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ABSTRACT

This project investigates process options for the production of antibody fragments 

from Escherichia coli and quantifies the effects of processing decisions on the 

integration of a complete bioprocess sequence.

Fab’ antibody fragments were produced by E. coli fermentation at scales of up to 

45OL. Antibody expression was directed to the periplasmic space, however during 

initial fermentations over 50% of the Fab’ leaked into the extracellular broth over the 

course of the induction period. Alterations to the fermentation were made to allow 

greater control of product location, and with the modified protocol 80-90% of the 

product was consistently retained within the periplasm. This fermentation strategy 

formed the basis for future downstream purification studies.

A novel method for the recovery of periplasmic proteins has been characterised and 

modelled at scales from 65mL to 100L. 85% recovery of periplasmic Fab’ was 

achieved following resuspension of cells in a Tris-EDTA extraction buffer at 60°C. 

Operation at high temperature also resulted in purification of the process stream by 

degradation of both contaminating E. coli proteins and incomplete or partially 

degraded Fab’ fragments.

Clarification of the process stream following periplasmic extraction was compared 

using a novel tubular bowl and an intermittent discharge disc-stack centrifuge. 

Operating at 95% biomass removal, 94% Fab’ was recovered using the tubular bowl, 

compared to 73% with the disk-stack centrifuge. The improved recovery obtained 

with the tubular bowl was shown to be due directly to the greater level of liquid 

recovery. However lower throughputs were required for equivalent clarification when 

using this machine.

The optical biosensor has been assessed as a technique for the monitoring of Fab’ in 

real time. The biosensor gave comparable Fab’ accumulation profiles to ELISA 

during fermentation. During chromatographic purification, the sensor provided an
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accurate indication of Fab’ breakthrough during column loading and correctly 

identified product containing fractions during column elution.

The thesis concludes with a series of mass balance studies which compare the 

relative efficiencies of traditional purification processes and more novel process 

alternatives conducted at pilot scale. The results show that novel techniques such as 

whole broth extraction (performing the periplasmic extraction process on whole 

fermentation broth) and expanded bed adsorption offer potentially viable process 

alternatives, however the operational problems and reduced reliability compared to 

more conventional routes means further adaptation or optimisation is required before 

such techniques will be selected over conventional processing strategies.
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1. INTRODUCTION

1.1 Antibody engineering

1.1.1 Project significance

Recent years have seen a rapid increase in the scientific and commercial interest in 

antibodies and antibody-based molecules. Currently over 30% of all biological 

proteins undergoing clinical trials are recombinant antibodies or antibody fragments 

(Hudson, 1998). Encouraging results have been obtained from phase 3 trials and 

several recombinant antibodies have recently received FDA (Food and Drug 

Administration) approval for therapeutic use.

The high affinity and specificity of antibodies for the target antigen has been 

exploited in a wide variety of therapeutic, diagnostic and industrial applications 

ranging from the treatment of inflammation and autoimmune disease to the detection 

and control of environmental pollution. Furthermore, the small size of engineered 

antibody fragments makes these molecules particularly attractive for medical 

applications such as imaging and cancer therapy.

The increasing commercial demand for antibody-based molecules and in particular 

the large dose requirements for the treatment of chronic illnesses necessitates the 

development of processes which allow efficient, high volume production and 

purification at low cost. Microbial expression systems provide a more economical 

means of production than the traditional mammalian cell systems based on 

hybridoma technology. Advances in antibody engineering techniques and elucidation 

of the key requirements for antibody design and efficient expression have allowed the 

development of low cost, high yielding production processes based on Escherichia 

coli fermentation systems.
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1.1.2 Structure of antibodies and antibody fragments

1.1.2.1 Structure of whole antibodies

Whole antibody molecules consist of a Y-shaped tetramer of polypeptides composed 

of two heavy and two light chains (Figure 1.1.1). Both the heavy and light chains are 

divided into structurally discrete regions termed domains, with each light chain 

consisting of one variable domain (V l) and one constant domain (C l) and each heavy 

chain containing one variable domain (V h) and three constant domains (C h I , C h2  

and C h3). The sequence variability within each variable domain is concentrated in 

three hypervariable loops. These regions form the antigen binding site of the 

molecule and are therefore referred to as complementary determining regions 

(CDRs). The remainder of the variable domain is termed the framework region. 

Antibody molecules are stabilised by both intra and inter chain disulphide bonds, 

with the number and arrangement of such bonds being determined by the 

immunoglobulin class and specificity of the antibody. Interchain disulphide bonds 

form between the two heavy chains in an area between ChI and Ch2 called the hinge 

region. Flexibility in this region permits variation in the distance between the two 

antigen binding sites allowing them to operate independently. Glycosylation of 

antibodies frequently occurs in the constant domains of the heavy chain, with 

glycosylation patterns also determined by the immunoglobulin class or subclass. 

Ordinarily glycosylation has no influence on the antigen-binding properties of the 

antibody, however lack of glycosylation can affect some of the antibody’s effector 

functions (Nose and Wigzell, 1983; Leatherbarrow et al., 1985).

1.1.2.2 Structure of antibody fragments

A variety of antibody fragments have been designed, the majority of which are based 

on either the Fv or the Fab fragment (Figure 1.1.1). The Fv fragment is a non- 

covalently associated heterodimer of heavy and light chain variable domains (V h and 

V l) and is the smallest antibody fragment that still contains the complete antigen
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binding site. Fv fragments have been reported to have the same binding properties as 

the Fab fragment (Inbar et al., 1972) or whole antibody (Skerra and Pluckthun, 

1988). However they are quite unstable and have a tendency to dissociate into Vh and 

VLupon dilution (Glockshuber et al., 1990). The stability of these fragments can be 

increased by covalently linking the two variable domains and with this aim single 

chain Fv fragments and disulphide stabilised Fv fragments have been designed.

N-termini

Fv F ragm en t' H 2

' H3 I

C-terminal

scFv
F rag m en ts

M  Fc Region 

IZH Fab Region

Figure 1.1.1 Schematic representation o f an antibody and derived antibody 
fragments. Adapted from J. Harrison (PhD Thesis, 1996).

Single chain Fv antibody fragments (scFv) consist of the Vh domain and the Vl 

domain connected by a short peptide linker. Both orientations of linker (the C- 

terminus of Vh connected to the N-terminus of Vl and the C-terminus of Vl 

connected to the N-terminus of Vh) have been constructed and both arrangements 

give rise to fragments with antigen binding activity. Ideally the linker should be 

sufficiently long to span the distance between the two domains and flexible to allow 

V h-Vl association. In addition the linker must not obstruct the antigen binding site or 

reduce antigen binding affinity. A number of linker polypeptides have been designed.
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The most commonly used are 15 residues in length and consist primarily of glycine 

and serine residues for flexibility, with charged residues such as glutamine and lysine 

interspersed for flexibility (Raag and Whitlow, 1995). Although many scFvs have 

good binding activities, many show a reduced binding affinity when compared to the 

Fab fragment (Bird and Walker, 1991). This could be due to interference of the 

peptide linker with antigen binding or alternatively the linker may distort or not 

sufficiently stabilise the Fv structure. ScFvs also have a tendency to form multimers 

that are unstable and aggregate (Raag and Whitlow, 1995).

Disulphide-stabilised Fv fragments (dsFv) are molecules in which the V h-V l 

heterodimer is stabilised by an interchain disulphide bond. The bond can be placed in 

either the complementary determining regions (CDRs) or between framework 

residues. DsFvs are generally more stable than their scFv analogues, however both 

increases and decreases in dsFv binding affinities have been observed when 

compared to scFvs (Reiter et al., 1996).

A Fab fragment contains the entire light chain (V l +  C l) plus the variable and first 

constant domain of the heavy chain (V h + C hI , also referred to as the Fd region of 

the heavy chain). Interchain disulphide bonds increase the stability of the Fab 

compared to Fvs, and Fab fragments have been documented as having the same 

antigen binding activity as the whole antibody (Shibui et al., 1993). Fab’ fragments 

are Fab fragments with the heavy chain extended to include one or more hinge region 

cysteine residues.

A number of techniques have been developed for the conjugation of Fab or scFv 

molecules into dimers or higher multimers to increase their functional affinity 

(avidity). Di-Fabs (F(ab’)2) have been created by linking two Fab’ arms with a 

disulphide bond (Carter et al., 1992a) or thioether bridge (Rodrigues et al., 1993), or 

by constrcting a linear F(ab’ )2  molecule comprising tandem repeats of the heavy 

chain Fd fragment (Vh-Ch1-Vh-Ch1) (Zapata et al., 1995). The F(ab’ )2  variants all 

showed increased avidity compared to individual Fab or Fab’ fragments. The 

thioether linked F(ab’ )2  and linear F(ab’ )2  also showed improved stability over the 

disulphide linked F(ab’)2 .
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A reduction in the length of the scFv linker from 15 residues to 5 residues restricts 

the formation of a functional Fv molecule and instead promotes combination of the V 

domains of two scFv molecules to form a bivalent dimer, called a diabody. Further 

reduction of the linker length to less than three residues prevents diabody formation, 

instead directing the association of three scFv molecules into a trimer (triabody) with 

three functional antigen binding sites. Again, increasing the number of binding sites 

has been shown to improve functional affinity (Kortt et al., 1997).

Finally, a variety of fragments based on the Fab and scFv have been designed and 

engineered for clinical application. Theses include miniantibodies (scFv-CH3 

fusions), dimeric miniantibodies (Pack et al., 1993) and bispecific antibodies which 

consist of two antibodies or antibody fragments with different specificities linked 

together (Zhu et al., 1996).

1.1.3 Commercial applications of engineered antibodies

The potential medical and diagnostic applications of engineered antibody fragments 

are extensive and have been reviewed by Carter and Merchant (1997) and Hudson 

(1998). Antibody fragments have been fused to a range of molecules including 

radiolabels and toxins for cancer imaging and therapy, enzymes for prodrug therapy, 

viruses for gene therapy and liposomes for the delivery of drugs, toxins and DNA. In 

addition antibody fragments are used in a wide range of in vitro immunoassay assays 

for clinical diagnosis.

Radiolabelled diabodies, dimeric minibodies and dimerised Fab have all been used 

for in vivo cancer imaging and show improved tumour targeting compared to 

monomeric scFv, Fab and parent Ig. The dimeric antibody fragments show improved 

serum residence times due to higher functional affinity (avidity) for the target antigen 

compared to monovalent fragments. In addition the smaller size of the antibody 

fragments allows more effective tumour penetration compared to whole Igs 

(reviewed in Hudson, 1999).
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Bispecific antibodies which combine both antibody and effector function are being 

developed for cancer therapy (Segal et al., 1999). In one example a bispecific scFv 

dimer was used to recruit cytotoxic T cells to kill tumour cells in vitro (Zhu et al., 

1996). A bispecific diabody was also used to cross-link colon cancer cells to serum 

IgG, resulting in the recruitment of effector functions to the target site (Holliger et 

al., 1997). Bispecific antibodies also have numerous potential applications in 

diagnostic applications.

Immunotoxins and immunoconjugates, which direct drugs to the site of action, have 

been developed by recombinant or chemical fusion of whole antibodies or antibody 

fragments to cytotoxic drugs, proteins and peptides (reviewed in Carter and 

Merchant, 1997; Kreitman, 1999; Trail and Bianchi, 1999). However the toxicity and 

immunogenicity of such drugs has hampered their development. Human enzymes 

such as RNase are being investigated as potentially less immunogenic toxins 

(Holliger and Hoogenboom, 1998).

Antibody dependent enzyme-prodrug therapy (ADEPT) is a further technique under 

development designed to target toxins to the site of action. ADEPT utilises an 

antibody-enzyme fusion that specifically activates a prodrug into cytotoxic agent at 

the cell target site. ADEPT has the advantage of amplification, as the target enzyme 

can produce many molecules of the active drug within the tumour. However the 

technique again requires the development of non-immunogenic drug/ antibody- 

enzyme combinations (Chester and Hawkes, 1995; Bagshawe et al., 1999).

Liposomes loaded with drugs or DNA can also be targeted to desired sites in vivo by 

attachment of specific antibodies or antibody fragments to the liposome surface to 

produce immunoliposomes. Immunoliposomes targeted against breast cancer cells 

and loaded with a cytotoxic drug were shown to be markedly and specifically toxic 

against target cells in vitro and were able to deliver the toxin to tumours in an in vivo 

mouse model (Park et al., 1995).

The rapidly developing biotechnology industry has provided further application for 

antibody fragments. Fv and scFv fragments can be immobilised to porous supports 

allowing purification of the target antigen by affinity chromatography (Berry and
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Davies, 1992). Antibodies and antibody fragments can also be immobilised on 

biosensors for the real-time monitoring of product during fermentation and 

purification processes (discussed further in section 1.4.1.3 and Chapter 7). Finally, 

antibody based technologies may be exploited for the detection and management of 

environmental pollution, reviewed by Harris (1999).

1.2 Methods for the production of antibody fragments

1.2.1 Production of whole antibodies and antibody fragments

1.2.1.1 Antibody fragments by proteolytic digestion

Antibody fragments can be produced by proteolytic digestion of whole antibodies. 

Fab fragments result from proteolytic cleavage of whole antibodies using papain 

(Porter, 1959). Cleavage by pepsin at the C-terminal side of the hinge region of a 

complete antibody results in the (Fab’ )2  fragment (Petermann and Pappenheimer, 

1941). Fv fragments can also be produced by digestion of Fab using pepsin (Inbar et 

al., 1972). Production of antibody fragments by proteolytic digestion however will 

usually give a heterogeneous mixture due to non-specific cleavage and differences in 

the susceptibility of antibodies to protease action.

1.2.1.2 Production of monoclonal antibodies by mammalian cell culture

The development of hybridoma technology (Kohler and Milstein, 1975) has provided 

a general procedure for the production of monoclonal antibodies of defined 

specificity. Monoclonal antibodies have been produced from hybridomas in serum 

free fed-batch culture, with titres of 1-2 g L'1 being reported (Bibila and Robinson, 

1995). Hybridoma cells have also been grown in several different types of perfusion 

systems including hollow fibre reactors (Altshuler et al., 1986) and

microencapsulated systems (Tyler, 1990). Perfusion cultures offer the advantages of 

higher volumetric productivity compared to fed batch culture and facilitated 

purification because the product is separated from the culture medium. However,
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batch or fed batch cultures are simpler to operate, allow greater flexibility and 

generally have shorter process development and validation times.

In addition to monoclonal antibody production by hybridoma cells, recombinant gene 

technology has been used to develop stable cell lines expressing chimeric or 

humanised antibodies and antibody fragments. Expression of Fv fragments 

(Reichmann et al., 1988), scFv fragments (Dorai et al., 1994) and Fab-enzyme fusion 

proteins (Neuberger et al., 1984) has been achieved. The major disadvantage of using 

mammalian cell expression systems for the synthesis of antibody fragments is the 

high production costs. A significantly more economical route involves the use of 

bacterial expression systems.

1.2.1.3 E. coli production of antibody fragments

The production of antibody fragments in E. coli offers a number of advantages over 

production by mammalian cell culture. E. coli is well characterised at the molecular 

level, with well-established techniques for genetic manipulation. The introduction of 

foreign genes can be achieved relatively easily, with proteins being expressed to high 

titres at specific locations within the cell. In addition the fast growth of E. coli to high 

cell density and its comparatively simple fermentation using inexpensive media and 

readily available fermentation equipment make the large-scale production of antibody 

fragments relatively straightforward. The production of antibody fragments and other 

recombinant proteins is well documented in E. coli, where expression of Fvs, Fabs, 

associated fragments and various antibody based molecules has been achieved 

successfully (reviewed by Better and Horwitz, 1989; Pluckthun and Skerra, 1989; 

Pluckthun, 1991).
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1.2.2 Expression strategies for E. coli

1.2.2.1 Direct cytoplasmic expression

Initial attempts to produce antibody fragments in E. coli involved direct expression 

into the cytoplasm. Differing yields have been reported for different antibody chains, 

fragments and constructs, and appear to depend on the design of the translation 

initiation region, the proteolytic stability of the fragment and the host strain 

(Pluckthun, 1991). High expression levels are required to overcome degradation by 

E. coli cytoplasmic proteases and generally result in accumulation of the product as 

insoluble, inactive inclusion bodies.

Production of recombinant antibody fragments as cytoplasmic inclusion bodies is 

widely reported (Boss et al., 1984; Cabilly et al., 1984; Burks and Iverson, 1995), 

however this technique suffers the disadvantage of requiring an efficient product 

solubilisation and refolding process. Although successful refolding strategies have 

been designed, antibody recovery by this method remains inefficient (Buchner and 

Rudolf, 1991).

A further disadvantage of cytoplasmic expression is that polypeptide chains produced 

in the cytoplasm often have an initiation methionine or other additional amino acids 

at the N-terminus (Buchner and Rudolf, 1991) which may affect antibody function.

Cabilly (1989) reported that a soluble, functional Fab fragment could be produced in 

the E. coli cytoplasm using low temperature (20-25°C) cultures. However the levels 

of functional Fab obtained were very low (0.1 mg L'1 culture) and insoluble material 

was also present.

Higher expression levels have been achieved more recently by Martineau et al., 

(1998), who reported the accumulation of a correctly folded, functional scFv 

fragment to titres of 3.1 g L"1 in the cytoplasm of E. coli. The scFv was produced by 

random mutation of the ‘parent’ anti-beta-galactosidase scFv, which aggregated
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during cytoplasmic expression. The work illustrates that with suitable screening 

techniques it is possible to select antibody fragments that will fold correctly in the 

cytoplasm and accumulate to high yields.

1.2.2.2 Secreted fusion proteins

Antibody domains can also be fused to secreted proteins to allow accumulation in the 

periplasm or extracellular medium. Fusion of the Fc binding domain of 

Staphylococcus aureus protein A to the N-terminus of antibody domains results in 

secretion of the fusion protein to the periplasm (Gandecha et al., 1992). Partial lysis 

of the outer membrane releases the fusion protein to the extracellular medium. 

Purification can then be achieved relatively easily using IgG-affinity 

chromatography.

Antibody V domains have also been fused to the C- or N- terminus of the periplasmic 

maltose binding protein (MalE) and expressed in E. coli (Bregegere et al., 1994). The 

fusion proteins accumulated in the bacterial periplasm and were purified by affinity 

chromatography on cross-linked amylose, exploiting the binding properties of MalE.

1.2.2.3 Functional periplasmic expression

In an attempt to reproduce in E. coli the folding and assembly pathway of antibodies 

in eukaryotic cells a system was developed which allowed expression of both 

antibody chains in the same E. coli cell and secretion of both chains to the 

periplasmic space (Skerra and Pluckthun, 1988). This system assumes that the 

transport of proteins to the periplasm of E. coli is functionally equivalent to protein 

transport to the lumen of the endoplasmic reticulum in a eukaryotic cell.

Skerra and Pluckthun identified the following steps as being critical for the correct 

assembly of antibody chains into functional fragments.

1. Synthesis of approximately stoichiometric amounts of both chains. This is 

achieved by designing operons of both chains under control of the same promoter.
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2. Transport of both precursor proteins to the periplasmic space. This is achieved by 

precise fusion of signal sequences directing protein transport to the periplasm to the 

N-terminus of each antibody chain.

3. Correct processing of both signal sequences, resulting in the same N-termini as in 

the original antibody molecule. The precise fusion of the signal sequence to the 

antibody molecule is necessary but not always sufficient for this to occur. Hence 

cleavage to produce the correct N-terminus must be confirmed experimentally.

4. In the periplasm, the two chains must fold to globular and soluble domains, 

intramolecular disulphide bonds must form and the two chains must assemble into 

the heterodimer with simultaneous oxidation of any intermolecular disulphide bonds.

This secretory system has a number of advantages over other expression systems. 

Firstly, the antibody fragments are produced in an assembled, functional form and 

hence there is no requirement for complex renaturation and refolding processes in 

vitro. Secondly, there are fewer proteases present in the periplasm compared to the 

cytoplasm and the folded globular domains with intrachain disulphide bonds are 

more resistant to protease attack. Thus the problems of proteolytic degradation found 

with cytoplasmic expression are greatly diminished. The correct in vivo assembly of 

the fragments also allows their purification directly by exploiting their antigen 

binding affinities using antigen affinity chromatography. Finally, from a process 

viewpoint, secretion to the periplasm is preferable over secretion to the medium 

because the specific release of periplasmic contents will result in lower volumes to be 

processed and potentially simpler purification protocols.

Potential problems associated with periplasmic expression include leakage of 

periplasmic proteins to the culture (Shibui and Nagahari, 1992; Harrison et al., 1997; 

Pluckthun and Skerra, 1989) and the lysis of E. coli cells after long periods of 

antibody production (Somerville et al., 1994). Such phenomena do not appear to be 

related to type of fragment being expressed (Fab, Fv or scFv), or the choice of signal 

sequence, however the host strain, plasmid and growth conditions (medium

29



composition, induction time and temperature) do appear to have an effect (Pluckthun 

and Skerra, 1989; Kipriyanov et al., 1997).

Following the initial development of a periplasmic expression system by Skerra and 

Pluckthun, a wide variety of antibody fragments and antibody fusion proteins have 

been successfully produced by secretion to the periplasm of E. coli.

1.2.2.4 Secretion to the extracellular media

Secretion of a functional Fab to the extracellular media has also been reported by 

Better and co-workers (1988). Coding sequences for the heavy and light chain genes 

were placed in a single operon and the N-terminus of each chain was fused to the 

signal sequence of the bacterial pelB gene (pectate lyase) from Erwinea carotova. 

Pectate lyase is expressed at high levels in the periplasmic space of E. coli, however 

Fab fragments were released to the extracellular medium by an as yet unknown 

mechanism. 90% of the functional Fab was reported to be located in the culture 

medium rather than in the periplasmic space, however only very low levels of Fab 

were obtained (2 mg L*1).

1.2.2.5 External cell surface expression

Successful expression of antibody fragments by fusion to outer membrane 

lipoproteins has also been reported. ScFv fragments have been expressed as a fusion 

to lipoprotein and ompA, resulting in 50 000-100 000 copies per cell (Francisco et 

al., 1993). ScFvs have also been fused to the amino terminus of the peptidoglycan- 

associated lipoprotein (PAL) to direct cell surface expression (Fuchs et al., 1991). 

Cleavage of the fusion proteins to release pure antibody fragments is required if such 

expression systems are to be used as a method of producing antibody fragments.
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1.2.3 Fermentation strategies

1.2.3.1 Batch and fed-batch cultures

The large-scale production of foreign proteins in E. coli is influenced by a number of 

factors including strain selection, batch/fed-batch fermentation, temperature, 

composition of growth medium, the time and duration of induction and the nature of 

the protein being expressed. A range of antibody fragments have been produced in E. 

coli by fermentation and the use of both batch and high cell density fed-batch 

cultures has been investigated.

Batch fermentations generally result in low biomass concentrations and the titres of 

antibody fragments reported from such fermentations have varied from 40 mg L '1 

(Berry et al., 1994) up to 450 mg L'1 (King et al, 1993). Fed-batch fermentations 

have been used to increase cell density and hence also titres. Carter and co-workers 

(1992a) achieved titres of 1-2 g L '1 of functional cell-associated protein in a 10L 

fermenter using a fed batch protocol. A mineral salts media supplemented with 

digested casein and controlled carbon source feeding were used and gave a final cell 

density of 120 to 150 O D 5 5 0 .  Tight control of expression prior to induction was found 

to be crucial to achieving high cell densities and thus high expression titres. 

Conditions were optimised for high titres of functional cell associated Fab’ and only 

low levels of Fab’ (<100 mg L '1) were found in the culture media.

A high cell density-fed batch fermentation of E. coli was also used by Horn et al.,

(1996) to produce functional dimeric miniantibodies. Titres of 3 g L'1 were achieved 

using an optimised expression vector and high cell-density fermentation under non­

limited growth conditions, with levels of biomass reaching 40 g L'1 by the end of the 

fermentation. No periplasmic leakage or cell lysis was observed during the 

fermentation.
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For both batch and fed-batch fermentations good fermentation development is 

required to minimise potential problems such as substrate inhibition, limited oxygen 

transfer capacity and the formation of growth-inhibitory by-products.

Production of acetate is a common problem with E. coli cultures growing in the 

presence of excess glucose. A high concentration of acetate (above 5 g L '1 at pH 7) 

reduces growth rate, maximum attainable cell density and hence also product yield 

(Han et al., 1992; Lee, 1996). Acetate formation depends on the strain, the medium 

and the specific growth rate and is generally greater in fed batch cultures than in 

batch cultures due to the extended culture period (Lee, 1996). One strategy for 

reducing acetate formation involves controlling the specific growth rate by limiting 

essential nutrients such as carbon and nitrogen (Korz et al., 1995; Yoon et al., 1993; 

Lee et al., 1989). Alternatively carbon sources which do not directly produce acetate 

such as glycerol may be used (Holms, 1986). Lowering the temperature of the culture 

from 37°C to 26-30°C can also be used to reduce nutrient uptake and growth rate, 

hence also reducing cellular oxygen demand, the formation of toxic byproducts and 

generation of heat. Lowering culture temperature has the additional advantage of 

increasing the titres of soluble product for some recombinant proteins (Cabilly, 1989; 

Takagi eta l., 1988).

1.2.3.2 Development of growth media

The media selected for fermentations can affect both the yield of product and its 

location. Both complex and defined media have been used for antibody 

fermentations. Defined media are generally used to obtain high cell densities in fed 

batch culture as the nutrient concentrations are known and can be controlled during 

the fermentation (Pack et al., 1993; Horn et al., 1996). Complex media are more 

commonly used in batch fermentation and generally support higher specific growth 

rates (Shibui and Nagahari, 1992; Berry et al., 1994). However nutrients in complex 

media can vary in composition and quality and hence fermentations are less 

reproducible.
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The composition of the growth media during the induction period can have an effect 

on the expression of recombinant proteins. Overexpression of a protein often imposes 

a metabolic drain on the cell’s energy, carbon and amino acid stores. This may result 

in reduced cell growth, increased plamsid instability and further physiological 

changes that reduce product yields. Provision of additional amino acids by 

supplementing the medium with casamino acids, peptone or yeast extract can 

significantly increase foreign protein expression and stability (Donovan et al., 1996).

1.2.3.3 Induction strategies using the lac promoter

The E. coli lac promoter is one of the most commonly used promoters for regulating 

the expression of recombinant genes in bacteria as it is well understood and has been 

extensively characterised (Donovan et al., 1996). A number of stronger promoters 

based on the lac system have been developed. These include the lacUV5 promoter 

which contains a mutation in the lac consensus sequence that increases promoter 

strength (Reznikoff and Abelson, 1980), and the tac promoter, a hybrid of the 

tryptophan and lac promoters, which is reportedly 5-10 times stronger than the 

lacUV5 system (Amann et al., 1983).

The lac and associated promoters can be induced using isopropyl p-D-thiogalactoside 

(IPTG) or lactose. The tac promoter has the advantage of being lactose inducible 

while not being subject to catabolite repression (Donovan et al., 1996). IPTG is the 

more commonly used inducer because it is not metabolised by the cell, hence the 

levels of IPTG in the growth media remain constant after induction and the effects of 

altering the IPTG concentration on foreign protein expression can be easily assessed. 

The high cost of IPTG however may limit its use in large-scale processes. In addition 

IPTG may be toxic to humans and consequently its presence as a contaminant in the 

final purified protein destined for therapeutic use is undesirable. Lactose is much 

cheaper than IPTG, however because it is metabolised by the cell, optimising 

induction conditions for maximum foreign protein expression is a much more 

complex procedure.
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The induction process is a critical stage in the production of foreign proteins in E. 

coli. Inducer concentration, temperature, point of induction and duration of the 

induction phase can all influence the titres of recombinant protein obtained.

The majority of work that assesses the effect of induction conditions on yields of 

recombinant proteins from the lac and associated promoters uses IPTG as the 

inducer. A wide range of IPTG concentrations have been reported (0.005 to 5 

mmolL'1), however lmmol IPTG L'1 is most commonly used (Donovan et al., 1996). 

Shibui and Nagahari (1992) investigated the influence of IPTG concentration on 

secretion of a functional Fab in E. coli, and found that reducing the IPTG 

concentration from 1 mmol IPTG L'1 to 0.01-0.1 mmolL'1 resulted in a 2-10-fold 

increase in the yield of secreted Fab.

Shibui and Nagahari (1992) also investigated the effect of induction temperature on 

Fab secretion. Yields of Fab were significantly increased by growing cultures at 30°C 

instead of 37°C. The formation of inclusion bodies is also less prevalent at lower 

temperatures. For example, Cabilly (1989) reported a 10-fold increase in yield of 

soluble cytoplasmic Fab fragments when cultures were grown and induced at 21°C 

instead of 37°C.

It is likely that reduced inducer concentration and lower temperatures enhance 

functional protein formation by reducing rates at which the protein is formed. Lower 

expression rates reduce the concentration of the unfolded intermediate in the cell, 

which allows the polypeptide chains to interact via the correct folding pathways 

rather than those leading to aggregation.

The use of lactose as an inducer has also been assessed in a small number of studies. 

Lactose has been shown to be as effective as IPTG for inducing recombinant calf 

prochymosin and tyrosine phenol lyase using the tac promoter (Foor et al., 1993; 

Kapralek et al., 1991). For the expression of calf prochymosin induction of a batch 

culture with lactose produced greater yields than induction with 1 mmol IPTG L '1. 

High levels of product accumulated during late log and stationary phases with lactose
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induction whereas recombinant protein was produced during the log phase of batch 

growth with IPTG.

A delayed response to induction with lactose was also observed in the production of 

hoof and mouth disease viral protein 1 under the control of the T7 phage 

promoter/polymerase system controlled by the lac promoter (Neubauer and 

Hofmann, 1994). For this system the optimal time for lactose induction was found to 

be just before the glucose was depleted from the medium in late log phase; the 

addition of lactose one hour later in the stationary phase produced poor yields of the 

target protein.

1.2.4 Effect of protein engineering on antibody fragment expression

The order in which the variable domains of scFv fragments are transcribed can effect 

expression titres (Tsumoto et al., 1994). In studies examining the effect of domain 

order on expression levels of an anti-lysozyme scFv, VL-linker-VH was found to be 

more highly expressed than VH-linker-VL.

Similarly during the E. coli expression of Fab’ antibody fragments, placing the light 

chain gene upstream of the heavy chain gene in a dicistronic operon enhanced both 

cell viability and the efficiency of antibody secretion (Weir and Bailey, 1997)

The level of secreted recombinant antibodies in E. coli is also influenced by the 

primary sequence of the antibody fragment (Knappik and Pluckthun, 1995; Forsberg 

et al., 1997). Forsberg and co-workers studied the effect of specific framework 

residue substitutions on expression and location of a Fab-fusion protein in E. coli. A 

fifteen-fold increase in the level of product in the growth medium was achieved using 

only five light chain substitutions. In addition, the replacement of four residues on 

the heavy chain reduced cell lysis during the fermentation, thereby increasing 

retention of the product within the periplasmic space. It has been suggested that the 

major limiting step in the secretion of recombinant antibodies in E. coli is the 

periplasmic folding process. It is possible that the alteration of specific framework 

residues improves titres by improving the folding properties and solubility of the

35



antibody fragment and reducing the tendency for aggregation. Thus the molecular 

engineering of framework residues may provide a general method for increasing the 

expression titres of antibody fragments in E. coli and controlling product location.

