR1 transporters and other hepatic markers
564 in rat and human liver and in WRL 68 cell line. *Physiol. Res.* **54**, 419–28
565 (2005).

566 16. Gigliozzi, A. *et al.* Molecular identification and functional
567 characterization of Mdr1a in rat cholangiocytes. *Gastroenterology* **119**,
568 1113–22 (2000).

569 17. Xia, X., Francis, H., Glaser, S., Alpini, G. & LeSage, G. Bile acid
570 interactions with cholangiocytes. *World J. Gastroenterol.* **12**, 3553–63
571 (2006).

572 18. Caperna, T. J., Blomberg, L. A., Garrett, W. M. & Talbot, N. C. Culture
573 of porcine hepatocytes or bile duct epithelial cells by inductive serum-
574 free media. *In Vitro Cell. Dev. Biol. Anim.* **47**, 218–33 (2011).

575 19. Marinelli, R. A. *et al.* Secretin induces the apical insertion of aquaporin-
576 1 water channels in rat cholangiocytes. *Am. J. Physiol.* **276**, G280-6
577 (1999).

578 20. Gong, A.-Y. *et al.* Somatostatin stimulates ductal bile absorption and
579 inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. *Am.*
580 *J. Physiol. Cell Physiol.* **284**, C1205-14 (2003).

581 21. Ito, M. *et al.* NOD/SCID/gamma(c)(null) mouse: an excellent recipient
582 mouse model for engraftment of human cells. *Blood* **100**, 3175–82
583 (2002).

584 22. Chan, B. P. & Leong, K. W. Scaffolding in tissue engineering: general
585 approaches and tissue-specific considerations. *Eur. Spine J.* **17**, 467–
586 479 (2008).

587 23. Cheung, H.-Y., Lau, K.-T., Lu, T.-P. & Hui, D. A critical review on
588 polymer-based bio-engineered materials for scaffold development.
589 *Compos. Part B Eng.* **38**, 291–300 (2007).

590 24. Jabłonska, B. End-to-end ductal anastomosis in biliary reconstruction:
591 indications and limitations. *Can. J. Surg.* **57**, 271–277 (2014).

592 25. Gjorevski, N. *et al.* Designer matrices for intestinal stem cell and
593 organoid culture. *Nature* **539**, 560–564 (2016).

594 26. Koo, B. K. & Clevers, H. Stem cells marked by the r-spondin receptor

595 LGR5. *Gastroenterology* **147**, 289–302 (2014).

596 27. Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt
597 regulate intestinal stem cells and promote formation of paneth cells.

598 *Gastroenterology* **143**, 1518–1529.e7 (2012).

599

600

601 **Figure Legends**

602

603 **Figure 1** Derivation and characterization of Extrahepatic Cholangiocyte
604 Organoids (ECOs). **(a)** Schematic representation of the method used for the
605 derivation of ECOs. **(b)** Quantitative real time PCR (QPCR) confirming the
606 expression of biliary markers in Passage 1 (P1), Passage 10 (P10) and
607 Passage 20 (P20) ECOs compared to freshly isolated Primary Cholangiocytes
608 (PC) and Embryonic Stem (ES) cells used as a negative control, $n = 4$ ECO
609 lines. Center line, median; box, interquartile range (IQR); whiskers, range
610 (minimum to maximum). Values are relative to the housekeeping gene
611 Hydroxymethylbilane Synthase (HMBS) **(c)** Immunofluorescence (IF)
612 analyses confirming the expression of biliary markers in ECO organoids.
613 Scale bars, 100 μ m. Single channel and higher magnification images are
614 provided in **Supplementary Fig 3**. **(d)** Euclidean hierarchical clustering
615 analysis comparing the transcriptome of primary cholangiocytes (Primary),
616 passage 20 ECOs (ECO), hIPSC-derived intrahepatic cholangiocyte-like-cells
617 (iChoLC), ES cells (ES) and hepatocytes (HEP). For each probe, standard
618 scores (z-scores) indicate the differential expression measured in number of
619 standard deviations from the average level across all the samples. Clusters of
620 genes expressed in ECOs, primary cholangiocytes or both cell types are
621 indicated. GO analyses for each cluster are provided in **Supplementary Fig.**
622 **7e.** The data corresponds to 3 ECO lines.

623

624 **Figure 2** Functional characterization of ECO organoids. **(a)** Fluorescence
625 images demonstrating secretion of the MDR1 fluorescent substrate
626 rhodamine 123 in the lumen of ECOs, which is inhibited by the MDR1 inhibitor
627 verapamil. Scale bars, 100 μ m. **(b)** Fluorescence intensity along the white line
628 in **a**. **(c)** Mean intraluminal fluorescence intensity normalized to background in
629 freshly plated Primary Cholangiocytes (Rho PC), Passage 20 ECOs (Rho
630 P20) and P20 ECOs treated with verapamil (Ver). Error bars, Standard
631 Deviation (SD); $n = 1565$ measurements in total. **** $P < 0.001$, Kruskal-Wallis
632 test with Dunn's correction for multiple comparisons. **(d)** Luminal extrusion of
633 the fluorescent bile acid CLF compared to controls loaded with FITC,
634 confirming bile acid transfer. Scale bars, 100 μ m. **(e)** Fluorescence intensity
635 along the white line in **d**. **(f)** Mean intra-luminal fluorescence intensity
636 normalized over background, $n = 1947$ total measurements. Error bars, SD;
637 **** $P < 0.001$, Kruskal-Wallis test with Dunn's correction for multiple
638 comparisons. **(g)** ALP staining of ECOs. Scale bars, 500 μ m (left) and 1 cm
639 (right). **(h)** Mean GGT activity of P20 ECOs vs. PCs; error bars, SD; $n = 3$;
640 **** $P < 0.001$, one-way ANOVA with Dunnett's correction for multiple
641 comparisons. **(i,j)** Mean diameter measurements **(i)** and live images **(j)** of
642 ECOs treated with secretin or secretin and somatostatin, $n = 8$. Error bars,
643 SD; *** $P < 0.001$; # $P > 0.05$ (Kruskal-Wallis test with Dunn's correction for
644 multiple comparisons). **(a-j)** Data representative of 3 different experiments.

645

646 **Figure 3** ECOs dissociated to single cells (ECO-SCs) can populate
647 biodegradable PGA scaffolds. **(a,b)** Photographs of a PGA scaffold before **(a)**
648 and after **(b)** treatment with ECOs. Scale bars, 1 cm. **(c)** Light microscopy

649 images of a PGA scaffold populated with ECO-SCs. Red arrowheads: Fully
650 populated scaffold; black arrowheads: cells recruiting new PGA fibers; white
651 arrowheads: PGA fibers. Scale bars, 100 μ m. **(d)** Confocal microscopy
652 images demonstrating cell expansion at different time-points after seeding of
653 GFP-positive ECO-SCs on a PGA scaffold. White lines indicate the position of
654 PGA fibers. Scale bars, 100 μ m. **(e)** IF demonstrating the expression of biliary
655 markers and lack of EMT markers in ECO-SCs seeded on PGA scaffolds.
656 Scale bars, 100 μ m **(f)** QPCR analyses demonstrating the expression of
657 biliary markers in ECOs before (ECOs) and after (scaffold) seeding on PGA
658 scaffolds, $n = 4$ ECO lines. Center line, median; box, interquartile range (IQR);
659 whiskers, range (minimum to maximum). Values are relative to the
660 housekeeping gene *HMBS*. **(g)** Mean ratio of CK7+/CK19+ and
661 CK19+/Vimentin (VIM)+ cells in IF analyses similar to the image shown in **(e)**.
662 Error bars represent SD; $n = 6$. ** $P < 0.01$ (Mann-Whitney test). **(h)** Mean
663 GGT activity of ECO-SCs populating a PGA scaffold, $n = 4$. Error bars
664 represent SD. **** $P < 0.001$ (two-tailed Student's *t*-test). **(i)** ALP staining of
665 PGA scaffolds populated by ECO-SCs. Scale bars, 500 μ m.

