
Natural Computing manuscript No.
(will be inserted by the editor)

A Pattern-Driven Solution for Designing
Multi-Objective Evolutionary Algorithms

Giovani Guizzo · Silvia R. Vergilio

Received: date / Accepted: date

Abstract Multi-Objective Evolutionary Algorithms (MOEAs) have been
widely studied in the literature, which led to the development of several frame-
works and techniques to implement them. Consequently, the reusability, scal-
ability and maintainability became fundamental concerns in the development
of such algorithms. To this end, the use of Design Patterns (DPs) can benefit,
ease and improve the design of MOEAs. DPs are reusable solutions for com-
mon design problems, which can be applied to almost any context. Despite
their advantages to decreasing coupling, increasing flexibility, and allowing an
easier design extension, DPs have been underexplored for MOEA design. In
order to contribute to this research topic, we propose a pattern-driven solution
for the design of MOEAs. The MOEA designed with our solution is compared
to another MOEA designed without it. The comparison considered: the Inte-
gration and Test Order (ITO) problem and the Traveling Salesman problem
(TSP). Obtained results show that the use of this DP-driven solution allows
the reuse of MOEA components, without decreasing the quality, in terms of
hypervolume. This means that the developer can extend the algorithms to
include other components using only object-oriented mechanisms in an easier
way, while maintaining the expected results.
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1 Introduction

Evolutionary Algorithms (EAs) (Eiben and Smith, 2003) and Multi-Objective
EAs (MOEAs) (Coello et al, 2007) are based on the theory of evolution, where
the fittest solutions reproduce more often and survive by means of natural
selection. In MOEAs, an individual is a solution from a population of solutions
being evolved. The evolution process employs different procedures, such as
fitness assignment, selection of the fittest individuals, crossover, mutation,
replacement and other components for improving the final outcome.

EAs have been widely used to solve hard computational problems of di-
verse domain fields (Eiben and Smith, 2003). This fact led to the development
of several frameworks and techniques to ease the implementation of these al-
gorithms (Nebro et al, 2015; Ochoa et al, 2012; Tsyganov and Bulychov, 2012;
Ventura et al, 2007; Fortin et al, 2012; Cahon et al, 2004). However, since
EAs have several components and a lot of parameters, the maintainability
and extensibility of the algorithms design became factors of interest. The is-
sue is how to develop frameworks that can accommodate new algorithms and
their components, without decreasing the software reusability. For example,
if a developer wants to change the selection procedure of the algorithm by
adding a new selection mechanism to his/her implementation, how can he/she
do it without recoding the whole algorithm? To answer this question, the area
known as Meta-heuristic Design Patterns (MDP) proposes solutions based on
Design Patterns (DPs) (Gamma et al, 1995) to design metaheuristics, includ-
ing EAs.

DPs (Gamma et al, 1995) are reusable solutions for common design prob-
lems that can be used to decrease the coupling and increase the cohesion
between elements. The benefits of DPs are directly related to the scalabil-
ity, maintainability and reusability of the software. Another benefit is that
these patterns are usually abstract solutions and can be adapted to almost
any object-oriented software (Gamma et al, 1995), including frameworks for
evolutionary optimization.

We found in the literature some works regarding the application of design
patterns with EAs and more particularly MOEAs (Nebro et al, 2015; Patelli
et al, 2015; Wick and Phillips, 2002; Woodward and Swan, 2014; Woodward
et al, 2014). These works show how DPs are in fact not only reusable solutions
used to increase the software flexibility, but also how they play an impor-
tant role in the robust implementation of frameworks. However, this is still an
underexplored field when compared to the design pattern literature. We ac-
knowledge that this field can benefit from the usage of design patterns. In order
to contribute to such a field, in a previous work (Guizzo and Vergilio, 2016)
we proposed a DP based solution for designing genetic operators for EAs. We
showed how Visitor (Gamma et al, 1995) is able to decouple the genetic op-
erators from the problem representations. In this preliminary work, a genetic
operator behaves like a visiting operation that operates over a visited element
(representation). The idea was to decouple the operator from the represen-
tation, and let them interchange freely without concerning about constraints
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specific to each representation. For allowing this, each operator implements a
method for each representation, complying with the respective constraints. In-
stead of letting the operator decide which method must be executed in which
representation, this Visitor structure demands that the representation object
invokes the operator method which is specific for such representation. In this
sense, the representation manages how the visiting object will act over itself.

Motivated by the successful results, now in this paper we extend our pre-
vious solution by introducing a broader one for MOEA design. While our
previous work only acknowledged the design of a single component of MOEAs
(operators and representation interaction), the extended solution is capable
of encompassing all components of a MOEA in order to improve the MOEA
design as a whole. It is important to note that it does not necessarily improve
the overall results of such algorithms, but mainly their structural quality. The
proposed solution is based on four DPs: Visitor (as done in Guizzo and Vergilio
(2016)), Bridge, Factory Method, and Builder. This solution was created and
tested in a real development scenario, when we were designing and imple-
menting a hyper-heuristic that automatically generates MOEAs for solving
the integration and test order problem (ITO) (Mariani et al, 2016).

Hyper-heuristics are defined as heuristics used to select or generate low-
level heuristics (Burke et al, 2013). They operate over the heuristic space
instead of operating on the solution space directly. Hence, the main goal of
hyper-heuristics is to find the right heuristics to be used in a given situation
rather than trying to directly solve the problem (Burke et al, 2013). This is
specially useful for developers that are not always familiar with optimization
algorithms, sometimes lack on expertise to properly configure them, or simply
do not have time for a task that may be automated by hyper-heuristics. For a
more detailed overview of the hyper-heuristic field, we recommend the paper
of Burke et al (2013).