1.2.5 Alternative host organisms for antibody fragment expression

A number of alternative host organisms are available for the expression of functional 

antibodies and antibody fragments. Examples include the bacteria Bacillus subtilis, 

which has been used for the expression of scFv fragments (Wong et al., 1995; Wu et 

al., 1998), and the yeast strains Saccharomyces cerevisiae and Pichia pastoris, which 

have been used for the expression of Fab and scFv fragments.

Better and Horwitz (1993) compared Saccharomyces cerevisiae with E. coli for the 

extracellular expression of Fab, Fab’ and F(ab’ )2  in 10L scale fermentations. The 

yeast system offered the advantages of constitutive expression and relatively few 

proteins in the culture supernatant other than the Fab’ product, allowing more 

straightforward purification. However antibody yields from the yeast fermentation 

were found to be on average three-fold lower than yields obtained using E. coli. More 

recently Saccharomyces cerevisiae has been used for the expression of scFv 

fragments in shake flask culture, with titres of 20 mg L'1 active scFv achieved by a 

combination of expression level tuning and over-expression of folding assistants 

(Shusta^fl/., 1998).

The methylotrophic yeast Pichia pastoris also provides a useful system for the high 

level expression of recombinant proteins (Fischer et al., 1999). Pichia combines the 

advantages of a eukaryotic protein synthesis pathway with established techniques for 

genetic manipulation, an inducible expression system and a relatively straightforward 

fermentation utilising simple, inexpensive growth media. An additional advantage 

over E. coli as an expression host is the fact that yeast is generally recognised as a 

‘safe’ organsim free of pyrogens and infectious viruses. A recombinant strain of 

Pichia pastoris has recently been developed, which secretes biologically active scFv 

into the culture supernatant at level of 1.2 g L"1 (Freyre et al., 2000).
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Insect cells offer an alternative to mammalian production systems for the expression 

of whole antibodies as they are capable of performing the majority of the 

cotranslational and post-translational processing carried out by other eukaryotic cells. 

Additional advantages include less complex growth medium, lower growth 

temperature, relatively easy scale-up and less expensive maintenance. Recent 

advances in the development of expression systems for the production of 

recombinant proteins in insect cell culture are reviewed by McCarroll and King

(1997) and Pfeifer (1998).

Finally, an economical alternative for the large-scale production of antibodies and 

antibody fragments is the use of transgenic plants (Ma, 1995; Smith, 1996). Antibody 

processing in plants is also similar to the processing which takes place in mammalian 

cells. Antibodies and antibody fragments may be expressed in the cytoplasm or 

targeted for secretion by the use of a signal sequence. Secreted antibody accumulates 

in the apopastic fluid, which is a stable environment, allowing accumulation of the 

antibody product to high levels.

1.3 Recovery and purification of antibody fragments from 
Escherichia coli fermentation broths

1.3.1 Objectives of downstream processing

The objective of downstream processing is to recover and purify antibody fragments 

to an extent suitable for their intended use. Processing may be divided into a number 

of stages including primary recovery, purification, formulation and finishing. Typical 

methods employed in the primary recovery and purification stages are shown in 

Table 1.3.1.
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STAGE STEPS TYPICAL METHODS
PRIMARY
RECOVERY

EXTRACELLULAR PROTEINS: 
Cell removal (solid-liquid separation)

CELL-ASSOCIATED PROTEINS:
(a) Cell recovery (solid-liquid 

separation)
(b) Cell disintegration

(c) Debris removal (solid-liquid 
separation)

Centrifugation: tubular bowl, 
multichamber and disc-stack 
centrifugation
Microfiltration: dead-end and cross- 
flow filtration

Centrifugation/Microfiltration

Mechanical: high pressure 
homogenisation and bead-milling 
Non-mechanical: physical methods 
(e.g. osmotic shock), chemical methods 
(e.g. chloroform addition) or enzyme 
lysis

Centrifugation/Microfiltration
PURIFICATION Affinity chromatography 

Ion-exchange chromatography 
Hydrophobic interaction 
chromatography 
Gel filtration

Table 1.3.1 Stages and methods involved in protein downstream processing. 
(Adaptedfrom Lee, 1989).

The methods and sequence of operations used in primary protein recovery depend on 

the final location of the antibody fragment. For extracellular fragments, the primary 

recovery stages involve the removal of cells from the medium. For fragments 

expressed in the periplasm or as intracellular inclusion bodies (cell associated 

antibody fragments), primary recovery generally involves (a) recovery of cells; (b) 

cell disruption or membrane permeabilisation to release the antibody fragments; and 

(c) removal of cell debris. For fragments expressed as inclusion bodies extensive 

solubilisation and renaturation stages are then required before the final purification 

stages can be employed.

Antibody purification generally involves one or more chromatography steps. 

Chromatographic separation techniques commonly used include affinity 

chromatography and ion exchange chromatography.

In the design of downstream processes it is important to consider the entire process 

before deciding on individual unit operations and operating conditions (Wheelwright, 

1987). Methods employed in the early recovery stages can effect the efficiency of
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later unit operations and the success of the primary recovery stages can have a 

significant effect on the success of the subsequent purification steps. A process must 

also be suitable for scale up and in the production of commercial proteins process 

efficiency is important. Recovery processes involving few steps generally have lower 

capital and operating costs and maintain a good yield of product. Increasing the 

number of steps increases product losses and therefore the aim is generally to 

minimise the number of steps and maximise the recovery at each stage (Ostlund,

1996).

1.3.2 Biomass Separation

1.3.2.1 Centrifugation

The removal of bulk E. coli biomass is a necessary operation in the recovery of 

antibody fragments from E. coli fermentation broth. For many processes separation 

of cells from the medium is the initial step in antibody recovery. Separation of cell 

debris resulting from homogenisation or cell spheroplasts following specific 

periplasmic release may also be required. Centrifugation is a widely used technique 

for solid-liquid separation and can be applied to the removal of whole cells, 

spheroplasts and cell debris from liquid streams (Lee, 1989). In addition 

centrifugation can be used in the separation of inclusion bodies from cell debris 

following homogenisation (Buchner and Rudolf, 1991).

Centrifugation takes advantage of the density difference between the solid and liquid 

phases. The density gradient is amplified through the application of centrifugal force 

by rotating the solid-liquid mixture at high speed. Pilot scale centrifuges are less 

effective than laboratory centrifuges for the separation of cells and cell debris from 

surrounding liquid because lower g  forces and residence times are used.

In pilot and industrial scale biotechnology processes three different centrifuge 

designs are principally used; tubular bowl, multichamber and disc stack centrifuges. 

Multichamber centrifuges and the traditional tubular bowl machines require manual 

removal of solids and are operated batchwise, whereas disc stack centrifuges
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discharge solids through a slots or nozzles in the bowl periphery and can be operated 

continuously. Dewatering however is less effective in a disc stack machine compared 

to tubular bowl and multichamber centrifuges.

Disadvantages associated with the use of centrifuges for the processing of 

recombinant proteins include aerosol production, high shear environment (which may 

result in damage to the product), incomplete biomass removal and high energy costs. 

Centrifuge theory and the use of disk stack and tubular bowl centrifugation for 

process stream clarification is discussed in more detail later in this work (Chapter 5).

1.3.2.2 Microfiltration

Microfiltration separates components according to their size and can be used to 

achieve essentially 100% removal of biomass from fermentation broths or 

homogenate. Microfiltration processes can be divided into two categories: dead-end 

filtration (feed stream flows perpendicular to the filter surface) and cross-flow 

filtration (feed stream flows parallel to the filter surface). Processes involving 

biomass removal are generally operated under cross-flow conditions as this reduces 

fouling of the membrane with suspended solids. Liquid retentate is recirculated 

around the apparatus and its concentration increases over time, however the moisture 

content of the final cell suspension is higher than can be achieved using dead-end 

filtration or centrifugation (Lee, 1989).

Both pore size and membrane composition are important in achieving good 

separation. Membrane pore sizes of 0.1-0.2 pm are typically used for the separation 

of cells or cell debris from fermentation broths and homogenates. Membrane 

composition is important as components of the solution can interact with the 

membrane surface causing fouling and reducing process efficiency. The commercial 

membrane modules, their properties and applications have been described (Brown 

and Kavanagh, 1987). The major filter designs include flat sheet (plate and frame or 

spiral configuration), hollow fibre, tubular and rotating filter units. Development of 

an effective and efficient microfiltration process will often require screening of a

40



number of filtration units as well as optimisation of solution conditions (pH and ionic 

strength) and operating conditions (cross-flow velocity and transmembrane pressure).

1.3.3 Release of cell associated antibody fragments

1.3.3.1 Mechanical cell disruption

The most commonly used methods for the disruption of microbial cells to release 

intracellular proteins at an industrial scale are high-pressure homogenisation 

(Hetherington et al., 1971) and high-speed bead milling (Schutte et al., 1983).

The most widely used cell disruption device in industry is the Manton-Gaulin APV 

homogeniser. During operation the cell suspension is forced at high pressure through 

an adjustable restricted orifice discharge valve. Disruption is thought to result from a 

number of mechanisms including shear, cavitation and impingement. Hetherington 

and co-workers (1971) analysed the disruption of Baker’s yeast and found it to be 

proportional to the number of passes through the device and the operating pressure 

difference, raised to a characteristic power. Cell breakage may also be affected by 

temperature, valve unit design, organism, growth phase of cells and culture medium 

(Keshavarz Moore et al., 1990; Sauer et al., 1989). Operation at high pressures is 

generally desirable to increase the breakage efficiency for each pass. However, 

operation at high pressures and increased number of passes can produce very fine 

particles of cell debris which may reduce the efficiency of subsequent centrifugal 

clarification steps.

The advantages of homogenisation include continuous operation and low product 

hold up. In addition there is no requirement for outside chemicals which may affect 

product quality. Disadvantages include the release of large quantities of heat into the 

liquid stream and the possibility of mechanical failure and aerosol release.

High-speed bead milling is an alternative technique used for cell disruption (Schutte 

et al., 1983). Bead mills consist of a vertical or horizontal cylindrical chamber 

containing a central motor driven agitator. The chamber is filled with the desired
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amount of steel or ballotini glass beads, which provide the grinding action. Rate of 

cell breakage is affected by the size and concentration of beads, the type, 

concentration and age of cells, temperature, agitator speed, flow rate through the 

chamber and the arrangement of the agitator discs.

Bead milling is an efficient method of cell disruption and bead mills are well 

contained and resistant to blockage. Potential problems however include heat 

production due to impacts and friction between the grinding elements and 

contamination of the process stream with beads or ground glass ballotini.

1.3.3.2 Specific periplasmic release

The periplasmic expression of recombinant proteins in bacteria has a number of 

advantages over cytoplasmic expression for protein recovery and purification. The 

oxidative environment of the periplasm facilitates correct disulphide bonding and 

protein folding. Periplasmic product is less susceptible to protease attack as only 7 

out of the 25 known E. coli proteases are located in the periplasm (Swamy and 

Goldberg, 1982). In addition the periplasm contains only 4-8% of total cell protein 

(Nossal and Heppel, 1966). Hence, the specific release of periplasmic contents 

without any contaminating cytoplasmic proteins or other intracellular material will 

result in lower volumes to be processed and will potentially simplify purification 

protocols. Complete cell disruption by homogenisation or high-speed bead milling 

nullifies these advantages of periplasmic expression. Complete cell disruption also 

exposes periplasmic proteins to cytoplasmic proteases, thus increasing the risk of 

proteolytic degradation. In addition such techniques may produce fine particles of 

cell debris which reduce the efficiency of subsequent centrifugal clarification.

Numerous laboratory scale techniques for the specific release of periplasmic material 

have been developed. These include physical methods such as osmotic shock (Nossal 

and Heppel, 1966; Zimmermann et al., 1991), freeze/thaw (Johnson and Hecht, 

1994), and heat treatment (Tsuchido et al., 1985; Katsui et al., 1982); chemical 

methods such as addition of Triton X-100 and guanidine (Naglak and Wang, 1990), 

chloroform (Ames et al., 1984), EDTA (Ryan and Parulekar, 1991), tetradecyl
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betainate (Ahlstrom and Edobo, 1994) and glycine treatment (Ariga et al., 1989); and 

biological methods involving the use of lytic agents such as lysozyme (Neu and 

Heppel, 1964; Birdsell and Cota-Robles, 1967).

The most commonly used methods of periplasmic fractionation involve combinations 

of lysozyme/EDTA treatment and osmotic shock (French et al., 1996; Pierce et al.,

1997). Lysozyme penetrates the outer membrane of E. coli when the cells are 

exposed to mild osmotic shock in the presence of EDTA. The EDTA chelates 

divalent cations in the outer membrane, increasing membrane permeability and 

allowing the lysozyme to penetrate and break down the peptidoglycan of the cell 

wall. This results in the release of the contents of the periplasm and the formation of 

spheroplasts. Various methodologies exist and for optimum lysis the balance of 

sucrose, Tris buffer, lysozyme and EDTA is important. In addition the phase of cell 

growth has been shown to have an effect on the success of periplasmic fractionation, 

with cells in exponential growth phase being more susceptible to osmotic shock and 

lysozyme treatment than stationary phase cells (Nossal and Heppel, 1966; Neu and 

Heppel, 1964).

Although a variety of methods based on osmotic shock and lysozyme/EDTA 

treatment have been developed for laboratory scale fractionation, these methods 

generally involve too many steps for an efficient large-scale recovery process. A 

simple two step fractionation method, involving enzymatic release and osmotic 

shock, has been developed by French et al., (1996) for use at large scale.

A potential problem with the use of sucrose and lysozyme in large-scale periplasmic 

fractionation procedures is the effect on subsequent downstream processes. The 

presence of sucrose increases the viscosity of the processing stream, which may 

reduce the efficiency of centrifugation or microfiltration steps. Lysozyme will be 

expensive to use on a large scale and contamination of the process stream with 

lysozyme will increase the demands made on later purification stages. The effects of 

reducing the concentration of sucrose and lysozyme on periplasmic release have been 

analysed by Pierce et al., (1997).
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1.3.4 Purification

1.3.4.1 Affinity purification

Affinity chromatography is based on highly specific interactions between an 

immobilised ligand and the protein of interest and is commonly used in the 

purification of monoclonal antibodies and antibody fragments.

The affinity purification of antibody fragments can exploit a number of specific 

interactions including antibody-antigen interactions or the affinity of Staphylococcal 

protein A for immunoglobulins. If suitable quantities of the specific antigen are 

available, it can be immobilised and used to purify the antibody fragment in a single 

step (Skerra and Pluckthun, 1988). However the antibody-antigen interactions are 

often very strong and harsh elution conditions may be required to recover the 

antibody. Such conditions could effect antibody activity or result in elution of the 

entire antibody-antigen complex. A further disadvantage of this method is that scale- 

up is often limited by the quantity of specific antigen available.

An alternative method for antibody purification involves use of immobilised specific 

anti-immunoglobulin antibodies. For example Chester et al., (1994) purified a 

chimeric Fab expressed in E. coli using an immobilised anti-human light chain 

antibody. Such techniques are more generic and do not interfere with the antigen 

binding activity of the antibody. However harsh elution conditions may still be 

required.

Affinity chromatography using immobilised Staphylococcal protein A is a well- 

documented method for the purification of whole monoclonal antibodies (Thommes 

et al., 1996; Jagersten et al., 1996). Protein A has two distinct binding sites on 

human immunoglobulins; it will bind to the Fc region of most IgG antibodies and has 

an additional binding site within the Fab region of certain immunoglobulins 

independent of their heavy chain isotype (Ibrahim et al., 1993). The Fab site that 

binds protein A has been localised to the variable region of the Ig heavy chain 

(Randen et al., 1993). This Fab mediated ‘alternative binding’ allows use of protein

44



A for the affinity purification of antibody fragments as well as whole antibodies. 

Elution conditions for recovery of antibodies or antibody fragments from protein A 

columns are mild and high levels of purity (close to 100%) are attainable. However 

leaching of protein A under such conditions has been observed (Lee et al., 1986). 

Protein A affinity purification is discussed further in Chapter 6.

1.3.4.2 Facilitated affinity purification

The purification of antibody fragments may be facilitated by fusion to proteins or 

polypeptide chains possessing specific binding activities which can be utilised in 

affinity chromatography. For example Gandecha et al., (1992) fused the Fc binding 

domains of Staphylococcal protein A to an scFv and utilised both binding activities 

of the fusion protein to purify it from E. coli fermentation broth.

The variable domains of antibody fragments have also been fused to the E. coli 

maltose binding protein MalE , and the binding properties of MalE used to facilitate 

purification of the antibody fragment by affinity chromatography on cross-linked 

amylose (Bregegere et al., 1994).

Engineering histidine tails onto antibody fragments allows purification in a single 

step by immobilised metal affinity chromatography (IMAC; Skerra et al., 1991; 

Pohlner et al., 1993; Bentley et al., 1998). Metal-afflnity chromatography exploits 

the affinity for metal ions shown by functional groups on the surface of proteins. For 

example, the side chains of histidine residues will bind to Ni2+, Zn2+, Fe3+ and Cu2+ 

ions chelated by iminodiacetate (IDA) (Arnold, 1991). Advantages of IMAC include 

high protein capacities and relatively easy product elution and ligand regeneration. In 

addition the metal chelates used for IMAC are stable and can be recycled many times 

(Arnold, 1991). Pohlner et al., (1993), engineered an Igase cleavage site between a 

His6 peptide tail and the antibody fragment to allow enzymatic cleavage of the tail 

from the antibody fragment following purification by IMAC. The His6 tail could then 

be removed from the protein solution by a second IMAC purification.
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ScFv fragments have also been fused to the acidic protein calmodulin. Calmodulin 

binds specifically to certain peptides and organic ligands with high affinity in a 

calcium dependent manner. Thus there are three options for purifying an scFv 

calmodulin fusion; antigen affinity chromatography, anion exchange chromatography 

or calmodulin binding (Neri et al., 1995).

1.3.4.3 Ion exchange chromatography

Ion-exchange chromatography has been used for the purification of antibody 

fragments renatured from inclusion bodies in E. coli (Buchner and Rudolph, 1991) 

and for the purification of Fab fragments secreted from E. coli cells (Mhatre et al., 

1995; Gavit et al., 1992). Gavit and co-workers purified the Fab from E. coli 

fermentation broth, removing protein, endotoxin and DNA contaminants using a 

series of ion-exchange chromatography steps interspersed with membrane 

diafiltration or ultrafiltration stages.

Ion-exchange materials are relatively inexpensive and hence ion-exchange 

chromatography has good potential for scale-up. However the level of purification 

achieved is lower than for affinity chromatography. In addition the presence of high 

concentrations of salts in fermentation broth can significantly reduce the capacity of 

ion-exchange media for the desired product.

1.4 Bioprocess monitoring

The real time monitoring of product titres and location throughout a bioprocess 

sequence is essential for both rapid bioprocess development and effective process 

control. ‘Real-time’ or ‘at-line’ monitoring implies the acquisition of data regarding 

the state of a process within the time frame and vicinity of the bioprocess under 

analysis.

Currently many processes are operated ‘blindly’ with respect to the product of 

interest. Due to a lack of suitable assay procedures, the product is not directly 

quantified as the process is running. Process control is based on historic data or from
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analysis of indirect variables such as broth optical density, pH or dissolved oxygen 

during fermentation and UV absorbance during chromatographic purification.

The variable nature of biological systems means such measurements do not always 

give a true reflection of the state of the process. If important process decisions are 

made incorrectly, large quantities of a high value pharmaceutical product could 

potentially be lost. For example, if a fermentation is harvested too early (before 

product titres have peaked) or too late (following product degradation or leakage of a 

periplasmic product into the medium) yields will be less than optimal. In cases of 

chromatographic purification where impurities are not always well-resolved from the 

product, the reliance on UV absorbance alone to determine which fractions to collect 

may result in the co-purification of unwanted product variants (such as aggregates) or 

contaminating non-product material, resulting in the requirement for additional 

purification steps.

The ability to monitor the specific product of interest during both production and 

purification can improve process efficiency by allowing process decisions to be made 

on a more informed basis. In addition, process monitoring allows more rapid process 

development, and can be used to ensure a process is functioning within established 

boundaries, as required by regulatory authorities for validation purposes.

Monitoring of product during fermentation is more difficult to achieve than during 

downstream purification because the complex components within fermentation 

broths often interfere with assay accuracy. Additional problems which need to be 

addressed before on-line fermentation monitoring can be employed include aseptic 

sampling, the occasional need to-lyse cells prior to sample analysis and the removal 

of particulates.

1.4.1 Techniques available for bioprocess monitoring

Techniques developed for the real-time monitoring of specific protein products 

during fermentation and purification processes include chromatographic assays, 

biosensor analysis and flow-injection immunoassays.
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1.4.1.1 Chromatographic assays

High performance liquid chromatography (HPLC) has been developed for the 

monitoring of monoclonal antibody production in a hybridoma cell culture (Paliwal 

et al., 1993). The assay, which used protein A affinity chromatography to separate 

IgG from broth components followed by ultraviolet absorbance at 220 nm for 

antibody quantification, required only ~3 minutes to produce quantitative results.

HPLC has also been used for real-time monitoring and control of antibody loading 

during protein A affinity chromatography (Fahmer and Blank, 1999 (a and b)), and in 

the monitoring of product collection during preparative reversed-phase 

chromatography of recombinant human insulin-like growth factor-1 (IGF) (Fahmer et 

a l , 1998).

A particular advantage of HPLC is the ability to differentiate between the required 

product and variants such as misfolded or aggregated molecules (Fahmer et al., 1998; 

Jacobsen et al., 1997). However, fouling of the adsorbents and interference from 

other sample components, particularly during the analysis of fermentation samples or 

cmde protein extracts, can limit assay rhobustness and accuracy.

1.4.1.2 Biosensors

A biosensor is an analytical device consisting of a biological ‘receptor’ (an enzyme, 

microorganism or antibody) coupled to an electronic transducer. The transducer 

converts a biological event (a physicochemical or biochemical change in the 

receptor) into an electrical signal by measuring voltage (potentiometric sensor), 

current (amperometric sensor), light (optical sensor), temperature (calorimetric 

sensor) or mass (piezo-electric sensor) (Schugerl et al., 1996). Biosensor technology 

has been reviewed by Byfield and Abuknesha (1994). The review summarises the 

major types of biological molecules and systems on which biosensors can be based, 

provides a critical assessment of the relative strengths and weaknesses of the
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respective technologies and analyses practical considerations such as sample 

interference, signal-to-noise ratio and biomolecule stability.

Optical biosensors have traditionally been used in the study of biomolecular 

interactions, for example in the determination of kinetic constants for the interaction 

between an antibody and its antigen (Karlsson et al., 1991; Gill et al., 1996). More 

recently biosensors have found application in the monitoring of bioprocesses, 

including the real time analysis of product accumulation during mammalian cell 

culture (Baker et al., 1997) and microbial cell fermentation (Gill et al., 1996; Gill et 

al., 1998), and in the monitoring of chromatographic recovery of antibody fragments 

(Bracewell et al., 1998).

The time required for a single biosensor assay is typically in the order 5-6 minutes 

(Baker et al., 1997; Gill et al., 1996). However, biosensor assays are also subject to 

interference from unknown components within complex bioprocess samples. In 

addition, discrepancies in the concentration of antibodies determined by ELISA and 

biosensor techniques have been observed (Baker et al., 1997).

1.4.1.3 Flow-injection analysis

Flow-injection analysis (FIA) is a technique developed for the delivery of sample and 

buffers to a suitable analytical assay. FIA systems employ automated pumps and 

valves to control dilution and mixing of reagents before they are delivered to the 

‘analytical cell’.

A flow-infection immunoanalysis method for the on line monitoring of monoclonal 

antibodies has been described by Stocklein and Schmid (1990). The system 

combined a flow-injection module with immunoassays based on the principle of 

ELISA. The sample, assay reagents and wash buffers were pumped consecutively 

through a purpose-designed immunoreactor containing the immobilised capture 

species. The assay time varied between 15 and 25 minutes depending on the assay 

employed. The detection ranges for the various assays described were between 1 and 

100 jig mL'1 for mouse IgG, which is the range of interest for hybridoma cell culture.
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An FI A module has also been used in conjunction with an optical biosensor for the 

real-time monitoring of breakthrough and elution during the chromatographic 

purification of antibody fragments (Bracewell et al., 1998; Bracewell et al., In 

preparation). Using the FIA regime the total biosensor assay turnaround time was 

reduced to -30 seconds, and concentration data was provided within 10 seconds of 

sample addition to the sensing surface.

1.5 Project background

1.5.1 Industrial significance of anti p-185HER2 antibodies and antibody 
fragments

1.5.1.1 Development of anti p-185HER2 antibodies for cancer therapy

The HER2 protooncogene and pl85HER2, the growth factor receptor-tyrosine kinase it 

encodes, have been implicated in the pathogenesis of many human cancers including 

breast, lung and ovarian carcinomas. Amplification and/or overexpression of HER2 

occurs in 25-30% of human primary breast and ovarian cancers and appears to 

contribute to cell transformation and tumour progression (Slamon et al., 1989).

The plSS™112 receptor represents an attractive target for antibody based cancer 

therapies since its overexpression is unique to the malignant phenotype. Antibodies 

raised against p i 85™^ may interfere with functioning of the receptor and so inhibit 

tumour growth, in addition to mediating antibody dependent cellular cytotoxicity and 

complement dependent cytotoxicity. A variety of pl85™R2-specific monoclonal 

antibodies have been developed and used for the delivery of drugs and plasmid DNA 

to HER2 overexpressing tumour cells in culture and in animal models (Rodrigues et 

a l , 1993).

A murine monoclonal antibody, mumAb4D5, directed against the extracellular 

domain of pi 85™^ was initially developed and shown to specifically inhibit growth 

of plSS™112 overexpressing breast cancer cells in culture (Hudziak et al., 1989). A
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major limitation in the use of mumAb4D5 for cancer therapy is a human anti-mouse 

antibody response during treatment. Hence a recombinant, fully humanized version 

of 4D5 (humAb4D5) consisting of the mumAb4D5 antigen binding loops fused to 

the human variable domain framework residues and human IgGl constant domains 

was developed (Carter et al., 1992b). humAb4D5 was found to bind the extracellular 

domain of pi85HER2 3-fold more tightly than the murine parent antibody and was 

almost as potent in specifically inhibiting the growth of human tumour cell lines 

overexpressing p i85™^. humAb4D5, marketed under the name ‘Herceptin’, has 

recently received approval by the FDA for the treatment of breast cancer.

A variety of antibody fragments based on humAb4D5 have been designed and 

expressed in E. coli. These include Fab’ fragments (Carter et al., 1992a), thioether 

linked F(ab’ )2  (Rodrigues et al., 1993) and linear F(ab’ )2  comprising tandem repeats 

of the heavy chain Fd fragment (Vh-Ch1-Vh-Ch1) and associated light chains (Zapata 

et al., 1995). The thioether linked F(ab’)2  and linear F(ab’ )2  are more stable and have 

longer serum permanence time compared to single disulphide linked F(ab’)2 . Linear 

F(ab’ )2  is also simpler to prepare than disulphide or thioether linked F(ab’ )2  

fragments and may be suitable for clinical applications as potentially immunogenic or 

mutagenic linkers are not required for attachment of the two F(ab’) arms. Bispecific 

anti-pl85/anti-CD3 F(ab’ )2  fragments (Shalaby et al., 1992) and anti-pl85/anti-CD3 

diabodies (bispecific (scFv)2  fragments) (Zhu et al., 1996) have also been developed. 

These target cytotoxic human T lymphocytes to tumour cells overexpressing

piss™*2

1.5.1.2 E. coli expression and production of a humanised 4D5 Fab’ antibody 
fragment

An expression system for the production of large quantities of soluble and functional 

humAb4D5 Fab’ fragments from E. coli was developed by Carter and co-workers 

(1992a). The Fab’ version of humAb4D5 consists of the Fab fragment with the hinge 

residues (CysAlaAla) added to the carboxy terminus of the heavy chain ChI domain. 

The cysteine provides a thiol group for conjugation to other antibody fragments, 

liposomes or drugs. A hinge sequence with a single cysteine was used to avoid intra­

hinge disulphide bonding which may occur with hinges containing multiple
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cysteines. The plasmid pAK19 was designed to express the light and heavy chain Fd’ 

fragment of humAb4D5 from a synthetic dicystronic operon under transcriptional 

control of the E. coli alkaline phosphatase (pho A) promoter. Each antibody chain 

was preceded by the E. coli heat stable enterotoxin II (stll) signal sequence which 

directs secretion to the periplasmic space.

Using this expression system, Carter et al., (1992a) have routinely obtained titres of 

1-2 g L'1 cell associated soluble and functional Fab’ using a fed-batch protocol in a 

10 litre fermenter. A mineral salts medium and controlled carbon source feeding 

were used to obtain cell densities of 120 to 150 OD550, and induction was achieved 

by phosphate starvation at a cell density of 80-100 OD550. Tight control of Fab’ 

expression prior to induction and precise control of the fermentation environment 

were found to be crucial to achieving high cell densities and hence high product 

titres. Under conditions which were optimised for high titres of functional cell- 

associated Fab’, only low quantities of Fab’ (<100 mg L'1) were found in the culture 

media.

The humAb4D5 Fab’ was extracted from cell pastes by lysozyme digestion of the 

periplasm wall and purified by Streptococcal protein G affinity chromatography. 

Simple osmotic shock was found to be inefficient in releasing Fab’ fragments from 

the cell paste. humAb4D5 Fab’ was also found to bind tightly to Staphylococcal 

protein A, allowing its use for affinity purification in place of protein G.

1.5.1.3 Development of anti-pl85HER2 immunoliposomes for cancer therapy

Anti-plSS™112 immunoliposomes have been developed as a tumour-targeting vehicle 

in which the anti-plSS™*2 specificity and inhibitory activity of humAb4D5 are 

combined with the pharmacokinetic and drug delivery advantages of liposomes (Park 

et al., 1995). Fab’ fragments of humAb4D5 were conjugated to maleimide terminated 

lipids within the lipososmes via the free thiol group in the Fab’ hinge region. Fab’ 

fragments were used firstly because of the high expression levels of humAb4D5 Fab’ 

obtained in E. coli (Carter et al., 1992a) and secondly because the free hinge thiol
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group provides a singular site for covalent attachment to liposomes away from the 

antigen binding site and ensures correct orientation of the conjugated Fab’.

Empty immunoliposomes were shown to bind specifically to and inhibit the growth 

of pi ss^^-overexpressing breast cancer cells in vitro. The binding affinity of the 

immunoliposomes was comparable to that of free humAb4D5 Fab’ and the intact 

antibody. The antiproliferative effect of liposome-associated Fab’ was markedly 

greater than that of free humAb4D5 Fab’, indicating that liposomal anchoring of 

these anti-plSS™112 fragments enhances their biological activity, probably by 

increasing their avidity. Anti-pl85 immunoliposomes loaded with the cytotoxic 

drug doxorubicin were also shown to be markedly and specifically toxic against 

piS^kei^ overexpressing cells in vitro and were able to deliver doxorubicin to 

tumours in vivo.

1.5.2 4D5 Fab’ expression in E. coli: A model experimental system

In the following study expression of the 4D5 Fab’ antibody fragment in Escherichia 

coli will be used as an experimental system for the study of antibody fragment 

production and purification processes. The expression vector, constructed by 

researchers at Celltech Chiroscience Limited (Slough, UK), utilises a tac promoter 

for the inducible expression of 4D5 Fab’, and an ompA signal sequence to direct 

secretion of each chain to the periplasmic space. The standard route for the 

purification of 4D5 Fab’ involves specific periplasmic release, process stream 

clarification by centrifugation and filtration, and Fab’ purification by packed bed 

protein A affinity chromatography.