666

667 **Figure 4** Biliary reconstruction in an extrahepatic biliary injury (EHBI) mouse
668 model using ECOs. **(a)** Schematic representation of the method used for
669 biliary reconstruction. **(b)** Kaplan-Meier survival analysis, demonstrating
670 rescue of EHBI mice following biliary reconstruction with ECO-populated
671 scaffolds. ** $P < 0.01$ (log-rank test). **(c)** Images of gallbladders reconstructed
672 with acellular PGA scaffolds (scaffold only), PGA scaffolds populated with
673 ECOs (transplanted) and native un-reconstructed gallbladder controls (not

674 transplanted), demonstrating full reconstruction with ECO populated scaffolds.
675 CD: cystic duct, CBD: common bile duct, CHD: common hepatic duct, F:
676 fundus, A: anterior surface, P: posterior surface. Scale bars, 500 μ m. **(d)** H&E
677 staining of the reconstructed gallbladders. L: lumen. Scale bars, 100 μ m **(e)** IF
678 analyses demonstrating the presence of GFP-positive ECOs expressing
679 biliary markers in the reconstructed gallbladders. L: lumen Scale bars, 100
680 μ m. Higher magnification images are provided in **Supplementary Fig. 12 (f,g)**
681 FITC cholangiogram ($n = 1$) **(f)** and MRCP images ($n = 2$) **(g)** of reconstructed
682 (transplanted) vs. native control (not transplanted) gallbladders (GB)
683 demonstrating a patent lumen and unobstructed communication with the rest
684 of the biliary tree. Scale bars, 1 mm **(f)**, 5 mm **(g)**.

685

686 **Figure 5** ECOs can populate densified collagen tubular scaffolds. **(a)**
687 Schematic representation of the method used for the generation of densified
688 collagen tubular scaffolds. **(b)** Image of a densified collagen construct prior to
689 tube excision. Scale bar, 500 μ m. **(c)** Maximum intensity projection image
690 demonstrating a GFP+ ECO-populated tube after its generation. Scale bar, 30
691 μ m **(d)** Confocal microscopy image demonstrating lumen patency of an ECO-
692 populated collagen tube. Scale bar, 30 μ m. **(e)** Images of a near confluent
693 GFP+ ECO-tube. Scale bar; 100 μ m. **(f)** IF analyses demonstrating the
694 expression of biliary markers by ECOs following the generation of ECO-tubes.
695 Scale bar, 100 μ m. **(g)** QPCR analyses demonstrating the expression of
696 biliary markers before (ECOs) and after (Scaffold) the generation of ECO-
697 populated collagen tubes. ES cells are used as a negative control, $n = 4$ ECO

698 lines. Center line, median; box, interquartile range (IQR); whiskers, range
699 (minimum to maximum). Values are relative to *HMBS* expression. **(h,i)** ECO-
700 tubes exhibit ALP **(h)** and GGT **(i)** activity. Scale bars, 500 μ m; MEFs, Mouse
701 Embryonic feeders used as negative control; Scaffold, ECO-populated,
702 densified collagen tubes; error bars, SD; $n = 3$.

703

704 **Figure 6** Bile duct replacement using ECO-populated densified collagen
705 tubes. **(a)** Schematic representation of the method used. **(b)** Postmortem
706 images of mice receiving ECO-populated collagen tubes (ECOs) vs. mice
707 receiving fibroblast-populated tubes (fibroblasts). Bile flow results in yellow
708 pigmentation of ECO-tubes. The white color of the fibroblast conduit
709 combined with a dilated bile-filled (yellow color) proximal bile duct (PBD)
710 suggests luminal occlusion, resulting in bile leak (yellow peritoneal
711 pigmentation; white dashed line). SC: Collagen tubes/scaffolds; DBD: Distal
712 Bile Duct; scale bars, 500 μ m. **(c)** Images of a thin walled construct
713 resembling the native bile duct in animals receiving ECO-populated tubes vs.
714 a thickened construct with no distinguishable lumen in animals receiving
715 fibroblast tubes. Scale bars, 500 μ m. **(d)** QPCR using human-specific primers
716 confirming the expression of biliary markers by transplanted ECO-populated
717 tubes (ECOs *in vivo*) compared to cultured ECOs (ECOs *in vitro*) and mouse
718 biliary tissue used as a negative control, $n = 4$. Center line, median; box,
719 interquartile range (IQR); whiskers, range (minimum to maximum). Values are
720 relative to *HMBS* expression. **(e)** H&E staining demonstrating the presence of
721 a biliary epithelium and a patent lumen in ECO-tubes but not fibroblast
722 constructs. Scale bars, 100 μ m. **(f)** IF analyses demonstrating a GFP+/
723

723 CK19+ epithelium lining the lumen of ECO-constructs, vs. obliteration of the
724 lumen by fibroblasts in fibroblast constructs. Scale bars, 100 μ m. **(g)** FITC
725 cholangiogram, demonstrating lumen patency in ECO-tubes vs. lumen
726 occlusion in fibro-constructs. Scale bars, 100 μ m (ECO) and 500 μ m
727 (Fibroblasts) **(h)** ALP activity is observed only in ECO-tubes, but not in
728 fibroblast constructs. Scale bars, 100 μ m (ECO) and 500 μ m (Fibroblasts).

729 **Online Methods**

730 **Primary biliary tissue**

731 Primary biliary tissue (bile duct or gallbladder) was obtained from deceased
732 organ donors from whom organs were being retrieved for transplantation. The
733 gallbladder or a section of the bile duct was excised during the organ retrieval
734 operation after obtaining informed consent from the donor's family (REC
735 reference numbers: 12/EE/0253, NRES Committee East of England -
736 Cambridge Central and 15/EE/0152 NRES Committee East of England -
737 Cambridge South).

738 **Isolation of primary cholangiocytes**

739 Excised bile duct segments were placed in a 10 cm plate and washed once
740 with William's E medium (Gibco, Life Technologies). A longitudinal incision
741 was made along the wall of the excised bile duct segment exposing the lumen
742 and 10-15 ml of William's E medium were added to cover the tissue. The
743 luminal epithelium was subsequently scraped off using a surgical blade, while
744 submerged in medium. The supernatant was collected and the tissue and
745 plate were washed 2-3 times with William's E medium to harvest any
746 remaining cells. The supernatant and washes were centrifuged at 444g for 4
747 minutes. The pellet was washed with William's E, re-centrifuged and the
748 supernatant was discarded (**Fig. 1a**).

749 Excised gallbladders were placed in a 15 cm plate, a longitudinal incision was
750 made along the wall of the excised gallbladder and the lumen was washed
751 once with William's E medium (Gibco, Life Technologies). Cholangiocytes

752 were isolated and harvested following the method described above
753 (**Supplementary Fig. 2a**).

754 For isolation through brushings, an excised bile duct segment was placed in a
755 10 cm plate and cannulated using an ERCP brush. The lumen was brushed
756 10-20 times and the cells were harvested by washing the brush several times
757 in a falcon tube containing 40-50 ml of William's E medium (**Supplementary**
758 **Fig. 2b**).

759 **Generation and culture of ECOs**

760 Isolated primary cholangiocytes were centrifuged at 444g for 4 minutes and
761 re-suspended in a mixture of 66% matrigel (BD Biosciences, catalogue
762 number: 356237) and 33% William's E medium (Gibco, Life Technologies)
763 supplemented with 10mM nicotinamide (Sigma-Aldrich), 17mM sodium
764 bicarbonate (Sigma Aldrich), 0.2mM 2-Phospho-L-ascorbic acid trisodium salt
765 (Sigma-Aldrich), 6.3mM sodium pyruvate (Invitrogen), 14mM glucose (Sigma-
766 Aldrich), 20mM HEPES (Invitrogen), ITS+ premix (BD Biosciences), 0.1µM
767 dexamethasone (R&D Systems), 2mM Glutamax (Invitrogen), 100U/ml
768 penicillin per 100µg/ml streptomycin, 20ng/ml EGF (R&D Systems), 500ng/ml
769 R-Spondin (R&D Systems) and 100ng/ml DKK-1 (R&D Systems). The cell
770 suspension was plated in 24-well plate format, at 50µl/well, so that a small
771 dome of matrigel was formed in the centre of each well and then incubated at
772 37°C for 10-30 minutes until it solidified. Subsequently, 1ml of William's E
773 medium with supplements was added. The culture medium was changed
774 every 48 hours.

775 To split the cells, the matrigel was digested by adding Cell Recovery Solution
776 (Corning) for 30 minutes at 4°C. The resulting cell suspension was harvested,
777 centrifuged at 444g for 4 minutes, washed once with William's E medium and
778 re-suspended in 66% matrigel and 33% William's E medium with
779 supplements, as described above.

780 All experiments were performed using passage 20 ECOs unless otherwise
781 stated.

782 **Cell line identity**

783 Demographic data for donor corresponding to the each ECO lines is provided
784 in supplementary table 1. Following derivation ECO lines were authenticated
785 by matching their karyotype (**Supplementary Fig. 4b**) to the sex of the donor
786 of origin. The lines were tested on a regular basis and found to be negative for
787 mycoplasma contamination.