The ITO problem is a software testing problem that consists in finding the
best unit (the smallest part of a software) order for testing and integrating
them (Assunção et al, 2014). This order can impact on the stubbing cost,
which is the cost related to the creation of stubs for emulating required units
that are not yet tested or implemented. As a consequence, a good unit ordering
can reduce the overall testing cost.

For assessing the correctness of the proposed solution, we conducted in this
paper a comparison between the MOEA designed with our DP-based solution
and another MOEA designed without it. The results of the correctness test
on two problems, ITO and the Multi-Objective Traveling Salesman Problem
(TSP) (Paquete et al, 2004), show no statistical difference between the algo-
rithms. This means that the results are statistically identical, but the MOEA
designed with the DP-based solution takes advantage of the positive conse-
quences of the DP application: i) the proposed solution enables the automatic
design of MOEAs without requiring source-code manipulation, but only us-
ing object-oriented mechanisms; ii) it allows reuse of components by different
MOEAs; and iii) the developer can extend his/her framework in a more de-
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coupled way, by only adding new concrete classes to the structure and not
changing the template of the algorithms.

This paper is organized as follows. Section 2 gives a brief background on the
used DPs. Section 3 reviews some works in the literature regarding the usage of
design patterns with metaheuristics and hyper-heuristics. Section 4 describes
the proposed solution, presenting the problem, how the solution is designed,
and its main consequences. Section 5 presents the evaluation in two scenarios:
i) the original context in which the solution was designed (hyper-heuristic to
solve the ITO problem); and ii) for solving the Multi-Objective TSP problem, a
common and well-known combinatorial optimization problem of the Artificial
Intelligence (AI) literature (Paquete et al, 2004). Finally, Section 6 concludes
the paper and discusses future work.

2 Design Patterns

In the object oriented design, the developer must address some issues, such
as how to grant reuse of artifacts, easy maintainability, good organization,
and decoupled addition and removal of software components. If not addressed
earlier in the development process, these issues may increase the final cost of
the product and affect its quality. Design Patterns (DPs) are elegant solutions
for these and other problems in the software development (Gamma et al, 1995).
DPs are defined as description of interacting objects and classes that need to
be personalized to solve a general design problem in a given context (Gamma
et al, 1995). In other words, DPs are common solutions for common design
problems, but at the same time that they provide well-defined solutions for
the problems, they also need to be adapted for the particular context in which
they are applied.

DPs are usually extracted from existing software and described into cat-
alogs, such as the Gang of Four (GoF) catalog (Gamma et al, 1995). A DP
names, abstracts, and identifies the main characteristics of the problem in
which it is applied, in order to make it useful for almost any design. A DP is
composed by four main elements: i) Name – the name given to describe the
DP; ii) Problem – describes what are the common problems in which the DP
is applicable; iii) Solution – describes the solution for the problem, which con-
tains the elements that compose the pattern, their responsibilities, interaction
and relationships; and iv) Consequences – the advantages, disadvantages and
results of the pattern application.

The main benefits of using DPs are the improvement of some important
software attributes, such as reusability, maintainability, understandability, ex-
tensibility, scalability, and others. This improvement can be achieved by care-
fully selecting the most appropriate DP for solving a design problem. In other
words, a misapplied DP can cause the deterioration of the software design,
hence the evaluation of which DP is the most appropriate requires some ef-
fort, but not as much as it would require the maintenance of a software with
a bad solution.
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In this paper we use four GoF DPs, which are described next according to
Gamma et al (1995).

Visitor – Represents an operation to be executed over the elements of an
object structure. The operations are decoupled from the visited objects, in a
way that the visited objects decide how to receive the operation instead of
letting the visitor operation decide how to visit an object. In this sense, the
visited object invokes the most appropriate method of the operation object.
When adding new operations, the existing visited objects will not have their
classes changed, since the only structure that has to be adapted is of the new
operation. Even though the visitor operation has methods that are somewhat
coupled to the visited objects, this coupling is weaker than having a visitor
operation checking each visited object to decide what is the best way to use
it.

Bridge – Detaches the object abstraction from its implementation in two (or
more) separated hierarchies. While the abstraction defines how something
must be executed, the implementation defines what must be executed. Each
concrete implementor class must implement a single variation of a functional-
ity, while each refined abstraction must implement a variation of how to use
each implementor. When a client object invokes an operation using the ab-
straction class, this operation is delegated to the aggregated implementor. By
decoupling both, they can be separately and transparently exchanged for the
client object.

Factory Method – Defines an interface for the creation of new objects and
let the concrete classes to define how to create such objects. This pattern is
specially useful when several objects of a given “family” can be instantiated in
a given point, but the decision of which object to create is made at runtime.
Hence, a different creation result can be obtained by changing an instantiation
parameter or the whole concrete factory object.

Builder – Detaches the representation of a complex object from its creation
process, such that the same construction process can be used to generate dif-
ferent objects. In other words, the Builder pattern defines a class to gradually
build a complex object, part by part, but abstracting the whole construction
process. In this sense, by changing one part during the building process, a
different object is obtained and the differences are not explicitly visible to the
objects that use it.

3 Related Work

Some authors (Lones, 2014; Mannava and Ramesh, 2012) point out that DPs
are a useful tool for designing and implementing metaheuristics and evolu-
tionary algorithms. One of the main motivations is that DPs standardize how
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algorithms are defined and expressed, while also provide ways of code reuse
and wisdom sharing between the evolutionary computation community. Some
frameworks have already used DPs in their implementation (Alba et al, 2007;
Nebro et al, 2015; Tsyganov and Bulychov, 2012; Ventura et al, 2007) and the
consequences are beneficial. Therefore, the documentation of DPs can be very
advantageous for metaheuristic and framework developers seeking for reusable
solutions. Next, we present works that document DPs and are mainly used to
improve the design of metaheuristics and hyper-heuristics.