1.6 Project objectives

Due to the increasing commercial demand for antibody fragments and antibody-based 

molecules there is a requirement for the development of efficient, low cost 

production processes. Effective process design requires both rapid process 

development to minimise the time to market and successful process integration to 

ensure efficient process operation. This project uses a model Escherichia coli
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expression system to study novel process options for the production of antibody 

fragments and to assess recently developed techniques designed to facilitate process 

design, integration and control.

Through the development and characterisation of a whole bioprocess sequence from 

fermentation to purification, this project aims to:

• Investigate the ability to control product location during fermentation to allow 

improved process integration.

• Assess the utility of modelling and scale-down techniques for the prediction of 

process scale operation.

• Apply an optical biosensor system to the real-time monitoring of a bioprocess and 

compare with more traditional offline monitoring techniques.

• Characterise novel processing strategies and use a mass balance approach to 

compare such strategies with more traditional process routes.

1.6.1 Thesis layout

The following chapters describe the experimental work performed during this study 

and present the results obtained and conclusions drawn. Chapter 2 details the 

materials and methods for the whole project. The experimental results are presented 

in chapters 3-7. Each results chapter has an introduction which describes the 

objectives of the work and gives the necessary background information or theory, a 

results and discussion section and a summary highlighting the major points arising 

from the work. Within the results and discussion sections, the relevant experimental 

protocols described in the Materials and Methods chapter are referred to. To facilitate 

flow and understanding, the relevant experimental methods have also been 

summarised within the results where considered appropriate.

Chapter 3 describes an Escherichia coli fermentation process designed for the 

periplasmic expression of the 4D5 Fab’ antibody fragment. Modifications made to 

the fermentation protocol to improve control of product location are detailed and the 

suitability of such a protocol for large-scale operation is assessed.
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In Chapter 4, the development and characterisation of a novel periplasmic extraction 

process designed for the specific release of periplasmic material is described. The 

effect of operating conditions and the use of different feed material on process yields 

and quality of the material produced are investigated. The extraction process is also 

modelled using simple first order kinetics and the effect of scale up on kinetic 

parameters is determined.

Chapter 5 compares a tubular bowl and a disk stack centrifuge for the clarification of 

E. coli spheroplast suspensions. The ability of current scale-down techniques to 

predict the clarification performance of an industrial centrifuge is also investigated.

In Chapter 6 an expanded bed adsorption process for the recovery of antibody 

fragments from unclarified E. coli periplasmic extracts is compared to the more 

traditional method of packed bed purification from clarified feed streams. A method 

is also described which enables prediction of the ‘ideal’ operating conditions for the 

maximisation of both process yield and matrix utilisation.

Chapter 7 describes the development and characterisation of ELISA and biosensor 

assays used for the quantitative analysis of antibody fragments during this project. 

The suitability of the biosensor as a technique for rapid bioprocess monitoring to 

allow both improved process control and faster process development is assessed. The 

work described was performed throughout the three years and draws on results from 

a number of areas of the project. For this reason this section of work has been placed 

at the end of the results chapters, however the ELISA assay forms an integral part of 

all work previously described.

Chapter 8 essentially summarises results of the studies of individual unit operations 

by comparing process alternatives for the purification of antibody fragments from E. 

coli fermentation broth. The processing factors which require consideration when 

designing a purification scheme are discussed, and a selection of process alternatives 

for Fab’ purification are compared on the basis yield, purification and operating time.

Finally, the main findings of the work are summarised in Chapter 9 and suggestions 

for future work are given in Chapter 10.
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2. MATERIALS AND METHODS

All reagents were purchased from BDH Chemicals (Merck Ltd., Lutterworth, 

Leicestershire, UK) except where otherwise stated and were of the highest grade 

available.

2.1 Fermentation

2.1.1 Bacterial strain and plasmid

W3110 (wild type E. coli, ATCC 27325) transformed with the plasmid pAGP-4 was 

used for all fermentations. The strain and plasmid were kindly provided by N. Weir 

(Celltech Chiroscience Ltd., Slough, UK). The plasmid pAGP-4 encoded the 

chloramphenicol resistance gene (Cm| and the 4D5 Fab’ antibody fragment directed 

against the extracellular domain of plSS™112 and derived from humAb4D5 (Carter et 

al., 1992b; Kelley et al., 1992). Coding sequences for the Fab’ light chain and heavy 

chain Fd’ fragment were arranged in a dicistronic operon under transcriptional 

control of the E. coli tac promoter inducible by addition of isopropyl-p-D- 

thiogalactopyranoside (IPTG) or lactose. Each antibody chain was preceded by the E. 

coli omp A signal sequence to direct secretion to the periplasmic space. The 4D5 Fab’ 

expression plasmid is illustrated in Appendix 1.

2.1.2 Stock maintenance

Glycerol stocks were prepared from colonies grown on defined medium agar plates 

(see section 2.1.3.4). Plates were inoculated from previous -70°C stocks using a 

sterile loop, and were then incubated at 30°C until a suitable level of growth was 

obtained. The cells were aseptically transferred from the plate by pipetting 3 mL of 

sterile 50% (v/v) glycerol onto the plate, scraping the cells from the surface and then 

re-pipetting the cell suspension into a sterile bijou. The glycerol stocks were stored at 

-70°C and were used only once before being discarded. This approach avoided the 

repeated sub-culturing of cells on nutrient agar, which can lead to the cells’ inability 

to grow on defined medium.
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2.1.3 Culture media

2.1.3.1 Complex medium

The complex medium used for agar plates and shake flask cultures was 2xYT 

medium (Sambrook et al., 1989). The composition of this medium is (g L '1): 

tryptone, 16; yeast extract, 10; NaCl, 5. (Tryptone and yeast extract were obtained 

from Oxoid, Unipath Ltd., Baisingstoke, UK). The pH of the medium was adjusted to 

7.0 with 4M NaOH prior to autoclaving. Chloramphenicol was filter sterilised into 

the sterile media using a 0.2 pm syringe filter, giving a final antibiotic concentration 

of 30 pg mL'1.

2.1.3.2 Defined medium for low cell density fermentations

The defined medium used in low cell density fermentations had the following 

composition (g L'1): (NH4)2S 04, 5; NaH2P 04, 6.25; KC1, 3.87; MgS04.7H20 , 0.717; 

citric acid, 4; trace elements, 1 mL L'1; polypropylene glycol (PPG, 25% v/v), 1 mL 

L'1; glucose, 2.5% (w/v); chloramphenicol, 30 pg mL'1.

The trace element solution was composed of (g L'1): Citric acid, 10; CaCl2.6H20 , 

0.5; ZnS04.7H20 , 0.246; MnS04.4H20 , 0.2; CuS04.5H20 , 0.05; CoS04.7H20 , 

0.0427; FeCl3.6H20 , 0.967; H3B 03, 0.003; NaMo04 0.0024.

The glucose (50% w/v solution) and MgS04.7H20  were autoclaved separately, and 

the chloramphenicol was filter sterilised (0.2 pm syringe filter) into the combined 

glucose and MgS04 mixture immediately prior to addition to the shake flask or 

fermenter. The rest of the salts were sterilised in the fermenter at 121 °C for 20 

minutes.
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2.1.3.3 Defined medium for high cell density fermentations

The defined medium used in high cell density fermentations had the following 

composition (g L"1): (NH4)2S 04, 5; NaH2P 0 4, 2.88; KC1 3.87; MgS04.7H20 , 0.717; 

citric acid, 4; trace elements, 1 mL L"1; PPG (25% v/v), 1 mL L '1; glycerol, 3% (w/v); 

chloramphenicol, 30 pg mL"1.

The trace element solution had the same composition as for low cell density 

fermentations (section 2.1.3.2).

MgS04.7H20  was autoclaved separately, and the chloramphenicol was filter 

sterilised (0.2 pm syringe filter) prior to addition to the shake flask or fermenter. The 

glycerol was sterilised in the fermenter with the rest of the salts (121 °C for 20 

minutes).

2.1.3.4 Agar plates

Agar plates were prepared using complex or defined media solidified with bactoagar 

(Oxoid) added to a concentration of 1% (w/v).

2.1.4 General Fermentation Protocols

2.1.4.1 Fermenters and associated equipment

Fermentations were carried out using four scales of fermenter; 7L, 20L, 150L and 

450L. The 450L vessel was manufactured by Chemap (Alpha Laval Engineering Ltd., 

Middlesex, UK). All other fermenters were supplied by LH Fermentation (Inceltech 

UK Ltd., Berkshire, UK). Dissolved oxygen tension (DOT) and pH were measured 

using Ingold electrodes (Ingold, Leicester, UK). The pH probe was calibrated using 

standard buffer solutions and the DOT probe was calibrated against a nitrogen zero. 

Fermenter exit gases were monitored by mass spectrometry (MM8-80 Instrument,

58



VG Gas Analysis Ltd., Middlewich, UK). Exhaust gas compositions and data from 

the probes were logged using the software packages Real Time Data Acquisition 

Systems (RTDAS) or Propac (450L fermentation only). Both software packages were 

supplied by Acquisition Systems Ltd., Sandhurst, UK.

2.1.4.2 Inoculum preparation

The initial working volumes and volumes of inoculum cultures used at each scale of 

fermentation are given in Table 2.1.1. Seed cultures for the 150L and 45OL 

inoculums were prepared as shown in Table 2.1.2.

Fermenter Initial working 
volume (L)

Inoculum volume 
(L) (%v/v)

Inoculum vessel

LH 7L 4 0.1 (2.5) Shake flasks (1L)
LH 20L 8 0.2 (2.5) Shake flasks (1L)

10 1 (10) Shake flasks (2L)
LH 150L 87 5 (6) LH 7L
Chemap 45 OL 260 15 (6) LH 20L
Table 2.1.1 Initial working volume and inoculum volume used with each fermenter.

Fermenter Inoculum
vessel

Inoculum 
volume (L)

Volume of seed 
for inoculum 
(L) (%v/v)

Seed vessel

LH 150L LH 7L 5 0.4 (8) Shake flasks (2L)
Chemap 450L LH20L 15 1.6 (10) Shake flasks (2L)
Table 2.1.2 Volume o f seed cultures used in preparation o f inoculum for 150L and 
450L fermentations.

Shake flask cultures used in inoculum preparation were themselves inoculated with 

colonies from agar plates. Complex medium agar plates containing 30 pg mL-1 

chloramphenicol were streaked from a single glycerol stock and incubated for 24 

hours at 30°C in a standard microbial incubator (New Brunswick Scientific Ltd., 

North Mymms, UK). Cells from the 24 hour plates were resuspended in sterile water 

and used to inoculate shake flasks containing either complex or defined medium 

(with antibiotic) at a working volume of 10%. Flasks were incubated in orbital 

shakers (G25 Incubator Shaker, New Brunswick Scientific) at 30°C and 250 rpm for
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24 hours before being used to inoculate the appropriate fermenter. Inoculum cultures 

for the 150L and 45OL fermentations were grown to an OD600 of ~6 prior to 

inoculation of the production fermenter.

2.1.4.3 General fermentation parameters

pH was maintained at 6.95 using 15% ammonia solution (1:1 dilution of 30% 

ammonia with RO water) and a 1 in 20 dilution of concentrated sulphuric acid. 

Foaming was controlled by the addition of sterile antifoam (25% v/v PPG). Stirrer 

speed and air flow rates were increased manually as required to maintain levels of 

dissolved oxygen where possible above 20%.

2.1.4.4 Low cell density fermentations

Low cell density fermentations utilised the medium described in section 2.1.3.2. All 

fermentations were carried out at 30°C using an inoculum volume of 2.5% (v/v). The 

growth of cultures was followed by monitoring the OD at 600nm. At an OD600 of 20 

glucose and lactose were added to give concentrations in the fermenter of 1% (w/v) 

glucose and 6% (w/v) lactose (concentrations are based on the initial fermenter 

working volume). Glucose was added as a 50% (w/v) solution in RO water following 

sterilisation by autoclaving. Lactose was also added as a 50% (w/v) solution in RO 

water. The solution was not autoclaved prior to addition but had to be boiled to allow 

the lactose to fully dissolve. At an OD600 of ~30 glucose was exhausted and cells 

switched to lactose metabolism, thereby inducing expression of 4D5 Fab’.

2.1.4.5 High cell density fermentations

For high cell density fermentations the medium described in section 2.1.3.3 was used. 

The inoculum volume was varied between 6% (v/v) and 10% (v/v), depending on the 

vessel used (Table 2.1.1). Culture growth was followed by monitoring the OD at 

600nm. The growth temperature was initially maintained at 30°C and was reduced to
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27°C at an OD600 of 40. The following additions were also made at the specified 

O D 6 0 0 :

15 OD 30 g L'1 glycerol

35 OD 20 g L'1 glycerol

40 OD MgS0 4 .7H20, 14.4 mM final concentration

CaCl2.6H20, 1.7 mM final concentration 

50 OD 10 g L '1 glycerol

45 g L'1 lactose

Further lactose was added in 45 g L'1 batches as required (lactose depletion was 

detected by a sharp increase in DOT and concomitant decrease in oxygen uptake rate 

(OUR) and carbon dioxide evolution rate (CER)).

In all HCD fermentations, additions were made accounting for the increase in total 

liquid volume. Glycerol was added as an 80% (w/w) solution in RO water. MgS0 4  

and CaCb were each dissolved in a minimal volume of RO water and added 

separately to avoid precipitation. The salts and glycerol were autoclaved prior to 

addition. Lactose was added as a 50% (w/w) solution in water; the solution was 

boiled prior to addition to allow the lactose to fully dissolve. Due to problems 

dissolving and maintaining large quantities of lactose in solution at scale, lactose for 

the 450L fermentation was dissolved at a concentration of 75% (w/v). Also, due to 

foaming problems at 450L, additional lactose shots were added in batches of

22.5 g L '1.

2.1.5 Fermentation harvest

The CARR P6 Powerfuge (CARR Separations Inc, Franklin, MA) and the Sharpies 

model AS26 (Alfa-Laval Engineering Ltd, Camberly, UK) were used for the harvest 

of cells from fermentation broth.

Details of the centrifuge and operating conditions for each cell harvest are given in 

Table 2.1.3.
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Fermentation Centrifuge used for 
cell harvest

Operating speed Operating flow rate

HCD 4 (10L) CARR P6 Powerfuge 15 300 rpm (20 OOOg) 30 Lhr'1
HCD 5 (10L) CARR P6 Powerfuge 15 300 rpm (20 OOOg) 10 Lhr'1
150L2 Alfa-Laval AS26 17 000 rpm (19 OOOg) 60 Lhr'1
450L Alfa-Laval AS26 17 000 rpm (19 OOOg) 60 Lhr'1
Table 2.1.3 Centrifuges and associated operating conditions employed for the 
harvest o f  cells from fermentation broth.

Feed was pumped through the centrifuges using a Watson Marlow 605 Di Peristaltic 

pump (Watson Marlow Ltd., Falmouth, UK).

2.2 General analytical techniques

2.2.1 Fractionation procedure for fermentation samples

The following procedure was used to produce extracellular and periplasmic fractions 

for determination of antibody fragment concentration in fermentation samples.

1 mL samples from fermenter cultures were chilled on ice for 5 minutes. Cells were 

harvested by centrifugation in a microfuge (13 000 rpm/~14 OOOg for 5 minutes) and 

the supernatant collected as the extracellular fraction. The pellet was resuspended in 

1 mL periplasmic extraction buffer (lOOmM Tris HC1 pH 7.4, 10 mM EDTA) and 

samples were incubated overnight with shaking at 30°C. Following overnight 

incubation spheroplasts were pelleted in a microfuge (13 000 rpm, 5 minutes) and the 

supernatant collected as the periplasmic fraction. Periplasmic and extracellular 

fractions were stored at -20°C until ELISA analysis could be performed.

2.2.2 Biomass measurements

2.2.2.1 Optical density

The biomass of fermentation samples was estimated by spectrophotometry (DU-® 

Spectrophotometer, Beckman Instruments (UK) Ltd., High Wycombe, UK). The
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absorbance of a suitable dilution of the sample was measured at 600nm using RO 

water as a blank (samples were diluted so that the measured OD was <0.8).

2.2.2.2 Dry cell weight determination

For dry cell weight determination, 1 mL samples were spun for 5 minutes at 13 000 

rpm in a pre-weighed Eppendorf tube and the supernatant was discarded. Samples 

were resuspended in RO water and re-spun to rinse off extracellular protein. Cell 

pellets were then dried to constant weight at 105°C.

2.2.3 Analysis of total protein

2.2.3.1 Bradford assay

Protein concentration was determined by the Bradford (1976) assay technique, using 

Coomassie Plus assay reagent (Pierce and Warriner (UK) Ltd., Chester, UK) and 

Bovine Serum Albumin (BSA) protein (Pierce and Warriner) as the standard. 

Dilutions of BSA in the range 0.1-1.0 mg mL'1 were prepared. Samples were also 

diluted to a concentration of 0.1-1.0 mg mL'1. 150 pL of the assay reagent was added 

to 5 pL of sample or standard on a microtitre plate. Colour was left to develop for 5 

minutes and the A5 9 5 measured using a Dynatech MR 7000 microplate reader (Dynex 

Technologies, Billingshurst, UK). Protein concentrations of the samples were 

determined from a calibration curve of A595 vs BSA concentration prepared on each 

microtitre plate. The Bradford protein assay allows determination of protein 

concentration to within ±5%.

2.2.3.2 SDS-PAGE

SDS-PAGE was performed using a dual mini-lab system (Atto System AE 6400, 

Genetic Research Instruments Ltd, Dunmow, UK) according to the method of 

Laemmli, (1970). 12% acrylamide gels were used for the resolution of protein bands 

and were prepared as shown in Table 2.2.1.
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STOCK SOLUTION RESOLVING GEL 
COMPOSITION (mL)

STACKING GEL 
COMPOSITION (mL)

Acrylamide - bisacrylamide 
(30:0.8 % w/v)

6.25 1.25

Resolving gel buffer 1.88 -

Stacking gel buffer - 2.5
Water 7.1 6.1
10% SDS 0.150 0.100
10% ammonium persulphate 0.225 0.150
TEMED 0.015 0.015

Table 2.2.1 Composition o f  12% acrylamide gels used for SDS-PAGE analysis o f  
protein solutions.

All stock solutions were prepared and stored as described by Hames and Rickwood 

(1990). Resolving gel buffer comprised 3.0 M Tris HC1 (pH 8.8) and stacking gel 

buffer comprised 0.5 M Tris HC1 pH 6.8. The volumes shown are sufficient for the 

preparation of two 12% acrylamide gels.

Samples for electrophoresis were prepared by dilution in a 1:1 ratio with sample 

buffer (60mM Tris-HCl pH6.8, 10% glycerol, 2% SDS, and 0.001% Bromophenol 

blue) and boiling for 5 minutes. A suitable volume of sample (up to 20pl) was loaded 

into the sample wells. Gels were run in reservoir buffer (0.025M Tris, 0.192M 

glycine, 0.1% SDS pH 8.3) at a voltage of 8 V/cm gel (stacking gel) and 15 V/cm gel 

(resolving gel).

Low molecular weight markers (Amersham Pharmacia Biotech, St. Albans, UK) 

were used for estimation of molecular weight of protein bands and were prepared 

according to manufacturer’s instructions. The sizes of the low molecular weight 

markers used are given in Table 2.2.2.

COMPONENT M.W. (Da)
Phosphorylase b 97 400
Serum albumin 66 200
Ovalbumin 45 000
Carbonic anhydrase 31 000
Trypsin inhibitor 21 500
Lysozyme 14 400

Table 2.2.2 Low molecular weight marker proteins for SDS-PAGE.
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Gels were stained with 0.1% (w/v) Coomassie Brilliant Blue R-250 (Bio-Rad 

Laboratories, Hemel Hempstead, UK) in a solution of 50% water, 40% methanol and 

10% acetic acid. Gels were stained for 1 hour and then transferred to destain solution 

(50% water, 40% methanol, 10% acetic acid) until protein bands became visible.

2.2.4 Glucose-6 -phosphate dehydrogenase (G-6 -PDH) assay

G-6-PDH is a cytoplasmic enzyme in E. coli and as such was used as a marker for 

cell breakage. G-6-PDH catalyses the following reaction:

Glucose-6-phosphate + NADP+ <=> 6-phosphogluconolactone + NADPH + H+

NADPH, but not NADP+, absorbs at 340nm. Hence G-6-PDH activity can be 

determined by following the production of NADPH spectrophotometrically.

An assay mixture was prepared, composed of 3 mM glucose-6-phosphate (Sigma 

Chemical Company, Poole, UK), 0.4 mM NADP+ (Sigma), 7mM MgCL and 50 mM 

Tris HC1 pH7.5. 50pL sample (diluted appropriately) was added to 1 mL assay mix at 

25°C and the rate of absorbance change at 340nm recorded. Enzyme activity was 

then determined from the equation:

Activity (in enzyme units) =
A OD3 4 0

At
" 1 " ~V~
_E_ _ v _

D (2.1)

Where:

Enzyme units = pmol (substrate converted) min^mL'1

A OD3 4 0

At

V

v

D

= rate of change in absorbance at 340nm (OD units/ time)

= extinction coefficient (NADPH = 6220 OD units for 

a Molar solution)

= Total volume in cuvette (mL)

= volume of sample in cuvette (mL)

= dilution factor
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2.2.5 Measurement of viscosity

Liquid viscosity was measured using a Rheomat 115 viscometer (Contraves 

Industrial Products Ltd, Middlesex, UK) fitted with a double gap, cup and bob 

measuring system. The measuring bob was rotated at 15 pre-set speeds from 5 to 780 

rpm, producing shear rates over the range 24.3 s'1 to 3680 s '1. The corresponding 

shear stress for each speed was recorded. Sample viscosity was determined from the 

gradient of the linear regression of shear stress against shear rate. The measuring 

system was maintained at a constant temperature using a Haake re-circulating 

glycol/water bath (Haake, Germany).

2.3 Analysis for quantification of antibody fragments

2.3.1 ELISA

NUNC 96 well maxisorp immunoplates (Life Technologies Ltd., Paisley, UK) were 

coated overnight at 4°C with HP6045 (a mouse antihuman monoclonal antibody 

supplied by Celltech Chiroscience Ltd) at 2 pg mL'1 in phosphate buffered saline 

(PBS, lOmM phosphate, 145 mM NaCl). After washing 4x with PBS containing 

0.05% (v/v) Tween-20, serial 1 in 2 dilutions of samples and standards were 

performed on the plate in 100 pL of sample/conjugate buffer (100 mM Tris HC1 pH 

7, 100 mM NaCl, casein 0.2% (w/v), Tween-20 0.0002% (v/v)), and the plate was 

placed on a rocker (Luckman 4RT rocking table, Denley Instruments Ltd, 

Billinghurst, UK) at room temperature for 1 hour. The wash step was repeated, 100 

pL of the revealing antibody GD12 peroxidase (The Binding Site Ltd., Birmingham, 

UK) was added, diluted 1 in 2000 in sample/conjugate buffer, and the plate again 

incubated on a rocker at room temperature for 1 hour. After further washing, 100 pL 

of substrate solution was added, consisting of 0.1 M sodium acetate/citrate pH 6, 100 

pg mL'1 TMB, H2O2 0.02% (v/v)). The A630nm was recorded with a Dynatech MR 

7000 microplate reader (Dynex Technologies, Billingshurst, UK) after 4-6 minutes. 

The concentration of Fab’ was determined from a standard curve prepared each time 

the ELISA was performed.
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2.3.2 Biosensor analysis

2.3.2.1 The sensor

The IAsys optical biosensor (Affinity Sensors, Cambridge, UK), which employs a 

resonant mirror (Cush et al., 1993), was operated according to the ‘user 

documentation’ supplied with the instrument. The resonant mirror is assembled 

within a disposable cuvette which has a working volume of 200 pL. During operation 

the instrument temperature was controlled at 25°C and the contents of the cuvette 

mixed with a micro stirrer. The instrument was controlled using a Microsoft 

Windows™ based package supplied by the manufacturers. Binding interaction 

profiles were analysed by linear regression to determine the initial rate of binding 

using the Fastfit software programme also supplied by Affinity Sensors.

2.3.2.2 Ligand Immobilisation

The biosensor capture species (protein A (Sigma) or HP6045) was immobilised onto 

the sensing surface of cuvettes derivatised with a coating of carboxymethyl dextran 

(CMD). Covalent coupling of the ligand to CMD was achieved through the formation 

of amide linkages between carboxyl groups on the dextran and amino groups on the 

protein.

After placing the cuvette in the instrument, 200 pL PBS/T (lOmM phosphate, 2.7 

mM KC1, 138 mM NaCl, 0.05%(v/v) Tween-20, made by dissolving one PBS/T 

sachet (Sigma) in 1 L RO water) was added and the response followed for 5 minutes 

to establish an initial baseline. Buffer was removed from the cuvette by aspiration. 

The carboxymethyl groups on the dextran coating of the cuvette were activated over 

a period of 8 minutes by addition of a solution of 400 mM 1-ethyl-3-(-3 

dimethylamino propyl) carbodiimide (EDC, Sigma) and 100 mM N- 

hydroxysuccinimide (NHS, Sigma). Following activation the cuvette contents were 

replaced with PBS/T and the instrument response followed for a further 3 minutes to 

establish a pre-immobilisation baseline. Immobilisation was then initiated by
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addition of ligand at the appropriate concentration (protein A, 30 pg mL'1, HP6045 

250 pg mL'1), in 10 mM acetate buffer (pH 5.0). After 5 minutes the solution was 

replaced with 1 M ethanolamine (Affinity Sensors) to quench residual NHS ester 

activated carboxymethyl groups. Following 2 minutes incubation the ethanolamine 

was replaced with PBS/T to establish a post-immobilisation baseline. The difference 

between the pre- and post-immobilisation baselines was used to indicate the amount 

of ligand that had been immobilised. Non-covalently attached protein was removed 

prior to interaction studies by washing with 10 mM HC1 for 2 minutes.

2.3.2.3 Monitoring of ligand interaction with 4D5 Fab9

Prior to the recording of each interaction profile 180 pL PBS/T/S (PBS/T buffer 

containing 0.5M NaCl) was added to the cuvette for 30 seconds to establish a 

baseline. Interaction was initiated by the addition of 20 pL of sample. Thus each 

sample was diluted 1 inlO during interaction with the surface immobilised ligand. 

The dilution step minimises the effects of changes in temperature and refractive 

index on sample addition, both of which can affect instrument response. Interaction 

was allowed to continue for 30 seconds before the surface was regenerated by the 

addition of 10 mM HC1 (HP6045 assay) or 50 mM HC1 (protein A assay). The 

surface was then washed three times with PBS/T/S, following which 180 pL 

PBS/T/S was added to the cuvette to establish a new baseline prior to the next sample 

application. The interaction profiles obtained were analysed using linear regression as 

described in Holwill et al., 1996. Concentration data was obtained from a standard 

curve prepared for each biosensor cuvette using purified Fab’ diluted in PBS/T/S.

2.3.3 Production of Fab9 standards

4D5 Fab’ standards for the calibration of ELISA and biosensor assays were purified 

from periplasmic extracts of cells harvested from HCD fermentations (section 

2.1.4.5). Cells were resuspended in periplasmic extraction buffer (lOOmM Tris HC1 

pH 7.4, 10 mM EDTA) at a concentration of 0.14 g mL'1 and incubated with shaking 

overnight at 60°C, 250 rpm. Following extraction, spheroplasts were removed by 

centrifugation at 10 000 rpm for 40 minutes using a Beckman J2-M1 centrifuge
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(Beckman Instruments (UK) Ltd, High Wycombe, UK) with a JA 10 rotor. 4D5 Fab’ 

was purified from clarified periplasmic extracts by packed bed affinity protein A 

chromatography as described in section 2.4.3.1.

Purified Fab’ was buffer exchanged into 100 mM acetate pH5.5 containing 125 mM 

sodium chloride and 0.02% sodium azide for long term storage. Buffer exchange was 

carried out by dialysis (14 mm diameter dialysis tubing, Fisons Scientific, 

Loughborough, UK) overnight at 4°C. The concentration of the resulting solution 

was determined from the absorbance at 280 nm, using the equation:

A = eel (2.2)

where: A = absorbance at 280 nm

e = extinction coefficient 

c = concentration (mg mL'1)

1 = path length ( 1  cm)

For 4D5 Fab’ the extinction coefficient, 8 , is equal to 1.43 for a 1 mg mL' 1 solution 

(personal communication, D. King, Celltech Chiroscience Ltd). Purity and quality of 

the Fab’ standard was assessed by SDS-PAGE (section 2.2.3.2) and Western blotting 

(section 2.3.4).

2.3.4 Western blotting

To enable specific detection of bands of antibody fragments, SDS-PAGE gels 

(section 2.2.3.2) were blotted onto Immobilon-P PVDF transfer membranes 

(Millipore (UK) Ltd, Watford, UK) using a Trans-Blot semi-dry transfer cell (Bio- 

Rad Laboratories), operating at 15V for 30 minutes using tris-glycine buffer (0.039M 

glycine, 0.048M tris base, 0.037% SDS, 20% methanol, 80% water) at pH 8.4. So 

that the success of transfer to the blotting membrane could be readily assessed, pre­

stained low molecular weight markers (Bio-Rad Laboratories) were run on the gel 

(Table 2.3.1). These markers also aided the identification of protein bands on the
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blot. Following transfer the membrane was blocked for 1 hour by incubation with 

shaking in PBST (PBS + 0.1% tween 20) containing 2% milk powder.

COMPONENT M.W. (Da)
Phosphorylase B 111 000
Bovine serum albumin 77 000
Ovalbumin 48 200
Carbonic anhydrase 33 800
Soybean trypsin inhibitor 28 600
Lysozyme 20 500

Table 2.3.1 Pre-stained low molecular weight marker proteins for Western blotting.

2.3.4.1 Fab’ light chain detection

For Fab’ light chain detection the membrane was incubated overnight with an anti­

human kappa light chain antibody-HRP conjugate (Dako Ltd., High Wycombe, UK) 

diluted 1/1000 in PBST containing 2% milk powder. The membrane was washed on 

a shaker in three changes of PBST, 5 minutes per wash. Colour was developed by 

incubating the membrane in a substrate solution containing 34ml PBS, 6 ml methanol, 

20mg l-chloro-4-naphthol and 20 pi of 30% H2O2 for 15 minutes.

2.3.4.2 Fab’ heavy chain detection

For Fab’ heavy chain detection the membrane was incubated for 1 hour with a sheep 

anti-human IgG (Fd) polyclonal antibody (The Binding Site, Birmingham, UK) 

diluted 1/10 000 in PBST containing 2% milk powder. Following three 5 minute 

washes in PBST, the membrane was incubated for another hour in an Fc fragment 

specific peroxidase conjugated affmipure F(ab’ )2  fragment rabbit anti-sheep IgG 

(Jackson, Luton, UK) diluted 1/10 000 in PBST containing 2% milk powder. The 

wash step was repeated and colour was developed by incubating the membrane in 

substrate solution (34ml PBS, 6 ml methanol, 20mg l-chloro-4-naphthol and 20 pi of 

30% H2O2) for 15 minutes.
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2.4 Downstream processing

2.4.1 Periplasmic extraction

2.4.1.1 General extraction protocols

The procedure used to produce periplasmic fractions for the determination of 

periplasmic antibody concentration in fermentation samples is given in section 2.2.1.

