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ABSTRACT ARTICLE HISTORY
Landslides are one of the most destructive natural hazards; they can Received 3 April 2018
drastically alter landscape morphology, destroy man-made struc- Accepted 27 April 2018

tures, and endanger people’s life. Landslide susceptibility maps KEYWORDS

(LSMs), which show the spatial likelihood of landslide occurrence, Landslide susceptibility;
are crucial for environmental management, urban planning, and landslide type; random
minimizing economic losses. To date, the majority of research into forest

data mining LSM uses small-scale case studies focusing on a single

type of landslide. This paper presents a data mining approach to

producing LSM for a large, heterogeneous region that is susceptible

to multiple types of landslides. Using a case study of Piedmont, Italy, a

Random Forest algorithm is applied to produce both susceptibility

maps and classification maps. These maps are combined to give a

highly accurate (over 85% classification accuracy) LSM which con-

tains a large amount of information and is easy to interpret. This

novel method of mapping landslide susceptibility demonstrates the

efficacy of Random Forest to produce highly accurate susceptibility

maps for a large heterogeneous region without the need for multiple

susceptibility assessments.

Introduction

Landslides can be broadly defined as a movement of a mass of rock, earth or debris
down a slope (Cruden, 1991). They are one of the most destructive natural hazards; they
can drastically alter landscape morphology, destroy man-made structures, and endanger
people’s life. Identifying areas which are predisposed to landslides is vital for ensuring
human safety, environmental management, urban planning, and minimizing economic
losses (Kavzoglu, Sahin, & Colkesen, 2014; Zézere, 2002).

Landslide can range from an individual rock fall to large creep failures. The type of
landslide is central to impacts such as casualties, damage to structures, and socio-
economic consequences (Alexoudi, & Papaliangas, 2010). In areas where numerous
varieties of landslide occur, it is useful to differentiate between and explicitly map
susceptibility to each type (Mantovani, Soeters, & Van Westen, 1996). As an example,
rock avalanches are highly destructive, fast-moving debris flows can cause widespread
damage and casualties, while slow-moving landslides typically cause damage to prop-
erty (Guzzetti, Carrara, Cardinali, & Reichenbach, 1999). Events which trigger landslides
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also tend to differ. Characteristically, slow-moving deep-seated landslides are activated
by prolonged rainfall (days or weeks), whereas shallow, fast-moving landslides are
triggered by single, high-intensity rainfall events (Sidle, 2007).

Landslide susceptibility maps (LSMs) show the spatial likelihood of landslide occur-
rence. Empirical LSMs are based on the principal that the location of previous landslides
was determined by a set of geomorphological conditioning factors (D. J. Varnes, 1984).
By developing a numerical relationship between the location of past landslides and
these factors (such as slope, lithology, and land use), it is possible to predict where
landslides are likely to occur in the future.

At the moment LSMs case studies are typically generated at small scales focusing on
a single type of landslide (Cervi et al, 2010; Pourghasemi, Jirandeh, Pradhan, Xu, &
Gokceoglu, 2013; Reis et al, 2012). Working at larger scales can be problematic as
increasing the area being mapped generally increases the heterogeneity of the land-
scape and the number of different types of landslides the area experiences. Therefore,
the generation of a wide range of LSMs that cover all types of landslides based on one
set of data alone would be beneficial and deserves to be pursued.

One approach to account for the variety of landslides that occur across large regions
is to conduct separate analysis for each landslide type of interest, which can be
aggregated to predict a total susceptibility (Clerici, Perego, Tellini, & Vescovi, 2006).
This has the advantage of mapping both overall susceptibility and susceptibility to
individual landslide types, however, it is a labour-intensive process. Alternatively, the
landslides can be treated as a single class (Regmi et al., 2014). LSMs produced using this
method can be used to inform a direct geomorphological hazard evaluation (Guzzetti
et al., 1999). The drawback of this method is that details of specific landslide types are
lost. Also, selecting an appropriate model for this approach can be problematic as
different types of landslides are related to the same geomorphological conditioning
factors in different ways (Epifanio, Zézere, & Neves, 2014; Zézere, 2002). To account for
this, any models used must be able to represent complex, non-linear interactions
between variables.