Raidl (2014) reviews eight kinds of DPs for developing hybrid metaheuris-
tics. Some patterns are used to help the developer to decide which compo-
nent to use. Other ones are directly used to design better metaheuristics.
Fernandez-Marquez et al (2013) present a catalog of bio-inspired mechanisms
for self-organizing systems. Wick and Phillips (2002) do a comparison between
Strategy and Bridge (Gamma et al, 1995) for developing a Genetic Algorithm
(GA). The paper aims at giving experience with DPs to students by means
of implementing GAs, since, as the authors stated, implementing GAs can be
very interesting and enjoyable.

Besides DPs for conventional metaheuristics, some works, most related to
ours, use DPs for improving the design of hyper-heuristics. Patelli et al (2015)
extracted two anti-patterns (i.e. common bad solutions for a problem) used
in hybrid metaheuristics and propose two new DPs called Simple Black Box
(Two-B) and Utility-based Black Box (Three-B). Woodward et al (2014) treat
hyper-heuristics as a metaheuristic based on the Composite pattern (Gamma
et al, 1995). By using a composite structure, a hyper-heuristic can take meta-
heuristics, search operators or even other hyper-heuristics as low-level heuris-
tics and apply the search on any of them. Woodward and Swan (2014) use the
Template Method pattern (Gamma et al, 1995) to represent metaheuristics
and hyper-heuristics, similarly to the template of EAs as described in Krasno-
gor (2012). Therefore, hyper-heuristics can easily generate and configure new
implementations for these abstract methods. This is useful when the user does
not want to change the structure of the algorithm, but rather its behavior at
runtime.

Most of the above-mentioned works are published in the “Metaheuristic
Design Patterns” workshop (MetaDeeP) held at the Genetic and Evolutionary
Computation Conference (GECCO) in 2014 and 2015. The goal of this work-
shop was to provide an open forum for researchers to contribute to this field
by demonstrating the usefulness and advantages of such patterns in designing
metaheuristics. Some other works on metaheuristics but non-related to EAs
can be found in the proceedings of such workshop1.

The solution proposed in this paper differs from other works in the litera-
ture (Nebro et al, 2015; Tsyganov and Bulychov, 2012; Woodward and Swan,
2014; Cahon et al, 2004), including our previous work (Guizzo and Vergilio,
2016), mainly on the algorithm structure. Usually a MOEA structure is defined

1 More info at http://www.sigevo.org/gecco-2014/workshops.html#mdp and http://
www.sigevo.org/gecco-2015/workshops.html#wmdp.

http://www.sigevo.org/gecco-2014/workshops.html#mdp
http://www.sigevo.org/gecco-2015/workshops.html#wmdp
http://www.sigevo.org/gecco-2015/workshops.html#wmdp
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as a Template Method, where an abstract evolution procedure is hard-coded
and any concrete class must implement all abstract methods. Thus, an algo-
rithmic skeleton is defined which calls each abstract method in a predefined
sequence. On the other hand, in this paper we propose the detachment of ab-
stractions and implementations using the Bridge pattern, where each one can
be independently exchanged. Therefore, instead of hard-coding an algorithmic
structure and forcing the developer to recode common concrete components,
our design technique lets each of these be freely interchanged and reused.

4 Proposed Solution

This section presents a solution for designing MOEAs, based on DPs (Gamma
et al, 1995). The idea is to use this solution to decrease the coupling between
the MOEA components. The next subsections present the problem, the solu-
tion and its main consequences.

4.1 The Problem

EAs are optimization algorithms based on the theory of evolution (Eiben and
Smith, 2003). An individual (solution) is represented by a chromosome, which
in turn is recombined with other chromosomes for the generation of children.
The offspring undergo mutations for diversity, but only the fittest ones survive
for the next generations and, consequently, reproduce to spread their genes.
Therefore, several procedures such as replacement, crossover, mutation, pop-
ulation initialization and other ones must be chosen by the software developer
and configured during the algorithm design phase. This design task is even
more tiresome when MOEAs are needed.

Besides all these components and their parameters, MOEAs usually take
into account the Pareto dominance concept for fitness evaluation (Coello et al,
2007). A solution dominates another when it is better or equal in each one of
the objectives, and better in at least one. Otherwise, these solutions are called
non-dominated and cannot be directly compared. Even so, a MOEA must
compare them to decide about, for example, which solution should survive to
the next generation. For this end, MOEAs use complex fitness assignment pro-
cedures that take into account the convergence and the diversity of solutions
in the objective space. Usually, a MOEA or an EA has an abstract structure
similar to the one presented in Algorithm 1.

What differs from an algorithm to another is the implementation of each
procedure, such as the evaluation, selection, crossover, replacement, and oth-
ers. Actually, there are several components and parameters for each step as de-
scribed by Eiben and Smith (2003); Coello et al (2007). The choice of these de-
tails is a hard task and can be considered an optimization problem itself (Eiben
and Smit, 2011), however it is still something that directly impacts the per-
formance of the algorithms. When designing such algorithms or designing a
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Algorithm 1: Common EA/MOEA template (Mariani et al, 2016)
1 begin
2 population← Initialize population;
3 Evaluate(population);
4 Archive(population);
5 while stop criteria is not achieved do
6 mating ← Selection(population);
7 offspring ← Crossover(mating);
8 offspring ← Mutation(offspring);
9 Evaluate(offspring);

10 population← Replacement(offspring, population);
11 Archive(population)

12 return population;

framework for working with them, the software developer must take that into
consideration, or else the faced problem might not be solved in the most ef-
ficient way. We can observe a great interest in reusable and robust design
methods for such algorithms. For instance, among the most used optimization
algorithms to solve software engineering problems, EAs and MOEAs stand out
as some of the most preferred (Harman et al, 2012).