The standard periplasmic extraction protocol, used to release antibody fragments 

from cells, involved incubation of cells overnight (-16 hours) in periplasmic 

extraction buffer (100 mM Tris HC1, 10 mM EDTA) at an OD600 of -80. The 

concentration of cell paste required to give an OD600 of -80 was determined to be 

0.14 mg mL'1. Standard incubation conditions were 60°C and 250 rpm unless 

otherwise stated.

2.4.1.2 Equipment used for the characterisation and scale up of periplasmic 

extraction

Periplasmic extraction experiments for the characterisation of antibody release and 

protein degradation were performed at three scales of operation; 0.065L, 2L and 

100L. The small scale extractions were carried out in 0.1 L stirred tanks whereas 2L 

and 100L extractions were performed in a 3L and a 150L bioreactor respectively 

(both bioreactors supplied by LH Fermentation, Inceltech UK Ltd., Berkshire, UK). 

Temperature within the stirred tanks was maintained by heating coils containing 

water pumped from a hot water bath maintained at 85°C. Temperature within the 

bioreactors was maintained using the bioreactors’ in-built temperature control 

systems.

Dimensions of the vessels and associated impellers used for the extraction 

experiments are given in Table 2.4.1.

71



Extraction vessel 0.1L Stirred tank 3L Bioreactor 150L Bioreactor
Extraction volume (L) 0.065 2 1 0 0

Vessel height (m) 0.058 0 . 2 1.205
Vessel diameter (m) 0.046 0.14 0.4
Impeller type 6 -bladed disk 

turbine
6 -bladed disk 

turbine
6 -bladed disk 

turbine
Impeller diameter (m) 0.024 0.056 0.125
Number of impellers 1 2 3
Impeller Power number (-) 5 1 0 15
Table 2,4.1 Dimensions o f  vessels used for the characterisation and scale up o f  
periplasmic extraction.

Impeller speeds used in the extraction experiments were calculated to give a constant 

power per unit volume of 45 Wm' . Calculations are given in Appendix 4. The 

impeller speeds used were 250 rpm (0.1L stirred tank), 150 rpm (3L bioreactor) and 

130 rpm (150L bioreactor).

For the small scale extractions (0.1L stirred tank), cells were resuspended in 

extraction buffer in a 100 mL Duran bottle (approximate dimensions 6  cm height x

4.6 cm diameter). Resuspension was achieved using a six-bladed disk turbine 

impeller (diameter 2.4 cm) rotated at a speed of -1800 rpm for 15 minutes. Cell 

suspensions were transferred to the stirred tanks following complete resuspension.

For the large scale extractions (performed in the 3L and 150L bioreactors) cell paste 

was added directly to the bioreactor containing extraction buffer at the required 

temperature. Resuspension was performed at the impeller speed employed for the 

extraction process and took up to 45 minutes.

2.4.1.3 Production of spheroplast suspensions for centrifugation trials

Spheroplast suspensions used in the large-scale centrifugation trials were produced 

using the standard periplasmic extraction procedure described in section 2.4.1.1. 

Extraction was performed in the 150L bioreactor at a temperature of 60°C and an 

impeller speed of 130 rpm.
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2.4.2 Centrifugation

2.4.2.1 Measurement of shear sensitivity

The rotating disc shear device was used to shear purified Fab' and spheroplasts. The 

device, illustrated in Figure 2.4.1, consisted of a single flat aluminium disk, 3 cm in 

diameter and 0.1 cm in thickness, mounted within a cylindrical Perspex chamber. 

The chamber had a diameter of 4 cm and a height of 1.5 cm. The disk was rotated 

within the chamber by a small battery driven high speed motor (Groupher Speed 500 

BB RACE, UK). For the experiments carried out in this study, the disk was rotated at 

27 000 rpm for 15 seconds, corresponding to a shear rate of approximately 

l . l x lO6 s"1.

Shaft
CO Outlet

Rotating disc

Cylindrical
casing

Inlet

Figure 2.4.1 Schematic diagram o f the rotating disk shear device.

2.4.2.2 Laboratory spin test

Laboratory spin tests were performed on spheroplast suspensions using the Beckman 

J2-M1 centrifuge (Beckman Instruments (UK) Ltd, High Wycombe, UK) with a JS

13.1 swing-out rotor. The centrifuge tubes used were 10 mL open, lipless tubes filled 

to capacity. During centrifugation, the tubes were rotated such that the axis of each 

tube was at right angles to the axis of rotation. Spheroplast suspensions were spun at 

6720 rpm (3720g) for 3.5, 6, 10, 15, 20, 29 and 47 minutes. The equivalent Q/E 

corresponding to each run time is given in Appendix 8. Following centrifugation the 

supernatant in each tube was carefully decanted. The optical density of all
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supernatants was measured at 600nm using a spectrophotometer (Uvikon 922, 

Kontron Instruments Ltd., Watford, UK). The OD600 of the initial spheroplast 

suspension (‘feed’) and a ‘well spun’ sample of the feed (obtained by centrifuging at 

10 000 rpm/ 8200g for 90 minutes) was also measured. The clarification efficiency 

obtained at each equivalent Q/X was calculated using the equation in section 2.4.2.3.

2.4.2.3 Clarification efficiency

Clarification efficiencies were calculated using the following equation:

Clarification efficiency (%) =100 1 -
f  OD600 (supernatant) - OD60Q (well spun) ^

ODm  (feed) - ODm  (well spun) ) )

(2.3)

The well spun sample represents a feed sample centrifuged in the laboratory 

centrifuge (Beckman J2-M1 centrifuge) at 10 000 rpm (8200g) for 90 minutes. 

Optical densities were measured using a spectrophotometer (Uvikon 922).

Clarification efficiencies were also determined on the basis of solids volume fraction 

by replacing the OD600 terms in Equation 2.2 with solids volume fractions. Solids 

volume fractions were estimated as described in section 2.4.2.5.

2.4.2.4 Clarification of spheroplast suspensions

Two centrifuges were used for the clarification of spheroplast suspensions, the 

CARR P6 Powerfuge (CARR Separations Inc, Franklin, MA) and the Westfalia 

CSA-1 variable speed, steam sterilisable disk stack with semi-hermetic bowl 

(Westfalia Separator, Milton Keynes, UK). Feed suspension was pumped through the 

CARR Powerfuge using a Cole-Parmer Instrument Company model 7523-27 pump 

(Bamant Co., Barrington, IL). The pump used with the CSA-1 was a Watson Marlow 

605 Di Peristaltic pump (Watson Marlow Ltd., UK). Technical specifications of the 

centrifuges are given in Appendix 6 (CARR) and Appendix 7 (CSA-1).

74



2.4.2.4-a Centrifuge recovery

Recovery curves were produced to determine the relationship between flow rate and 

clarification for each centrifuge. Centrifuges were operated at the following flow 

rates: CARR, 15, 20, 30, 50, and 90 L hr1; CSA-1, 10, 20, 30, 50 and 100 Lhr'1. The 

clarification efficiency at each flow rate was calculated and plotted against Q/X. The 

Q/X values corresponding to the flow rates used for each centrifuge are given in 

Appendix 9.

2.4.2.4-b Centrifuge mass balances

Mass balances were performed by processing one ‘centrifuge bowl’ volume of 

spheroplast suspension (i.e. the volume required to fill the centrifuge bowl with 

solids) at the estimated operating flow rate for 95% clarification (determined from 

centrifuge recovery curves). The suspension volume required to fill the bowl was 

initially determined by pumping the suspension through the centrifuge at the required 

flow rate until solids breakthrough occurred. Following the processing of one bowl 

volume, collected solids were discharged and the volume of the supernatant and 

solids recorded.

Solids volume fraction of the feed, supernatant and solids (CSA-1 only) streams were 

estimated using the method described in section 2.4.2.5. The supernatant obtained 

following centrifugation of each stream for solids fraction determination was assayed 

for Fab’ and protein. This allowed a full mass balance of each centrifuge run to be 

conducted using the equations given below. The nomenclature used to represent 

stream properties in the mass balance equations is given in Table 2.4.2.

Process stream Feed Supernatant Solids
Protein concentration C pf C ps C pd

Fab’ concentration C af C as C ad

Volume V feed V sup V dis

Solids fraction Vff VFSUP Vfdis

Table 2.4.2 Nomenclature used to represent stream properties in mass balance 
equations.

75



Protein balance: C pf( 1 -  vff)  V feed  -  C ps( 1 -  v f su p )  V s u p +  C p d ( 1 -  v f d is)  V d is

Fab’ balance: C a f ( 1 -  vff)  V feed  -  C a s ( 1 -  v f su p )  V s u p +  C a d ( 1 -  v f d is)  V dis

Protein yield (%) Supernatant stream

Fab’ yield (%)

Solids stream 

Supernatant stream 

Solids stream

C p sO  “ Vpsup) V SUP

CPF(1- Vpp) Vj
100

FEED

C p p U  ~ V F D I s )  V p i S  *  J Q Q

CpF(l _ Vpp) Vpppn

^ a s O  “ V FSUp )  V SUP

^ afO " VFf) VFEED
100

"ADIS 0  " V F D Is) V ]FDIS/ PIS » 1 Q q

C a fO -  VFf )  VpEEP

Liquid (%) Supernatant stream

Solids stream

0 "  v f s u p )  VSUP
( I - vFF) VFEED 

0  " V FD Is) VDIS
(1- Vpp)^

100

100
FEED

2.4.2.5 Estimation of solids volume fraction

The fractional volume of solids in any given process stream was determined by 

centrifuging known volumes of material in graduated, transparent Perspex process 

tubes. The process tubes were graduated in increments of 50pL to allow direct 

measurement of the volume of solids. Samples were centrifuged in the Beckman J2- 

M1 centrifuge using the JS 13.1 rotor, at 10 000 rpm (8200g) for 30 minutes.

2.4.2.6 Scale-down operation of the CSA-1 disk stack centrifuge

Scale-down of the CSA-1 centrifuge was achieved using stainless steel conical 

inserts made by Westfalia Separator. Four interlocking conical top inserts were used 

to reduce the bowl volume, solids holding space volume and the number of active 

disks. In addition, a conical bottom insert was used to reduce the bowl volume and
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lift the disk stack off the bottom of the centrifuge. Specifications for the full stack 

and scale-down configurations are given in Table 2.4.3.

No. reducing 
inserts

Active disks Bowl volume Solids holding 
volume

No. %full-
scale

Vol (L) % full- 
scale

Vol (L) % full- 
scale

0  (full stack) 45 1 0 0 0.44 1 0 0 0.25 1 0 0

4 (scale-down) 1 2 27 0.13 30 0.089 36
Table 2.4,3 Specifications for the CSA-1 full-scale and scale-down configurations.

Operational flow rates used in the preparation of recovery curves (section 2.4.2.4-a) 

for the CSA-1 were as follows: Full stack configuration, 100, 50, 30, 20 and 

10 L hr-1; Scale-down configuration, 27, 13, 8 , 5.3 and 2.7 L hr'1. The corresponding 

Q/2 values have been calculated in Appendix 10.

2.4.3 Chromatography

2.4.3.1 Packed bed affinity protein A chromatography

Purification of 4D5 Fab’ from periplasmic extracts was routinely performed by 

packed bed affinity protein A chromatography using a BioCAD™ 700E workstation 

(Perceptive Biosystems, Warrington, UK). Three types of protein A media were used 

for Fab’ purification; details of the media, associated columns and operating flow 

rates are given in Table 2.4.4.

Chromatography
Matrix Type

Column
Dimensions Matrix 

volume (mL)

Flow rate 
(mL min*1)

Streamline rProtein A 
(Amersham Pharmacia 
Biotech, Uppsala, 
Sweden)

Pharmacia 
HR 10/10

10 mmD x 
100 mmL

7 3

POROS®50A protein A 
(Perseptive Biosystems)

POROS® 4.6 mmD x 
100 mmL

1 . 6 6 2

rProtein A Sepharose® 
Fast Flow (Pharmacia)

Pharmacia
HiTrap

7 mmD x 
25 mmL

1 1

Table 2.4.4 Protein A chromatography media and associated columns and flow rates 
used for the packed bed affinity purification o f 4D5 Fab
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2.4.3.1-a Sample preparation

Periplasmic extracts were clarified by centrifugation at 10 000 rpm for 40 minutes 

using the Beckman J2-M1 centrifuge (Beckman Instruments (UK) Ltd, High 

Wycombe, UK) with a JA 10 rotor. Glycine was then added to the extracts to a 

concentration of 1M and the pH of the extract adjusted to 7.5 using 50% (w/v) 

sodium glycinate. Prior to application to the column, extracts were filtered through a 

Sartobran 300 0.2 pM filter (Sartorius, Goettingen, Germany).

2.4.3.1-b Process operation

Sample was applied to a protein A column equilibrated in 1M glycine/ glycinate (pH 

8.0) at the operating flow rate given in Table 2.4.4. The column was washed with 15 

column volumes of equilibration buffer. The Fab’ was then eluted with a 10 column 

volume linear gradient from 1M glycine pH 8.0 to 0.1 M citrate pH 3.0. Column flow 

through was collected in 10 mL fractions during the load and wash cycles; 2mL 

fractions were collected during elution. Fab’ containing fractions were adjusted to pH 

6.0 with 2M tris-HCl pH 8.5.

2.4.3.2 Expanded bed affinity protein A chromatography

Fab’ was purified by expanded bed affinity chromatography using a Streamline 25 

expanded bed column packed with 25 mL Streamline rProtein A matrix. The system 

was controlled using a modified Pharmacia FPLC system comprising an LCC-500 

controller and two P-500 pumps. UV monitoring at 280nm was carried out using a 

UV-1 monitor; conductivity and pH of the eluant stream were also monitored. 

Column flow through was collected in fractions using a FRAC-100 fraction collector. 

The Streamline column and matrix, all components of the FPLC system and the 

fraction collector were supplied by Amersham Pharmacia Biotech, Uppsala, Sweden. 

UV and conductivity/ pH were logged using a PE Nelson 900 interface and 

Turbochrom v. 4 software (both Perkin Elmer, California). The layout of the 

expanded bed system is illustrated in Figure 2.4.2.
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Figure 2.4.2 Schematic diagram o f the Streamline 25 expanded system used fo r the 
purification o f  4D5 Fab \
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2.4.3.2-a Sample preparation

Glycine was added to unclarified periplasmic or whole broth extract to a 

concentration of 1M and the pH of the extract was adjusted to 7.5 using 50% (w/v) 

sodium glycinate. The extract was then adjusted to 2 mM MgC^ and 20 pL L' 1 

benzonase and incubated for 3 hours at 34°C to allow degradation of extracellular 

nucleic acids.

2.4.3.2-b Process operation

• Expansion and equilibration. The settled bed was expanded by pumping water 

through in an upward direction, gradually increasing the linear fluid velocity from 

0 to 185 cm hr’1. The system was then switched to run through buffer A (1M 

glycine/ glycinate, pH 8.0) for 20 minutes to equilibrate the bed.

• Sample loading. The prepared feed was loaded onto the column in an upward 

direction at a linear velocity of 185 cm hr'1.

• Washing. The column was washed in an upwards direction using buffer A at 185 

cm hr' 1 for 50 minutes to remove unbound protein and particulate matter.

• Elution. Following washing, flow to the column was stopped and the bed was 

allowed to settle. The upper adapter was then lowered until it reached the surface 

of the settled bed. The direction of liquid flow was reversed and the liquid linear 

velocity lowered to 90 cm hr'1. Fab’ was eluted by switching from buffer A to 

buffer B (0.1M Tri-sodium citrate, pH 3.0), giving a step change in pH.

During loading and washing, column flow through was collected in 15 mL fractions. 

During elution, column eluate was collected in 7.5 mL fractions. Fab’ containing 

fractions were adjusted to pH 6.0 with 2M tris-HCl pH 8.5.
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2.4.4 General procedures

2.4.4.1 Homogenisation

Complete cell disruption was achieved using a Gaulin Micron Lab 40 homogeniser 

(APV Gaulin GmbH, Lubeck, Germany). 40 mL samples were passed once through 

the homogenising valve at an operating pressure of 1200 bar. Glycol cooling was 

supplied to the equipment to reduce the disruption temperature to 4°C.

2.4.4.2 Ultrafiltration

Ultrafiltration was performed using a Millipore Labscale™ TFF system operated with 

three 50 cm Pellicon XL regenerated cellulose membranes (Millipore (UK) Ltd., 

Watford, UK). Process fluid was circulated through the system at a pump speed of

2.5 and an operating pressure of -200 psi until an eight-fold concentration was 

achieved.
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3. PRODUCTION OF A Fab’ ANTIBODY FRAGMENT BY 
Escherichia coli FERMENTATION

3.1 Introduction

This chapter describes the design and characterisation of a fermentation process for 

the periplasmic expression of Fab’ antibody fragments. Section 3.2.1 details 

characteristics of the Tow cell density’ fermentation initially used for Fab’ 

production. Although this fermentation produced high antibody titres, notable 

leakage of the antibody into the extracellular broth was observed over the course of 

the induction period. The fermentation was therefore modified to allow greater 

control of product location. Alterations made to the fermentation protocol are 

discussed in section 3.2.2, with the characteristics of the resulting ‘high cell density’ 

fermentation described in section 3.2.2.1-3.2.2.3. Finally, in order to provide 

sufficient material for downstream processing studies, the high cell density 

fermentation was scaled up to 450L as described in section 3.2.3.

The production of antibody fragments by E. coli fermentation has been reviewed in 

Chapter 1. A number of factors contribute towards product titres achieved, including 

the primary sequence of the antibody (Knappik and Pluckthun, 1995) and the rate of 

antibody expression. It has been suggested that the major limiting step during the 

production of antibody fragments in E. coli is the periplasmic folding process (Skerra 

and Pluckthun, 1991). If the antibody expression rate is too high, folding pathways 

are saturated and the antibody accumulates as insoluble aggregates. Therefore, to 

ensure the high level accumulation of soluble, correctly folded antibody fragments, it 

is important to limit production rates whilst maintaining sufficient levels of 

expression to allow high titres to accumulate. Factors affecting the rate of 

recombinant protein expression include promoter strength (Kipriyanov, et al., 1997), 

strength and concentration of the inducer (Shibui and Nagahari, 1992, Takagi et al., 

1988), design of the translation initiation region (Simmons and Yansura, 1996) and 

the induction temperature (Cabilly, 1989, Shibui and Nagahari, 1992, Takagi et al., 

1988). The order in which the individual chains are transcribed can also have an 

effect on expression titres and cell viability (Tsumoto et al., 1994, Weir and Bailey,
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1997). All such factors must be taken into consideration during design of the 

expression plasmid and fermentation system to achieve optimal rates of antibody 

fragment expression.

For a process study such as this to be considered both useful and relevant, the 

fermentation system employed should be comparable to current industrial practice. 

Additionally, it is desirable for the fermentation to show consistency in terms of both 

biomass levels and product titres. The initial development of recombinant antibody 

expression systems in E. coli usually involves growth and expression trials using 

complex media, antibiotic selection and chemical inducers such as IPTG. However, 

the use of such materials during the production of recombinant proteins destined for 

therapeutic use is inadvisable because evidence of clearance of these materials from 

the final product must be provided before regulatory approval can be obtained. 

Demonstrating clearance can be both difficult to achieve and extremely expensive. 

Therefore, current industrial systems tend to employ fully defined media with the 

avoidance of antibiotic selection or use of potentially harmful chemical inducers in 

the production fermenter.

The expression plasmid and fermentation system chosen for use in this study have 

been designed to allow controlled, high level expression of antibody fragments. As 

with current industrial practise, a fully defined growth medium is employed, and 

lactose rather than IPTG is used for the induction of recombinant protein expression 

from a tac promoter. The use of lactose as an inducer has the additional advantage of 

providing a slower, more controlled induction. The rate of product accumulation is 

also limited by the use of a sub optimal growth temperature during the induction 

phase. A diagram of the expression plasmid utilised for Fab’ production is illustrated 

in Appendix 1. The two antibody chains are expressed from a dicistronic operon to 

ensure the transcription of equal quantities of both chains. Furthermore, the light 

chain is situated upstream of the heavy chain so that it is transcribed first, to enhance 

both cell viability and the efficiency of antibody secretion.
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3.2 Results and discussion

3.2.1 Low cell density fermentations

Initial fermentations of E. coli strain W3110 pAGP-4 were carried out to assess 

fermentation characteristics and 4D5 Fab’ expression patterns. Three runs were 

performed using the low cell density (LCD) protocol described in section 2.1.4.4. In 

all runs fermenters were inoculated with 24 hour shake flask cultures using an 

inoculum volume of 2.5 % (v/v). Growth conditions were controlled at 30°C and pH 

6.95, and the DOT was maintained above 20% by manual increases in stirrer speed 

and airflow rate. 4D5 Fab’ expression was induced with lactose at an OD600 of 30. 

Fermentations were run for 15-20 hours after the carbon source switch from glucose 

to lactose.

3.2.1.1 General fermentation characteristics

Details of the three fermentations are summarised in Table 3.2.1. To allow for 

comparisons, Fab’ titres shown are those measured at 15 hours after the switch in 

carbon source from glucose to lactose metabolism.

Run Scale Inoculum DCW Fab’ (mgL*1)
(Initial wv, L) medium (gL-‘)

Ex pP Total %Pp
LCD 1 4 Complex 14.5 45 25 70 36
LCD 2 8 Complex 16.3 89 86 175 49
LCD 3 8 Defined 14.1 46 43 89 48

Table 3.2.1 Summary o f low cell density fermentations. Ex, extracellular Fab’; Pp, 
periplasmic Fab’; %Pp, percentage o f total Fab’ located in the periplasm. Fab’ 
titres recorded 15 hours after the switch from glucose to lactose metabolism.
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The initial fermentation was carried out to gain a general indication of the time scale 

and growth characteristics. The culture was grown in a 7L vessel using a 4L initial 

working volume. During LCD fermentation runs 2 and 3 fermentation characteristics 

were monitored more closely. Due to fermenter availability, these runs were carried 

out in a 20L fermenter using an initial working volume of 8L.

The aeration and respiration profiles for LCD run 2 are shown in Figures 3.2.1 and 

3.2.2. The respiration profile shows typical diauxic growth kinetics. A very long 

initial lag phase (~18 hours) was observed, followed by a shorter lag of 3 hours after 

-35 hours, indicating glucose depletion and the onset of lactose metabolism. The 

OUR increased exponentially during growth on glucose and peaked at 90 mmolL^h'1 

just prior to glucose depletion. The specific growth rate during exponential growth 

was calculated as 0.22 h '1, based on dry cell weight (DCW) (data illustrated in Figure 

3.2.4). Biomass levels of 16 g(DCW) L*1 were attained by end of the fermentation.

The sudden drop in oxygen uptake rate (OUR) and carbon dioxide evolution rate 

(CER) and rise in DOT at ~35 hours, indicative of the switch from glucose to lactose 

metabolism, was accompanied by a tautological rise in extracellular pH, as shown in 

Figure 3.2.3. During growth on glucose, the pH of the medium dropped due to the 

synthesis of acidic by-products and alkali was added by the pH controller to maintain 

the culture pH at 6.95. The pH rise following glucose depletion was thought to be 

caused by the proton symport associated with lactose uptake (Straight et a l , 1989). 

After growth began to increase as cells adapted to lactose metabolism, medium pH 

again dropped and alkali was consumed.

85



o
o

T 3
Q)(D
CL

C/5
L_(D

C/5

■ocro

25

20  -

15 -

10  -

5 -

GLUCOSE/ LACTOSE SWITCH 

LACTOSE ADDED

I v\

10 20 30 40 50

Ferm en ta tion  time (hours)

100

80

60

40

20

60

DoH

Figure 3.2.1 Aeration profile fo r fermentation LCD 2 showing changes in dissolved 
oxygen tension (DOT) during fermentation and effects o f  changing stirrer speed and 
airflow to maintain dissolved oxygen above 20%.

120

GLUCOSE/ LACTOSE SWITCH

100 LACTOSE ADDED

_I

0 10 20 5030 40 60

Ferm en ta tion  time (hours)
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3.2.1.2 Fab’ production

Fab’ accumulation was monitored from the time of lactose addition to 20 hours after 

the glucose/ lactose switch. Fab’ concentrations of both periplasmic and extracellular 

fractions of fermentation samples were determined by ELISA. Periplasmic fractions 

were obtained using the extraction protocol described in section 2.2.1. All 

concentrations obtained from ELISA analysis were converted to mg Fab’ per litre of 

original fermentation broth.

Total Fab’ accumulation for run 2 is illustrated alongside OUR and DCW data in 

Figure 3.2.4. It is evident from this that Fab’ production occurred mainly during late 

exponential and stationary growth phases, following the addition of lactose at 32 

hours. Figure 3.2.5 shows how the distribution of Fab’ between the periplasm and the 

extracellular medium varied over the course of the induction period. Periplasmic 

Fab’ reached peak titres (70-80 mg L '1) 8 hours after the glucose/ lactose switch. 

Titres remained fairly constant for the following 10 hours and then began to decline.
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Extracellular Fab’ accumulated more slowly initially but titres continued to increase 

throughout the induction phase with levels reaching 132 mg L"1 (and still increasing) 

at the end of the fermentation. Total Fab’ titres appear to level off over the final three 

hours of the fermentation. Thus the increase in extracellular Fab’ and decrease in 

periplasmic Fab’ could be attributed to cell lysis or leakage of antibody from the 

periplasmic space into the medium. The time for optimal harvest therefore depends 

on whether extracellular Fab’, periplasmic Fab’ or both are being harvested. 

However, it is inadvisable to harvest from the extracellular broth after extended 

periods of induction as any cell lysis occurring in the latter stages of fermentation 

will result in the release of proteases, DNA and lipids into the medium. This will 

reduce process stream purity and may hinder downstream purification operations.
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fermentation LCD 2. Fab’ concentrations determined by ELISA. Error bars 
represent standard deviations determined from multiple dilutions o f  duplicate 
samples.

It can be seen from the data in Table 3.2.1 that the level of cell growth was similar in 

all three fermentations whereas Fab’ titres varied quite widely. E. Fischer (PhD 

thesis, 1996) also observed notable variation in titres of periplasmically expressed a- 

amylase despite biomass levels being relatively consistent. This variation is difficult 

to explain but may result from differences in inoculum cultures, specific problems 

encountered during individual fermentations and slight variations in operating 

conditions which are generally determined by the specific requirements of each 

fermentation.
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3.2.1.3 Reduction of initial lag

The respiration profile in Figure 3.2.2 shows a long initial lag as the cells adapt to the 

environment within the fermenter. The lag was estimated at -18 hours from the OUR 

profile (Figure 3.2.6) and a ln-linear plot of OD against time (Figure 3.2.7). The lag 

was thought to be a direct result of transfer of the culture from complex medium in 

the shake flasks to defined medium in the fermenter. Bacterial cells find growth on 

defined medium more difficult as they are required to synthesise essential nutrients 

such as amino acids and nucleic acids which come ‘ready made’ in the complex 

medium. Following transfer to defined medium, cells must initially produce the 

enzymes required for synthesis of complex nutrients from the defined medium 

components before culture growth can resume. The time taken for the cells to adapt 

in this way can be considerable and is both inefficient and costly for production.

In order to try and reduce the lag phase, run 3 was carried out using an inoculum 

culture grown on the defined medium used in the production fermenter instead of the 

complex broth used in runs 1 and 2. Use of defined medium in the shake flasks is 

also preferable in terms of regulatory issues as discussed previously (section 3.1). 

Again an inoculum volume of 2.5% (v/v) was used. Analysis of the OUR profile and 

a ln-linear plot of the OD profile for run 3 (Figures 3.2.6 and 3.2.7) showed the lag 

had been reduced to ~14 hours as a result of the alteration in growth medium. 

However, a 14 hour lag still exceeds the ideal and therefore in an attempt to reduce it 

further the inoculum volume used in subsequent fermentations was increased (as 

discussed in section 3.2.2.1).
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3.2.2 High cell density fermentations

Downstream processing studies carried out later in this work focus on harvesting 

material from the periplasmic space. For processes where recovery from the 

periplasm is the chosen purification route, a fermentation is required which will 

minimise leakage of product into the extracellular medium. In order to try and 

achieve this a number of alterations were made to the original fermentation protocol 

described above. As well as allowing increased control over product location, these 

changes were designed to give higher biomass and thus increased antibody titres. The 

protocol changes can be summarised as follows:

1. Alteration of carbon source. The initial carbon source was changed from glucose 

to glycerol to reduce potential acetate production and growth inhibition, allowing 

growth to higher cell densities (Holms, 1986). Cells also grow more slowly on 

glycerol than on glucose (Korz et al, 1995) which aids plasmid stability. The 

glycerol was added in batches to increase total biomass.

2. Addition of calcium and magnesium during fermentation. Calcium and 

magnesium salts were added prior to induction to increase the strength of the outer 

membrane and thereby reduce leakage of periplasmic material into the medium. 

Calcium and magnesium ions play an essential role in outer membrane integrity 

by electrostatically linking together the lipopolysaccharide molecules which cover 

the outer membrane surface (Vaara, 1992).

3. Temperature reduction. Culture temperature was reduced to 27°C prior to 

induction to slow culture growth and thereby increase the efficiency of antibody 

folding. Culturing at low temperatures reduces the rate of protein production and 

secretion into the periplasm, which improves folding efficiency, allowing the 

accumulation of higher titres of soluble and functional Fab (Cabilly, 1989; Shibui 

and Nagahari, 1992).
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4. Use of phosphate limited medium. A reduced phosphate concentration in the 

growth medium was used to aid plasmid stability and enhance periplasmic 

retention. The stability of small, low copy number plasmids has been shown to be 

increased in continuous culture by phosphate limitation (Caulcott, 1984, Caulcott 

et al., 1987). Phosphate limitation can also have an effect on the cell wall of 

Gram-negative bacteria, with phospholipids being replaced with glycolipids 

(Tempest and Wouters, 1981). It is thought that the changes in cell wall structure 

also aid the retention of proteins within the periplasmic space (personal 

communication, N Weir).

The protocol followed for high cell density (HCD) fermentations is described in 

section 2.1.4.5. All inoculum cultures for HCD fermentations were grown on defined 

medium. Culture pH was maintained at 6.95, and the DOT was as far as possible 

maintained above 20% by manual increases in stirrer speed and airflow rate. Glycerol 

was used as the initial carbon source at a concentration of 3% (w/v) in the 

fermentation medium. Further glycerol was added in batches at specific ODs, as 

described in section 2.1.4.5. The growth temperature was initially maintained at 30°C 

and was reduced to 27°C at an OD of 40. MgS0 4  and CaCl2 were also added at 40 

OD to final concentrations of 14.4 mM and 1.7 mM respectively. Fab’ expression 

was induced at an OD of 60 by addition of 45 g L'1 lactose with the final glycerol 

shot. Further lactose was added in 45 g L'1 batches as required.

3.2.2.1 General fermentation characteristics

Initially four HCD fermentations were performed at a scale of 10L (initial working 

volume). Additions during the fermentation resulted in an increase in culture volume 

of at least 15% (depending on how many lactose shots were required). The inoculum 

volume for the 10L HCD fermentations was increased to 10% (v/v) (compared to 

2.5% (v/v) used for the LCD fermentations) with the aim of minimising the initial 

lag. Fermentations were run for 13 hours after the switch in carbon source from 

glycerol to lactose. The characteristics of each run are summarised in Table 3.2.2.
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Run Scale Inoculum DCW Fab’ (m gl/1)
(Initial wv, L) medium (g L 1)

Ex Pp Total %Pp
HCD 1 10 Defined 40 250 358 608 59
HCD 2 10 Defined 38 105 573 678 85
HCD 3 10 Defined 33 34 189 227 83
HCD 4 10 Defined 37 15 202 217 93

Table 3.2.2 Summary o f high cell density fermentations. Initial wv, initial working 
volume; Ex, extracellular Fab Pp, periplasmic Fab %Pp, percentage o f total Fab ’ 
located in the periplasm. Fab ’ titres recorded 13 hours after the switch from glycerol 
to lactose metabolism.