In recent years data mining methods such as artificial neural networks (Arnone,
Francipane, Noto, Scarbaci, & La Loggia, 2014; Zare, Pourghasemi, Vafakhah, &
Pradhan, 2013), support vector machines (Kumar, Thakur, Dubey, & Shukla, 2017;
Peng et al., 2014; Pourghasemi et al., 2013), and decision trees (Pradhan, 2013; Tien
Bui, Pradhan, Lofman, & Revhaug, 2012) have been applied to the production of
LSMs. These methods are attractive as they do not require expert knowledge, are not
subjective, and generate reproducible results. Despite this, most case studies using
data mining are at small-medium size (<5000 km?) or at a single catchment area and
deal with a single type or limited number of landslide classes (Bui, Tuan, Klempe,
Pradhan, & Revhaug, 2016; Conforti, Pascale, Robustelli, & Sdao, 2014; Kavzoglu et al.,
2014; Zare et al., 2013).

This study aims to demonstrate that data mining LSM can be applied to a large,
heterogeneous area containing a number of diverse landslide typologies. Secondly, that
data mining models can be used to predict both susceptibility and type of landslide that
is likely to occur across a region. This modeling approach will address the challenge of
mapping susceptibility to multiple landslide types at a large scale. To achieve this, the
present paper proposes a two stage LSM procedure. The first is to produce a statistical
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LSM which treats all landslides as a single class, showing overall susceptibility. The
second is to classify the most probable landslide type for each grid cell in the study
area. By combining the two maps, it is possible to identify both highly susceptible areas
and attribute the area with a landslide class. This has the benefit of presenting a large
volume of information on a single map, which can be easily interpreted by planners and
decision makers.

The method proposed in this paper is a Random Forest (RF) data mining algorithm.
RF offers many appealing characteristics for classification task. As RF is a non-linear, non-
parametric algorithm, it can deal with large datasets containing both categorical and
numerical data and account for complex interactions and non-linearity between vari-
ables. Second, it can handle the case where there are more predictors than observations
and incorporate interaction between multiple predictors. Third, RF is able to handle
missing values and maintain accuracy for missing data. Furthermore, compared to other
machine learning methods, such as artificial neural network and support vector machine,
RF does not require much fine-tuning of hyper-parameters. In many cases, using default
parameter settings can achieve excellent performance. Comparing with other tree-
ensemble methods (e.g. Boosting), RF is computationally light. Therefore, RF is com-
monly used in for large-scale mapping and classification applications in ecology (Akar &
Glingor, 2015; Prasad, Iverson, & Liaw, 2006), soil science (Hengl et al., 2015; Taalab,
Corstanje, Creamer, & Whelan, 2013), and flood mapping (Feng, Liu, & Gong, 2015).

The remainder of the paper is organized as follows. First, we describe the framework and
methodology in Section 2. Then, an empirical case study of Piedmont, Italy is presented in
Section 3. Finally, conclusion and future research are demonstrated in Section 4.

2. Framework and methodology

In sum, we need to train a binary RF classifier to predict the landslide susceptibility and
train a multi-class RF classifier to infer the landslide type. Given the conditioning factor
(input features) of a certain area, we first estimate the susceptibility probability of an
area, if the probability is higher than a predefined threshold, we then predict the most
probable landslide category, as shown on Figure 1. As the RF is the model to do the
binary and multi-class prediction, we mainly describe the RF in the following subsection
and then we give a brief introduction to the dataset.

2.1. Random Forest (RF) for landslide susceptibility mapping and classification

RF is a data mining algorithm that is able to accurately classify large amounts of data
using an ensemble of decision trees (Breiman, 2001). Decision trees are predictive
models which use a set of binary rules to determine a target variable (Figure 2). The
data used to train the model is comprised of a set of predictor variables and the
target variable, which is being predicted. The purpose of the decision tree is to use
the predictor variables to partition the data into homogeneous datasets with respect
to the target variable. In the simplest case, the target variable will be a binary
classification (e.g. the presence or absence of landslides). Both target and predictor
data are present in the root node. The algorithm then tests the ability of each
predictor variable to divide the target variable into the two classes. The predictor
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-

Slope >5° Slope <5°
Elevation >  Elevation < Lithology = Lithology =
100m 100m Allothers Alluvial
No
Landslide
Landslide ' Landslide
Lithology = Lithology =

Gneissminuti Allothers

- Root Node

Slope>14 S\ope<14

Landsllde Landslide
Landsllde Landsllde

Figure 2. Example decision tree structure.

TWI>115 TwI<115 . Internal node

Terminal node



BIG EARTH DATA 163

variable which leads to the most accurate classification is selected and the process is
repeated at each of the new nodes. The splitting process continues until there are no
more splits to be made (i.e. each terminal node contains target variable data of only a
single class).