An example of a framework that aids the development of MOEAs is the
jMetal framework (Nebro et al, 2015). This framework has several algorithms
available for execution, such as Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al, 2002) and Strength Pareto Evolutionary Algorithm
2 (SPEA2) (Zitzler et al, 2001). In its latest version, the jMetal framework
employs the Template Method Design Pattern (Gamma et al, 1995) to create
a method template for evolutionary algorithms in an abstract class, such as
the one presented in Algorithm 1. The Template Method is already cataloged
as a Metaheuristic Design Pattern by Woodward and Swan (2014), similarly
as it is implemented in the jMetal framework.

However, even though Template Method presents a way to define how al-
gorithms should behave, it is not entirely dynamic and reusable. This pattern
defines a structure for the execution of the algorithms, which means that only
the abstract execution steps are reused and each component of an algorithm is
probably defined and implemented in the body of the concrete classes. There-
fore, if the idea is to change the behavior of one method during execution,
the whole algorithm object must be exchanged. Another problem is the du-
plication of common code for similar algorithms. One example is the random
population initialization for the NSGA-II and SPEA2 algorithms. Following
the Template Method pattern, the developer would be tempted to copy and
paste the same code in the population initialization methods of both algo-
rithms. This can lead to fault replication and a greater maintenance effort.
This problem becomes even more impacting when there are no DPs involved.
In the worst case scenario, each algorithm is hard-coded as a single function
in a separated class and without a common interface. In such a scenario, not
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(a) EA has components (b) EA uses components

Fig. 1 EA views

even the object exchange is possible, and tasks like refactoring may become
error-prone and exhaustive for the software developer.

4.2 The Solution

As mentioned by Gamma et al (1995), it is preferable to use object delegation
instead of class extension. This is due to the greater flexibility of being able
to change each aggregated object during execution. In the context of meta-
heuristics, it would be more useful to have an algorithm aggregating its func-
tionalities/components instead of having them fixed at code time. The MOEA
Framework2 does something similar to this, but each algorithm has its own
iteration/generation method, even though most MOEAs perform essentially
the same steps at each generation.

We advocate that the problems presented in the previous section occur
mostly due to our (not wrong) view of an EA structure. For instance, Fig. 1(a)
shows a common representation of an EA structure. It is reasonable to think
that an EA “has” procedures/components such as replacement, archiving, mat-
ing and fitness assignment, but arguably a more reusable interpretation of an
EA structure would be the one depicted in Fig. 1(b), where the components
are independent, and the EA merely uses their functionality in a certain order
(sometimes the same as other EAs).

In our view, the ideal scenario would be the one of the latter figure, where
an algorithm can change its components in a decoupled way like the MOEA
Framework enables, while also reusing a skeleton method for its execution like
the jMetal framework enables. This can bring more flexibility to the MOEA
design and can increase the reuse of components.

The solution described in this section was motivated by the good outcomes
of our previous work (Guizzo and Vergilio, 2016) and by a new hyper-heuristic

2 http://moeaframework.org/

http://moeaframework.org/
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proposed by Mariani et al (2016). In Guizzo and Vergilio (2016), we only ad-
dressed the design of genetic operators, but now the problem faced demanded
a different design encompassing several components of an EA. The proposed
and extended solution is based on four DPs: i) Bridge – for defining a decou-
pled structure of components and MOEA execution; ii) Factory Method – for
instantiating components; iii) Builder – for building MOEAs; and iv) Visitor
– for decoupling the solution representation from the genetic operators, as
proposed in Guizzo and Vergilio (2016). Following the EA view presented in
Fig. 1(b), Fig. 2 presents the main structure (conceptual view) of our solution
and how these patterns interact.

Fig. 2 Proposed solution (conceptual view)

The “Client” element is any object/entity that executes a MOEA using
its abstract class “AbstractEvolutionaryAlgorithm”. It can be another class, a
module, a whole system, or any other element that can use a MOEA. “Ab-
stractEvolutionaryAlgorithm” has several methods for invoking each of its
components. The components on the other hand are abstracted by interfaces.
While the “AbstractEvolutionaryAlgorithm” only uses the operations of the
components, the “DefaultEvolutionaryAlgorithm” implements a method that
assembles the operations together to execute a complete evolutionary proce-
dure. For building such an algorithm, the “Client” class uses a builder object
(“MOEABuilder”), which in turn uses some factory objects to instantiate the
components. In this sense, the client does not instantiate directly each compo-
nent in order to avoid coupling. The next subsections present in more detail
this structure and what patterns are involved in each core substructure.

4.2.1 Bridge – Main Structure

The main structure of an EA/MOEA can be designed using the Bridge pat-
tern (Gamma et al, 1995). Fig. 3 presents an excerpt of the proposed solution
with the Bridge Pattern. The figure only shows two examples of implementa-
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tion hierarchies (initialization and replacement), but, as seen in Fig. 2, there
can be as many as needed.

Fig. 3 Evolutionary Algorithm Bridge Structure

The abstract class “AbstractEvolutionaryAlgorithm” contains a set of steps
performed by almost any EA, such as: i) “createInitialPopulation()” that cre-
ates the first population; ii) “evaluatePopulation()” that performs the fitness
evaluation of a given set of solutions; and iii) “replacement()” that decides
from the parents and children sets which individuals must survive for the next
generation. Instead of coding each method directly in the concrete classes,
“AbstractEvolutionaryAlgorithm” delegates the responsibility for the proper
implementor. When a request for the population initialization comes, the ag-
gregated object “initPopImpl” is called and this responsibility is given to it.
Because the abstraction uses an interface, both initialization strategies “Ran-
dom” and “Parallel” can be exchanged in runtime by changing the aggregated
object. The same occurs to the Replacement object.