Figures 3.2.8-3.2.11 show data obtained from fermentation HCD2. The respiration 

profile (Figure 3.2.9) again shows diauxic growth kinetics. The culture was oxygen 

limited for a brief period between ~13 and 18 hours. This was because the stirrer 

speed and airflow rate had been set too low to sustain growth overnight. Dissolved 

oxygen also fell below 20% for a short period immediately prior to glycerol 

depletion. At this stage the stirrer speed and airflow rate were both operating on 

maximum settings, hence a brief period of oxygen limitation could not be avoided. 

The OUR peaked at 175 mmolL^h'1 just prior to glycerol depletion. This compares to 

90 mmolL^h'1 for the LCD fermentation. Oxygen demands of the HCD 

fermentations are considerably increased because the cultures are grown to higher 

biomass (achieved by batch-feeding of glycerol). A disadvantage associated with this 

is that cultures are at risk of becoming oxygen limited when oxygen demands are 

greatest, just prior to the carbon source switch.

The switch from glycerol to lactose metabolism during HCD fermentations was 

indicated not only by a large drop on OUR and CER and an increase in medium pH 

(as for LCD fermentations) but also by an increase in RQ, illustrated in Figure 3.2.10. 

The RQ during growth on glycerol was -0.7, a typical value for E. coli. Following 

glycerol depletion and the onset of lactose metabolism the RQ increased to 1.0. Such 

a change was not observed for LCD fermentations as the RQ for growth of E. coli on 

glucose (the initial carbon source in LCD) fermentations was also 1.0.

94



25

G/L SWITCH

0
0 10 20 30 40

Fermentation time (hours)

Figure 3.2.8 Aeration profile showing changes in dissolved oxygen tension during 
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Figure 3.2.9 Respiration profile showing carbon dioxide evolution rate and oxygen 
uptake rate fo r  fermentation HCD 2. Additions as fo r  Figure 3.2.8.
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Figure 3.2.10 Switch from glycerol to lactose metabolism during fermentation HCD 
2, indicated by a drop in OUR and an increase in RQ from 0.7 (growth on glycerol) 
to 1.0 (growth on lactose). (Due to excessive noise resulting from  inaccuracies in 
OUR and CER measurements, RQ over the period 0-20 hours is not shown). G/L 
SWITCH  = glycerol/ lactose switch.

The initial lag for HCD run 2 was estimated from OUR and DCW data to be 

approximately 10 hours. This is lower than the lag observed in LCD fermentations 

using an inoculum culture grown on defined medium and an inoculum volume of 

2.5% (v/v). Thus increasing the inoculum volume to 10% (v/v) for the HCD appeared 

to further reduce the initial lag.

Specific growth rate for exponential growth on glycerol was calculated to be 0.14 h’1 

based on OD and DCW data. This is lower than the equivalent figure for growth on 

glucose (0.22 h '1) as expected from Korz et al., 1995. The altered carbon source and 

batch feeding routine resulted in higher biomass; 33-40 g L"1 dry cell weight were 

routinely obtained (Table 3.2.2).

G/L SWITCH
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3.2.2.2 Fab’ production

Fab’ accumulation profiles were monitored following lactose addition in all HCD 

fermentations. The profile for run 2 is illustrated in Figure 3.2.11. This fermentation 

showed a considerable increase in titres compared to the LCD fermentations. Levels 

of periplasmic antibody reached 573 mg L'1 and extracellular antibody titres reached 

105 mg L'1. This appears to result from an increase in Fab’ yield per unit biomass as 

well as an increase in total biomass. The maximum Fab’ yield for the LCD 

fermentation was 13 mg Fab’(gDCW)'1, compared to 18 mg Fab’(gDCW)'1 for HCD 

run 2.

Accumulation of Fab’ to high titres within the periplasmic space was also indicated 

by an SDS-PAGE gel showing periplasmic extracts prepared from samples taken 

throughout the induction period (Figure 3.2.12). Periplasmic extracts were prepared 

as described in section 2.2.1 with samples incubated in extraction buffer overnight at 

60°C. SDS-PAGE was performed as described in section 2.2.3.2. The Fab’ protein 

runs as a single band on the gel at a molecular weight of approximately 48kDa. A 

band at this molecular weight appears in lanes 6-11 of the gel (representing samples 

taken between 7 and 16 hours after the addition of lactose). The intensity of the band 

increases as induction continues indicating increasing Fab’ concentration.

It is apparent from Figure 3.2.11 that induction of Fab’ expression began after lactose 

addition but before the switch from glycerol to lactose metabolism. This is because 

Fab’ is expressed from a tac promoter which is not subject to catabolite repression. It 

is also evident that Fab’ titres were still increasing when the fermentation was 

stopped. HCD fermentations were terminated at 13 hours post carbon source switch 

despite the fact that Fab’ was generally still accumulating. This is because the aim 

was not to produce the highest titres of antibody possible, but simply to produce 

biomass with suitable levels of antibody for detection in downstream processing 

studies.
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In addition to high antibody titres, the HCD fermentations also showed considerably 

reduced leakage of periplasmic material into the external medium (Table 3.2.2). 

Three of the four fermentations showed over 80% retention of material in the 

periplasmic space throughout the induction period. The reduced leakage was thought 

to result from a combination of changes made to the initial LCD protocol, including 

the addition of calcium and magnesium salts prior to induction, reduced phosphate 

concentration and reduced growth temperature during induction.
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Figure 3,2.11 Periplasmic, extracellular and total Fab’ accumulation during 
fermentation HCD 2. Fab’ concentrations determined by ELISA. Error bars 
represent standard deviations determined from multiple dilutions o f duplicate 
samples.

As with LCD fermentations, the HCD fermentations showed consistent levels of cell 

growth but notable variation in product titres (Table 3.2.2). Again, variations in titres 

are likely to result from differences in inoculum cultures and slight variations in the 

operating conditions of individual fermentations. In addition, the use of different 

Fab’ standards for calibration of ELISA assays was thought to contribute towards the 

variation in measured titres.
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Figure 3.2.12 SDS-PAGE gel showing Fab' accumulation within the periplasm  
during the induction phase o f  HCD fermentation. Periplasmic fractions obtained by 
overnight incubation in extraction buffer at 60 °C.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard

Lanes 3-11 Periplasmic samples at the following time intervals after lactose 
addition:

Lane 3 0 hours
Lane 4 3 hours
Lane 5 5 hours
Lane 6 7 hours
Lane 7 9 hours
Lane 8 11 hours 
Lane 9 13 hours 
Lane 10 15 hours 
Lane 11 16 hours

Lane 12 Purified 4D5 Fab ’ standard
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The effects of methods employed for standard preparation on quality of the standards 

and on assay calibration are discussed in Chapter 7. In summary, two different Fab’ 

standards were used for ELISA calibration during the assay of fermentation samples. 

The initial standard, used for quantification of Fab’ titres in LCD fermentations and 

HCD runs 1 and 2, was later found to contain a considerable proportion of 

incomplete or partially degraded Fab’. The consequence of using such a standard 

would have been to overestimate the Fab’ concentration in unknown samples. 

Alterations made to the production protocol allowed the preparation of an improved 

quality standard, used in the assay of samples from HCD runs 3 and 4. Thus, titres in 

the later HCD runs are considered to be more accurate, but should not be directly 

compared with previous fermentations. Because the same standard was used for 

assay calibration during the analysis of samples from LCD fermentations and HCD 

run 2, it is felt that comparisons of titres between these fermentations are valid.

3.2.2.3 Effect of calcium and magnesium on periplasmic retention

During the latter stages of this project a fermentation was carried out with the aim of 

increasing leakage into the extracellular broth to allow recovery of both extracellular 

and periplasmic material (section 4.2.5). In order to try and achieve this, a 

fermentation was carried out at 10L scale following the protocols described for the 

HCD fermentations, but with the omission of the calcium and magnesium addition 

prior to induction (fermentation HCD 5). This allowed the effect of calcium and 

magnesium addition on periplasmic retention to be assessed.

The fermentation showed similar characteristics to previous HCD fermentations with 

biomass levels reaching 38 g L'1 (DCW). Fab’ accumulation was monitored for 18 

hours following the carbon source switch (it was envisaged that during the latter 

stages of induction leakage would increase, as in LCD fermentations, and hence 

higher concentrations of extracellular Fab’ would be attained). However it is evident 

from the Fab’ accumulation profile (Figure 3.2.13) that omission of the calcium and 

magnesium addition did not have a major effect on Fab’ distribution. Following 13 

hours induction, 71% of the total Fab’ was located in the periplasm, and by the end of
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the fermentation (18 hours after the glycerol/ lactose switch) the proportion of 

periplasmic antibody had barely changed at 73%. This compares to an average of 

80% retention of periplasmic material following 13 hours induction for standard 

HCD fermentations.
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Figure 3.2.13 Effect o f omission o f the calcium and magnesium addition prior to 
induction on distribution o f Fab ’ between the periplasm and the extracellular broth 
during the induction phase o f HCD fermentation. Fab ’ concentrations determined by 
ELISA. Error bars represent standard deviations determined from multiple dilutions 
o f duplicate samples.

Thus, despite the fact that calcium and magnesium ions form an integral part of the 

E. coli outer membrane (Vaara, 1992), it would appear that the addition of calcium 

and magnesium salts prior to induction was not singularly responsible for the 

increased retention of material within the periplasmic space observed with the HCD 

fermentations.
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3.2.3 Fermentation scale up

In order to produce sufficient material for the large scale downstream processing 

experiments, it was necessary to operate the fermentation at increased scale. Rather 

than carrying out a detailed investigation into fermentation scale up, the aim was 

simply to increase the scale of the fermentation following the protocol designed at 

10L as closely as possible. This allowed identification of a number of the problems 

associated with the large scale operation of such a protocol. The work described was 

carried out in collaboration with N. Murrell (Department of Biochemical 

Engineering, University College London).

The HCD fermentation was scaled up initially to 87L (initial working volume) in a 

150L fermenter and later operated at 260L (initial working volume) in a 45OL 

fermenter. Details of inoculum preparation for both scales of operation are given in 

section 2.1.4.2. Because of fermenter availability at the time, it was necessary to use 

a smaller inoculum volume (6% instead of 10%). To compensate for the decreased 

volume, inoculum cultures were grown to a higher optical density (OD600 ~ 6) 

compared to the 10L fermentations (OD600 ~ 3).

Growth media for the large scale fermentations was identical to that used at 10L with 

one alteration; the phosphate concentration was increased from 24 mmol to 30 mmol. 

As explained in section 3.2.2, phosphate concentration was lowered for the HCD 

fermentations to aid plasmid stability and help retain material within the periplasmic 

space. The medium was designed such that the phosphate would become depleted 

during the stationary phase. This improves plasmid stability by preventing growth of 

plasmid free cells which arise during the later stages of the fermentation. Studies 

performed at Celltech Chiroscience Limited (Slough, UK) illustrated that higher 

concentrations of phosphate were required to support the same level of growth at 

increased scale, although the reason for this was not known (personal 

communication, N. Weir). Therefore the phosphate concentration was increased to 

avoid any potential problems associated with phosphate limitation on scale up.
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Three fermentations were operated at 150L scale and one at 45OL. Similar results 

were obtained at both scales of operation, therefore only the data from the 45OL 

fermentation will be discussed.

3.2.3.1 Fermentation characteristics

Aeration and respiration profiles for the 450L fermentation are shown in Figures 

3.2.14 and 3.2.15. It is evident from the aeration profile that the culture was oxygen 

limited for short periods both prior to the carbon source switch and during lactose 

metabolism. This was due to higher oxygen demands and the reduced aeration 

capacity of the fermenter compared to the small scale fermentations. Higher oxygen 

demands are shown by the increase in maximum OUR, which peaked 3/4 hours after 

the carbon source switch at -220 mmolL^hr’1. This compares to a maximum OUR of 

175 mmolL'1hr‘1 just prior to glycerol depletion for the 10L HCD fermentations. In 

order to try and satisfy oxygen demands, it was necessary to operate the fermentation 

under a head pressure of ~1 bar.

Growth and product accumulation profiles for the 45OL fermentation are illustrated 

in Figure 3.2.16. The maximum specific growth rate was calculated at 0.22 h '1 from 

DCW data, and biomass levels of 48 g L'1 were attained. Both these figures are 

higher than the equivalent values recorded for small scale fermentations. At 10L 

scale, the maximum specific growth rate was ~ 0.14 h"1, and biomass levels of 33-40 

g L '1 were routinely achieved. Growth in the small scale fermentations is thought to 

be limited by phosphate availability. Phosphate concentration in the initial growth 

medium for the large scale fermentations was increased to support the same level of 

growth at scale. However, the results suggest the increased phosphate allowed growth 

to higher biomass. Evidence for this is provided by the 450L OUR data which shows 

both a higher maximum oxygen demand compared to the 10L fermentations, and an 

increase in oxygen utilisation after the carbon source switch, indicating continued 

culture growth. In the 10L fermentations growth was limited from the onset of 

lactose metabolism.
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During the induction phase of the 45OL fermentation Fab’ levels accumulated to 

titres of 100 mg L'1. Titres can be compared to those obtained for HCD fermentations 

3 and 4 as the same Fab’ standard was used for ELISA calibration. Antibody titres in 

the 45OL fermentation were approximately half those achieved at 10L. Slower rates 

of antibody accumulation may result from the reduced growth temperature during 

induction (shown in Figure 3.2.15); problems with the controller caused the 

temperature to fluctuate between 25 and 26°C instead of being maintained at 27°C as 

for the small scale fermentations. Alternatively, reduced plasmid stability caused by 

the increased growth rate or use of a higher phosphate concentration may have had an 

effect.

Distribution of Fab’ between the periplasm and the extracellular medium throughout 

the induction period is illustrated in Figure 3.2.17. As with the 10L fermentations, 

good control of product location was achieved, with 78% Fab’ retained within the 

periplasm following 13 hours induction. Contradictory results were obtained by 

researchers at Celltech Chiroscience Limited, who found that increasing the 

phosphate concentration at large scale resulted in increased leakage of periplasmic 

material into the extracellular broth (personal communication, N. Weir). The effect 

of scale on product location was not investigated further. However, the ability to 

control product location at increased scale is essential for efficient process operation; 

if successful periplasmic retention cannot be achieved it may be necessary to employ 

processes for the recovery of extracellular material. Methods for the recovery of both 

extracellular and periplasmic product are described in Chapter 4, and are compared to 

the more traditional processing route for the recovery of purely periplasmic product 

in Chapter 8.

Additional problems associated with operating the fermentation at increased scale 

were identified. These include maintaining large quantities of lactose in solution, 

foaming following lactose addition and temperature control problems during the 

150L fermentation (where the cooling capacity of the fermenter was insufficient to 

reduce the culture growth temperature to 27°C during the induction phase).
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3.2.4 Harvest of fermentation material for use in downstream processing studies

Biomass produced during fermentations HCD4, HCD5, 150L2 and 450L was 

harvested for use in downstream processing studies. Methods for the centrifugal cell 

harvest are given in section 2.1.5. All cell paste was stored at -70°C until required for 

use in downstream processing trials. The properties of each batch of fermentation 

material and details of the experiments for which each batch was used are given in 

Appendix 2.

3.3 Summary

Two fermentation protocols for the production of 4D5 Fab’ have been characterised. 

Using the original Tow cell density’ protocol, biomass levels of 14-16 g(DCW) L '1 

were achieved with Fab’ titres reaching 175 mg L'1 following 15 hours induction. 

However, over 60% of the Fab’ had leaked from the periplasmic space into the 

fermentation broth by the end of the fermentation.

As this project focuses on the recovery of periplasmic material, the fermentation 

protocol was modified with the aim of enhancing periplasmic retention. The changes 

made to the original protocol include alteration of the initial carbon source from 

glucose to glycerol and batch feeding of the glycerol, use of a phosphate limited 

growth medium, addition of calcium and magnesium prior to induction and reduction 

in the growth temperature for the induction period.

This combination of changes gave a higher cell density fermentation with biomass 

levels of 33-40 g(DCW) L'1 routinely achieved. However, increased levels of 

biomass resulted in greater oxygen demands with the risk of the fermentation 

becoming oxygen limited when demands were highest, just prior to the carbon source 

switch.
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Fab’ titres also increased to -680 mg L'1 following 13 hours induction. Improved 

titres appeared to result from an increase in specific antibody production in addition 

to higher total biomass. More importantly, over 80% of product was retained within 

the periplasm at the end of the fermentation.

The specific factors responsible for increasing periplasmic retention were not 

identified, however omission of the calcium and magnesium addition prior to 

induction did not result in an increase in product leakage, suggesting that the salt 

addition alone is not singularly responsible for the increased periplasmic retention.

The high cell density fermentation was scaled up to 450L. Operation at large scale 

resulted in higher specific growth rate, increased oxygen demands and oxygen 

limitation. Fab’ titres recorded at large scale were approximately half those obtained 

at 10L, thought to be due to either the reduced growth temperature or reduced 

plasmid stability. However, tight control of product location was maintained, with 

70% of material retained within the periplasm following 15 hours induction.

In addition to oxygen limitation, problems associated with large scale operation of 

the fermentation include difficulties maintaining large quantities of lactose in 

solution, foaming following lactose addition and poor temperature control. Such 

problems will prove increasingly significant on further scale-up.
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4. PERIPLASMIC EXTRACTION

4.1 Introduction

Periplasmic extraction is the process by which product is released from cells 

following cell harvest at the end of the fermentation. The aim of the extraction 

process is to release selectively periplasmic material whilst maintaining cell integrity 

so that the process stream does not become contaminated with intracellular material 

such as proteases, DNA or lipids which may degrade the product or cause problems 

in subsequent stages of purification.

General methods for the selective release of periplasmic material from bacterial cells 

have been reviewed in Chapter 1. A novel technique for the extraction of periplasmic 

antibody fragments has recently been developed by Weir and Bailey (1997). The 

technique involves suspension of cells in a Tris-EDTA extraction buffer at elevated 

temperature for periods of up to 24 hours. The Tris and EDTA act synergistically in 

permeabilising the outer membrane of E. coli and the elevated temperature both 

enhances periplasmic release and degrades contaminating E. coli proteins, thereby 

purifying the process stream. However, little data is available regarding the kinetics 

of antibody release and protein degradation or the effect of scale on the extraction 

process.

The Tris-EDTA extraction could potentially be performed on whole fermentation 

broth to allow recovery of both extracellular and periplasmic product. This could 

significantly increase product yields in processes where control of product location is 

difficult to achieve, and has the additional advantage of removing the requirement for 

a cell harvest step following fermentation.

This chapter aims to characterise the effects of temperature, time and scale of 

operation on the periplasmic extraction of 4D5 Fab’ from E. coli strain W3110 using 

the Tris-EDTA extraction method developed by Weir and co-workers. In section

4.2.1 the thermal stability of purified 4D5 Fab’ is assessed to determine the highest 

temperature at which the extraction process can be operated. Section 4.2.2 examines
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the effect of temperature on Fab’ release, purification of the process stream, quality 

of Fab’ and process stream viscosity following 16 hour extraction at laboratory scale. 

The kinetics of antibody release and protein denaturation are analysed in section 

4.2.3. Section 4.2.4 examines the effect of increasing scale on the rate of antibody 

release and protein degradation. Finally, the extraction process is performed on whole 

fermentation broth in section 4.2.5 and a comparative analysis of periplasmic and 

whole broth extraction is made.

4.2 Results and discussion

4.2.1 Thermal stability of 4D5 Fab’

The thermal stability of 4D5 Fab’ was assessed to determine the highest temperature 

at which the extraction process could be performed. A sample of purified 4D5 Fab’ 

(obtained from Celltech Chiroscience Ltd) was initially shown to consist of entirely 

complete, disulphide bonded 4D5 Fab’ by SDS-PAGE analysis (data not shown). 

The purified Fab’ was diluted to a concentration of ~100 pg mL"1 in periplasmic 

extraction buffer (100 mM Tris HC1 pH 7.4, 10 mM EDTA) at a range of 

temperatures for up to 8 hours. 2 mL samples of the diluted antibody were incubated 

in Eppendorf tubes in water baths at 30°C, 45°C, 60°C, 70°C and 80°C. 200 pL 

samples were removed at regular intervals for assay by ELISA. Because of the nature 

of the ELISA assay it was not possible to assay samples immediately, therefore all 

samples were stored overnight at 4°C and assayed together the following day. It was 

assumed that denaturation of the antibody would be detected by a reduction in the 

concentration measured by ELISA.

No decrease in concentration recorded by ELISA was observed over the 8 hour 

period for samples incubated at 30°C and 45°C. Figure 4.2.1 shows the results for 

samples incubated at 60°C, 70°C and 80°C. The graph shows that the Fab’ was stable 

for 8 hours at 60°C and 70°C, however at 80°C the antibody fragment was degraded. 

Over 70% of the antibody fragment was denatured after one hour at this temperature, 

with no detectable antibody remaining after 8 hours incubation.
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The stability of Fab’ to temperature in the presence of cells was also assessed. 

Purified Fab’ was spiked into a suspension of control cells obtained from another E. 

coli fermentation (E. coli strain BMH 71-18 which does not produce 4D5 Fab’, 

supplied by D. Bracewell, Department of Biochemical Engineering, UCL). Cells 

were suspended in periplasmic extraction buffer to a concentration of 0.14 g L '1 (the 

standard cell concentration used during periplasmic extraction). 2 mL samples were 

again incubated in Eppendorf tubes in water baths maintained at 30°C, 45 °C, 60°C, 

70°C and 80°C. 200 pL samples removed at intervals were spun in a microfuge at 

13 000 rpm for 5 minutes to pellet the cells and the supernatant was assayed for Fab’ 

concentration by ELISA. Again, no Fab’ degradation was observed at 30°C or 45°C. 

The results for incubations at 60°C, 70°C and 80°C are illustrated in Figure 4.2.2.

The results show the Fab’ to be stable over an 8 hour period at 60°C, however the 

stability in the presence of cells at 70°C and 80°C was significantly reduced 

compared to the purified antibody fragment. It is assumed that a certain degree of 

‘unfolding’ of the antibody fragment occurs at these higher temperatures. In purified 

form the Fab’ then renatures as the solution is cooled. When cells are present it is 

likely that hydrophobic regions of the Fab’ which are exposed as the protein unfolds 

at higher temperatures ‘stick’ to the hydrophobic cell walls and are taken down into 

the cell pellet when the samples are centrifuged.

The proportion of detectable Fab’ in the sample incubated at 70°C decreased to 

~30% of the original concentration over the first three hours of incubation and then 

remained at 30% for the next five hours. This suggests the Fab’ preparation consists 

of a population of fragments differing in their thermal stability. At 70°C a proportion 

of the fragments are sufficiently stable to remain folded in such a way that they do 

not bind to the cells and hence remain in the supernatant when the samples are 

centrifuged.

The results of the stability experiments indicate that of the temperatures tested, the 

highest the extraction process can be effectively operated at is 60°C.
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Figure 4.2.1 Thermal stability o f  4D5 Fab ' diluted in periplasmic extraction buffer. 
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4.2.2 Characterisation of periplasmic release

The periplasmic extraction process was initially characterised in terms of the effect of 

temperature on Fab’ release, protein degradation and process stream viscosity 

following overnight extraction at laboratory scale (75 mL). Cells (harvested from 

HCD fermentation 4, section 3.2.2, and stored at -70°C) were resuspended in 200 mL 

periplasmic extraction buffer at a concentration of 0.14 g mL'1. Following complete 

resuspension, a 1 mL sample was centrifuged (5 minutes at 13 000 rpm) and the 

supernatant assayed to determine the initial extracellular protein and Fab’ 

concentration. In addition, a 50 mL sample of the cell suspension was homogenised 

(section 2.4.4.1) and the supernatant assayed to allow determination of total cellular 

protein and total Fab’ available for release. The remaining cell suspension was 

divided between two sealed 200 mL shake flasks, one of which was incubated in an 

orbital shaker at 30°C and 250 rpm while the other was incubated in a hot water bath 

maintained at 60°C, also with agitation at 250 rpm. Following incubation for 16 

hours, 1 mL samples of each spheroplast suspension were centrifuged and the 

supernatant assayed to ascertain the extracellular Fab’ and protein concentrations 

following extraction. The remaining suspensions were each divided into two; one 

half was homogenised for determination of total Fab’ and protein at the end of the 

extraction procedure, whilst the other half was used for measurement of viscosity as 

described in section 2.2.5.

The results of the extraction experiment are shown in Table 4.2.1. Extremely good 

recovery of Fab’ was observed at both temperatures, with 94% Fab’ released by 

overnight periplasmic extraction at 30°C, compared to 85% for extraction at 60°C. 

The reduced Fab’ recovery at 60°C was thought to be primarily due to Fab’ 

degradation. Both recovery figures were based on total Fab’ available for release 

measured in a homogenised sample at the beginning of the extraction procedure. 

Samples of cell suspension were also taken following 16 hours extraction and 

homogenised to determine total Fab’ remaining at the end of extraction. The initial 

and final Fab’ concentrations were within error for samples extracted at 30°C, 

however during this and subsequent experiments, a 10-15% decrease in total Fab’
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was consistently observed following overnight extraction at 60°C. The reduction in 

total Fab’ was thought to be due to the presence of free Fab’ heavy and light chain 

which associate in solution and are therefore recorded by ELISA in the initial 

homogenised sample, but which are degraded by the high temperature extraction. 

Evidence for degradation of free heavy and light chain is presented below, however 

with the assays available it was not possible to quantify precisely and therefore 

distinguish between degradation of free heavy and light chain and degradation of 

complete Fab’. Quantification of Fab’ variants within a sample could be achieved by 

quantitative Western blotting, HPLC or biosensor analysis. However, the appropriate 

assays were not developed during the course of this study.

Extraction temperature 30°C 60°C

% Fab’ recovery 94 85

Specific Fab’

(mg(Fab’) mgCprotein)'1)

0.073 0.27

Purification factor 2.5 9.2

Viscosity (mPaS) 1.7 1.7

Table 4.2,1 Effect o f extraction temperature on Fab’ recovery, purification o f  the 
process stream and process stream viscosity during periplasmic extraction. Cells 
were incubated in periplasmic extraction buffer at 30X1 or 60 °C and 250 rpm for 16 
hours.

The % Fab ’ recovery is specifically the extracellular Fab ’ concentration at the end 
o f the extraction process expressed as a percentage o f the total Fab ’ available for  
release, measured in a homogenised sample taken at the beginning o f  extraction. The 
specific Fab’ is the extracellular Fab’ concentration divided by the extracellular 
protein concentration at the end o f extraction. The purification factor is the specific 
Fab ’ measured at the end o f extraction divided by the specific Fab ’ recorded at the 
beginning o f extraction.
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The major difference between the two extraction temperatures relates to the 

degradation of contaminating protein observed at the higher temperature. This is 

illustrated by the difference in specific Fab’ at the end of the extraction process, and 

the higher purification factor (PF) for the 60°C extraction (PF = 9.2) compared to 

extraction at 30°C (PF = 2.5). (Purification factor is defined as the specific Fab’ 

concentration (mg Fab 7 mg protein) at the end of the extraction process divided by 

the specific Fab’ concentration at the beginning of extraction).

The reduction in concentration of contaminating protein in the extracellular fractions 

is thought to result from denaturation of the proteins at high temperature. The 

proteins partially unfold as they denature, exposing hydrophobic regions which 

interact with the hydrophobic bacterial cell wall. The denatured proteins are 

consequently pelleted with the cells during centrifugation. The reduction in soluble 

protein is also evident from an SDS-PAGE gel comparing total protein in 

extracellular samples taken at the end of each extraction process (Figure 4.2.3). The 

higher protein concentration following extraction at 30°C is shown by the more 

intense staining and increased number of protein bands in lane 3 of the gel (30°C 

extract) compared to lane 4 (60°C extract).

Western blotting (section 2.3.4.1) of the gel shown in Figure 4.2.3 to reveal the Fab’ 

light chain gave two major bands (Figure 4.2.4(a)). The band of higher molecular 

weight (-48 kDa) represents assembled Fab’ and the second band at ~23 kDa reveals 

free light chain. Although not strictly quantitative, the Western blot indicates that 

significant free light chain was present in the 30°C extract whereas at 60°C free light 

chain was denatured whilst the assembled Fab’ remained intact. A similar effect is 

shown in a blot probed for Fab’ heavy chain (Figure 4.2.4(b)). Although some free 

heavy chain was still present in the 60°C periplasmic extract, the amount was 

significantly decreased compared to extraction at 30°C. As explained previously, the 

free heavy and light chain degraded by the high temperature extraction assemble in 

solution and therefore would have been detected in a pre-extraction sample. 

Degradation of free heavy and light chain may therefore account for some, if not all 

the observed Fab’ degradation during extraction at 60°C.
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Figure 4.2.3 SDS-PAGE gel showing the effect o f  periplasmic extraction 
temperature on purification o f  the process stream.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Extracellular protein following overnight extraction at 30 °C 
Lane 4 Extracellular protein following overnight extraction at 60 °C
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Figure 4.2.4 Western blots showing effect o f  periplasmic extraction temperature on 
presence o f  free Fab ' heavy and light chain in the process stream.

(a) Western blot probed for 4D5 Fab ' light chain

Lane 1 Prestained low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Periplasmic extract following overnight incubation at 30 °C 
Lane 4 Periplasmic extract following overnight incubation at 60 °C

(b) Western blot probed for 4D5 Fab ’ heavy chain.

Lane I Prestained low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Periplasmic extract following overnight incubation at 30X3 
Lane 4 Periplasmic extract following overnight incubation at 60 °C
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Fab’ released by overnight periplasmic extraction at 30°C and 60°C was purified on a 

protein A column (as described in section 2.4.3.1) to assess the effect of extraction 

temperature on quality of the Fab’ preparation following affinity purification. An 

SDS-PAGE gel showing column load and eluate for 30°C and 60°C extracts is 

shown in Figure 4.2.5. It is clear from the number of bands in lane 4 of the gel that a 

large proportion of incorrectly assembled, incomplete or partially degraded Fab’ was 

present in the 30°C extract and was co-purified with the complete Fab’ by protein A 

affinity chromatography. This material was degraded by overnight extraction at 60°C 

and thus affinity purification of Fab’ from 60°C extracts gave a much purer Fab’ 

preparation (shown by the presence of predominantly assembled Fab’ with only a 

small proportion of free heavy and light chain in lane 6 of the gel). (Western blot 

analysis identified all bands in lanes 4 and 6 as Fab’ related material, data not 

shown). This highlights another advantage of high temperature extraction: 

degradation of incomplete or incorrectly assembled Fab’ which would otherwise be 

co-purified with the complete Fab’ by protein A chromatography.