A single decision tree is a weak classifier. Typically, it has either high variance (the splits at
each node are so closely aligned to the training data that the model cannot be used to
predict new data) or high bias (the splits do not accurately represent the relationship
between predictor and target variables). RF mitigates these problems by using an ensemble
of decision trees, which strikes a balance between the two sources of error.

If the same data were used to train multiple decision trees, they would all be
identical, which defeats the object of an ensemble model. To avoid this, RF increases
the diversity of the trees by making them grow from different sub training datasets
created via bagging. Bagging is used when our goal is to reduce the variance of a
decision tree. It generates several subsets of data by randomly sampling with replace-
ment from training samples (typically two-thirds) to train multiple decision trees. The
rest of the data that is not used to train the decision tree is known as “Out-Of-Bag” (OOB)
data. RF further extends the concept of bagging. Besides using the subset of data, it also
takes the random selection of predictor variables rather than using all of them to grow
trees. The classification accuracy of each decision tree and ultimately the RF is assessed
by predicting the mean square error (MSE) of the “out-of-bag” portion of the data, then
averaging over the entire forest (known as the OOB error):

MSEoos = I’I_1 Z:]:‘I (Z,‘ - 2,~OOB)2 (M

where 299 is the mean out of bag prediction for the ith observation. RF modeling also
provides a measure of fit comparable to the R® values of the other models. This “pseudo
R*" is labeled the “percent variance explained” and is calculated using:

MSEoos
2
9

Vare, =1 — (2)

where 63 is the total variance of the dependent variable calculated with n as the divisor,
rather than n-1 (Liaw & Wiener, 2002).

The OOB data allow RF to rank predictor variables in order of importance. This is done
by measuring how much the OOB estimate error increases when data for a particular
variable is “removed” from the analysis and the other variables are left intact. This is
done on a tree-by-tree basis for the entire forest. The variables which cause the greatest
increase in OOB error when removed are deemed to be those of greatest importance.

RF needs to be defined two parameters for generating a classification model: the
number of trees in the forest (ntree) and the number of variables tested at each node
(mtry) to make the tree grow. There are no specific rules about the number of trees
required in a RF and increasing the number of trees does not automatically increase the
accuracy of the model, however, it will increase the computational burden. A rule of
thumb is that the number of trees should be tested and increased to the point where
the OOB error stabilizes. Models can be sensitive to the mtry parameter, as using a
greater number of variables at each split will increase the strength of the individual tree
but also increase the correlation between trees in the forest. Increasing correlation
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between trees typically increases the error rate in predictions, while increasing the
predictive accuracy of individual trees decreases error rate. For this reason, it is necessary
to test a number of mtry values.

RF makes predictions by running new data down every tree in the forest. The new
data is assigned a classification on the basis of majority vote. The proportion of votes
that a class receives is used to attribute a probability of class membership (Bostrom,
2007). For example, if we are using a RF made up of 100 trees and we are trying to
predict whether a new location is susceptible to landslides we take all the condition-
ing factors from that location and feed them into the RF. Based on the splitting rules
of each 100 trees, the new data will be classified as either susceptible or non-
susceptible. If trees classify the new data as susceptible and 25 classify as non-175
susceptible the point will be classified as susceptible (majority vote) and be given the
susceptible class probability of 0.75.

For LSM, the predictor variables are the conditioning factors and the target variable is
the presence or absence of landslides. At each node, a number of conditioning factors
are tested to determine which can most accurately differentiate between susceptible
and non-susceptible areas. Using the example in Figure 2, the first split is above and
below slopes of 5°. Following the right-hand branch of the tree, the next split is based
on separating alluvial lithology from all over groups. This creates terminal nodes where
all data used to train this decision tree has been split into homogenous “Landslide” and
“No Landslide” groups, based on two splitting rules.

The process of identifying the landslide types is very similar to the binary split of
“landslide” and “no landslide” as described above. The only difference is that now the
target variable (landslide class) is multiclass rather than binary. The purpose of splitting
decisions is to create homogenous groups of landslide types. Generally, as there are
multiple classes, there will need to be more splits to reach terminal nodes, meaning
trees will be bigger. New data are still predicted by a majority vote of all trees in the
forest, and the proportion of the votes received represents the probability of class
membership. One difference is that now the majority votes no longer needs to be the
overall majority. For instance, classes A, B, and C receive 40%, 30%, and 30% of the votes,
the data will be classified as a despite the fact that there is a 60% probability that it does
not belong to that class.