As depicted in Fig. 3, the concrete class “DefaultEvolutionaryAlgorithm”
implements the abstract method “run()”. This method calls the methods of
the superclass to execute each step in the sequence defined in Algorithm 1.
If a different variation is desired, the developer may only need to create a
new class implementing a different “run()” method. This is not the case for
conventional MOEAs, such as NSGA-II and SPEA2. Both algorithms have
a default MOEA behavior and they only differ in the implementor objects.
Therefore, NSGA-II and SPEA2 should both extend “DefaultEvolutionaryAl-
gorithm” and only instantiate different implementors. For instance, NSGA-II
uses a Ranking (convergence attribute) and Diversity replacement, while the
SPEA2 uses a Generational one due to its archiving strategy. Actually, in our
implementation of this solution, the only methods coded in the NSGA-II and
SPEA2 classes are their constructors. For implementing a new MOEA, the
developer can extend the “DefaultEvolutionaryAlgorithm” class and change
which implementors are instantiated in the constructor of the new algorithm
class. Everything else is reused.
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This solution has seven different implementation hierarchies, one for each
kind of MOEA component: i) initialization – the population initialization pro-
cedure; ii) progress tracking – how the progress is computed, e.g., fitness eval-
uations, generations, time, etc.; iii) stop criterion – the type of stop criterion
used to stop the evolutionary process, e.g., maximum time, maximum gen-
erations, maximum generations without fitness improvement, etc.; iv) parent
selection – how the parents are selected, e.g., selecting only from the pop-
ulation, selecting only from the archive, or selecting from both archive and
population; v) reproduction type – if the reproduction generates two children
each mating, one child each mating, or if it is a steady state reproduction
(one solution per generation); vi) replacement – how the replacement is done;
and vii) archiving – how the archiving is done, if any. So, with this Bridge
structure, the developer can instantiate an algorithm with any combination of
components and without recoding a single component. The greatest effort is
the first and only implementation of a new component.

Besides this first level Bridge structure for the MOEA components, there
are some components that use other variable components as part of their
execution. In this sense, each component can have a Bridge structure itself.
For instance, Fig. 4 depicts the structure of the selection procedure as designed
in this work.

Fig. 4 Selection procedure using Bridge

As done for the initialization and replacement procedures, the selection
procedure is also abstracted by an implementation interface: “SelectionImple-
mentation”. This interface has only one method with the intent of selecting
parents from either the main population or the archive, or even both. The im-
plementor classes of “SelectionImplementation” define from where this is done.
But the actual selection is performed by a selection operator that implements
the “SelectionOperator” interface, which receives only one list of solutions and
returns the selected parents from this list according to its own selection proce-
dure. The main idea is to decouple the “SelectionImplementation” object from
the “SelectionOperator” object, letting both interchange freely. In the example
of Fig. 4, we can compose nine different selection procedures without creat-



A Pattern-Driven Solution for Designing MOEAs 13

ing more classes or adapting code. Even though it is not a traditional Bridge
structure (with abstract classes), it can still be considered a Bridge application
since it defines abstraction hierarchies for the “how” (“SelectionImplementa-
tion”) and “what” (“SelectionOperator”) elements.

The same structure is used to decouple the diversity and convergence as-
sessment operations from the selection operators, replacement procedure, and
archiving procedure. Each of these components may use one or more of such
assessment operations to evaluate the quality of solutions in a multi-objective
problem and make a decision based on this quality. For example, the replace-
ment procedure usually favors the survival of the best solutions, whereas the
selection operator will try to select the best parents for mating. By decoupling
the assessment operations, we can easily reuse them in these three components.

4.2.2 Visitor – Genetic Operators

We first introduced the usage of the Visitor pattern (Gamma et al, 1995) for
designing genetic operators in Guizzo and Vergilio (2016), as shown in Fig. 5.

Fig. 5 Visitor for genetic operators. Adapted from Guizzo and Vergilio (2016)

Similarly to the other components, the “ReproductionImplementation” in-
terface abstracts the reproduction procedure of the EAs. In the example there
are three main reproduction procedures: i) “OneChild” – generates one child
per mating; ii) “TwoChildren” – generates two children per mating; and iii)
“SteadyState” – generates only one child per generation. Each of these repro-
duction strategies can use different crossover and mutation operators, which
in turn operate over a solution object. The problem is that usually the oper-
ators are coupled to the solution representation but they still can be applied
to different representations, i.e., the operators must comply with the restric-
tions and internal characteristics of the compatible representations to ensure
a reliable solution generation. For example, the “Single Point Crossover” cuts
the parent chromosomes in a single point and generates children interchanging
the chromosome segments. When used in a bit array type of problem this is
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straightforward, but when applied to a permutation problem some intrinsic
characteristics must be addressed: i) genes cannot repeat in the child; and ii)
the original gene ordering of the parents should be maintained as much as
possible to avoid losing genetic load. Even though these details are different
from one representation to another, the main procedure of the operator is the
same: cut and interchange. Hence, this interaction must be carefully designed
to prevent code replication. One may be tempted to create one class for each
operator/representation combination, and thus to copy common code excerpts
into each class. This is not a good practice, since it can cause the project to lose
extensibility, reusability, and replicate bugs when the copied code is bugged
in the first place.