Finally, Fab’ may be purified from periplasmic extracts either by packed bed affinity 

chromatography following spheroplast removal by centrifugation or by expanded bed 

affinity purification directly from the whole spheroplast suspension. Performance of 

the expanded bed is affected by viscosity of the process stream and therefore the 

viscosity of the spheroplast suspension following overnight extraction at 30°C and 

60°C was measured. The results, given in Table 4.2.1, show that extraction 

temperature had no effect on process stream viscosity. The viscosity of both 

spheroplast suspensions following extraction was only slightly higher than that of 

water, at 1.7 mPaS.
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Figure 4.2.5 SDS-PAGE gel showing effect o f  periplasmic extraction temperature on 
purity o f  the process stream before and after protein A affinity purification o f  4D5 
Fab ’ from periplasmic extracts.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Periplasmic extract following overnight incubation at 30 X  (Column load) 
Lane 4 Fab' preparation purified from 30 X  periplasmic extracts (Column eluate) 
Lane 5 Periplasmic extract following overnight incubation at 60X3 (Column load) 
Lane 6 Fab ’preparation purified from 60 X  periplasmic extracts (Column eluate)
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4.2.3 Kinetics of Fab’ release and protein degradation

Fab’ release and protein degradation were monitored during periplasmic extraction to 

gain an indication of the time scale of these events. Cells (harvested from HCD 

fermentation run 4) were resuspended in 65 mL periplasmic extraction buffer or PBS 

(control) at a concentration of 0.14 g mL'1. The buffers were heated to the required 

temperature prior to resuspension. Resuspension was achieved by rapid mixing in a 

100 mL Duran bottle for 15 minutes. Following resuspension, cells were incubated in 

100 mL stirred tanks for up to 5 hours at temperatures of 30°C, 45°C and 60°C. 

Dimensions of the tanks and agitators are given in section 2.4.1.2. The temperature in 

the tanks was maintained to within ±2°C by coils heated with water pumped from a 

hot water bath maintained at 85°C. Samples were taken at intervals and cells were 

removed by centrifugation (5 minutes at 13 000 rpm). The extracellular Fab’ and 

protein concentration were measured by ELISA and Bradford protein assay 

respectively. After 5 hours incubation each suspension was homogenised and Fab’ 

concentrations in the homogenate were used to define 100% antibody release.

The results obtained are illustrated in Figures 4.2.6-4.2.8. Figure 4.2.6 shows the 

effect of incubation time and temperature on Fab’ release. Release appears to be 

temperature dependent, with higher temperatures giving higher rates of Fab’ release. 

The effect of heat on the outer membrane of E. coli strain W3110 has been described 

by Katsui et al., (1982), who showed that exposure of cells to a temperature of 55°C 

for 30 minutes resulted in blebbing and vesiculation of the outer membrane, leading 

to the release of the 52% the periplasmic enzyme alkaline phosphatase, with no 

associated release of the cytoplasmic enzyme glucose-6-phosphate dehydrogenase. 

Thus high temperature alone may account for the release of a significant proportion 

of the periplasmic Fab’.
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Figure 4.2.6 Effect o f incubation time and temperature on F ab’ release during 
periplasmic extraction. Incubation temperatures were 60X1 (-O -), 45 XI (--O --)  
and 30X1 (-■•A--). Cells were resuspended in periplasmic extraction buffer (upper 
plot) and PBS (lower plot). The same vertical axis has been used to allow for  
comparisons between the two graphs. Error bars represent the error o f  the ELISA 
assay (±11%).
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Figure 4.2.7 Effect o f incubation time and temperature on extracellular protein 
concentration during periplasmic extraction. Incubation temperatures were 
60X1 (-O -), 45 X  (~-0--) and SO X  (-•■A--). Cells were resuspended in periplasmic 
extraction buffer (upper plot) and PBS (lower plot). The same vertical axis has been 
used to allow for comparisons between the two graphs. Error bars represent the 
error o f  the protein assay (±5%).
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Figure 4.2.8 Effect o f  incubation temperature and extraction buffer on antibody 
release. Cells were incubated in periplasmic extraction buffer or PBS at 60 X3, 45 °C 
and 30 °C fo r 5 hours. Following incubation the extracellular antibody concentration 
was recorded. 100% antibody release is defined as the F ab’ concentration in a 
homogenised sample (1 pass, 1200 bar). Error bars represent the error o f  the ELISA 
assay (±11%).

The Tris-EDTA extraction buffer gave higher release at each temperature than the 

PBS (shown in Figure 4.2.6 and Figure 4.2.8), illustrating the effect of Tris and 

EDTA in permeabilising the outer membrane of E. coli. EDTA removes by chelation 

the divalent cations that stabilise the lipopolysaccharides (LPS) coating the bacterial

outer membrane. It has been suggested that Tris binds to the LPS, replacing the
2_|_ 2+

stabilising Ca and Mg" ions, and thus reducing the interaction between LPS 

molecules (Varra, M., 1992).
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Protein release under the different extraction conditions is illustrated in Figure 4.2.7. 

Again, Tris-EDTA gave higher release than PBS, as expected. Following the initial 

resuspension at 30°C, extracellular protein concentration either increased (cells 

suspended in Tris-EDTA) or remained constant (cells suspended in PBS). However, 

at higher temperatures protein concentration decreased as a proportion of the E. coli 

proteins were denatured. Denaturation was more rapid and occurred to a greater 

extent at 60°C compared to 45°C. This is to be expected as there will be a population 

of protein molecules which are stable at 45 °C but not at 60°C. Maximum 

denaturation occurred within the first 2-3 hours of incubation.

4.2.3.1 Modelling of Fab’ release

The ability to model Fab’ release and protein degradation during periplasmic 

extraction at different temperatures and different scales of operation would allow 

prediction of the incubation time necessary to achieve the required product yield and 

levels process stream purification.

The release of Fab’ from cells during the process of periplasmic extraction was 

modelled using first order release kinetics following the approach of Hetherington et 

al., (1971). Hetherington and co-workers showed that the release of protein from 

suspensions of baker’s yeast (Saccharomyces cerevisiae) by disruption in an 

industrial homogeniser can be described by the first-order equation:

where R is the protein released, Rm is the maximum protein available for release, K is 

the dimensional constant, which is a function of temperature, N is the number of 

passes through the homogeniser and P is the operating pressure.

R m -  KNP2’In (4.1)
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It was proposed that the release of Fab’ from the periplasm of E. coli also followed 

first order kinetics and hence could be described by the first order equation:

In
A m - A )

= k ,t (4.2)

or rearranged, A = Am(l -  e klt) (4.3)

where A is the antibody released (pg mL"1), Am is the maximum antibody available 

for release (pg mL'1), ki is the rate constant for release (a function of temperature, 

s"1) and t is the incubation time (s). The derivation of this equation is given in 

Appendix 3.

Fab’ release data shown in Figure 4.2.6 (upper plot) was initially plotted as the 

percentage Fab’ released (where 100% release was defined as the total Fab’ 

following homogenisation). First order release curves (described by Equation 4.3) 

were fitted to the data using the non-linear curve-fitting program of Microcal™ 

Origin™ (Microcal Software Inc., Northampton, MA). The Origin program derives 

best-fit curves by minimising the Chi-square value using the Levenberg-Marquardt 

algorithm. Equation 4.3 assumes that at t = 0, A = 0 (i.e. antibody release starts at 

time zero), and as t -> oo, A -> Am. For curve fitting, the value for Am was set at 

100%.

The best-fit release curves are shown in Figure 4.2.9. It can be seen from the results 

that the release data is poorly described by first order kinetics. It was thought that the 

method of cell resuspension may have effected release kinetics by enhancing 

antibody release. Cell paste was resuspended in Tris-EDTA buffer in 100 mL Duran 

bottles (approximate dimensions 6 cm height x 4.6 cm diameter) using a 6-bladed 

disc turbine impeller (impeller diameter 2.4 cm) rotated at -1800 rpm. High agitation 

rates were required for cell resuspension, which took approximately 15 minutes. The 

extraction buffer was at the correct temperature at the beginning of the resuspension 

process, however temperature was not controlled during resuspension. It is suspected
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that high shear rates during the resuspension process (caused by high rates of 

agitation) may have enhanced antibody release by damaging the bacterial outer 

membrane. This, together with the variations in temperature, makes it difficult to 

model release using a simple first order equation and draw valid conclusions from the 

results obtained. More accurate release data may have been obtained if cells had been 

resuspended in the stirred tanks at the impeller speed at which extraction was 

performed. However, it is likely that at low impeller speeds, the time taken for 

complete cell resuspension would have been significantly increased (particularly at 

low extraction temperatures), which would have had the opposite effect of impairing 

antibody release.
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Figure 4.2.9 Comparison o f  experimental data (points) and theoretical data (lines) 
fo r  F ab’ release during periplasmic extraction at 60°C (-O -), 45°C (--O --) and 
30°C (-"A"). Periplasmic release was modelled using first order kinetics; curves 
shown are the curves o f  best-fit obtained using the non-linear curve fitting program  
o f  Microcal™ Origin ™. Data is modelled from the beginning o f  cell resuspension. 
Error bars represent the error o f  the ELISA assay (±11%).

To determine whether antibody release following complete cell resuspension was a 

first order process, release was modelled from the time of complete resuspension 

using the following modified first order equation:
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A = A m(l -  e k|t) + A 0e k,t (4.4)

Equation 4.4 is again based on first order release kinetics, but assumes that at t = 0, 

A = Ao. Curve fitting using Equation 4.4, setting Am at 100% and Ao as the measured 

antibody release at the time of complete cell resuspension (time zero) gave the results 

illustrated in Figure 4.2.10. Rate constants, kj, for antibody release following 

complete cell resuspension were estimated at 0.10 s '1 at 30°C, 0.46 s '1 at 45°C and

0.22 s '1 at 60°C. The graphs illustrated in Figure 4.2.10 suggest that in the controlled 

environment within the stirred tank reactors, antibody release following complete cell 

resuspension is a first order process. However, rate constants for release in these 

models are determined not only by temperature, but also by the release occurring 

during the resuspension process. Therefore the rate constants at the different 

extraction temperatures cannot be directly compared.
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Figure 4.2.10 Comparison o f experimental data (points) and theoretical data (lines) 
for F ab’ release during periplasmic extraction at 60°C ( -0 - ) , 45°C (-- O--) and 
30°C (■■■A--). Periplasmic release was modelled using first order kinetics; curves 
shown are the curves o f  best-fit obtained using the non-linear curve fitting program  
o f  Microcal™ Origin™. Data is modelled from the time o f  complete cell 
resuspension. Error bars represent the error o f  the ELISA assay (±11%).
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4.23.2 Modelling of protein degradation

Protein degradation was also modelled using first order kinetics. If it is assumed that 

protein degradation is a first order process, then is can be described by the modified 

first order equation:

p = pnie-k!' + Pf (1 -  e“kjt) (4.5)

where P is the available functional (non-denatured) protein (mg mL ), Pf is the 

functional protein remaining at the end of the denaturation process (i.e. protein which 

is stable at the temperature employed) (mg mL*1), k2 is the rate constant for 

degradation (s'1) and t is the incubation time (s).

The derivation of Equation 4.5 is given in Appendix 3, and assumes that at t = 0, P = 

Pm (where Pm is the total protein available for denaturation), and as t -> oo, P -> Pf, 

(i.e. at each extraction temperature there is a proportion of protein which is stable and 

will not be denatured).

Prior to curve fitting, it was necessary to convert the data given in Figure 4.2.7 (upper 

plot) to curves representing the degree of protein degradation. To do this the 

following assumptions were made:

1. % protein released = % Fab’ released

2. % protein degraded = % protein released - % assayed protein

(= % Fab’ released -% assayed protein)

3. Remaining functional protein = Total available protein (100%)-%protein degraded

Assumption (1) was used to estimate the total protein available for release (and hence 

also degradation) from 30°C extraction data. The protein detected by assay (assayed 

protein) was then converted to percentage of total available protein. Finally, 

assumption (2) was used to calculate the percentage of available protein degraded 

during the course of the extraction. Data was plotted as the percentage of available
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protein remaining functional (assumption (3)), illustrated in Figure 4.2.11. Figure 

4.2.11 also shows the best-fit curves using Equation 4.5, setting Pm as 100%. It is 

apparent from the graph that protein degradation can be described reasonably 

accurately by first order equations, and that both the rate of degradation and the 

functional protein remaining at the end of the extraction procedure are a function of 

temperature. Rate constants, k2, for protein degradation at 45°C and 60°C were 

estimated at 1.1 s''and 3.4 s '1 respectively.
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Figure 4.2.11 Comparison o f  experimental data (points) and theoretical data (lines) 
fo r  protein degradation during periplasmic extraction at 60°C (-O -), 45°C (--O --)  
and 30°C (■■■A--). Protein degradation was modelled using first order kinetics; 
curves shown are the curves o f  best-fit obtained using the non-linear curve fitting  
program o f Microcal™ Origin™. Data is modelled from  the beginning o f  cell 
resuspension. Error bars represent the error o f  the protein assay (±5%).

129



4.2.4 Effect of scale on periplasmic extraction

High temperature periplasmic extraction was performed at 2L and 100L to allow the 

effect of increasing scale on Fab’ release and protein degradation to be assessed. The 

2L and 100L extractions were carried out in a 3L and a 150L bioreactor respectively. 

The dimensions of the bioreactors and associated impellers are given in section

2.4.1.2. Cells (harvested from the 450L and 150L3 fermentations for extraction at 2L 

and 100L respectively) were resuspended in periplasmic extraction buffer (preheated 

to 60°C) to 0.14 g L'1 (the same concentration as for small-scale extractions). 

Resuspension was performed in the bioreactor at the impeller speed employed for the 

extraction process (given in section 2.4.1.2); complete resuspension took -20 

minutes at 2L and -45 minutes at 100L. Samples were taken following complete cell 

resuspension, then at regular intervals for the initial 5 hours of extraction and finally 

following 16 hours incubation. A sample taken at the end of extraction was 

homogenised to allow determination of total Fab’ available for release. Impeller 

speed during extraction was set to maintain constant power per unit volume at each 

scale of operation to maintain a constant degree of agitation (as described in Hoare et 

al., 1982). The formula and calculations used to determine the required impeller 

speed are given in Appendix 4.

Antibody release and protein degradation curves obtained for 2L and 100L 

extractions are shown in Figure 4.2.12. The curves shown are best-fit first order 

release (Equation 4.3) and degradation (Equation 4.5) curves, fitted using Microcal™ 

Origin™ as described previously.

Results show similar patterns of Fab’ release and protein degradation as for small 

scale extraction, with maximum release occurring within the first hour of extraction 

and maximum degradation occurring within the first five hours of incubation. At 

both scales of operation, release and degradation kinetics were accurately modelled 

by first order rate equations. It was difficult to make comparisons of Fab’ release 

kinetics because release was so rapid that the value obtained for the rate constant was 

dependent on the time at which the first sample was taken.
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Figure 4.2.12 Fab' release and protein degradation during 2L (upper plot) and 
100L (lower plot) periplasmic extraction at 60°C. Curves represent the best f it  first- 
order release and degradation curves obtained using the non-linear curve fitting  
program o f Microcal™ Origin™. Data is modelled from the beginning o f  cell 
resuspension. Error bars represent the error for each assay (ELISA, ±11%; protein 
assay, ±5%).
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Values of the rate constant, k2 , obtained for protein degradation, and the percentage 

available protein remaining at the end of the extraction procedure are given in Table

4.2.2. Variation is observed in both the figures, and may be attributed to the use of 

different feed material, giving different populations of proteins which vary in their 

thermal stability. This highlights one of the problems associated with the use of 

modelling to predict process performance; differences in feed material in biological 

systems are both difficult to predict and therefore also difficult to account for when 

designing models.

Extraction vessel 0.1L Stirred tank 3L Bioreactor 100L Bioreactor

Extraction volume (L) 0.065 2 100

k2  ( S l) 3.4 4.5 1.1

Pf(%) 32 23 23

Table 4.2.2 Rate constant for protein degradation fc )  and percentage o f available 
protein remaining functional at the end o f the extraction process for 60°C 
periplasmic extraction at different scales o f operation.

Degradation of incomplete Fab’ was also monitored for 100L periplasmic extraction. 

Western blot analysis (Figure 4.2.13) of extracellular protein over the course of the 

extraction process reveals significant degradation of free light chain within the first 

1.5 hours of extraction.

Thus, at scales up to 100L, maximum Fab’ release occurs within the time taken for 

complete cell resuspension, and the time required to achieve maximum degradation 

of contaminating E. coli protein is approximately 5 hours. It is likely that the 

degradation of contaminating incomplete or degraded Fab’ fragments will also take 

place within this time frame.
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Figure 4.2.13 Western blot probed for 4D5 Fab ' light chain, showing complete Fab ' 
and free light chain in periplasmic extracts during 100L periplasmic extraction.

Lane 1 Prestained low molecular weight markers 
Lane 2 Purified 4D5 F ab ' standard

Lanes 3-9 Periplasmic extracts (extracellular protein) at the following time intervals 
after cell resuspension:

Lane 3 45 minutes 
Lane 4 1.5 hours 
Lane 5 2.5 hours 
Lane 6 3.5 hours 
Lane 7 4.5 hours 
Lane 8 16 hours

Lane 9 Purified 4D5 Fab ’ standard
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4.2.5 Whole broth extraction

Chapter 3 describes development of a fermentation to improve control of product 

location. Following modification of the original protocol, over 80% retention of Fab’ 

product within the periplasmic space was routinely achieved. However, studies have 

shown that retention of material within the periplasm can be harder to achieve at 

large scale (personal communication, N. Weir). In cases where product location is 

more difficult to control and excessive leakage of product into the extracellular broth 

occurs, it may be more economically desirable to concentrate on harvesting material 

exclusively from the extracellular medium, or alternatively attempting to purify both 

extracellular and periplasmic product.

Initial studies were therefore carried out to assess the feasibility of recovering both 

extracellular and periplasmic material by performing the extraction process on whole 

fermentation broth (whole broth extraction). Whole broth extraction was compared to 

periplasmic extraction (i.e. performing the extraction on cell paste) by assessing Fab’ 

recovery, process stream purification, process stream viscosity and quality of the Fab’ 

purified from each process stream by expanded bed protein A affinity 

chromatography (section 2.4.3.2).

Before the process of whole broth extraction could be characterised, it was necessary 

carry out a fermentation to produce a stock of fresh fermentation supernatant. In 

order to simulate the increased leakage observed at scale, the addition of calcium and 

magnesium salts prior to induction was omitted from the fermentation protocol as 

this was thought to be one of predominant factors contributing towards the increased 

retention of periplasmic material (fermentation HCD5, section 3.2.2.3). However, the 

measurement of extracellular and periplasmic Fab’ in samples taken at the end of the 

fermentation showed that leakage had increased only slightly, with 70% of product 

still retained within the periplasmic space. Extracellular Fab’ titres however were 

sufficiently high (-50 pg mL'1) to allow experiments to be performed using the 

material produced.
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Cells harvested from fermentation HCD5 were frozen (-70°C) and the supernatant 

stored at 4°C until the experiments could be performed. Periplasmic and whole broth 

extraction were compared at laboratory scale. Cell paste was resuspended at a 

concentration of 0.14 g L'1 in either 300 mL periplasmic extraction buffer or 270 mL 

fermentation supernatant and 30 mL 10X periplasmic extraction buffer (so that the 

concentration of Tris and EDTA in each extraction process was identical). A 1 mL 

sample of each suspension was spun (13 000 rpm, 5 minutes) to provide a 

supernatant sample for assay of extracellular Fab’ and protein concentration prior to 

extraction. In addition, 30 mLs of each suspension were homogenised to allow 

determination of initial total protein and total Fab’ available for release. The 

remaining suspensions were each divided into two sealed 200 mL shake flasks, one 

of which was incubated in an orbital shaker at 30°C, 250 rpm, whilst the other was 

incubated in a hot water bath maintained at 60°C, 250 rpm. All suspensions were 

incubated for 16 hours, after which samples were taken for measurement of 

extracellular Fab’ and protein, total Fab’ and protein (after homogenisation) and 

viscosity.

The results are given in Table 4.2.3. Two values for Fab’ recovery are shown, the 

first is based on total Fab’ available for release at the beginning of extraction, 

whereas the second (in brackets) shows Fab’ release based on total Fab’ available at 

the end of extraction. The two figures are similar for extraction at 30°C, however 

significant differences are observed for 60°C extraction. The differences are due to 

Fab’ degradation; total Fab’ concentrations before and after extraction at 60°C are 

shown in Figure 4.2.14. Initial differences in total Fab’ for periplasmic and whole 

broth extraction resulted from the presence of 42 pg mL'1 Fab’ in the broth 

supernatant. Following periplasmic extraction at 60°C, total Fab’ was reduced by 

-15%; as explained in section 4.2.2, such levels of degradation were routinely 

observed and are thought to be due to denaturation of free heavy and light chain. 

Whole broth extraction at 60°C resulted in 35% degradation of Fab’. The actual 

quantity of Fab’ denatured was approximately equal to the amount lost during 

periplasmic extraction plus the amount present in the extracellular broth. Hence it is 

postulated that the extracellular material is less heat stable than periplasmic Fab’,
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possibly as a result of chemical reactions that occur in the supernatant, and therefore 

is denatured by the high temperature.

Extraction Temperature 30°C 60°C

Periplasmic
extraction

Whole broth 
extraction

Periplasmic
extraction

Whole broth 
extraction

% Fab’ recovery 66 (63) 50 (49) 57 (68) 41(63)

Specific Fab' 0.0508 0.0393 0.174 0.135

Purification factor 1.8 2.2 4.0 6.0

Viscosity (mPaS) 1.8 1.8 1.9 2.2

Table 4.2.3 Comparison o f F ab ' recovery, purification o f the process stream and 
process stream viscosity during periplasmic and whole broth extraction.

The % Fab' recovery gives the extracellular Fab' concentration at the end o f  the 
extraction process expressed as a percentage o f  the total Fab ' available fo r  release, 
measured in a homogenised sample taken at the beginning (first figure) and the end 
(second figure in brackets) o f  the extraction procedure. Specific F a b ' and 
purification factor as fo r  Table 4.2.1.

300

f  250 c E
■S o>

CO =*.

c
CD CL

2 E

<D 200

c CO

P  -S 150
] Q  CDco co
-  E  
jS CT> 100  
o  o  

E 
o
^  50

I I Periplasmic extraction 
Whole broth extraction

0 hours 16 hours

Extraction time

Figure 4.2.14 Total Fab ' available for release, measured in a homogenised sample 
at the beginning and end o f periplasmic and whole broth extraction at 60 °C. Error 
bars represent the error for the ELISA assay (±11%).
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In all cases, recovery was lower for whole broth extraction compared to periplasmic 

extraction, indicating that the extraction process was less efficient in the presence of 

fermentation supernatant. It is possible that EDTA in the extraction buffer, which 

functions as a membrane permeabilising agent by chelating the divalent cations 

which form an integral part of the bacterial outer membrane, interacts with cations 

within the fermentation supernatant and is thereby prevented from binding the 

calcium and magnesium ions in the outer membrane.

The periplasmic extraction process performed on cells from fermentation HCD5 was 

also observed to be significantly less efficient than previous extractions performed on 

cells harvested from standard high cell density fermentations. Of the Fab’ recorded at 

the end of extraction, 68% had been released from the periplasm, compared to 100% 

release frequently achieved during previous extractions. The only difference in 

protocols for the standard high cell density fermentations and the fermentation used 

to produce material for the experiments described in this section was the omission of 

the calcium and magnesium additions prior to induction. It is possible that the 

reduced concentration of calcium and magnesium resulted in a change in the 

structure of the bacterial outer membrane such that it was more resistant to treatment 

with Tris and EDTA.

The high temperature extraction resulted in purification of the process stream for 

whole broth extraction as well as periplasmic extraction, indicated by the higher 

specific Fab’ obtained at 60°C compared to 30°C. Purification was marginally higher 

for whole broth extraction, shown by the higher purification factor. Evidence for the 

high temperature purification is also provided by SDS-PAGE analysis of 

extracellular protein after cell resuspension and following extraction at 30°C and 

60°C (Figure 4.2.15). Lower levels of protein contaminants are shown by the reduced 

number of protein bands in the 60°C extracts.

Purification by degradation of free heavy and light chain and incomplete Fab’ is also 

observed for whole broth as well as periplasmic extraction, as illustrated by Western 

blots detecting Fab’ light and heavy chain (Figures 4.2.16 and 4.2.17 respectively). 

Both blots show a considerably ‘cleaner’ Fab’ preparation obtained by extraction at
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60°C. The increased intensity of staining of the bands representing complete Fab’ in 

the 60°C extracts suggests a higher concentration of disulphide bonded Fab’ 

compared to 30°C extracts. However, the reduced staining intensity in 30°C extracts 

is thought to result from ‘hindered binding’ of detecting antibodies due to much 

higher levels of protein within the sample, rather than lower Fab’ concentration.

Quality of Fab’ purified from periplasmic and whole broth extracts by expanded bed 

adsorption (section 2.4.3.2) was assessed by SDS-PAGE analysis, illustrated in 

Figure 4.2.18. The gel indicates Fab’ purified from whole broth extracts to be of 

equivalent quality in terms of purity compared to Fab’ purified from periplasmic 

extracts.

Finally, the viscosity of each suspension was measured following extraction. The 

results, shown in Table 4.2.3, indicate that the viscosity following whole broth 

extraction was slightly higher compared to periplasmic extraction, however the 

increase was thought not to be significant in terms of processing.

The comparisons made between the two extraction processes indicate that no 

significant advantage is gained from whole broth extraction in terms of product yield 

or purity, however performing the extraction on whole fermentation broth does 

remove the requirement for a cell harvest step following fermentation (discussed 

further in Chapter 8). Further work is required to fully characterise the process of 

whole broth extraction, including an assessment of Fab’ stability in the fermentation 

supernatant and optimisation of the extraction process in the presence of fermentation 

broth. In addition, more detailed analysis of the quality of Fab’ purified from whole 

broth extracts would be required before the operation could be included as a 

purification stage in the preparation of material for clinical use. Quality is assessed in 

terms of degree of deamination, oxidative state of the thiol group used for 

conjugation to other elements such as PEG, toxins or liposomes, affinity of the 

antigen and in vivo stability and efficacy.
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Figure 4.2.15 SDS-PAGE gel showing process stream purity following periplasmic 
and whole broth extraction at 30 °C and 60 X3.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard

Lanes 3, 4 and 5, Periplasmic extraction

Lane 3 Extracellular protein following cell resuspension
Lane 4 Extracellular protein following overnight extraction at 30 °C
Lane 5 Extracellular protein following overnight extraction at 60 °C

Lane 6 -

Lanes 7, 8 and 9, Whole broth extraction

Lane 7 Extracellular protein following cell resuspension
Lane 8 Extracellular protein following overnight extraction at 30X3
Lane 9 Extracellular protein following overnight extraction at 60 X3

66.2 kDa

45 kDa

31 kDa

21.5 kDa
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111 kDa — ►
77 kDa — ►

48.2 kDa — ►

33.8 kDa — ► 

28.6 kDa — ►

20.5 kDa — ►

Figure 4.2.16 Western blot probed for 4D5 Fab ’ light chain, showing process stream 
purity following periplasmic and whole broth extraction at 30X1 and 60 X .

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 F ab ' standard

Lanes 3, 4 and 5, Periplasmic extraction

Lane 3 Extracellular protein following cell resuspension
Lane 4 Extracellular protein following overnight extraction at 30 X
Lane 5 Extracellular protein following overnight extraction at 60 X

Lane 6 -

Lanes 7, 8 and 9, Whole broth extraction

Lane 7 Extracellular protein following cell resuspension
Lane 8 Extracellular protein following overnight extraction at 30 X
Lane 9 Extracellular protein following overnight extraction at 60 X

"  —  1
------------------------------  -------------------
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> trnm m m m rn

Assembled
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Free light 
chain

140



111 kDa — ► 
77 kDa — ►

48.2 kDa — ►

33.8 kDa — ► 

28.6 kDa — ►

20.5 kDa — ►

Figure 4.2.17 Western blot probed for 4D5 F ab’ heavy chain, showing process 
stream purity following periplasmic and whole broth extraction at 30 °C and 60 °C.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard

Lanes 3, 4 and 5, Periplasmic extraction

Lane 3 Extracellular protein following cell resuspension
Lane 4 Extracellular protein following overnight extraction at 30°C
Lane 5 Extracellular protein following overnight extraction at 60 °C

Lane 6 -

Lanes 7, 8 and 9, Whole broth extraction

Lane 7 Extracellular protein following cell resuspension
Lane 8 Extracellular protein following overnight extraction at 30X1
Lane 9 Extracellular protein following overnight extraction at 60 °C

Assembled
Fab’
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97.4 kDa ---- ►

66.2 kDa — ►

45 kDa — ►

31 kDa — ►

21.5 kDa — ►

Figure 4.2.18 SDS-PAGE gel showing quality o f  F ab’ preparations purified from 
60 °C periplasmic and whole broth extracts by expanded bed adsorption.

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Periplasmic extract following overnight incubation at 60X3 (column load) 
Lane 4 Fab 'preparation purified from 60X3 periplasmic extract (column eluate)

Lane 5 -

Lane 6 Low molecular weight markers 
Lane 7 Purified 4D5 Fab ’ standard
Lane 8 Periplasmic extract following overnight incubation at 60 X3 (column load) 
Lane 9 Fab 'preparation purified from 60 X  whole broth extract (column eluate)

Assembled
Fab’
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4.3 Summary

A novel process of periplasmic extraction, involving the incubation of cells in a Tris- 

EDTA extraction buffer at elevated temperature, has been characterised. An initial 

assessment of the thermal stability of 4D5 Fab' concluded that the highest 

temperature at which the extraction process could be effectively operated was 60°C. 

Performing the extraction at both low (30°C) and high (60°C) temperature produced 

high Fab’ yields (>85%). Flowever, high temperature extraction offered the 

additional advantage of process stream purification by the degradation of both 

contaminating E. coli proteins and incomplete or partially degraded Fab’ fragments 

which would otherwise be purified with the complete Fab’ during protein A affinity 

chromatography.

The monitoring of Fab' release and protein degradation during periplasmic extraction 

revealed that both processes are temperature dependent, with higher temperatures 

giving higher rates of release and degradation. At 60°C, Fab’ release occurred almost 

instantaneously during cell resuspension, and maximum protein denaturation took 

place within the first five hours of incubation.

Fab’ release and protein degradation were modelled at different temperatures and 

scales of operation using first order rate equations, however the method of cell 

resuspension appeared to interfere with release, making it difficult to model 

accurately. Release following complete cell resuspension and protein denaturation 

both followed first order kinetics, however the rate and extent of protein degradation 

varied with the use of different feed material.
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Finally, the Tris-EDTA extraction process was performed on whole fermentation 

broth. Yields achieved with whole broth extraction were lower than for periplasmic 

extraction due to a combination of increased Fab’ degradation and a less efficient 

extraction procedure. However, the degree of process stream purification during 

60°C whole broth extraction was slightly higher than that achieved with periplasmic 

extraction. Further work is required to assess the thermal stability and quality of 

extracellular Fab’, and to optimise extraction in the presence of fermentation 

supernatant before a complete characterisation of the process and valid comparisons 

with periplasmic extraction can be made.
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5. CLARIFICATION OF SPHEROPLAST SUSPENSIONS

5.1 Introduction

This chapter examines the centrifugal removal of spheroplasts from the process 

stream following periplasmic extraction and assesses the ability of scale-down 

techniques to predict recovery performance in industrial centrifuges.

Following the release of 4D5 Fab’ from E. coli cells by periplasmic extraction, either 

of two purification routes may be followed. Fab’ may be recovered directly from the 

spheroplast suspension using expanded bed chromatography. Alternatively, 

spheroplasts can be removed from the process stream by centrifugation and/or 

microfiltration, and the Fab’ purified by packed bed chromatography.