2.2. Training data and sampling resolution

Developing a RF model for LSM needs data to train the model and validate its predic-
tions. For a LSM, the primary requirement is data that represents both susceptible and
non-susceptible areas. Typically, susceptible data is sampled from in and around land-
slides identified by the inventory (Nefeslioglu, Gokceoglu, & Sonmez, 2008). Non-sus-
ceptible areas are taken from areas beyond a buffer zone of previous landslides (Park,
Choi, Kim, & Kim, 2013) or from areas where landslides are physically unlikely to occur
(Gomez & Kavzoglu, 2005). Inventory data and data on conditioning factors are usually
stored as GIS layers made up of grid cells of a given resolution. Once susceptible and
non-susceptible areas have been identified, sampling conditioning factors from corre-
sponding spatial locations is a straightforward task using GIS. As data mining models are
typically “black box”, meaning it is very difficult to define the relationship between
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variables, the accuracy of the models needs to be tested. Typically, the total training
dataset is split with approximately 70% of samples used to train models and the
remainder used for validation.

The physical factors known to control slope stability include slope angle, a range
of physical soil properties such as shear resistance and cohesion, hydrological prop-
erties and the influence of biomass (Vorpahl, Elsenbeer, Marker, & Schréder, 2012).
These data are generally not available at large scale; therefore, it is common to use
geomorphological attributes that act as a proxy. There are a huge number of data
which can be used as conditioning factors and there is no definitive method of
selecting which should be used. While some commonly used conditioning factors,
such as slope and lithology, are widely accepted as influential, there is debate about
the merits of others (Catani, Lagomarsino, Segoni, & Tofani, 2013). In many cases,
selection will depend on data availability, quality, and the findings of related studies.

Landslide inventories often contain other information, including a classification.
This is generally based on the volume of material involved, speed, and type of
movement, as well as the underlying geological conditions Varnes (1978). There is,
however, no single exhaustive taxonomy; they can vary both regionally and nation-
ally. The end users of the LSMs will typically be familiar with the classification system
used in their region.

It is necessary to consider the both the format and resolution at which to represent
LSMs, this decision should be focused on the end user. Typically, LSMs are used for
planning purposes, hence the map needs to be of sufficient resolution to be fit-for-
purpose, as well as being easy to interpret for non-specialists. This study will present
LSMs at a 100 m resolution grid cell format. In comparison to terrain or slope units, grid
cells are more easily aggregated to various administrative boundaries, which can aid
decision making (Trigila et al., 2013). This approach is also more straightforward when
sampling input parameters. Catani et al. (2013) found that a grid size of 50-100 provided
the most accurate LSM classification, therefore, the input data in this study 240 was dis/
aggregated to a 100 m grid.

3. Case study
3.1. Case study area

To demonstrate the efficacy of RF for LSM and classification, the method will be
applied to the case study region of Piedmont, a 25,402 km? region in northwest Italy
(Figure 2). This region is particularly appropriate as since 1950, in Italy alone the
economic cost of landslides has been more than 53,249 billion Euros. They have also
caused more than 3500 deaths in the country (Trezzini, Giannella, & Guida, 2013).
Italy has the most infrastructure (in terms of km of roads) and land (in terms of km?)
exposed to landslides within Europe, moreover, Piedmont has been identified as
being within a landslide “hotspot” (Jaedicke et al., 2014). For this reason we would
like to determine both the susceptibility to landslides and the type of landslides to
which an area is susceptible.
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3.2. Landslide inventory

The landslide inventory used in this study is SiFRAP (Sistema Informativo Frane in
Piemonte Landslide information system in Piedmont) is a dataset containing 30,439
landslides dating from the early twentieth century to 2006, mapped at a scale of
1:10,000 (Figure 3(b)) (Lanteri & Colombo, 2013). This is an update of the IFFI
(Inventario dei fenomeni franosi in Italia—Inventory of Landslide in Italy) project
(Amanti, Bertolini, & Ramasco, 2001). Of the 30,439 landslides, 236,715 have been
classified based on the type of mass movement involved (Table 1). A comprehensive
description of the classification taxonomy is available from SiFRAP (Piemonte, 2009). The
location of the landslides in the inventory are shown in Figure 3(b).