By using the Visitor DP, we force the solution to decide how it must be
manipulated instead of letting the operator decide it. In order to do this, first
the evolutionary algorithm object calls the aggregated “reproductionImpl” ob-
ject by its “accept” method. If the desired operation is the crossover, then the
“acceptCrossover” method of the solution is called, or “acceptMutation” if the
algorithm needs to apply a mutation operation. These methods receive as input
the operator of the algorithm and any other solution involved in the mating.
The solution object then invokes the crossover or mutation method based on
the representation. For instance, if the representation is permutation, then the
solution object uses the operator given as parameter to invoke the “doPermu-
tationCrossover” or “doPermutationMutation” method, while giving itself as
input parameter to the operator. If the representation used is a bit array, then
the methods to be invoked by the “acceptCrossover” and “acceptMutation”
methods are “doBitArrayCrossover” and “doBitArrayMutation”. By changing
the solution object, we transparently change the methods of the operators
which are called to comply with the constraints of the representations.

The operators implement one method for each compatible representation.
If a new representation is added to this design, then a new method for each
operator is created to address the new constraints and to be invoked by the
representation object during the search process. The main advantage is that
the core functionality of the operators can be reused by these methods. Fur-
thermore, the operators become less coupled to the representations, since they
do not need to identify which representation is used and how to comply with
the constraints.

4.2.3 Builder and Factory Method – MOEA Instantiation

In order to decrease the coupling between client objects and the MOEA objects
during instantiation, we used the Builder and Factory Method DPs to abstract
this process. Fig. 6 presents a communication diagram depicting how this
instantiation is done.

For the instantiation of the implementor objects (components), we use the
Factory Method DP. For each type of component, a factory class was created to
instantiate the concrete objects. “InitializationFactory” and “ReplacementFac-
tory” are both examples of these classes. In this structure, instead of directly
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Fig. 6 Communication diagram for the interaction between the client and the pattern-
driven solution

calling the constructor methods of the components, the objects that need this
instantiation (“MOEABuilder”) call the factory methods giving as parameter
the name of the components or any other information about which concrete
component must be instantiated.

However, because MOEAs are complex objects that aggregate several com-
ponents, they can be built in a more robust way. For this, we applied the
Builder DP. The builder class “MOEABuilder” constructs a “DefaultEvolu-
tionaryAlgorithm” object by parts. If the developer wants to instantiate a
custom MOEA, then he/she must call each method of the builder object giv-
ing as parameter the name of the components and then call its “build” method,
just like “Client” does. The builder uses the factory classes to instantiate each
part (component) of the MOEA, and at the end, after every component was
instantiated, the build method assembles everything together and returns a
fully-functional MOEA.

4.3 The Consequences

We designed this pattern-driven solution when we faced the necessity to reuse
components and abstractions, while also enabling them to independently ex-
change. According to our experience, the main consequences of using this DP
solution are described next.

– Code Reuse – Some algorithms may have common components, e.g., the
random initialization of NSGA-II and SPEA2. In this case, both algorithms
can instantiate the “Random” class and use this instantiation. When a
software bug must be fixed in a common functionality such as this one,
only the concrete class of the component must be changed;

– Easy Introduction of New Functionalities – Suppose that the developer
needs to implement a new replacement component or a new operator.
He/she only needs to create a class for this component and instantiate
it for the algorithms that use it;

– Easy Change of Algorithm Steps – One common functionality of EAs is
the fixed sequence of steps: i) selection; ii) reproduction; iii) evaluation;
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iv) replacement; and v) archiving. If the developer wants, for example, to
perform two replacements, then this can be done by creating an alternate
concrete class for the abstraction class. The only required change is the
addition of another replacement call in a new class, and by changing a dif-
ferent concrete class, existing classes (such as NSGA-II) will not have their
functionality affected, as it happens when a template class is shared by all
algorithms. Because the abstraction is detached from the implementation
hierarchy, the implementation classes can be used in this new kind of EA.
The difficulty in designing and maintaining such algorithms is specially
prevailing when the developer is not familiar with software engineering de-
sign techniques, e.g., a beginner Artificial Intelligence researcher with little
experience on software engineering;

– Runtime Exchange of Algorithm Behavior – If the developer must change
the functionality of an algorithm at runtime, then the desired functional-
ity must be instantiated and replaced in the abstraction class by simply
exchanging objects;

– Decreased Coupling – It is common for EAs to have a certain budget for
their execution. This budget can be a number of maximum fitness evalua-
tions, a number of generations or even a certain amount of execution time.
Instead of creating similar algorithms by changing only the stop condition
method, the developer can vary the strategy by changing the object for
this component. Thus, the algorithm is not coupled to its components;

– Increased Cohesion – Because the algorithm abstraction classes are only
responsible for calling the functionalities and do not implement any com-
ponent functionality, each implementor does a single operation and the
algorithm only needs to handle how it is executed.

We also observed some negative consequences of the proposed solution.

– Decrease Understandability – The proposed solution has a structure which
is not clear at first sight due to the great number of classes and interfaces
to compose an algorithm. This can hinder the implementation of the first
components of the MOEA;

– Greater Amount of Code – The amount of code is greater when compared
to a straightforward implementation of an EA. This is mainly due to the
definition of several interfaces and abstract classes that delegate method
calls or simply declare methods;

– Empty Methods – Some representation specific methods might be left
empty in the operators body, because an operator class must implement
all representation specific methods and not be compatible with them all.
This can difficult the debug activity.

5 Case Studies

We created the solution during the implementation of a hyper-heuristic named
GEMOITO (Grammatical Evolution for the Multi-Objective Integration and
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Test Order problem) (Mariani et al, 2016). GEMOITO automatically generates
MOEAs for solving the ITO problem. In this paper we conducted a brief
test to evaluate the correctness of the proposed solution. For this end, we
compared the quality of the results obtained by an algorithm generated by
GEMOITO with a traditional implementation of the same algorithm with the
same parameters. We executed the algorithms on two problems: i) ITO; and ii)
Multi-Objective TSP. We added the experimentation for the latter one to show
that the proposed solution is not exclusive for Software Engineering problems,
and that it can be used by AI researchers for solving common AI problems as
well. This section first introduces GEMOITO, how it was implemented with
the proposed solution and then the obtained results.