788 **Immunofluorescence, RNA extraction and Quantitative Real Time PCR**

789 IF, RNA extraction and QPCR were performed as previously described⁹. A
790 complete list of the primary and secondary antibodies used is provided in
791 supplementary table 3. A complete list of the primers used is provided in
792 supplementary table 4.

793 All QPCR data are presented as the median, interquartile range (IQR) and
794 range (minimum to maximum) of four independent ECO lines unless
795 otherwise stated. Values are relative to the housekeeping gene
796 Hydroxymethylbilane Synthase (*HMBS*).

797 All IF images were acquired using a Zeiss Axiovert 200M inverted microscope
798 or a Zeiss LSM 700 confocal microscope. Imagej 1.48k software (Wayne

799 Rasband, NIHR, USA, <http://imagej.nih.gov/ij>) was used for image processing.
800 IF images are representative of 3 different experiments. IF images of
801 reconstructed gallbladder sections are representative of 5 different animals.

802 **Microarrays**

863 RNA for microarray analysis was collected from 3 different ECO lines (n=3).
864 The RNA was assessed for concentration and quality using a SpectroStar
865 (BMG Labtech, Aylesbury, UK) and a Bioanalyser (Agilent Technologies,
866 Cheadle, UK). Microarray experiments were performed at Cambridge
867 Genomic Services, University of Cambridge, using the HumanHT-12 v4
868 Expression BeadChip (Illumina, Chesterford, UK) according to the
869 manufacturer's instructions. Briefly, 200ng of Total RNA underwent linear
870 amplification using the Illumina TotalPrep RNA Amplification Kit (Life
871 Technologies, Paisley, UK) following the manufacturer's instructions. The
872 concentration, purity and integrity of the resulting cRNA were measured by
873 SpectroStar and Bioanalyser. Finally cRNA was hybridised to the HumanHT-
874 12 v4 BeadChip overnight followed by washing, staining and scanning using
875 the Bead Array Reader (Illumina). The microarray data are available on
876 ArrayExpress (Accession number: E-MTAB-4591).

877 **Microarrays analysis**

878 Raw data was loaded into R using the lumi package from bioconductor²⁸ and
879 divided into subsets according to the groups being compared; only the
880 samples involved in a given comparison are used. Subsets were then filtered
881 to remove any non-expressed probes using the detection p-value from
882 Illumina. Across all samples probes for which the intensity values were not
883 statistically significantly different ($P > 0.01$) from the negative controls were

884 removed from the analysis. Following filtering the data was transformed using
885 the Variance Stabilization Transformation²⁹ from lumi and then normalised to
886 remove technical variation between arrays using quantile normalisation.
887 Comparisons were performed using the limma package³⁰ with results
888 corrected for multiple testing using False Discovery Rate (FDR) correction.
889 Finally the quality of the data was assessed along with the correlations
890 between samples within groups.

891 Probes differentially expressed between HEP and ECOs representing the
892 aggregate transcriptional “signature” of ECOs were selected for Euclidean
893 hierarchical clustering using Perseus software (MaxQuant). Standard scores
894 (z-scores) of the log2 normalized probe expression values across the different
895 conditions were calculated and used for this analysis. Heatmaps and Primary
896 Component Analysis (PCA) plots were generated using the MaxQuant
897 Perseus software (<http://www.perseus-framework.org/>)³¹. Functional
898 annotation and gene ontology analyses were performed on the genes
899 differentially expressed between PCs and ECOs (Figure 1d) using the
900 NIAID/NIH Database for Annotation, Visualization and Integrated Discovery
901 (DAVID) v6.8 (<https://david.ncifcrf.gov/>)^{32,33}.

902 **Western Analysis**

903 Total protein was extracted with lysis buffer (50mM Tris pH 8, 150mM NaCl,
904 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100 and protease and
905 phosphatase inhibitors). Protein concentrations were determined by BCA
906 Protein Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s
907 instructions. Samples were prepared for Western blot by adding 1x NuPAGE
908 LDS Sample Buffer with 1% β-mercaptoethanol and incubated for 5 minutes

909 at 95°C. Protein (25 µg) was separated by 4-12% NuPAGE Bis-Tris protein
910 gels (Invitrogen) and transferred onto PVDF membranes (Bio-Rad). Proteins
911 were detected by probing with antibodies specific to Phospho-β-catenin
912 (Ser33/37/Thr41) (Cell Signalling Technology), Active-β-catenin (Millipore),
913 Total-β-catenin (R&D), α-tubulin (Sigma) followed by incubation with
914 horseradish peroxidase anti-mouse, anti-goat or anti-rabbit secondary
915 antibodies. Membranes were developed using Pierce ECL Western blotting
916 substrate (Thermo Scientific) according to the manufacturer's instructions.
917 The raw Western Blot images are provided in **Supplementary Fig. 14**.

918 **Rho Kinase activity analyses**

919 Rho Kinase activity was measured using a commercially available kit (Cell
920 Biolabs, STA-416) according to the manufacturer's instructions

921 **Flow cytometry analyses**

922 ECO organoids were harvested using Cell Recovery Solution (Corning) for 30
923 minutes at 4°C, centrifuged at 444g for 4 minutes and dissociated to single
924 cells using TrypLE™ Express (Gibco). The cells were subsequently fixed
925 using 4% PFA for 20 minutes at 4°C. Cell staining and flow cytometry
926 analyses were performed as previously described^{9,34}.

927 **Karyotyping**

928 ECO organoids were harvested using Cell Recovery Solution (Corning),
929 dissociated to single cells as described above, plated in gelatin coated plates
930 and cultured using William's E medium with supplements. When the cells
931 were sub-confluent, usually after 72hrs, the cultures were incubated for 3-4
932 hours with William's E medium with supplements containing 0.1µg/ml
933 colcemid (Karyomax®, Gibco). The cells were then harvested using Trypsin-

934 EDTA (0.05%) (Gibco) for 4-5 minutes at 37°C, centrifuged at 344g for 5
935 minutes and re-suspended in 5mls of KCl hypotonic solution (0.055M). The
936 suspension was re-centrifuged at 344g for 5 minutes, 2 mls of a 3:1 100%
937 methanol:glacial acetic acid solution were added and slides were prepared as
938 previously described³⁵

939 **Comparative Genomic Hybridization analyses**

940 Genomic DNA was labeled using the BioPrime DNA Labeling Kit (Invitrogen),
941 according to the manufacturer's instructions and samples were hybridised to
942 Agilent Sureprint G3 unrestricted CGH ISCA 8x60K human genome arrays
943 following the manufacturer's protocol, as previously described³⁶. The data
944 was analysed using the Agilent CytoGenomics Software.

945 **Rhodamine123 transport assay**

946 The Rhodamine 123 transport assay was performed as previously described⁹
947 and images were acquired using a Zeiss LSM 700 confocal microscope.
948 Fluorescence intensity was measured between the organoid interior and
949 exterior and luminal fluorescence was normalized over the background of the
950 extraluminal space. Each experiment was repeated in triplicate. Error bars
951 represent SD.

952 **Cholyl-Lysyl-Fluorescein transport assay**

953 To achieve loading with Cholyl-Lysyl-Fluorescein (CLF, Corning
954 Incorporated), ECO organoids were split in 5µM of CLF and incubated at 37°C
955 for 30 minutes. Images were acquired using a Zeiss LSM 700 confocal
956 microscope and fluorescence intensity was measured between the organoid
957 interior and exterior as described for the Rhodamine 123 transport assay. To
958 demonstrate that the changes in CLF fluorescence intensity observed were

959 secondary to active export of CLF from the organoid lumen, the experiment
960 was repeated with 5 μ M of unconjugated Fluorescein Isothiocyanate (FITC)
961 (Sigma-Aldrich) as a control. Fluorescence intensity measurements were
962 performed as described for the Rhodamine 123 transport assay. Each
963 experiment was repeated in triplicate. Error bars represent SD.

964 **GGT activity**

965 GGT activity was measured in triplicate using the MaxDiscovery™ gamma-
966 Glutamyl Transferase (GGT) Enzymatic Assay Kit (Bloo scientific) based on
967 the manufacturer's instructions. Error bars represent SD.

968 **Alkaline Phosphatase staining**

969 Alkaline phosphatase was carried out using the BCIP/NBT Color
970 Development Substrate (5-bromo-4-chloro-3-indolyl-phosphate/nitro blue
971 tetrazolium) (Promega) according to the manufacturer's instructions.