3.3. Conditioning factors

A description of some commonly used LSM conditioning factors is shown in Table 2,
along with a description of the ranges of data found in our case study region.
Landslide areas were sampled at a 100 m grid resolution, from within the bound-
aries of historic landslides within the inventory. The non-landslide data points were
also sampled on a 100 m grid, selected randomly from the within the study area,
excluding areas within 200 m of the existing landslide sites. The number of non-
landslide points was equal to the number of landslide points, give a total of 479,412,
divided into a training dataset of 335,740 samples and a test dataset 143,692

Landslides
Crashirollover
I siding rotationalitransiational
I siow dripping
I Factcripping
SHreY e N B Complex
= U 4B B ocrv
» Py - Collapsing/overtuming
L g I Widespread shallow
ey Multiple

(@) (b) 0 25 s0 100 Km

Figure 3. (a) Location of Piedmont study area within Italy. (b) Location and classification of landslide
within the study area.
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Table 1. Description of landslide classes in the SiFRAP classification.
No. Class Description

1 Crash/roll over The mass moves extremely quickly, mainly in free fall. Material will bounce, roll,
and shatter into various sized elements. There is intensive fracturing of the
displaced rock.

2 Sliding rotational/ Material moves along one or more surfaces, where the shear strength is exceeded,
translational or within a zone characterized by relatively thin intense shear deformation.
Sliding surfaces are visible and can be easily distinguished in moderately sized
landslides.
3 Slow dripping Movements are characterized by low speed involving soils that are clay-rich with

low water content. Slow dripping landslides typically occur on slopes with a
shallow gradient.

4 Fast dripping Fast movements, typically on loosely packed soil with high water content on steep
slopes. Generally triggered by heavy rainfall.

5 Complex A movement resulting from a combination of two or more other landslides types.

6 DGPV Slow, complex deformation of rock, with no appreciable continuous failure surface.

Deformation occurs slowly, by a process of differential displacement, that
develops over a significant period of time causing a long series of differently
orientated joints and planes or deformation of the rock mass concentrated long
bands localized at different depths and with different thicknesses.

7 Collapsing/ Sudden movement of large amounts of rock placed on walls or very steep slopes.
overturning areas Movement is characterized by falling and rotation. Often fallen material
accumulated at the foot of slopes.
8 Widespread shallow Movement of material of limited thickness triggered by hydrometeorological
events characterized by loose soil coverage.
9 Multiple Areas affected by one or more landslides and/or by morpho-structural elements

associated with them. These landslides are generally not dated, and often
involve entire slopes.

samples. As not all the landslides have been categorized, a subset of the 236,715
samples, divided into a training dataset of 165,698 and a validation dataset of 71,016
was used to train and test the classification model. The accuracy of the maps
produced will be assessed using a confusion matrix, as recommended by Kavzoglu
et al. (2014). For the RF model, we determined 200 trees to be sufficient to produce
stable models, echoing other experimental results (Catani et al., 2013; Lanteri &
Colombo, 2013). After testing, the optimal mtry was determined to be 2 variables
at each split. The models were generated using the “RandomForest” package (Liaw &
Wiener, 2002) in the R statistical computing language.

3.4. Results

The LSMs produced by RF are shown in Figure 4. Figure 4(a) shows a binary classifica-
tion, where the region is classified as either susceptible to landslides (black) or not
susceptible to landslides (grey). Figure 4(b) shows landslides susceptibility on a contin-
uous scale from high to low. As stated, RF can predict both class and the probability of
class membership. Figure 4(b) shows the probability of memberships to the susceptible/
landslide prone class. Across the region, susceptibility is highest in the mountainous
areas in the north, west and south of the region and lowest in the alluvial plain in the
centre and east.

Using the test dataset, the recall and precision is 88.41% and 88.66%, respectively and
the overall classification accuracy of the model is just over 88% (Table 3). This means
that over 88% of the test dataset was correctly identified as being either a landslide area
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Table 2. geomorphological input data description.

Data

Description

Digital elevation model

(DEM)

Slope

Aspect

Curvature

Profile curvature

Plan curvature

Parent material
Lithology

Land form

Topographic wetness

index (TWI)

Soil classification

Land cover

Distance from road

Distance from
river

Average annual
rainfall

Hydrogeological
complex

Elevation is commonly used in LSM as it is usually indicative of climatic and vegetation
patterns. The DEM used in this study is a 20 m resolution raster showing elevation
above sea level. Ranging from 61 to 4615 m.