One disadvantage of the latter method relates to the observed product losses during 

large-scale centrifugation to clarify spheroplast suspensions. N. Weir and co-workers 

(Celltech Chiroscience Ltd) observed that during the large-scale disk stack 

centrifugation of spheroplast suspensions following periplasmic extraction, -50% 

Fab’ was lost with the solid phase despite only -10% loss of liquid volume. This loss 

of product has also been observed by G. Zapata at Genentech (San Fransisco, CA) 

(Erdmann, 1998). During large-scale centrifugation to remove cell debris following 

lysis of E. coli cells expressing periplasmic antibody fragments, the antibody 

partitioned preferentially with the pellet resulting in reduced recovery. The problem 

was solved by diluting the process stream in high ionic buffer prior to centrifugation.

Another common problem associated with the centrifugation of biological material is 

the damage resulting from exposure to high shear rates. Shear damage to the product 

can reduce yields, and shear-associated cell breakage will result in contamination of 

the process stream with proteases, DNA and lipids, which may degrade product or 

cause problems in subsequent purification stages.
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This chapter aims to investigate the problems of shear damage and preferential 

partitioning of antibody product with the solid phase during the centrifugal 

clarification of spheroplast suspensions. In addition, the scale-down techniques 

developed to allow investigation of processing problems at laboratory and pilot scale 

are assessed in their ability to mimic the performance of an industrial centrifuge.

The following sections (5.1.1-5.1.5) provide an introduction to the tubular bowl and 

the disk stack centrifuges, centrifugation theory and the techniques developed for the 

scale-down of centrifugal recovery. In sections 5.2.1 and 5.2.2 an assessment is made 

of the sensitivity of 4D5 Fab’ and spheroplasts to shear. The centrifugal removal of 

spheroplasts using a disk stack and a tubular bowl centrifuge is characterised and 

compared in section 5.2.3. Finally, section 5.2.4 compares process stream 

clarification achieved using full-scale and scale-down equipment.

5.1.1 Tubular bowl centrifuge

The tubular bowl centrifuge is the simplest of all centrifugal separators. Feed is 

pumped through a nozzle into the bottom of a cylindrical tube, which rotates at high 

speed. As the feed enters, it is rapidly accelerated and is distributed to the inner walls 

of the bowl. As the liquid moves upwards through the bowl, solids sediment against 

the sides of the cylinder. Clarified supernatant flows out of the top of the bowl and 

the solids, which collect as a paste layer on the bowl inner walls, are collected 

separately. The design of the tubular bowl is illustrated in Figure 5.1.1.

The simple design of the tubular bowl means extremely high relative centrifugal 

forces can be attained (up to 20 OOOg on an industrial scale), therefore good 

separation and high solids dewatering are achieved. However, limitations on the 

length of the cylinder due to mechanical stresses at high rotational speed mean the 

particle residence time within the bowl is relatively short, which can limit both 

separation efficiency and centrifuge capacity. In addition, conventional machines 

require solids to be removed manually, which can be cumbersome and may present 

biosafety hazards. As a result, tubular bowl centrifuges are applied mainly for
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difficult separations which require high relative centrifugal forces or where a low 

solids content is present in the feed suspension (1-5%).

Drive spindle

Collector-

Bottom cap

Feed nozzle

Feed

Figure 5.1.1 Schematic diagram o f a tubular bowl centrifuge.

Recent years have seen the development of a tubular bowl centrifuge which is 

capable of automated solids discharge during operation. The centrifuge design is 

considerably more complex than traditional tubular bowls, however high relative 

centrifugal forces (up to 20 OOOg) can still be achieved. Feed is introduced at the top 

of the centrifuge bowl, solids are retained within the bowl and supernatant is 

discharged over a weir at the base of the centrifuge. Compressed solids are removed 

periodically during a fully automated cycle in which bowl speed is reduced and a 

knife within the bowl ‘scrapes out’ the solids. The machine also has the capacity for 

fully automated sterilisation in place and cleaning in place.
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5.1.2 Disk stack centrifuge

The disk stack centrifuge is considerably more complex than the tubular bowl. A 

number of designs of disk stack machine exist, the principal difference between them 

being the method of removal of accumulated solids. In the simplest of designs, solids 

must be removed periodically by hand. The majority of disk stack centrifuges 

however are capable of solids discharge during operation without reducing the bowl 

speed. Solids may be ejected continuously through nozzles in the periphery of the 

bowl, or alternatively centrifuges may be fitted with valves to allow the intermittent 

discharge of solids when required.

The internal structure of a disk stack centrifuge is illustrated in Figure 5.1.2. The 

central feature of the design is a stack of conical disks that rotate with the bowl and 

split the liquid into thin layers. This has the effect of both reducing the sedimentation 

distance and increasing the settling area. Feed enters the centrifuge through the 

central pipe of the centripetal pump and is rapidly accelerated to the speed of the 

bowl. Feed then passes through the distributor to the bottom of the stack, and flows 

upwards between the disks where separation occurs. Disks are held apart by spacer 

ribs (or caulks) on the surface of each disk, giving separation distances of 0.4-2 mm. 

The high centrifugal force causes the heavier particles within the feed suspension to 

be thrown outwards towards the undersides of the disks whilst lighter fluid is 

displaced towards the centre of the bowl. Solids collect on the lower surface of the 

disks and slide downwards into the conical holding space where solids discharge 

occurs through nozzles or slots in the periphery of the bowl. Clarified liquid moves 

upwards into the centripetal pump chamber, above the disk space, where it is 

discharged from the machine.

The disk stack centrifuge used in the following work is an automated intermittent 

solids discharging machine. Discharge is achieved by injecting high-pressure water 

into the space between the fixed lower bowl component and the top of the sliding 

piston (Figure 5.1.2). This forces the piston to move downwards, exposing six evenly 

spaced slots in the periphery of the bowl through which collected solids are 

discharged by centrifugal force. Removal of the water allows the piston to close,
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sealing the bowl to allow further solids accumulation. Discharged solids are ejected 

into the surrounding hood and fall down a chute for collection in a container.

Two types of discharge can be performed; a full and a partial discharge. During a full 

discharge, the feed valve is closed and the sliding piston is lowered for sufficient 

time (typically ~ 10 seconds) to allow complete removal of the entire contents of the 

bowl. When the centrifuge reaches capacity, the bowl will contain a mixture of solids 

(approximately half the bowl volume) and liquid (feed and partially clarified 

supernatant). Therefore a full discharge will produce a ‘wet’ solid (25-30% solids on 

a volume fraction basis). Considerably drier solids are achieved using a partial 

discharge, where the bowl is opened for the time it takes to eject the sedimented 

solids only (typically 1-2 seconds). The feed valve remains open during a partial 

discharge, however the pump can be stopped manually to prevent feed entering the 

bowl whilst discharging. In industrial operation, disk stack centrifuges are normally 

operated with four partial discharges followed by a full discharge.

Feed In

distributor

Solids DischargeDistributor Foot

■Opening Chamber

Figure 5.1.2 Schematic diagram o f a disk stack centrifuge.
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The complicated design of the disk stack machine limits rotational speeds, with 

industrial machines designed to operate at forces of up to 10 OOOg. In addition, the 

discharge mechanism requires that the solids must remain sufficiently wet to flow 

through the machine. Despite the ability to release solids during operation, the 

limited solids capacity of disk stack machines means only feed suspensions of up to 

-10% solids content by volume can be handled efficiently (Brunner and Hemfort, 

1988). However, the ability to process large batches with minimal operator 

intervention means that for many bioprocessing operations, disk stack centrifuges are 

the machine of choice. Disk stack centrifugation has been reported for the separation 

of both mammalian cell cultures (Kempken et al., 1995) and Escherichia coli 

cultures (Datar and Rosen, 1987).

5.1.3 Centrifugation theory

5.1.3.1 Relative centrifugal force

The effectiveness of centrifugation is characterised by the ratio of particle velocity 

achieved in a particular centrifuge to particle settling velocity under gravity.

The settling velocity under gravity of a small, spherical particle in dilute suspension 

is given by Stoke’s law:

v  = ( A ~ A . ) d s2g 
g 18// K ’ }

where Vg = settling velocity under gravity (m s'1)

ps = density of the particles (kg m ') 

pL = density of the suspending fluid (kg m ') 

p = suspension dynamic viscosity (Ns m ') 

ds = diameter of particle (m) 

g = acceleration due to gravity (m s' )
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In a centrifugal field, the acceleration the particle experiences under gravity is 

replaced with that due to centrifugal force. The settling velocity is therefore given by:

(A ~ A )d<;2 0)2rV  =  s  ? !
18/i

where Vz = settling velocity in a centrifugal field (m s'1)

co = angular velocity of the centrifuge (rad s '1) 

r = radial position of particle (m)

The ratio of velocity in the centrifuge to velocity under gravity is termed the relative 

centrifugal force (RCF, also called the centrifuge effect or g number):

Vz cy2r
RCF = - T  = —  (5-3)vg g

Hence a centrifuge can be characterised by the relative centrifugal force it generates, 

which determines particle settling velocity in the centrifugal field and thus influences 

the rate of sedimentation. Sedimentation is also affected by the time of exposure to 

the centrifugal force. In batch centrifuges, exposure time is increased by increasing 

the centrifuge spin time. In continuous centrifuges, residence time within the 

centrifuge is increased by decreasing the feed flow rate.

5.1.3.2 Sigma theory

The performance of different designs and scales of centrifuge is commonly compared 

using sigma theory which was developed by Ambler (1952). Each centrifuge has an 

associated ‘Sigma factor’ (E), which physically represents the cross-sectional area of 

a gravity settler with the same sedimentation characteristics as the centrifuge, and 

hence has the units m . The basic equation for E, derived in full by Ambler (1959), is 

given by:
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E =
Va>2r,

gSe
(5.4)

where V = volume of liquid in the bowl (m )

re = effective radius of the centrifuge (m) 

se = effective settling distance (m)

Equations for evaluating £ depend on centrifuge design; equations for the £ factor of 

the laboratory batch centrifuge, the tubular bowl and the disc stack centrifuge are 

given in Appendix 5.

The relationship between £ and the flow rate of material through a continuous 

centrifuge is given by the equation:

where Q = volumetric flow rate through the centrifuge (m3 s '1)

It can be seen from Equations 5.1 and 5.4 that Vg depends entirely on the physical 

characteristics of the system whereas £ depends entirely on centrifuge design. 

Therefore, it should be possible to compare centrifuges of different designs and sizes 

operating on the same feed stream, on the basis that Vg is constant and hence:

Equation 5.6 implies that any centrifuges operating with the same feed stream will 

recover particles with identical efficiency if the ratio of flow rate to Sigma factor for 

all machines is the same. This is used as the basis for centrifuge scale up, however 

caution is required when comparing different machine types because sigma theory is 

based on the assumption of laminar flow and ideal operating conditions. In reality, 

centrifuge performance can deviate from theoretical prediction due to factors such as 

particle shape and size distribution, aggregation of particles, non-uniform flow

q 2 (5.6)
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distribution in the centrifuge and interaction between particles during sedimentation. 

To account for non-ideal conditions in different machines, empirically derived 

correction factors are introduced as shown:

( 5 - 7 )

where ci and C2 are the appropriate correction factors for the particular centrifuge. 

The correction factor is defined as 1.0 for the laboratory batch centrifuge. For the 

tubular bowl centrifuge, flow patterns are simple and the correction factor is close 

unity (0.9-1.0; Ambler, 1959). A variety of correction factors for disk stack 

centrifuges have been quoted in the literature, ranging from 0.4 (Maybury et al., 

2000) to 0.73 (Murkes and Carlsson, 1978). In reality, comparisons between different 

machines should not be made unless the appropriate correction factor for the 

particular machine and feed material has been determined.

5.1.4 Centrifuge scale-down

The aim of scale-down is to simulate the conditions and performance of pilot plant 

equipment at reduced scale, so that the performance of unit operations can be 

predicted using reduced volumes of process material. This will allow meaningful 

process data to be collected early in process development when material is limited, 

thus accelerating process design.

Three approaches to scale-down exist:

• Use of a small scale, geometrically similar model of the industrial machine.

• Modification of existing pilot scale equipment so that lower volumes of process 

material are required whilst maintaining comparable process performance.

• Operation of traditional bench-top equipment to simulate the poorer performance 

of pilot-scale machines.
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The initial approach, the development of small-scale replicas, is unfeasible and cost- 

prohibitive when applied to complex industrial machines such as the disk stack 

centrifuge.

The approach of modifying existing equipment has been used by Maybury et a i,

(1998) to scale-down an industrial disk-stack centrifuge. The volume of process 

material required for the study of centrifugal clarification was minimised by reducing 

the number of active separating disks and also reducing the liquid and solid hold-up 

of the centrifuge bowl. Maximum scale-down gave a 76% reduction in the separation 

area and a bowl volume reduction of 70%. The recovery performance of the full-scale 

machine was closely mimicked by the scale-down variant during the processing of 

dilute streams of polyvinyl acetate and yeast cell debris. However, solids dewatering 

and compaction were not assessed. In addition, no changes were made to the feed 

zone of the centrifuge, hence shear rates in the feed zone of the scale-down 

configuration are likely to have been lower than in the full-scale version, which may 

affect the recovery performance during processing of shear sensitive particulates.

The final approach, involving the operation of bench-top equipment to simulate the 

performance in pilot-scale machines, has been termed ultra scale-down. Techniques 

have been developed which allow recovery performance of an industrial disk stack 

separator to be predicted using a standard laboratory centrifuge (Maybury et al., 

2000). The laboratory centrifuge was operated at the same relative centrifugal force 

and equivalent Q/E as the industrial machine. The equation defining Q/E for a 

laboratory centrifuge, developed by Ambler (1959), was initially modified to account 

for the centrifuge acceleration and deceleration stages (as shown in Appendix 8). The 

ability to mimic recovery performance in the industrial separator using the laboratory 

centrifuge was then assessed using a dilute suspension of polyvinyl acetate particles, 

yeast cell debris and protein precipitates. Recovery of polyvinyl acetate particles was 

found to be well predicted by the laboratory centrifuge. However, the laboratory 

centrifuge over predicted the recovery of shear sensitive yeast cell debris and protein 

precipitates. It is suspected that the high shear in the disk stack centrifuge feed zone 

caused breakage of debris aggregates and precipitates, resulting in poorer 

performance. Particulates are exposed to only low shear rates in the laboratory 

centrifuge, resulting in an over prediction of the recovery achieved with the industrial
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machine. Improvement of laboratory prediction requires the development of a device 

which mimics the conditions of high shear combined (in some cases) with air-liquid 

interfaces in the industrial machine.

5.1.5 The rotating disc shear device

The laboratory rotating disc shear device has been developed at University College 

London to generate controlled levels of shear. The device, described in detail in 

section 2.4.2.1, consists of a single flat aluminium disc rotated in a closed Perspex 

cylindrical chamber at fixed rotational speeds between 5 000 and 27 000 rpm. The 

device generates shear rates of up to l . lxlO6 s’1 and has previously been used to 

determine the effects of shear on plasmid DNA in solution (Levy et al., 1999).

5.2 Results and discussion

5.2.1 Shear sensitivity of 4D5 Fab’

The effect of shear on 4D5 Fab’ was assessed using the rotating disc shear device 

described in section 2.4.2.1. Purified 4D5 Fab’ was diluted to a concentration of 

100 pg mL'1 in PBS and ~12 mL of this solution was fed into the reservoir of the 

shear device (so that the reservoir was ~2/3 full). This left a small pocket of air at the 

top of the reservoir to allow air entrainment as the solution was sheared. The disc 

was rotated at a rate of 27 000 rpm for 15 seconds, which corresponds to an average 

shear rate of approximately l .lxlO6 s'1. This is the highest shear rate possible using 

the rotating disc device. Samples were taken before and after shearing and the 

concentration measured by ELISA. It was assumed that any shear damage to the 

antibody fragment would result in a decrease in the concentration recorded by 

ELISA. The experiment was performed on triplicate Fab’ samples.

The results of the experiment, illustrated in Figure 5.2.1, show no appreciable 

decrease in the signal detected by ELISA and thus no apparent damage to the 

antibody as a result of exposure to high shear in the presence of air-liquid interfaces.
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Figure 5.2.1 Concentration o f  a solution o f  purified 4D5 F ab ' measured by ELISA 
before and after exposure to shear in the presence o f air-liquid interfaces. Purified 
F ab ' was sheared at a rate o f  - l . l x lO 6s' fo r  15 seconds in a rotating disc shear 
device. Error bars represent the error o f  the ELISA assay (±11%).

The shear studies performed indicate the Fab’ to be stable at shear rates up to 

l.lx lO 6s’1. During processing the Fab’ is exposed to highest shear in the feed zone 

of a centrifuge. Maximum shear rates in the feed zones of the disk stack and tubular 

bowl centrifuges used later in this study were calculated to be in the range 105-106 s '1 

(S. Yim, University College London), which is comparable to the shear rates 

produced by the rotating disk device. Thus it is unlikely that the Fab’ will be 

damaged by the shear it experiences in the centrifuge feed zone.

5.2.2 Shear sensitivity of spheroplasts

The shear sensitivity of spheroplasts was investigated by assessing the degree of cell 

breakage caused by exposure to shear and the effect of shearing on centrifugal 

clarification efficiency.

Spheroplast breakage following exposure to shear was estimated from the release of 

total cellular protein and the intracellular enzyme glucose-6-phosphate
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dehydrogenase, G-6-PDH. Cells (harvested from HCD run 4) were resuspended to a 

concentration of 0.14 g mL'1 in periplasmic extraction buffer and incubated overnight 

at 30°C and 60°C. lmL samples of each suspension were centrifuged in a microfuge 

(13 000 rpm/~14 OOOg for 5 minutes) and the supernatant collected for the 

measurement of pre-shear extracellular protein and G-6-PDH concentration. (This 

method assumes that centrifugation in the microfuge causes minimal damage to the 

cells. The assumption has previously been experimentally confirmed by N. Murrell, 

PhD Thesis, 1998).

Samples of the 30°C and 60°C spheroplast suspensions were then sheared (in 

triplicate) using the rotating disc shear device. The reservoir of the disc device was 

filled with -12 mL suspension (so that it was -2/3 full) and the disc was rotated at 

27000 rpm for 15 seconds to produce a shear rate of l . lxlO6 s '1 with air entrainment. 

Following shearing, 1 mL samples were centrifuged as before and the supernatant 

collected to determine the post-shear extracellular protein and G-6-PDH 

concentration. Total protein and G-6-PDH available for release was measured in 

homogenised samples of pre-shear suspensions (section 2.4.4.1). Protein and G-6- 

PDH assays are described in sections 2.2.3.1 and 2.2.4 respectively.

The concentrations measured were used to determine the level of release due to 

spheroplast damage that had occurred during shearing. The percentage release was 

calculated as follows:

P - P
% Release =   ~  * 100% (5.8)

M 0 0  "  0

Where Ps = Extracellular protein/ enzyme concentration in sheared

sample

P o  = Background protein/ enzyme concentration (i.e. extracellular 

concentration in pre-shear sample)

Pioo = Total enzyme/ protein available for release, measured in a

homogenised sample.
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The results are given in Tables 5.2.1-5.2.3. G-6-PDH release was only measured in 

30°C spheroplast suspensions as incubation at 60°C destroyed all enzyme activity.

Sample Pre-shear 
extracellular 

protein (mg mL'1)

Post-shear 
extracellular 

protein (mg mL'1)

Total protein 
available for 

release (mg mL'1)

% release

1 2.67 2.96 9.35 4.3
2 2.67 2.89 9.35 3.3
3 2.67 2.70 9.35 0.04
Table 5,2.1 Protein release resulting from shearing o f a spheroplast suspension 
produced by overnight extraction at 30 X. Spheroplasts were sheared at a rate o f  
~ l . l x l  06 s'1 for 15 seconds in a rotating disc shear device.

Sample Pre-shear 
extracellular 

G-6-PDH (IUmL'1)

Post-shear 
extracellular 

G-6-PDH (IUmL'1)

Total G-6-PDH 
available for 

release (IUmL'1)

% release

1 0.11 0.14 1.21 2.5
2 0.11 0.13 1.21 2.3
3 0.11 0.14 1.21 2.4
Table 5.2.2 G-6-PDH release resulting from shearing o f a spheroplast suspension 
produced by overnight extraction at 30°C. Spheroplasts were sheared at a rate o f  
~ l .lx lO 6 s'1 for 15 seconds in a rotating disc shear device.

Sample Pre-shear 
extracellular 

protein (mg mL'1)

Post-shear 
extracellular 

protein (mg mL'1)

Total protein 
available for 

release (mg mL'1)

% release

1 0.66 0.67 0.95 3.4
2 0.66 0.70 0.95 14.0
3 0.66 0.64 0.95 -7.0
Table 5.2.3 Protein release resulting from shearing o f a spheroplast suspension 
produced by overnight extraction at 60 XI. Spheroplasts were sheared at a rate o f  
~1.1x106 s'1 for 15 seconds in a rotating disc shear device.

The results show minimal cell breakage as a result of shearing. The mean protein 

release for 30°C spheroplasts was 2.5%, which is comparable to the mean G-6-PDH 

release (2.4%). Values for total protein and G-6PDH release should be similar as G- 

6PDH is an entirely cytoplasmic enzyme and approximately 97% of the total protein 

in the cell is located in the cytoplasm. The mean protein release for the 60°C 

spheroplasts was 3.5%, again indicating minimal cell breakage. The greater variation
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observed in the release figures for 60°C spheroplasts can be attributed to the 

reduction in the total protein available for release; the difference between ‘0%’ and 

‘100%’ release was sufficiently small that errors associated with the protein assay 

would have had a significant effect on the calculated ‘% release’ value.

It appears from the results that the spheroplast integrity is unaffected by shear rates 

up to l . lxlO6 s '1 and, in addition, increasing the extraction temperature has no 

appreciable effect on shear sensitivity. Spheroplasts are thought to be relatively 

flaccid and able to deform when subjected to a shearing force which would explain 

their insensitivity to shear. The results are in agreement with those of E. Fischer (PhD 

Thesis, 1996) and N. Murrell (PhD Thesis, 1998), both of whom observed minimal 

breakage of E. coli spheroplasts when exposed to shear in laboratory equipment and 

during centrifugation.

Following analysis of spheroplast breakage, the effect of shearing on centrifugal 

clarification efficiency was examined. Spheroplast suspensions were produced by 

overnight periplasmic extraction at 30°C and 60°C. Half of each suspension (-250 

mL) was sheared using the rotating disk shear device. Suspensions were again 

sheared for 15 seconds at 27 000 rpm, in the presence of air-liquid interfaces. A 

centrifuge spin test, described in section 2.4.2.2, was performed on both sheared and 

non-sheared suspensions. 10 mL samples of each suspension were spun in the 

Beckman J2-M1 centrifuge using the JS 13.1 spin-out rotor at 6720 rpm for various 

time intervals between 3.5 and 47 minutes. (The centrifuge was operated at 6720 rpm 

to maintain consistency with later experiments). The clarification efficiency obtained 

at each run time was calculated based on optical density at 600nm (section 2.4.2.3). 

The equivalent Q/Z corresponding to each run time has been calculated in Appendix 

8, and the relationship between clarification efficiency and equivalent Q/Z is shown 

in Figures 5.2.2 and 5.2.3.

The graphs indicate that exposure to shear resulted in a reduction in clarification 

efficiency during the centrifugation of spheroplasts produced at both extraction 

temperatures. The percentage reduction in clarification increased with increasing 

equivalent Q/Z (i.e. as spin time decreased). For 30°C spheroplasts, the reduction in
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clarification resulting from exposure to shear ranged from 0.2% at low Q/Z to 7.0% 

at high Q/Z. For 60°C spheroplasts, the reduction in clarification was slightly lower, 

ranging from 0.3% at low Q/Z to 4.3% at high Q/Z.
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Figure 5.2.2 Relationship between clarification efficiency and equivalent Q/Z for  
sheared (O) and non-sheared (B) spheroplasts produced by overnight periplasmic 
extraction at 30X1. Spheroplasts were recovered in the laboratory J2-M1 centrifuge 
operated at 6720 rpm (RCF = 3720g) using the JS 13.1 rotor. Spheroplasts were 
sheared at a rate o f - l . lx lO 6 s'1 for 15 seconds in a rotating disc shear device. Error 
bars represent the standard deviation for triplicate spin tests using the same feed  
material. Results show a reduction in clarification efficiency for sheared 
spheroplasts compared to non-sheared spheroplasts. The reduction in clarification 
ranges from 0.2% at low Q/Z to 7.0% at high Q/Z.
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Figure 5,2.3 Relationship between clarification efficiency and equivalent Q/Z for  
sheared (O) and non-sheared (B) spheroplasts produced by overnight periplasmic 
extraction at 60 Spheroplasts were recovered in the laboratory J2-M1 centrifuge 
operated at 6720 rpm (RCF = 3720g) using the JS 13.1 rotor. Spheroplasts were 
sheared at a rate o f - l . lx lO 6 s’1 for 15 seconds in a rotating disc shear device. Error 
bars represent the standard deviation for triplicate spin tests using the same feed  
material. Results show a reduction in clarification efficiency for sheared 
spheroplasts compared to non-sheared spheroplasts. The reduction in clarification 
ranges from 0.3% at low Q/Z to 4.3% at high Q/Z.

The reduction in clarification is likely to result from a change in the particle size 

distribution of sheared spheroplast suspensions, with an increase in the proportion of 

smaller particulates which require longer centrifugation time for sedimentation. 

Reduction in the average particle size also provides an explanation for the greater 

reduction in clarification efficiency observed at higher Q/Z. Hewitt et al., (1998), 

studied the effect of fluid mechanical stress on E. coli strain W3110 during 

continuous cultivation in an agitated bioreactor. Their results showed that exposure 

of continuous cultures to high aeration and agitation rates (3 w m  and 1200 rpm 

respectively) had no effect on cell physiology, cell size or cell integrity. However, 

exposure to agitation rates of 1200 rpm for 7 hours did result in the stripping away of 

the outer polysaccharide layer of the cell. (Experiments were performed in a 5L
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cylindrical glass bioreactor (162 mm diameter x 300 mm total height) using a 

working volume of 4L and employing two 82 mm six-bladed paddle type impellers). 

Hence, the exposure of spheroplasts to much higher rates of agitation within the 

shear device may have resulted in damage to the outer membrane, releasing 

submicron sized particles that are more difficult to clarify by centrifugation. 

Alternatively, shearing may change the particle size distribution simply by breaking 

up cell clumps or aggregates.

5.2.3 Clarification of spheroplast suspensions using a tubular bowl and a disk 
stack centrifuge

Clarification of spheroplast suspensions was performed using a tubular bowl 

centrifuge (the CARR P6 Powerfuge, CARR Separations Inc, Franklin, MA) and a 

disk stack centrifuge (the Westfalia CSA-1, Westfalia Separator, Milton Keynes, 

UK). Technical specifications of the centrifuges are given in Appendix 6 (CARR) 

and Appendix 7 (CSA-1). Centrifuge performance was assessed by carrying out 

process mass balances at the operating flow rate required for 95% clarification. 

Spheroplast suspensions for the centrifugation trials were produced by periplasmic 

extraction as described in section 2.4.1.3.

5.2.3.1 Centrifuge recovery

Initially, recovery curves were produced to determine the flow rates required for 95% 

recovery. The centrifuges were operated at a range of flow rates and the clarification 

efficiency achieved at each flow rate was calculated. The flow rates used are given in 

section 2.4.2.4-a and the corresponding Q/Z values have been calculated in Appendix 

9. The relationship between clarification efficiency and Q/Z for the CSA-1 and 

CARR centrifuges are illustrated in Figures 5.2.4 and 5.2.5 respectively.
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Figure 5.2.4 Relationship between clarification efficiency and Q/Zfor the removal o f  
spheroplasts using the CSA-1 disk stack centrifuge. Error bars represent the 
standard deviation o f triplicate sample measurements taken at regular intervals 
prior to breakthrough at each flow rate.
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Figure 5.2.5 Relationship between clarification efficiency and Q/Zfor the removal o f  
spheroplasts using the tubular bowl CARR P6 Powerfuge. Error bars represent the 
standard deviation o f triplicate sample measurements taken at regular intervals 
prior to breakthrough at each flow rate.

163



For the CSA-1, clarification increased with decreasing flow rate, as expected. 

Decreasing the flow rate leads to improved recovery because the residence time of 

particles in the centrifuge bowl is increased. Good recovery (>99%) was achieved at 

low volumetric throughputs, however no advantage in terms of solids recovery was 

gained by operating below 30 Lhr'1 (Q/Z, 5.2x1 O'9 ms'1). From the graph, the flow 

rate required for 95% clarification was determined to be 81 Lhr'1 (corresponding Q/Z 

= 1.39x1 O'8 ms'1).

Similarly for the CARR, decreasing the flow rate resulted in improved clarification, 

with a maximum recovery of 99% achieved at 20 Lhr'1 (Q/Z, 5.3x1 O'9 ms*1). No 

advantage was gained from operating the centrifuge below 20 Lhr'1. The flow rate 

required for 95% clarification was found to be 53 Lhr'1 (corresponding Q/Z = 

1.41 xlO-8 ms'1).

5.2.3.2 Centrifuge mass balances

Centrifuge mass balances were carried out as described in section 2.4.2.4-b. All mass 

balance runs were performed using the same spheroplast feed stream. The flow rates 

used and clarification efficiencies achieved (based on optical density and solids 

fractions) are given in Table 5.2.4.

The CSA-1 was initially operated with full discharge. Triplicate mass balance runs 

were performed; the mean values obtained for Fab’, protein and liquid recovery in 

the supernatant and solids streams are given in Table 5.2.5.

The small size of the CSA-1 meant it could not be operated with a proper partial 

discharge as the minimum time the bowl could be opened for (~ 2 seconds) was 

longer than the time required for partial discharge (-0.7 seconds). Therefore, to gain 

an indication of the properties of the solids stream following partial discharge, the 

centrifuge was opened following the processing of one bowl volume of material and 

the solids were sampled directly from within the bowl. The results of a single ‘partial 

discharge mimic’ run are given in Table 5.2.6.
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CSA-1 CARR
Full discharge Partial discharge

Flow rate (Lhr"1) 81 81 53
% Clarification:
OD basis 96 96 94
Solids fraction basis 91 91 88
Table 5.2.4 Flow rates employed for centrifuge mass balance runs and clarification 
efficiencies achieved based on optical density at 600nm and solids volume fraction.

Process stream
Fab’

% Yield 
Protein Liquid

Supernatant 73 72 77
Solids 24 35 23
Total (supernatant + solids) 97 107 100
Table 5.2.5 Fab’, protein and liquid recovery in the supernatant and solids streams 

following the processing o f one ‘centrifuge bowl ’ volume o f spheroplast suspension 
using the CSA-1 disk stack centrifuge. Following the processing o f  one bowl volume, 
solids were ejected by full discharge. The centrifuge was operated at a bowl speed o f  
9840 rpm and a feed flow rate o f  81 Lhr'1.

Fab’
% Yield 
Protein Liquid

Supernatant 87 86 92
Solids 6 5 4
Total (supernatant + solids) 93 91 96
Table 5.2.6 Fab ’, protein and liquid recovery in the supernatant and solids streams 

following the processing o f one ‘centrifuge bowl ’ volume o f spheroplast suspension 
using the CSA-1 disk stack centrifuge. Following the processing o f  one bowl volume, 
the centrifuge was opened and solids sampled from within the bowl to gain an 
indication o f solids stream properties following partial discharge. The centrifuge 
was operated at a bowl speed o f9840 rpm and a feed flow rate o f  81 Lhr'1.