972 **Response to Secretin and Somatostatin**

973 Responses to secretin and somatostatin were assessed as previously
974 described⁹.

975 **Generation of ECOs expressing Green Fluorescent Protein**

976 EGFP expressing VSV-G pseudotyped, recombinant HIV-1 lentiviral particles
977 were produced with an optimized second generation packaging system by
978 transient co-transfection of three plasmids into HEK 293T cells (ATCC CRL-
979 11268). EGFP expression is under control of a core EF1 α -promoter. All
980 plasmids were a gift from Didier Trono and obtained from addgene (pWPT-
981 GFP #12255, psPAX2 #12260, pMD2.G, #12259). Viral infection of organoids
982 was performed as previously described³⁷. Infected ECOs were expanded for 2
983 passages, harvested as described above for flow cytometry analyses and cell

984 sorting by flow cytometry for GFP positive cells was performed. GFP
985 expressing single cells were plated using our standard plating method and
986 cultured in William's E medium with supplements for 1-2 weeks until fully
987 grown ECO organoids developed.

988 **Generation of ECO populated PGA scaffolds**

989 1mm thick PolyGlycolic Acid (PGA) scaffolds with a density of 50mg/cc were
990 used for all experiments. Prior to seeding cells, the PGA scaffolds were pre-
991 treated with a 1M NaOH for 10-30 seconds washed 3 times, decontaminated
992 in a 70% ethanol solution for 30 minutes and then air-dried for another 30
993 minutes until all the ethanol had fully evaporated. All scaffolds were a gift from
994 Dr Sanjay Sinha and obtained from Biomedical Structures (Biofelt).

995 ECOs were harvested and dissociated to single cells as previously described
996 for flow cytometry analyses. $5-10 \times 10^6$ cells were re-suspended in 100 μ l of
997 William's E medium with supplements, seeded on a scaffold surface area of
998 1cm^2 and incubated at 37°C for 30-60 minutes to allow the cells to attach to
999 the scaffold. The scaffolds were placed in wells of a 24-well plate and
1000 checked at regular intervals during this period to ensure the medium did not
1001 evaporate. If necessary, 10-20 μ l of William's E medium with supplements
1002 were added. After 1 hour, 2-3 mls of William's E medium with supplements
1003 were added to the wells and the medium was changed twice weekly.

1004 **Generation of densified collagen tubes**

1005 Densified collagen tubes were prepared using a novel approach. A 3D printed
1006 chamber was fabricated, consisting of a funnel piece and a base plate. A
1007 250 μm thick metallic wire was mounted into the base plate and fed through
1008 the centre of the funnel. Absorbent paper towels were compacted between

1009 the two 3D printed parts, which were then screwed together. 5 mg mL⁻¹
1010 collagen gel solution, loaded with cells, was poured into the funnel and gelled
1011 at 37°C for 30 min. After that time, the screws were loosened and, by placing
1012 the 3D printed chambers at 37°C for 2-4h, water was drawn out of the
1013 collagen gel. A cell-loaded densified collagen tube was thus formed with a
1014 250µm lumen and a wall thickness of 30-100 µm, determined by the duration
1015 of the drying phase. Upon removal from the chamber, the tube was trimmed
1016 for excess collagen and cut to the required length.

1017 **Culture of Human Mammary Epithelial Cells (HMECs)**

1018 HMECs and the required tissue culture consumables were purchased as a kit
1019 from Lonza (cat no. cat no. CC-2551B) and the cells were cultured according
1020 to the supplier's instructions

1021 **Animal experiments**

1022 All animal experiments were performed in accordance with UK Home Office
1023 regulations (UK Home Office Project License numbers PPL 80/2638 and PPL
1024 70/8702). Immunodeficient NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl}/SzJ (NSG) mice which
1025 lack B, T and NK lymphocytes³⁸ were bred in-house with food and water
1026 available ad libitum pre- and post-procedures. A mix of male and female
1027 animals were used, aged approximately 6-8 weeks. All the ECO-constructs
1028 used were populated with ECOs derived from the common bile duct.

1029 **Generation of Extra-Hepatic Biliary Injury (EHBI) mouse model**

1030 To generate a model of extrahepatic biliary injury, midline laparotomy was
1031 performed and the gallbladder was first mobilized by dividing the ligamentous
1032 attachment connecting its fundus to the anterior abdominal wall under
1033 isoflurane general anesthesia. A longitudinal incision was then made along

1034 2/3 of the length of the gallbladder, from the fundus towards Hartmann's
1035 pouch (neck of gallbladder).

1036 **Biliary reconstruction in EHBI mice**

1037 To reconstruct the gallbladder, a scaffold section measuring approximately 1 x
1038 1 mm (seeded with ECOs or without ECOs in controls) was sutured as a
1039 'patch' to close the defect using 4 – 6 interrupted 10'0 non-absorbable nylon
1040 sutures under 40x magnification. The laparotomy was closed in two layers
1041 with continuous 5'0 absorbable Vicryl sutures. The animals were given
1042 buprenorphine (temgesic 0.1 mg/kg) analgesia as a bolus and observed every
1043 15 minutes in individual cages until fully recovered.

1044 8 animals underwent biliary reconstruction using an ECO-populated scaffold.
1045 All animals survived up to 104 days without complications and were culled
1046 electively for further analyses. Two control experiments were performed,
1047 where the animals underwent biliary reconstruction using acellular scaffolds.
1048 Both animals died within 24 hours from bile leak, therefore no further control
1049 experiments were performed to minimize animal discomfort.

1050 **Bile duct replacement**

1051 The native common bile duct was divided and a short segment excised. The
1052 populated densified collagen tube was anastomosed end-to-end, using
1053 interrupted 10'0 nylon sutures, between the divided proximal and distal
1054 common bile duct. A length of 5'0 nylon suture material (diameter 100 μm)
1055 was inserted into the collagen tube and fed into the proximal and distal
1056 common bile duct to ensure patency of the lumen during the anastomosis.
1057 After the anastomosis was complete, the 5'0 suture was pushed into the
1058 duodenum through the distal bile duct and was removed through an incision in

1059 the duodenum, which was then closed with interrupted 10'0 nylon sutures.
1060 Lumen patency was assessed at the time of transplantation through light
1061 microscopy and cannulation of the lumen with a 5'0 non-absorbable suture.
1062 Transplantation was abandoned as futile in case of fully occluded tubes due
1063 to cell infiltration. These events were considered construct/tube failure rather
1064 than surgical complications and therefore were not censored in the survival
1065 analysis.

1066 **Bile duct ligation**

1067 C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor,
1068 ME). The mice were housed and bred in a Minimal Disease Unit at the animal
1069 facility at Oslo University Hospital, Rikshospitalet, Oslo. All experiments were
1070 performed on male mice between 8 and 12 weeks of age. A median
1071 laparotomy was performed, the common bile duct exposed and ligated close
1072 to the junction of the hepatic bile ducts. Sham operated mice underwent the
1073 same procedure without ligation. Serum was harvested after 5 days. Alanine
1074 transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase
1075 (ALP) were measured in serum using an ADVIA 1800 (Siemens) at The
1076 Central Laboratory, Norwegian School of Veterinary Science. All animal
1077 experiments were approved by the Norwegian Food Safety Authority (project
1078 license no FOTS 8210/15) and all animals received human care in line with
1079 "Guide for the Care and Use of Laboratory Animals" (National Institutes of
1080 Health Publication, 8th Edition, 2011).

1081 **Blood sample collection**

1082 Blood was taken using a 23g needles directly from the inferior vena cava
1083 under terminal anesthesia at the time the animals were electively culled and
1084 transferred into 1.5ml Eppendorf tubes for further processing.

1085 **Blood sample processing**

1086 The blood samples were routinely processed by the University of Cambridge
1087 Core biochemical assay laboratory (CBAL). All of the sample analysis was
1088 performed on a Siemens Dimension EXL analyzer using reagents and assay
1089 protocols supplied by Siemens.

1090 **Light microscopy imaging**

1091 Light microscopy images of excised reconstructed gallbladders were acquired
1092 using a Leica MZFLIII fluorescence dissecting microscope. The images are
1093 representative of 5 animals.