Slope is the angle formed between any part of the surface of the earth and the
horizontal. The angle is a prominent controlling factor on the shear stress
experienced by earth and rock mass on a slope. This is on a 20 m grid derived from
the DEM ranging between 0° and 87°.

The aspect of each grid cell will have a bearing on the amount of rainfall and intensity of
rainfall it experiences, as well as the amount and intensity of solar radiation. Aspect is
defined as the compass direction of a slope. From 0° to 360°, flat areas are assigned —1.

Curvature can be thought of as the slope of a slope. This will affect both stress on the
material on the slope and the movement of water across the slope surface. Derived
from the DEM on a 20m grid. The values range from —510 to 192.

This is the rate at which the slope gradient changes parallel to the direction of
maximum slope. A positive value indicates the cell is part of an upwardly concave
slope. A negative value indicates that the slope is upwardly convex. In the study
areas this ranges from 295.7 to —192.3.

The slope perpendicular to the direction of maximum slope. A positive value indicates
the cell is part of a sidewardly concave slope. A negative value indicates that the
slope is sidewardly convex. In the study areas this ranges from 59.9 to 214.5.

Lithology represents the geomechanical properties of bedrock and is a controlling
factor in the structural and chemical propertied of soil. This study uses a 1 km raster
grid showing the dominant parent material, divided in 12 classes in the region (Van
Liedekerke, Jones, & Panagos, 2006).

Pennock landform classification, divided the study areas into seven classes of three-
dimensional landform elements. (Pennock, Zebarth, & De Jong, 1987). Landform has
been shown to strongly influence LSM (Schulz, 2007).

Topographic wetness index represents a hypothetical measure of the accumulation of
water flow at any point within a river basin. This can be considered to represent the
distribution of soil moisture in the region. This was derived from the DEM on a 100m
grid. Values range from 3.9 to 30.4.

Soils influence how water moves across the landscape. Some soils are more cohesive,
others more prone to erosion. This will affect the conditions which trigger landslides
and the type of landslide which occurs. World Reference Base (WRB) soil classification
on a 1 km grid, divided in 15 classes in the region (Van Liedekerke et al., 2006).

Represents vegetation and how the land is used, both of which can influence
susceptibility. We use the CORINE land cover map 2006. A 1:100,000 scale land cover
map divided into 16 land cover classes in the region, produced by interpretation of
Landsat TM and SPOT HRV satellite imagery.

Building roads can destabilize slopes, leaving them predisposed to landslides. Furthermore,
the vibrations caused by traffic can become a triggering mechanism. This was derived
from the OpenStreetMap road network map of Italy using a GIS operation to calculate
distance from a line. This produced a raster grid of 100 m resolution.

Proximity to the stream network has been shown to influence susceptibility.

Streams have the power to erode soil and apparent material (Gomez & Kavzoglu,
2005). This was derived from a river network map of Italy (available from ISPRA)
using a GIS operation to calculate distance from a line. This produced a raster grid of
100 m resolution.

Rainfall is generally considered as a triggering mechanism for landslides, however, it is
rarely included in LSM. In an study area this large, the rainfall will be spatially
variable and should therefore be considered as a predisposing factor (Catani et al.,
2013). Here the average annual rainfall on a 20 km? grid ranging from 684 to
2640 mm y~'.

A classification based on hydrogeological formations, which contain similar geological,
hydrogeological, productivity, and hydrogeochemical facies. This map is produced by
ISPRA at 1:10,000 scale, divided into 11 classes within the region.

or a non-landslide area (Figure 4(a)). Results show that the largest source of error comes
from landslide prone areas being classified as non-susceptible. This is to be expected as
many on the mountainous regions will be highly susceptible to landslide occurrence
despite the lack of previously recorded landslides in the area.
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Figure 4. Landslide susceptibility of Piedmont. (a) A binary classification (b) Probability of landslide.

Table 3. Classification accuracy of the landslide susceptibility test dataset.

Landslide susceptibility—binary Prediction
Type Landslide No landslide Total Recall Average recall
Observed Landslide 60,592 11,209 71,801 84.39% 88.41%
No landslide 5442 66,449 71,891 92.43%
Total 66,034 77,658 143,692 -
Precision 91.76% 85.57% - 88.41%
Average precision 88.66%

RF can also rank predictor variables in order of importance, based on each of their
relative contribution to the classification accuracy of the model. Figure 5 shows that
distance to rivers, TWI and rainfall are all important predictors, whereas, the various
measures of curvature are relatively ineffective predictors of the presence or absence
of landslides.