5.1 GEMOITO

GEMOITO (Mariani et al, 2016) is an off-line hyper-heuristic that uses Gram-
matical Evolution (GE) (Ryan et al, 1998) to automatically generate MOEAs
for solving the Integration and Test Order problem (ITO). The ITO prob-
lem (Assunção et al, 2014) consists in finding an order to integrate and test
the units of a system, in a way that the stubbing cost is minimized. A stub is
constructed to emulate the behavior of a unit A that is not available during the
test of another unit B, such that B is dependent on A. The stub is discarded
when A is integrated and tested. In this sense, the development of unneces-
sary stubs can increase the testing cost. This is a hard permutation problem
and may have several objectives, such as the number of attributes, number of
methods, number of parameters and number of return types to be emulated.
More details about the problem can be found in Assunção et al (2014).

During the training phase, GEMOITO uses the GE algorithm to evolve a
set of MOEAs. GE is a type of Genetic Programming (GP) algorithm (Koza,
1992) that uses a context-free grammar to build semantically correct programs
and works like an EA by evolving such programs. Because a MOEA is also a
program, GE can be used as hyper-heuristic for constructing them. GEMOITO
uses a grammar containing several common components and uses these com-
ponents to automatically build different MOEAs. In this build process, the
components and their parameters are selected from the available grammar op-
tions using the genes of the GE solution (integer array). For instance, a gene
is used to decide which initialization component will be used among several
ones available in the grammar. Once built, the MOEAs are then executed and
their result are evaluated using the hypervolume indicator (Zitzler et al, 2003).
The hypervolume indicator measures the area/volume of the objective space
that is dominated by a given Pareto front (Zitzler et al, 2003). At the end, the
best MOEA is given as result and it can be used to solve other instances of
the integration and test order problem. GEMOITO obtained the best results
when compared to the conventional algorithms NSGA-II and SPEA2, and to
another hyper-heuristic proposed for the same problem (Guizzo et al, 2015).
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5.2 GEMOITO and the Proposed Pattern-Driven Solution

GEMOITO was implemented with our pattern-driven solution, and used as a
case study for evaluation. The idea is that such a hyper-heuristic can generate
MOEAs using solely object-oriented mechanisms and without code manipula-
tion. Because the proposed solution is flexible enough, it can be used in this
context without much adaptation. For this adaptation, we considered that
GEMOITO plays the role of a “Client” element.

For instance, Fig. 6 shows the interaction between GEMOITO (“Client”)
and the proposed solution during the instantiation of a MOEA. GEMOITO
selects options from its grammar that represent the names of the components
and can be given as parameter to the factory classes. Following the example
of Fig. 6, GEMOITO first chooses the initialization component and gives its
name to the MOEA builder object “MOEABuilder” through the “setInitializa-
tionComponent” method. Then, it chooses a replacement component from the
grammar and gives it to the MOEA builder using the “setReplacementCom-
ponent” method. This is repeated for every component and parameter being
selected. At the end, GEMOITO invokes the “build” method and the builder
object starts invoking every factory method to build the components. Then,
the builder object assembles the built components into an instance of “De-
faultEvolutionaryAlgorithm” and returns this MOEA to GEMOITO, which
in turn executes and evaluates the quality of the built MOEA through the
“AbstractEvolutionaryAlgorithm” class. These are the exact same steps that a
developer would have taken to instantiate a MOEA with our solution if he/she
was the client in this situation.

Before executing GEMOITO, we had to implement once each component
used in the grammar. Then, GEMOITO was able to instantiate the MOEAs
reusing the components according to the solutions and grammar manipulated
by the GE. All of this without recoding a single component or manipulating
code. If the developer wants to extend the grammar to allow the instantia-
tion of other different components, then he/she needs to adapt the grammar,
code only once each new component and define an instantiation statement in
the respective Factory Method class of the component. Using a less extensible
structure, such as the Template Method one, this functionality extension would
rely on other mechanisms that would be harder to implement and maintain.
For example, GEMOITO would have to assemble pieces of code together into
a single class and compile the source-code, thus the developer would have to
concern about the manipulation of source-code that can be troublesome for al-
gorithms such as these. One kind of problem faced in that case are compilation
errors due to duplicate variables.

A possible improvement for GEMOITO is to allow the generation of dif-
ferent “run” methods for the MOEAs. With the provided solution, this can be
done independently of the components and parameters selection procedure.
Because Bridge detaches the abstraction from the implementation, GEMOITO
can generate a different order of component calls inside the “run” method of
the abstraction class “DefaultEvolutionaryAlgorithm”. For doing so, other DPs
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or even architectural patterns (Garlan and Shaw, 1994) should be investigated.
A possibility is the usage of the Pipes and Filters architectural pattern, which
states that the output of an element is the input of another. In this case, a
structure of component calls could be assembled where the output of each
component is the input of another. Moreover, GEMOITO can be applied to
other problems. To adapt this hyper-heuristic, the developer must change the
grammar to only allow operators that comply with the representation of this
new problem. Because GEMOITO and the proposed pattern-driven solution
are decoupled from the problem domain, both can be reused without further
effort.