1094 **Cryosectioning and Histology**

1095 Excised gallbladders were fixed in 4% PFA, immersed in sucrose solution
1096 overnight, mounted in optimal cutting temperature (OCT) compound and
1097 stored at -80°C until sectioning. Sections were cut to a thickness of 10µm
1098 using a cryostat microtome and mounted on microscopy slides for further
1099 analysis

1100 **Haematoxylin and Eosin (H&E) Staining**

1101 H&E staining was performed using Sigma-Aldrich reagents according to the
1102 manufacturer's instructions. Briefly, tissue sections were hydrated, treated
1103 with Meyer's Haematoxylin solution for 5 minutes (Sigma-Aldrich), washed
1104 with warm tap water for 15 minutes, placed in distilled water for 30-60
1105 seconds and treated with eosin solution (Sigma-Aldrich) for 30-60 seconds.

1106 The sections were subsequently dehydrated and mounted using the Eukitt®
1107 quick-hardening mounting medium (Sigma-Aldrich). Histology sections were
1108 reviewed by an independent histopathologist with a special interest in
1109 hepatobiliary histology (SD).

1110 **TUNEL assay**

1111 The TUNEL assay was performed using a commercially available kit (abcam,
1112 ab66110) according to the manufacturer's instructions.

1113 **Fluorescein Isothiocyanate (FITC) cholangiography**

1114 In situ FITC cholangiography was performed in sacrificed animals after
1115 dissection of the gallbladder free from the adherent liver lobes, but before
1116 surgical interruption of the extrahepatic biliary tree. The distal bile duct was
1117 cannulated with a 23½ gauge needle and FITC injected retrogradely into the
1118 gallbladder and images taken under a fluorescent microscope.

1119 **Magnetic Resonance Cholangio-Pancreatography (MRCP)**

1120 Magnetic resonance cholangio-pancreatography was performed after sacrifice
1121 of the animals. MRCP was performed at 4.7T using a Bruker BioSpec 47/40
1122 system. A rapid acquisition with relaxation enhancement sequence was used
1123 with an echo train length of 40 echoes at 9.5ms intervals, a repetition time of
1124 1000ms, field of view $5.84 \times 4.18 \times 4.18 \text{ cm}^3$ with a matrix of $256 \times 180 \times 180$
1125 yielding an isotropic resolution of 230 μm . The actively-decoupled four-
1126 channel mouse cardiac array provided by Bruker was used for imaging.

1127 For the second mouse imaged, for higher signal to noise ratio to give
1128 improved visualisation of the biliary ducts a two-dimensional sequence was
1129 used with slightly varied parameters (24 spaced echoes at 11ms intervals to
1130 give an effective echo time of 110ms; repetition time 5741ms; matrix size of

1131 256×256; field of view of 4.33×5.35cm² yielding a planar resolution of
1132 170×200μm²). Fifteen slices were acquired coronally through the liver and gall
1133 bladder with a thickness of 0.6mm. For this acquisition, a volume coil was
1134 used to reduce the impact of radiofrequency inhomogeneity.

1135 To examine the biliary ducts and gall bladder, images were prepared by
1136 maximum intensity projections. Structural imaging to rule out neoplastic
1137 growths was performed using a T1-weighted 3D FLASH (fast low-angle shot)
1138 sequence with a flip angle of 25°, repetition time of 14ms and an echo time of
1139 7ms. The matrix was 512×256×256 with a field of view of 5.12×2.56×2.56cm³
1140 for a final isotropic resolution of 100 μm.

1141 The MRCP images were reviewed by 2 independent radiologists with a
1142 special interest in hepatobiliary radiology (EMG, SU).

1143 **Statistical analyses**

1144 All statistical analyses were performed using GraphPad Prism 6. For small
1145 sample sizes where descriptive statistics are not appropriate, individual data
1146 points were plotted. For comparison between 2 mean values a 2-sided
1147 Student's *t*-test was used to calculate statistical significance. The normal
1148 distribution of our values was confirmed using the D'Agostino & Pearson
1149 omnibus normality test where appropriate. Variance between samples was
1150 tested using the Brown-Forsythe test. For comparing multiple groups to a
1151 reference group one-way ANOVA with Dunnett correction for multiple
1152 comparisons was used between groups with equal variance, while the
1153 Kruskal-Wallis test with Dunn's correction for multiple comparisons was
1154 applied for groups with unequal variance. Survival was compared using log-
1155 rank (Mantel-Cox) tests. Where the number of replicates (*n*) is given this

1156 refers to ECO lines or number of different animals unless otherwise stated.

1157 Further details of the statistical analyses performed are provided in

1158 **Supplementary Table 5.**

1159 For animal experiments, group sizes were estimated based on previous study

1160 variance. Final animal group sizes were chosen to allow elective culling at

1161 different time point while maintaining $n > 4$ animals surviving past 30 days to

1162 ensure reproducibility. No statistical methods were used to calculate sample

1163 size. No formal randomization method was used to assign animals to study

1164 groups. However, littermate animals from a cage were randomly assigned to

1165 experimental or control groups by a technician not involved in the study. No

1166 animals were excluded from the analysis. No blinding was used when only

1167 one group of animals survived for radiology imaging. In cases, such as

1168 gallbladders reconstructed with fibroblasts vs. ECOs where more than one

1169 groups survived to be imaged, both radiologists reviewing the images (EG

1170 and SU) where blinded to the method of reconstruction.

1171

1172 **References**

1173

1174 28. Du, P., Kibbe, W. a & Lin, S. M. lumi: a pipeline for processing Illumina
1175 microarray. *Bioinformatics* **24**, 1547–8 (2008).

1176 29. Lin, S. M., Du, P., Huber, W. & Kibbe, W. A. Model-based variance-
1177 stabilizing transformation for Illumina microarray data. *Nucleic Acids
1178 Res.* **36**, (2008).

1179 30. Smyth, G. K. Linear models and empirical bayes methods for assessing
1180 differential expression in microarray experiments. *Stat Appl Genet Mol
1181 Biol* **3**, Article3-Article3 (2004).

1182 31. Tyanova, S. *et al.* The Perseus computational platform for
1183 comprehensive analysis of (prote)omics data. *Nat. Methods* **13**, 731–40
1184 (2016).

1185 32. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and
1186 integrative analysis of large gene lists using DAVID bioinformatics
1187 resources. *Nat. Protoc.* **4**, 44–57 (2008).

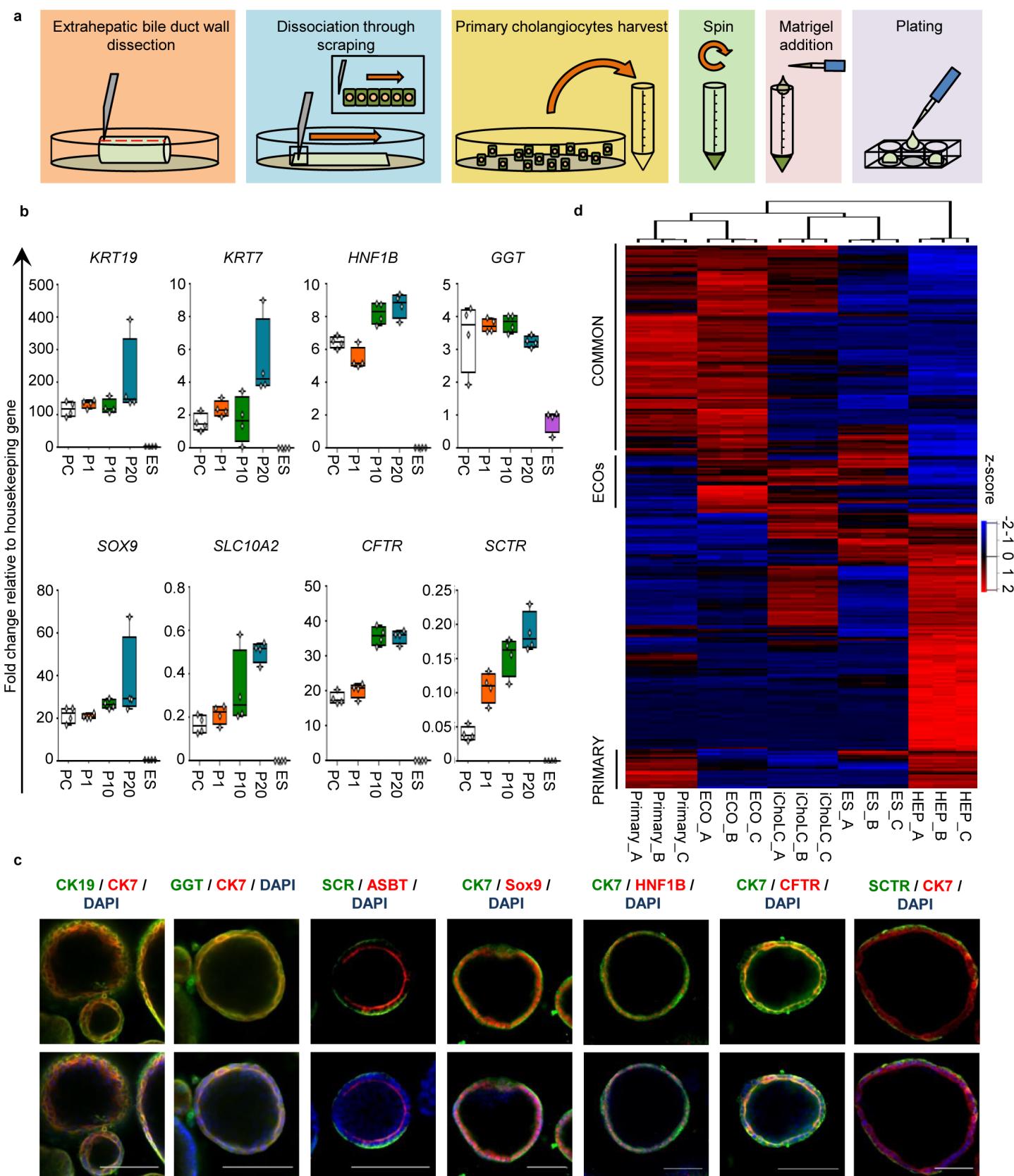
1188 33. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics
1189 enrichment tools: paths toward the comprehensive functional analysis of
1190 large gene lists. *Nucleic Acids Res.* **37**, 1–13 (2009).