In the SiFRAP dataset, landslides have been divided into the multiple classes shown in
Table 1. Figure 6 shows a RF prediction of the dominant landslide classes distributed
across the study area. Using the test dataset, the random forest model is shown to have
an overall classification accuracy, recall, and precision of 77.51%, 60.34%, and 77.26%,
respectively. According to Table 4, among all categories, the “crash/roll over” and “fast
dripping” landslide have the lowest recall value of 18.45% and 11.41%, respectively. This
phenomenon may result from the class-imbalanced data samples, which should be
further considered in the future research. Over 75% (Table 4). The probability of
membership to each landslide class is calculated for each of the points in the testing
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Figure 5. Ranking of predictor variables used in RF susceptibility model.

(b)

(a) |:| Crash/rollover
- Slidingroational/translational
- Slowdripping
- Fastdripping
- Complex
B ocrv
- Collapsing/overturning
- Widespreadshallow

[ muttiple

0 20 40 80 Km
S T S S |

Figure 6. a) The dominant landslide class prediction. b) Areas of high landslides susceptibility
(susceptibility >0.5) where the probability of landslide class membership is over 0.5, applying this
threshold has been shown to improve overall classification accuracy to over 85% (Table 5).
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data. Each point is assigned to the class of with the highest probability, giving the results
in Table 4. This means that some points are assigned to a class that they probably do not
belong to (e.g. if a point is has a 40% probability of belonging to the collapsing/
overturning class, a 30% probability that it belongs to DGPV and a 30% probability
that it belongs to sliding Crash/rollover it will be classified as collapsing/overturning,
despite the fact the model shows that there is a 60% probability that this is incorrect). As
planners will be most interested in focusing resources in areas that are most likely to be
impacted, it is possible to combine the susceptibility and classification maps. Figure 6(b)
shows areas of high landslides susceptibility (susceptibility > 0.5) where the probability
of landslide class membership is over 0.5, applying this threshold has been shown to
improve overall classification accuracy to over 85% (Table 5).

The relative importance of the conditioning variables for landslide classification is
shown in Figure 7. Again, that distance to rivers and rainfall are important predictors, as
is aspect, while in this instance TWI is the least powerful predictor.

The spatial distribution of the relative probability of each landslide class is shown in
Figure 8. This shows the probability of class membership of each landslide type for every
grid cell in the study area. This demonstrates that some landslides, such as collapsing/
overturning and multiple (Figure 8(g, i) respectively) are strongly associated with specific
regions, whereas others such as sliding rotational/translational (Figure 8(b)) can be
expected in a much greater range of locations. Complex landslides (Figure 8(e)), which
are a combination of two or more other types of landslide have the potential to occur in
virtually all locations.

To improve the accuracy of the classification, it is possible to impose thresholds so
only points above a set probability are classified. Increasing the threshold increases the
classification accuracy (Table 5), however, this approach reduces the number of samples
that can be classified in the validation dataset (also the amount of the study area that
can be mapped by landslide class).

3.5. Discussion

The RF LSM procedure described in this paper has been shown to be a highly effective way
of predicting and susceptibility and landslide class. Visualising susceptibility and presenting
it in a way that can be easily interpreted is a key element of LSM. The rationale is that
landslide management strategies have limited resources and should therefore focus on the
locations most susceptible to landslides, they also differ depending on the type of land-
slides which occur (Guzzetti et al.,, 1999). Identifying areas that are highly susceptible to
landslides is the key issue for those planning mitigation strategies. Knowing the type of
landslide that is likely to occur in susceptible regions provides extra information that can
improve resource allocation. For ease of interpretation, we suggest a masking process
when visualizing results. Figure 6(b) shows landslide classes only for the susceptible areas
and only where the probability of class membership is above a 0.5% threshold, this has
been shown to improve overall classification accuracy to over 85% (Table 5) and will allow
decision makers to focus on highly susceptible and accurately classified areas.
Susceptibility mapping by landslide class (Figure 6(b)) and showing the distribution of
landslides types in the study area is a novel approach to LSM. It combines the ease of
interpretation provided by multiple maps for individual landslide classes with the



BIG EARTH DATA 173

Table 5. Landslide classification accuracy based on probability threshold.