5.3 Correctness Test

In order to evaluate if the generated MOEAs, designed with our pattern-driven
solution, work as intended, we conducted a correctness test guided by the
following research question: “Does the proposed pattern-driven solution impact
on the overall quality of the results?”. For answering this question, we executed
GEMOITO using the proposed solution to generate a version of NSGA-II and
compared this generated NSGA-II with the NSGA-II implemented in jMetal
5.0 (Nebro et al, 2015) using the exact same parameters. As mentioned before,
we tested both algorithms on two different problems: ITO and Multi-Objective
TSP. Despite having different structures, we expect to obtain the same results
for both algorithms, since the proposed solution only presents a different and
more flexible way of designing the same MOEAs, focusing solely on improving
the structural quality of the algorithms and not their results.

GEMOITO evolved just some components and parameters of NSGA-II in
order to maintain its key features, such as dominance depth and crowding
distance replacement, binary tournament selection, and others. The evolved
components are: population initialization, crossover operator and mutation
operator. The resulting NSGA-II has the following configuration: i) random
initialization; ii) PMX Crossover with 100% probability; iii) Swap Mutation
with 1% probability; and iv) population size of 50. The same configuration was
given to the NSGA-II implementation of the jMetal framework (Nebro et al,
2015), a well known framework for MOEAs. Both algorithms were executed
for 60,000 fitness evaluations in 30 independent runs.

We tested the algorithms in seven instances of the ITO problem (Assunção
et al, 2014) and in 12 instances of the Multi-Objective TSP problem (Pa-
quete et al, 2004)3. The results were evaluated using the hypervolume indi-
cator (Zitzler et al, 2003) to measure the quality of the generated fronts, and
the Kruskal-Wallis (Corder and Foreman, 2009) statistical test with 95% of
significance. Kruskal-Wallis is a non-parametric statistical test used to com-
pare two or more groups of values (Corder and Foreman, 2009), in order to

3 The benchmarks for the Multi-Objective TSP were obtained at https://eden.dei.uc.
pt/~paquete/tsp/.

https://eden.dei.uc.pt/~paquete/tsp/
https://eden.dei.uc.pt/~paquete/tsp/
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assess if there is any statistical difference between the groups. The hypervol-
ume was computed using as reference set the Pareto set containing all the
non-dominated solutions found by both algorithms. The objectives were nor-
malized accordingly. These results are presented in Tables 1 and 2 for the ITO
and Multi-Objective TSP problems respectively. The first columns show the
name of the instances used in this case study. The second columns show the
results for the NSGA-II implementation generated by GEMOITO; the third
columns show the results for the NSGA-II implementation coded in the jMetal
framework; and the fourth columns show if there is statistical difference (6=)
or not (=).

Table 1 Average hypervolume values by algorithm implementation for the ITO problem

Instance GEMOITO NSGA-II jMetal NSGA-II Kruskal-Wallis

MyBatis 0.705 0.678 =
AJHsqldb 0.515 0.521 =
AJHotDraw 0.405 0.410 =

BCEL 0.680 0.683 =
JHotDraw 0.401 0.348 =

HealthWatcher 0.832 0.890 =
TollSystems 0.676 0.765 =

JBoss 0.817 0.799 =

Table 2 Average hypervolume values by algorithm implementation for the Multi-Objective
TSP problem

Instance GEMOITO NSGA-II jMetal NSGA-II Kruskal-Wallis

kroAB100 0.523 0.551 =
kroAB150 0.483 0.534 =
kroAB200 0.439 0.503 =
kroAC100 0.555 0.598 =
kroAD100 0.604 0.595 =
kroAE100 0.540 0.546 =
kroBC100 0.604 0.592 =
kroBD100 0.568 0.599 =
kroBE100 0.553 0.575 =
kroCD100 0.538 0.534 =
kroCE100 0.585 0.576 =
kroDE100 0.532 0.556 =

For all instances of both problems, the results were statistically equivalent,
regarding hypervolume. In fact, although omitted in this paper, the obtained
fronts overlap almost entirely. As seen with these results, the overall quality
of the results obtained by the generated algorithm does not differ from the
same algorithm designed using another implementation. Therefore, we can
conclude that the proposed pattern-driven solution does not present any sig-
nificant quality loss or gain (as expected) in terms of hypervolume for the
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problems tested. In the end, we were able to improve the structural quality of
our MOEA design using this DP-based solution, without affecting the quality
of the results. Moreover, with this solution, it was easier to extend GEMOITO
to support new concrete components.

6 Concluding Remarks

In this paper, we present a pattern-driven solution for the design of MOEAs. In
this solution we use the Bridge design pattern to define a decoupled structure
between the algorithm abstraction and its execution components. The opera-
tors and representations classes are designed using the Visitor DP in order to
allow a better code reuse and to decrease their coupling. We also implemented
the Builder and Factory Method patterns to aid the instantiation of compo-
nents and MOEAs in an easier way. As a consequence, we obtained a more
extensible and flexible design.

The solution was created for the implementation of the hyper-heuristic
GEMOITO, which automatically generates MOEAs to solve the integration
and test order problem. The solution allows an easy extension of the hyper-
heuristic to include new components and to generate new kinds of MOEAs.
We performed a correctness test to asses if there is any significant difference
between the results obtained by an algorithm designed with the proposed so-
lution and the results obtained by the same algorithm implemented in the
jMetal framework without the proposed solution. We tested in two different
problems: the ITO and Multi-Objective TSP problems. As this correctness test
shows, there is no statistical difference between the results of both algorithms
in terms of hypervolume. In this sense, the pattern-driven version of the algo-
rithm performed similarly to the unchanged version of the algorithm in terms
of hypervolume, but the former carries all the advantages of a pattern-driven
structure.

As future work we intend to implement other DPs to improve other parts
of the MOEA design, such as to decouple the problem and operators from
the chromosome representation, and to evaluate the solution for other kinds
of problems.
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