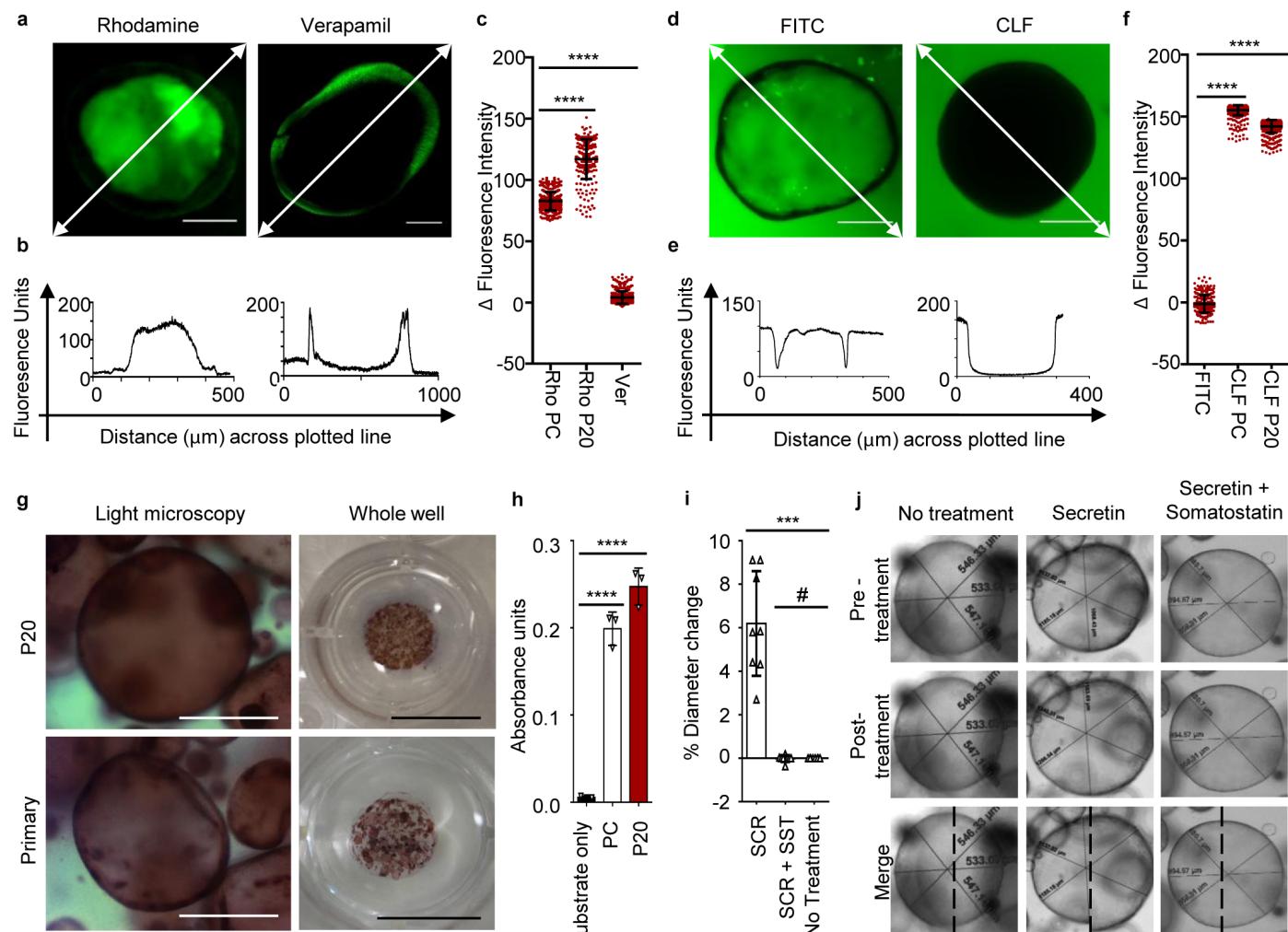
1191 34. Bertero, A. *et al.* Activin/Nodal signaling and NANOG orchestrate
1192 human embryonic stem cell fate decisions by controlling the H3K4me3
1193 chromatin mark. *Genes Dev.* **29**, 702–17 (2015).

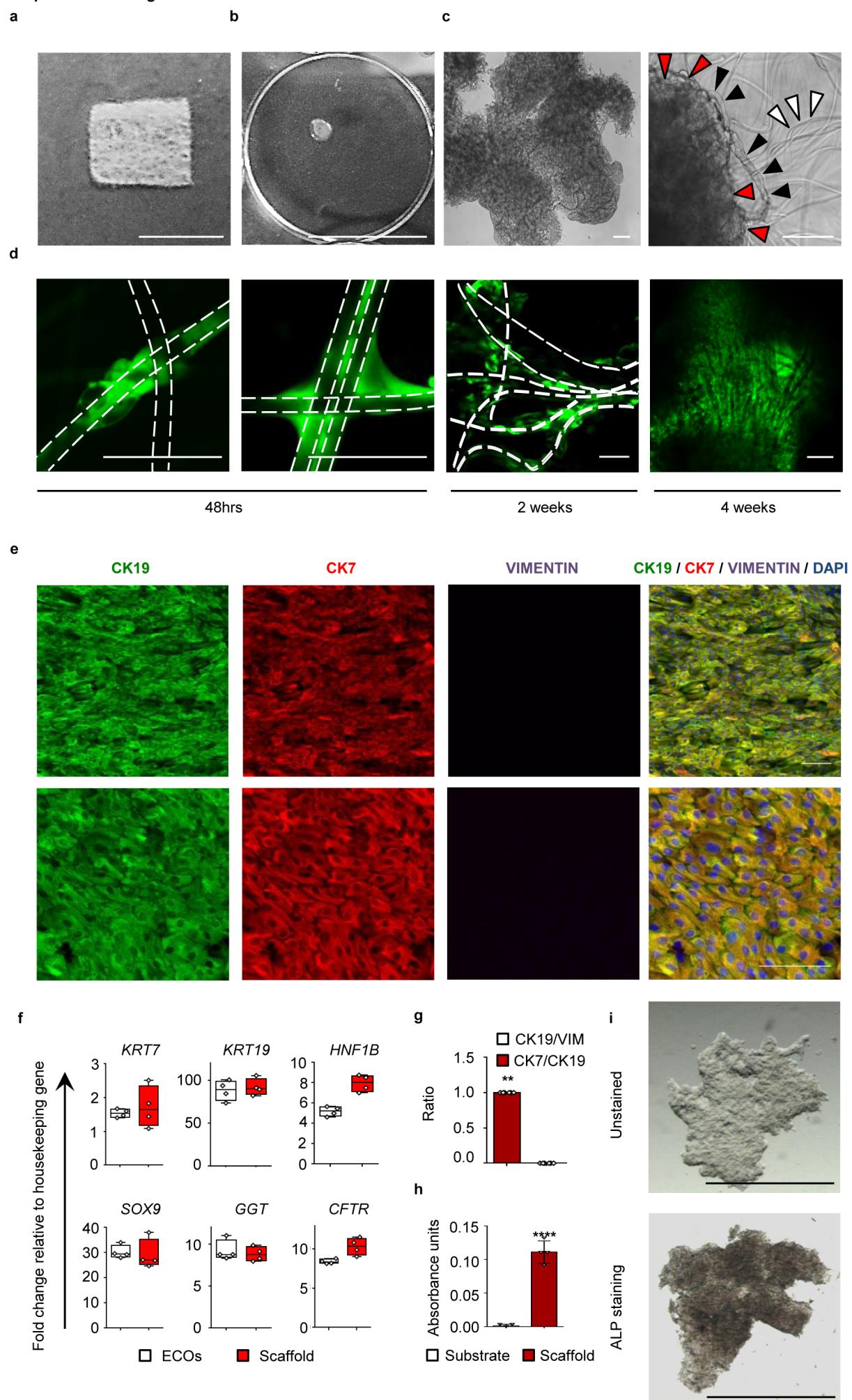
1194 35. Campos, P. B., Sartore, R. C., Abdalla, S. N. & Rehen, S. K.
1195 Chromosomal spread preparation of human embryonic stem cells for