Probability threshold

N (validation data)

Classification accuracy (%)
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potential to be incorporated in a generalized hazard assessment (Guzzetti et al., 1999).
This method addresses the problem of combining and visualizing the spatial likelihood
of multiple types of landslides across a large, heterogeneous region without the need for
distinct hazard evaluations. The RF algorithm allows us to predict an overall suscept-
ibility across a large, heterogeneous region that experiences a wide range of landslide
types without the need for multiple susceptibility analyses. The addition of a classifica-
tion provides more important information which can inform the strategic management
of landslide hazards.

The overall classification accuracy for the RF LSM (Figure 4) over 88%, which is
favourable compared to other studies using data-mining approaches for LSM which
are typically around 70-80% (Kavzoglu et al, 2014). The case study used is also
substantially larger (at least an order of magnitude) than many others (e.g. (Arnone
et al,, 2014; Gomez & Kavzoglu, 2005; Pourghasemi et al., 2013; Vorpahl et al,, 2012))
suggesting that RF LSM can be applied to heterogeneous landscapes at a regional or
national-scale projects.

Of the predictor variables for susceptibility, distance from rivers and TWI are most
important. These findings contradict those of Catani et al. (2013) who found that neither
TWI nor proximity to rivers were important predictors of landslides. The difference can
probably be attributed to the different landslide inventories and taxonomies, used in
different studies. Both TWI and proximity to rivers have been shown to be important
predictors of landslide susceptibility in mountainous regions (Devkota et al., 2013). This
seems logical as the majority of landslides in the region occur in mountainous areas,
which would coincide with low TWI and larger distances from rivers. This underlines the
assertion that empirical LSM models are not readily extrapolated to neighbouring
regions (Guzzetti et al., 1999). This also highlights a limitation of the data-mining
approach, although RF ranks variables in order of importance, there is no way of
knowing the process that the variables represent. Nor is there any way of determining
a definitive ranking of variables as this will depend on the location of the case study,
type of model, resolution of training data, and sampling scheme.

In terms of classification, overall, more than three quarters of the test data is classified
accurately, however, there are substantial differences between the accuracy of each
class. The accuracy, which is the percentage of the test dataset labelled a certain
landslide class in the map is really this class, is all between 70 and 84% accurate. The
producer’s accuracy, which is the percentage of a landslide class in the test data being
classified correctly, varies considerably. Only around 18% of the crass/roll over class and
11% of the fast dripping classes are correctly identified. This may be attributed to the
relative lack of training samples for each class. Many of the crash/rollover landslides have
been classified as collapsing and overturning or DGPV. This is unsurprising as they have
a similar spatial distribution (Figure 3) and are predicted as occurring in the same areas,
associated with high elevation and steep slopes (Figure 8).

onversely, both DGPV and Multiple landslides have over 90% accuracy. Both classes
are strongly associated with specific, fairly homogeneous spatial regions and have a
relatively high number of samples in the training data, making classification more
straightforward. The relative importance of predictors is shown in Figure 7. Distance
from rivers and average annual rainfall are shown as important predictors, as is aspect.
Aspect may be a strong predictor as it can be used to distinguish between classes
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associated with low relief, flat areas such as sliding rotational/translational, slow drip-
ping, fast dripping, and other classes found on the slopes. It may seem unusual that TWI
has changed from being a strong predictor of susceptibility to a weak predictor of class,
however, this may be due to the clear spatial divide between susceptible and non-
susceptible areas in the study area (Figure 4), which can be linked to low and high TWI
respectively. Within each area, there are a number of classes of landslide, here TWI may
have virtually no discriminatory power and lead to misclassification.

4. Conclusions and future research

The combination of susceptibility mapping and landslide classification using RF is a
novel method which directly addresses the challenges of large-scale LSM in a
region that experiences multiple types of landslides. This study had specifically
demonstrated that it is possible to use RF to produce highly accurate susceptibility
maps for a large heterogeneous region without the need for multiple susceptibility
assessments. Moreover, by joining classification and susceptibility predictions, it is
possible to use this method to present planners and decision makers with an LSM
that both contains a large amount of information and is easy to interpret. This
method can be used to target resources on areas that are highly susceptible to
specific landslides.

Results suggest that there is significant scope to develop a joint classification-sus-
ceptibility model. Rather than a two-stage modeling process, susceptibility is deter-
mined using a single RF model. The RF is trained to predict landslide classes, with a
further “non-susceptible” class added to the target variables. Research challenges
involved in this approach include how best to sample non-landslide areas and the
number of non-susceptible samples to use in classification.
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