1196 karyotyping. *J. Vis. Exp.* 4–7 (2009). doi:10.3791/1512

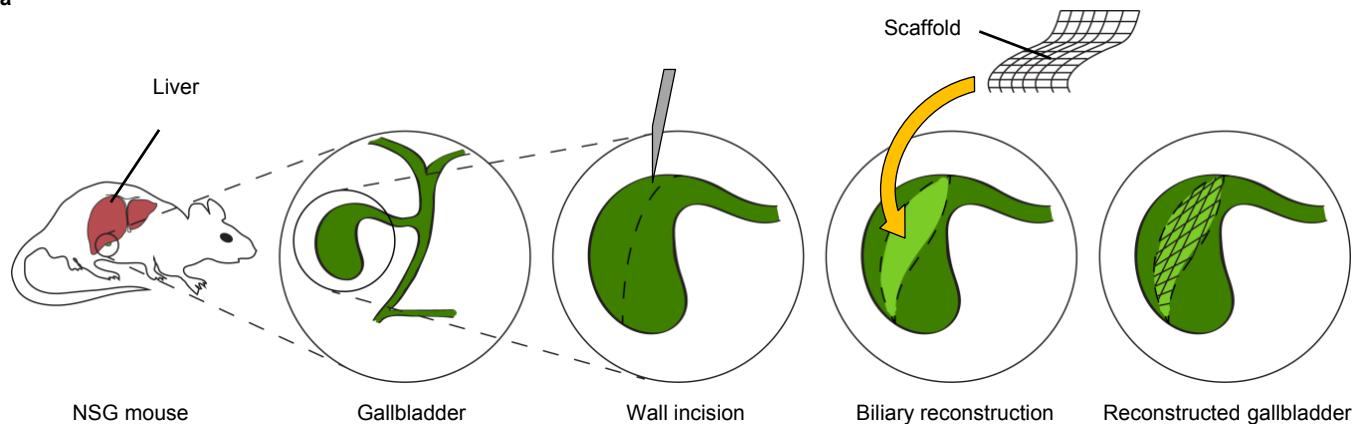
1197 36. Hannan, N. R. F. *et al.* Generation of multipotent foregut stem cells from
1198 human pluripotent stem cells. *Stem Cell Reports* **1**, 293–306 (2013).

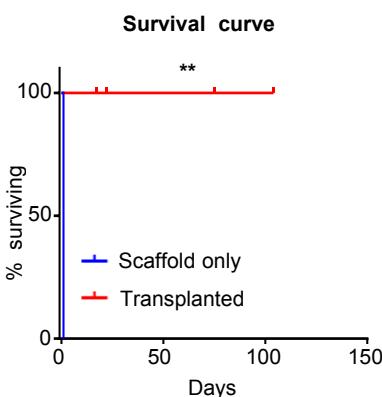

1199 37. Koo, B.-K., Sasselli, V. & Clevers, H. Retroviral gene expression control
1200 in primary organoid cultures. *Curr. Protoc. Stem Cell Biol.* **27**, Unit 5A.6.
1201 (2013).

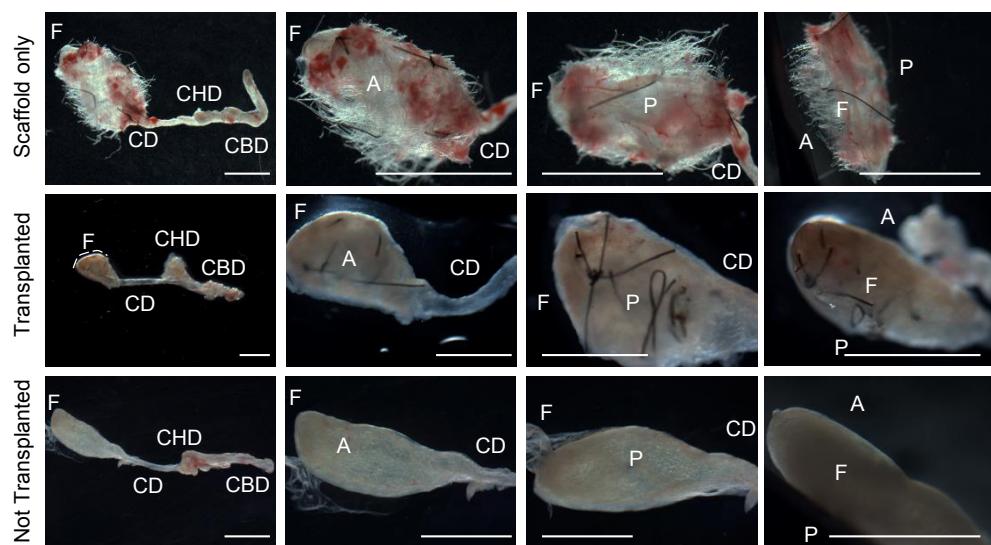

1202 38. Shultz, L. D. *et al.* Human lymphoid and myeloid cell development in
1203 NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human
1204 hemopoietic stem cells. *J. Immunol.* **174**, 6477–6489 (2005).

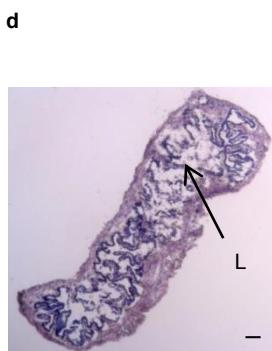

1205

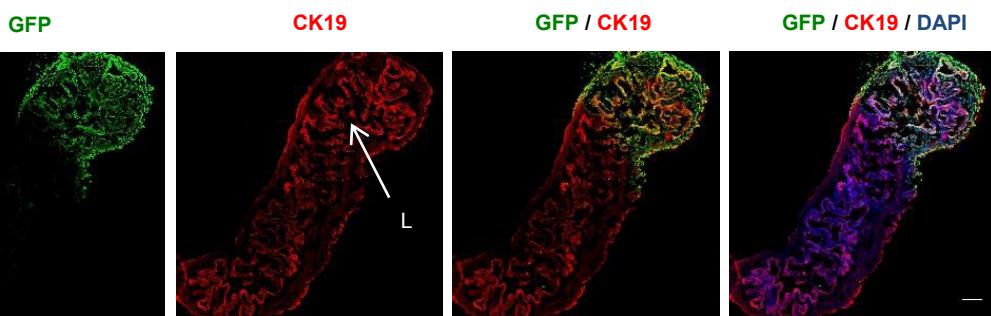
1206

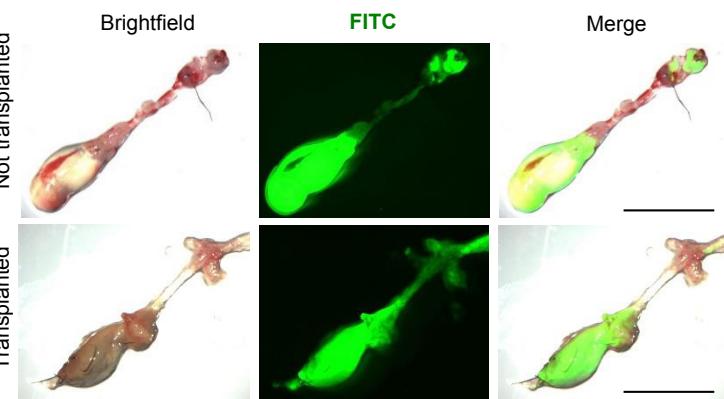

1207

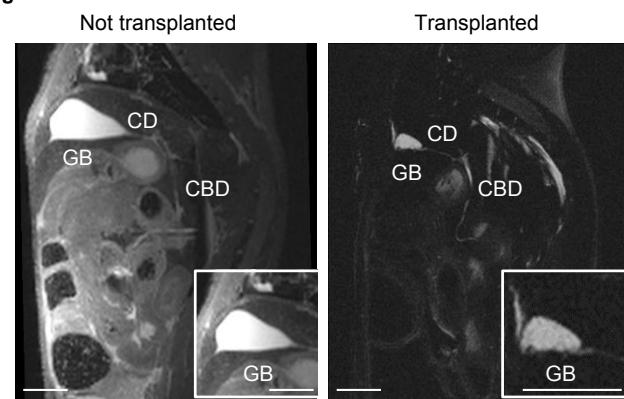


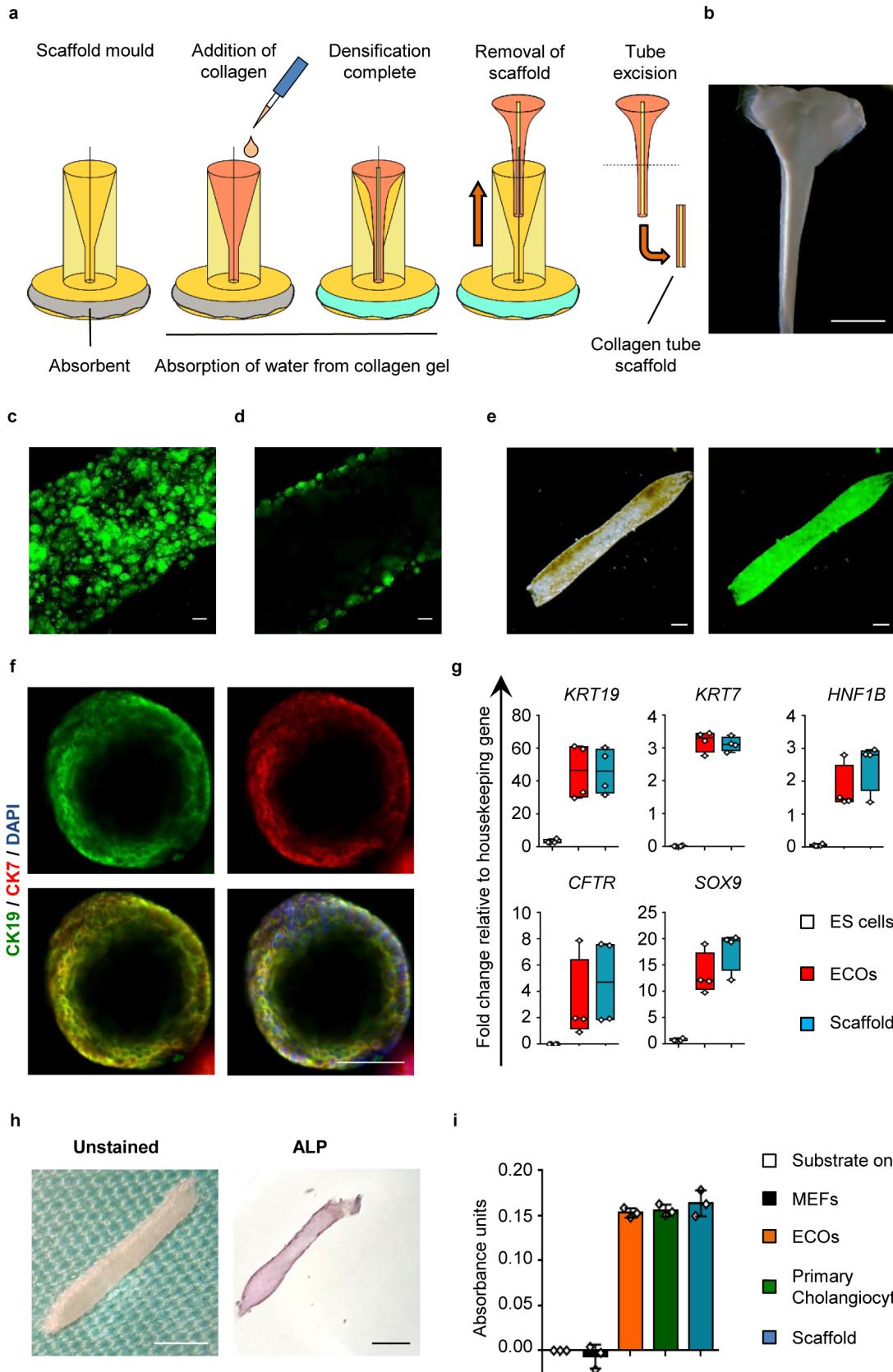

a

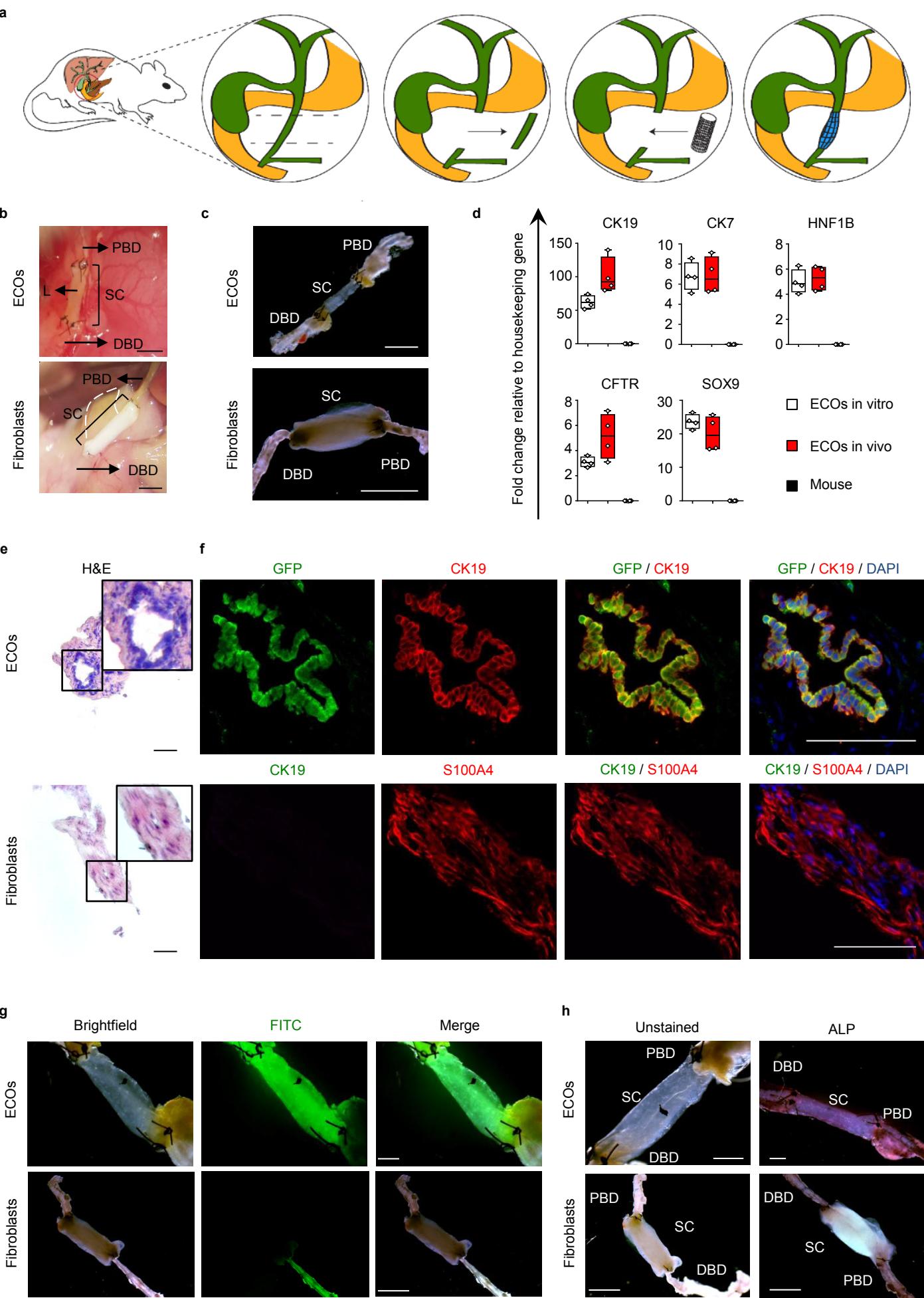

b


c


d


e




f

g