Process stream
Fab’

% Yield 
Protein Liquid

Supernatant 94 90 96
Solids - - -

Total (supernatant + solids) - - -

Table 5.2.7 Fab ’, protein and liquid recovery in the supernatant and solids streams 
following the processing o f one ‘centrifuge bowl ’ volume o f  spheroplast suspension 
using the CARR P6 Powerfuge. The centrifuge was operated at a bowl speed o f  
15 320 rpm and a feed flow rate o f 53 Lhr'1.

Due to the limited availability of feed material, the mass balance runs performed 

using the CARR Powerfuge were carried out in duplicate. Mean values of Fab’,
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protein and liquid recovery in the supernatant stream are given in Table 5.2.7. 

Because the solids ejected from the CARR were considerably drier than those 

discharged from the CSA-1, it was not possible to measure the extracellular protein 

and Fab’ concentrations or the solids fraction of the solids stream.

Analysis of the clarification efficiencies in Table 5.2.4 shows that the flow rates 

required to give 95% clarification were successfully predicted from the recovery 

verses Q/E curves, however clarification measured by OD was slightly higher than 

the recovery determined from solids fractions.

The data in Tables 5.2.5-5.2.7 indicates that during disk stack and tubular bowl 

centrifugation, the recovery of Fab’ and protein follows liquid recovery. The CARR 

recovered more of the liquid, producing drier solids, hence recoveries of Fab’ and 

protein were higher (>90%). Operation of the CSA-1 with full discharge resulted in 

loss of 23% of liquid, hence approximately 24% of Fab’ was also lost in the solids 

stream. Results from sampling solids directly from the bowl in the CSA-1 suggest 

operation of this machine with a partial discharge will result in reduced loss of liquid 

and hence improved Fab’ recovery; yields of Fab’ in the supernatant stream were 

87%, compared to 73% during operation with full discharge. However, due to the 

presence of both solids and liquid in the bowl it was very difficult to obtain a 

‘representative’ solids sample, therefore the precise figures in Table 5.2.6 should be 

treated with caution. The lower liquid losses in the solids stream produced by tubular 

bowl centrifugation, and by partial discharge compared to full discharge during disk 

stack centrifugation were confirmed by dry cell weight analysis of the solids streams. 

Dry cell weight data is given in Table 5.2.8.

Centrifuge Discharge mechanism Solids DCW 
(gDCW (g solids)’1)

CSA-1 Disk stack Full discharge 0.073
CSA-1 Disk stack Partial discharge 0.227
CARR Tubular bowl - 0.270
Table 5.2.8 Dry cell weights (DCW) o f solids streams produced by disk stack 
centrifugation employing fu ll and partial discharge mechanisms and by tubular bowl 
centrifugation.
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The results of the centrifugation mass balances, which showed that Fab’ recovery 

follows the recovery of liquid, are contradictory to observations of N. Weir (personal 

communication) and G. Zapata (Erdmann, 1998), both of whom found that antibody 

fragments preferentially associated with the solids stream during large scale 

centrifugation following periplasmic extraction or cell lysis. The centrifugal 

operation referred to by N. Weir was performed at a much larger scale than the 

experiments described here. The centrifuge used was an Alpha Laval MBUX 510 

(Alpha Laval Separation Ltd., Camberley, UK), operated at a bowl speed of 7500 

rpm and a feed flow rate of 1200-1600 Lhr'1. Little data is available regarding the 

experiments on which the observations of G. Zapata are based, however the effect 

was only observed in ‘large-scale’ centrifuges and was referred to as one of the 

‘hidden problems’ of scale up. Hence it is likely that the effect of preferential 

partitioning of product with the solids phase is only associated with centrifugation at 

very large scale, and may additionally be dependent upon the specific equipment used 

or the properties of individual feed streams.

The centrifuge of choice for the clarification of spheroplast suspensions based on the 

results of the centrifugation trials is the tubular bowl centrifuge, as the solids 

produced are drier and consequently liquid recovery and Fab’ yields are greater. 

However, the operating flow rate required to achieve 95% clarification using the 

CARR tubular bowl was lower for the than for the Westfalia CSA-1, hence longer 

processing times would be required. Processing time may be significant in the 

purification of a labile product and therefore is an additional factor which must be 

taken into consideration when specifying equipment for a particular unit operation in 

a purification process.

5.2.4 Scale-down of spheroplast removal

Approaches to centrifuge scale-down have been discussed in the introduction to this 

chapter (section 5.1.4). They include the modification of full-scale equipment to 

reduce the volume of feed material required to study clarification (Maybury et al., 

1998), and the operation of laboratory equipment to simulate the performance of an 

industrial machine (Maybury et al., 2000). Both techniques have been shown to

167



accurately predict the recovery performance of an industrial disk stack separator for 

the clarification of shear insensitive material. In the following section, the techniques 

are assessed in their ability to predict the recovery performance of the CSA-1 disk 

stack centrifuge during processing of shear sensitive spheroplast suspensions.

Recovery curves for the clarification of spheroplast suspensions were obtained using 

the CSA-1 operated in full-scale and scale-down configurations and for the Beckman 

J2-M1 laboratory centrifuge operated as an ultra scale-down model of the CSA-1. 

The same feed suspension (produced by periplasmic extraction as described in 

section 2.4.1.3) was used for all centrifugation runs.

Scale-down of the CSA-1 was achieved using a series of interlocking inserts which 

reduced the number of active disks (and therefore the separation area), the bowl 

volume and the solids holding space as described in section 2.4.2.6. Recovery curves 

were obtained for the CSA-1 operated in full-scale and scale-down configuration by 

measuring the clarification efficiency at different flow rates. The flow rates used are 

given in section 2.4.2.6, and the corresponding Q/Z values have been calculated in 

Appendix 10. To allow clarification performance of the disk stack centrifuge to be 

compared to the laboratory centrifuge, it was necessary to use a correction factor to 

account for deviations from the ideal-flow assumed in Sigma theory. Maybury et al., 

(2000) found that recovery performance of the CSA-1 was accurately predicted by 

the laboratory centrifuge during the processing of shear-insensitive particles using 

correction factors of 0.4 and 1.0 for the disk stack and laboratory machines 

respectively. Therefore a correction factor of 0.4 was assumed in the calculation of 

Q/Z for the CSA-1.

The Beckman J-2 M-l laboratory centrifuge was operated as an ultra scale-down 

mimic of the CSA-1 using the approach of Maybury et al., (2000). The centrifuge 

was operated at 6720 rpm to give the same mean RCF as experienced in the CSA-1, 

as recommended by Ambler (1952) (calculation of the bowl speed which produced 

the required RCF is given in Appendix 8). In theory, however, the centrifugal force 

should not affect recovery performance as long as the Q/Z is maintained. Recovery 

curves were obtained by measuring the clarification efficiency at a range of spin
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times (i.e. by performing the centrifuge spin test described in section 2.4.2.2). The 

spin times used and calculations of the corresponding equivalent Q/Z are given in 

Appendix 8. A correction factor of 1.0 was assumed for the batch centrifuge.

Although the laboratory centrifuge can be operated to mimic the RCF and Q/Z 

produced by the industrial machine, the high shear in the feed zone of the industrial 

centrifuge is not reproduced in the laboratory device. Previous work (section 5.2.2) 

showed that although cell integrity is maintained during exposure to high shear, 

shearing can affect clarification efficiency. Therefore, recovery curves were prepared 

for the laboratory centrifuge using both non-sheared spheroplasts and samples of the 

spheroplast suspension which had been exposed to shear rates of l . lxlO6 s '1 for 15 

seconds using the rotating disc shear device.

Recovery curves for the CSA-1 operated in full-scale and scale-down configurations, 

and for the laboratory centrifuge clarification of both non-sheared and sheared 

spheroplast suspensions are compared in Figure 5.2.6. The results show that recovery 

performance of the full-scale disk stack centrifuge was over predicted by both the 

scale-down disk stack and the ultra scale-down laboratory centrifuge.

Over-prediction of clarification by the scale-down disk stack was thought to be due 

to reduced shear in the feed zone of the centrifuge. Although the separation area and 

bowl volume were reduced by the scale-down inserts, no alterations were made to the 

centrifuge feed zone, which is where the process stream experiences the highest 

shear. The scale-down disk stack was operated at lower flow rates than the full-scale 

machine to maintain Q/Z, however reducing the flow rate also decreases shear rates 

in the feed zone. The results in section 5.2.2 showed that shearing can reduce 

clarification; thus the improved clarification in the scale-down disk-stack can be 

attributed to the reduced shear in the centrifuge feed zone.

169



99.9

>»o
ca>
o
kz0)
co

’•4—'
03O
m
O

99

95

90

75

50

30

XX
©

■ ■__ I__■ ■ ■ ■ I

10' 10 10'

Equivalent Q/cs (m s ')

Figure 5.2.6 Comparison o f clarification o f a spheroplast suspension achieved using 
the CSA-1 disk stack centrifuge in full-scale (0) and scale-down (A) operation, and 
the laboratory J2-M1 centrifuge operated using sheared (O) and non-sheared (0) 
spheroplasts. The same spheroplast feed stream was used for all operations. The 
CSA-1 was operated at a bowl speed o f 9810 rpm. The J2-M1 centrifuge was 
operated using the JS 13.1 rotor at a bowl speed o f 6720 rpm to produce the same 
relative centrifugal force as in the disk stack machine (RCF = 3720g). Spheroplasts 
were sheared at a rate o f ~ l . lx l0 6 s'1 for 15 seconds in a rotating disc shear device. 
Efficiency factors (c) o f 0.4 and 1.0 were used for the disk stack and laboratory 
centrifuge respectively.

Recovery performance of the CSA-1 was poorly predicted by the ultra scale-down 

laboratory equipment. The over-prediction of recovery by the laboratory centrifuge 

during clarification of non-sheared spheroplast suspensions was expected as material 

is exposed to only very low shear in the batch centrifuge. Maybury et al., (2000) also 

found that recovery of shear-sensitive material in the laboratory centrifuge over­

predicted recovery performance of the disk stack separator. A slight reduction in 

clarification of sheared compared to non-sheared spheroplasts was observed, 

however the reduction was less than observed in previous experiments (Figures 5.2.2 

and 5.2.3), indicating variations in the sensitivity of different spheroplast suspensions 

to shear. The results show that although shear rates in the rotating disk shear device 

are thought to be greater than those produced in the feed zone of the CSA-1, the
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shear conditions within the CSA-1 are not effectively mimicked by the laboratory 

device.

The observed variation in the sensitivity of spheroplast suspensions to shear may be 

due to intrinsic differences in the properties of individual feed streams. Variation 

may also in part result from inherent errors associated with the experimental 

technique used to determine clarification efficiency during the spin test. Following 

clarification in the laboratory centrifuge, the ‘supernatant’ and ‘slurry’ streams are 

separated by pouring the supernatant into a clean tube. The optical density of the 

supernatant is then recorded to allow calculation of clarification efficiency. At low 

equivalent Q/Z (i.e. following long spins), the pouring technique is quite 

reproducible because most of the slurry is well compacted and supernatant and slurry 

streams are well defined. However, at higher equivalent Q/Z (i.e. following short 

spins), the distinction between supernatant and slurry is much less well-defined, and 

the pouring of a single extra ‘drop’ of supernatant can considerably affect the optical 

density and hence clarification value obtained. Following all spin tests performed 

however, visible differences were apparent in the clarity of the supernatant following 

the centrifugation of sheared and non-sheared spheroplast suspensions, confirming 

that the reduction in clarification following shearing is a real phenomenon.

The assessment of scale-down techniques for the modelling of recovery performance 

in the disk stack centrifuge has revealed that the recovery of shear sensitive material 

in the CSA-1 is poorly mimicked by both the scale-down CSA-1 and the ultra scale- 

down laboratory equipment. A more detailed study of the effects of shear within the 

industrial centrifuge and the rotating disc shear device, including an analysis of the 

effects of shearing and centrifugation on particle size distribution, is required to fully 

define the effects of shear on centrifugal clarification. In addition, improved methods 

for reproducing the shear in laboratory equipment and in the feed zone of the scale- 

down disk stack need to be developed before such techniques can be used confidently 

to predict the recovery of shear sensitive material in an industrial machine.
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5.3 Summary

A common problem associated with the centrifugation of biological material is the 

cell disruption or product damage resulting from exposure to very high shear rates in 

the centrifuge feed zone. The effect of shear on purified 4D5 Fab’ and spheroplast 

suspensions produced by periplasmic extraction has been assessed using a rotating 

disc shear device. Exposure to shear rates of up to l .lxlO6 s'1 for 15 seconds, which 

is comparable to the shear in an industrial centrifuge, did not damage purified 4D5 

Fab’ or affect spheroplast integrity. However, shearing was found to reduce the 

clarification achieved during centrifugation in a laboratory batch centrifuge, possibly 

by breaking up cell clumps or shearing off material from the cell surface, thereby 

altering the particle size distribution of the suspension.

The centrifugal clarification of spheroplast suspensions has been studied using a disk 

stack and a tubular bowl centrifuge. For both centrifuges, Fab’ recovery appeared to 

follow the recovery of liquid. The tubular bowl centrifuge produced drier solids and 

recovered more liquid than the disk stack, hence higher yields of Fab’ were achieved. 

The discharging mechanism of the disk stack centrifuge requires that the solids 

remain sufficiently wet to flow out of the bowl. As a result, the solids ejected from 

the disk stack contain considerably more liquid than the tubular bowl solids, and, 

consequently, Fab’ yields in the supernatant stream are lower. Liquid losses during 

disk stack centrifugation can be reduced by operation with a partial rather than a full 

discharge.

Techniques developed to allow the study of centrifugal clarification at reduced scale 

have been assessed in their ability to predict the recovery performance of an 

industrial disk stack centrifuge. A scale-down version of the disk stack machine and 

ultra scale-down laboratory equipment over-predicted the clarification of spheroplast 

suspensions achieved using the full-scale disk stack centrifuge. The poor modelling 

of full-scale clarification was thought to result from the inability to accurately 

reproduce shear effects in scale-down equipment. A better understanding of the effect
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of shear on biological process streams and improved characterisation of shear fields 

in both the disk stack centrifuge and the rotating disc shear device are required to 

allow improvements in the techniques available for modelling centrifugal 

clarification at reduced scale.
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6. A COMPARISON OF CHROMATOGRAPHIC METHODS FOR 

THE PURIFICATION OF 4D5 Fab’

6.1 Introduction

Two process alternatives are available for the purification of 4D5 Fab’ from E. coli 

periplasmic extracts. Fab’ may be recovered from periplasmic extracts by packed bed 

chromatography following process stream clarification. Alternatively, Fab’ may be 

purified directly from whole (unclarified) periplasmic extracts by expanded bed 

chromatography.

In this chapter, a preliminary study is made into the purification of 4D5 Fab’ from 

clarified and unclarified periplasmic extracts by packed bed and expanded bed 

protein A affinity chromatography respectively. The two methods of 

chromatographic purification are compared on the basis of process yield, matrix 

capacity and the level of process stream purification achieved. The following sections 

(6.1.1-6.1.3) provide an introduction to expanded bed adsorption and its applications. 

Section 6.2.1 describes the experimental approach and the basis for process 

comparisons. The packed and expanded bed runs are summarised in sections 6.2.2 

and 6.2.3 respectively. Finally, the two methods of purification are compared in 

section 6.2.4.

6.1.1 Conventional processing strategies

When designing a purification process, it is important to minimise both the number 

of unit operations and the processing time to ensure maximal yields and minimal 

product degradation. The recovery of proteins from cell suspensions or homogenates 

by packed bed chromatography requires prior clarification of the process stream. The 

traditional techniques employed for the removal of particulate matter are 

centrifugation and/ or microfiltration (Lee, 1989). Industrial centrifugation processes 

are less than 100% efficient and therefore it is usually necessary to combine them 

with a filtration step to obtain a particle free solution that can be applied to a packed
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bed chromatography column. Microfiltration will yield a cell free solution, however 

liquid flux through the membrane is often dramatically reduced due to membrane 

fouling during the filtration process, leading to extended processing times and 

operational problems. Additional disadvantages of both unit operations include no 

volume reduction and little or no increase in product concentration. Product losses 

incurred at each stage of process stream clarification and the long processing times 

which may allow proteolytic degradation of the product both contribute to reduced 

process yields.

Expanded bed adsorption is a novel technique which allows purification of a protein 

directly from cell suspensions or homogenates without the requirement for prior 

process stream clarification. This usually allows higher product recovery in a shorter 

time period as fewer unit operations are required and the product will be separated 

from proteolytic enzymes earlier in the process sequence. The development and 

applications of expanded bed adsorption technology have been reviewed by Chase 

(1994) and Hjorth (1997); only a brief overview of expanded bed operation is given 

below.

6.1.2 Expanded bed adsorption

During expanded bed adsorption, liquid is pumped upwards through a particulate 

adsorbent which is not constrained by the presence of an upper adapter. The 

adsorbent expands and spaces open up between the particles, allowing cells and cell 

debris within the feed to pass through without blocking the bed. Adsorption of the 

product therefore occurs directly in the presence of cellular material.

Purpose-designed adsorbents and columns are required to achieve stable bed 

expansion and the low back mixing necessary for expanded bed operation. The 

adsorbents possess an increased density (usually achieved through the inclusion of a 

quartz or steel core) and a wider size distribution relative to conventional 

chromatography matrices. The combined effect is to give a ‘stratified’ bed in 

expanded mode, with the larger and denser particles in the lower sections of the bed 

and the smaller, lighter particles in the upper regions. This gives a more ‘stable’
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expanded bed in which individual adsorbent particles undergo no bulk movement. 

The increased mass of the adsorbent particles also allows operation of the expanded 

bed at higher flow rates to give improved productivities.

The columns used for expanded bed processes have two features that distinguish 

them from packed bed chromatography columns; a ‘floating’ upper adapter and a 

specially designed liquid distributor on the column inlet. The upper adapter is 

moveable so that its height can be adjusted during operation. The column inlet 

contains a perforated plate which generates a pressure drop and distributes liquid 

evenly across the whole diameter of the expanded bed, so that plug flow-through the 

column is achieved.

Expanded bed processes are generally operated in a similar manner to packed bed 

processes. The major difference relates to the direction of liquid flow; expansion, 

sample application and washing of the expanded bed being performed using an 

upward flow. After washing solids from the voids between the particles, the flow is 

stopped and the bed allowed to settle. Elution is usually performed using a downward 

flow at decreased velocity to minimise the volume of the eluted fraction.

6.1.3 Applications of expanded bed adsorption

Expanded bed adsorption has been used in a variety of processes for the recovery of 

proteins from process streams containing cells and/ or cell debris. Examples include 

the recovery of the intracellular enzyme glucose-6-phsophate dehydrogenase from 

unclarified yeast cell homogenates by anion-exchange chromatography (Chang and 

Chase, 1996), purification of extracellular inulinase from yeast cell suspensions using 

both anion and cation-exchange chromatography (Pessoa, 1996) and the recovery of 

the recombinant protein annexin V from E. coli homogenates using an ion-exchange 

adsorbent (Bamfield Frej et al., 1994).
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The use of expanded bed adsorption for the recovery of a periplasmic protein from 

cell-containing E. coli periplasmic extracts was described by Johansson et al., 1996. 

The isolation of modified Pseudomonas exotoxin A from an E. coli spheroplast 

suspension by anion exchange expanded bed adsorption was compared to a 

conventional purification method involving centrifugation, microfiltration, and 

packed bed chromatography. The expanded bed process was found to be three times 

faster than the conventional route, gave slightly higher yields and produced a more 

concentrated product.

Expanded bed systems have also been used for the recovery of monoclonal 

antibodies from mammalian cell systems using immobilised protein A. Thommes et 

al., (1996) utilised recombinant protein A coupled to a purpose-designed expanded 

bed matrix (Streamline rProtein A) for the recovery of mouse IgG from an unclarified 

hybridoma cell culture. A clarified, concentrated eluate of high purity was obtained. 

However, low product concentrations in the feed caused long sample application 

times (10-11 hours). The same protein A matrix was used for pilot scale purification 

of IgG from myeloma cell culture (Jagersten et al., 1996). The purified antibody was 

found to be of comparable purity to that obtained following feedstock clarification 

and packed bed protein A chromatography.

Mammalian cell cultures are much more sensitive to shear forces than E. coli and 

yeast cells. Therefore they must be handled more carefully to avoid cell breakage and 

contamination of the process stream with DNA or intracellular proteases. Cell 

damage during passage through the expanded bed was assessed by Lutkemeyer et al., 

1999. No cell damage was detected during bench or pilot scale purification of IgG 

using an rProtein A matrix and operating flow rates of 300-450 cm hr'1. Feuser et al.,

(1999) also observed no measurable cell damage during the purification of IgG from 

hybridoma cell culture using a cation exchange resin (Streamline SP) or an affinity 

adsorbent (Streamline rProtein A). The hybridoma cells were however found to 

interact significantly with the cation exchange adsorbent, but not with the rProtein A 

matrix.
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6.2 Results and Discussion

6.2.1 Experimental approach

Packed bed and expanded bed protein A affinity purification were compared on the 

basis of matrix capacity, Fab’ recovery and purification factor achieved. To allow for 

process comparisons, a packed bed and an expanded bed rProtein A column were 

loaded to capacity and the Fab’ concentration in the column flow-through was 

monitored. The matrix total binding capacity and dynamic binding capacities at 

different levels of Fab’ breakthrough were then calculated using the following 

equations:

Total Fab’ bound = Total Fab’ loaded - Total Fab’ lost in (6.1)
to column breakthrough

, Total Fab' bound to column (mg)
Matrix capacity (mg m l/ ) = Volume of matnx ln column (mL) (6-2)

Equations 6.1 and 6.2 are based on the assumption that all Fab’ retained on the 

column (i.e. not lost in the breakthrough) is bound to the column and would not be 

removed by washing.

Data from the chromatography runs was also used to estimate Fab’ yields at different 

levels of breakthrough using the equation:

Total Fab' bound to column (mg)
% Fab’ recovery = 100 x ---------------------------------------------  (6.3)

y Total Fab' loaded onto column (mg) 1 ’

Equation 6.3 again assumes that all retained Fab’ is bound to the column and, 

additionally, that elution of the Fab’ is 100% efficient.
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Analysis of specific Fab’ in the column feeds and purity of Fab’ eluted allowed 

calculation of the process purification factor (PF) where:

Specific Fab' in column eluate
Specific Fab' in column feed

(6.4)

Specific Fab’ =
Fab' concentration (mg mL*1)

(6.5)
Protein concentration (mg mL'1)

The column eluate in Equation 6.4 is defined as all the material eluted from the

column. In some cases (particularly during processes such as ion exchange 

chromatography where the levels of purification achieved may be relatively low), the 

purification factor may be increased by only collecting the proportion of the eluate 

containing the highest concentration of product (eluate cutting). However, increased 

purity is only achieved at the expense of a reduction in product yield. Hence, for 

affinity chromatography where the level of purification is generally very high, there 

may be no significant advantage in terms of purification gained by eluate cutting.

The packed and expanded bed purification runs had to be performed at different 

scales of operation because a large scale packed bed protein A column was not 

available. A 1 mL HiTrap rProtein A column (Amersham Pharmacia Biotech, 

Uppsala, Sweden) was used for packed bed purification. For expanded bed 

purification, a Streamline 25 column was employed, using 25 mL Streamline rProtein 

A media (column and matrix both supplied by Amersham Pharmacia Biotech).

The two chromatography adsorbents utilised the same capture ligand but different 

base matrices. The ligand, recombinant protein A, has a cystein residue fused to the 

C-terminal, to allow oriented coupling to the base matrix and thus enhanced IgG 

binding capacities. The base matrix for packed bed chromatography was cross linked 

4% agarose. For expanded bed adsorption, the base matrix was a cross-linked 4% 

agarose derivative that has been modified through the insertion of an inert, metal 

alloy core material to provide the required high density for stable bed expansion. The 

ligand density and total binding capacities for the packed and expanded bed matrices
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are quoted by manufacturers as ~ 6 mg rProtein AJ mL medium and ~ 50 mg human 

IgG/ mL medium respectively.

6.2.2 Packed bed affinity chromatography

Packed bed affinity chromatography was performed according to the protocol 

detailed in section 2.4.3.1. 4D5 Fab’ was purified from clarified periplasmic extracts 

produced by overnight extraction at 60°C (section 2.4.1.1). Prior to purification, the 

process stream was concentrated by ultrafiltration (section 2.4.4.2) to reduce the load 

time required for column saturation. 300 mL of clarified periplasmic extract was 

loaded onto the 1 mL HiTrap rProtein A column at a flow rate of 40 cm hr'1 

(1 mL min'1).

Chromatograms for the packed bed purification of 4D5 Fab’ are illustrated in Figure

6.2.1. The breakthrough profile shows that column saturation was achieved early in 

the load cycle (earlier than predicted based on feed concentration and quoted matrix 

binding capacity, however this only became apparent following completion of the 

process when Fab’ assays had been performed).

6.2.3 Expanded bed affinity chromatography

Expanded bed affinity chromatography was performed as outlined in section 2.4.3.2. 

The settled bed height of the Streamline adsorbent was 5 cm - the minimum 

allowable bed height for stable bed expansion. (Recommended sedimented bed 

heights are in the range 10-15 cm, however a smaller volume of matrix was used to 

increase the potential for achieving column saturation).
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Figure 6.2.1 Chromatograms for the purification o f 4D5 Fab' from clarified 
periplasmic extracts by packed bed affinity chromatography. Fab ’ was purified on a 
1 mL HiTrap rProtein A column at a flow rate o f 40 cm h r 1. The fu ll chromatogram 
(upper plot) shows Fab ’ and protein concentrations in the column flow-through. The 
breakthrough portion o f the chromatogram (lower plot) shows the concentration o f  
Fab ' or protein in the column flow-through relative to the feed concentration (C/C0).
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4D5 Fab’ was purified from whole (unclarified) periplasmic extracts produced by 

overnight extraction at 60°C (section 2.4.1.1). Initial expanded bed runs had to be 

terminated during column loading due to blocking of the lower adapter (column 

inlet) with cells or cell-associated material. To try and alleviate this problem, feed 

material was treated with benzonase, as described in section 2.4.3.2-a, prior to 

loading onto the column to break down extracellular nucleic acids. Following 

benzonase treatment, no problems with column blocking were encountered during 

the loading of unclarified periplasmic extract. (This approach has been widely 

reported by researchers, for example Johansson et al., (1996), however the high cost 

of benzonase may render such treatment non-viable at scale. In addition, regulatory 

authorities may not find the use of nuclease treatment during processing acceptable 

for products destined for therapeutic use).

3L of unclarified periplasmic extract was loaded onto the Streamline column 

operated in expanded bed mode at a flow rate of 185 cm hr'1 (15 mL min'1). Elution 

was performed in packed bed mode at a flow rate of 90 cm hr'1 (7.5 mL min'1).

Chromatograms for the expanded bed purification of 4D5 Fab’ are given in Figure

6.2.2. Breakthrough data shows that column saturation was not achieved during 

loading of the expanded bed. The volume of material required to saturate the bed had 

been estimated using data from the packed bed chromatography run. However, Fab’ 

losses in the breakthrough during loading of the expanded bed were considerably 

greater (shown by the breakthrough curve), hence increased volumes of material were 

required for column saturation. Again this only became apparent once Fab’ assays 

had been performed following completion of the process. However, the required 

process parameters for comparison with packed bed chromatography could still be 

estimated from the data obtained.
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Figure 6.2.2 Chromatograms for the purification o f 4D5 Fab ’ from unclarified 
periplasmic extracts by expanded bed affinity chromatography. Fab ’ was purified 
using 25 mL Streamline rProtein A media in a 25mm diameter Streamline column. 
Load and wash cycles were performed in expanded bed mode at a flow rate o f  
185 cm hr'1. Elution was performed in packed bed mode at 90 cm hr'1. The full 
chromatogram (upper plot) shows Fab ’ and protein concentrations in the column 
flow-through. The breakthrough portion o f the chromatogram (lower plot) shows the 
concentration o f Fab’ or protein in the column flow-through relative to the feed  
concentration (C/C0).
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6.2.4 Comparison of packed and expanded bed affinity purification

The experimental data was used to estimate total binding capacities of the packed and 

expanded bed rProtein A media. The binding capacities for 4D5 Fab’ are compared 

to the total capacities for human IgG quoted by manufacturers in Table 6.2.1. Lower 

capacities for Fab’ are expected as the capacities are based on the mass of antibody 

bound per mL of media. The mass of Fab’ is approximately one third that of whole 

IgG. Therefore, assuming IgG and Fab’ bind to protein A in the same ratio, 

approximately one third the mass of Fab’ compared to IgG will bind to the same 

volume of media. Furthermore, protein A binds to different sites on Fab’ and IgG, 

and the affinity for the Fab’ site is lower (Starovasnik et al., 1999), which will reduce 

the binding capacity further. Measured binding capacities of packed and expanded 

bed media for Fab’ were 12.5 and 13.5 mg mL'1 respectively, which is approximately 

one quarter that quoted for IgG (50 mg mL'1).

Chromatography
Method

Chromatography
media

Total Binding Cl 
Quoted value 

(for IgG)

pacity (mg mL'1) 
Experimental value 

(for Fab’)
Packed bed 
chromatography

rProtein A 
Sepharose® Fast 

Flow

50 12.5

Expanded bed 
chromatography

Streamline 
rProtein A

50 13.5

Table 6.2.1 Comparison o f experimental and quoted values for the total binding 
capacity o f  packed bed and expanded bed chromatography media. Quoted values are 
those given by manufacturers for the binding o f human IgG. Experimental values are 
fo r 4D5 Fab

The breakthrough data for the two chromatography runs was used to estimate the 

Fab’ yields and dynamic binding capacities of the chromatography media at different 

levels of Fab’ breakthrough. The yields and capacities obtained are shown in Figures

6.2.3. and 6.2.4 respectively. For both packed and expanded bed chromatography, 

yields decreased and matrix dynamic capacity increased with increasing Fab’ 

breakthrough, as expected. However, yields and capacities were appreciably greater 

for packed bed chromatography.
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The observed differences can be attributed to the contrasting patterns of Fab’ 

breakthrough. The packed and expanded bed breakthrough curves, adjusted for 

differences in column volumes and the Fab’ concentration in feed streams, are 

compared in Figure 6.2.5. To adjust for differences in the feed concentration of Fab’ 

it was assumed that the affinity of protein A for Fab’ was independent of Fab’ 

concentration for the range of Fab’ concentrations 0.1-0.4 mg mL’1.

100

^  CD

O O <D

20 30 40

% Breakthrough

Figure 6.2.3 Comparison o f  Fab ’ recovery at different levels o f  Fab ’ breakthrough 
fo r  packed bed chromatography (PBA; trend shown by solid line) and expanded bed 
chromatography (EBA; trend shown by dotted line). PBA was performed using a 
1 mL HiTrap rProtein A column at a flow  rate o f  40 cm hr' . EBA was performed 
using 25 mL Streamline rProtein A media in a 25 mm diameter Streamline column. 
Operating flow  rates for EBA were 185 cm h r 1 (load and wash cycles, performed in 
expanded bed mode) and 90 cm h r ' (elution cycle, performed in packed bed mode).
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Figure 6.2.4 Comparison o f  media capacity at different levels o f  Fab ’ breakthrough 
fo r  packed bed chromatography (PBA; trend shown by straight line) and expanded 
bed chromatography (EBA; trend shown by dotted line). Media capacity is expressed 
as a percentage o f  the total binding capacity, which was estimated from  the 
chromatography data as 12.5 mg mL'1 (packed bed media) and 13.5 mg mL'1 
(expanded bed media). PBA was performed using a 1 mL HiTrap rProtein A column 
at a flow  rate o f  40 cm hr'1. EBA was performed using 25 mL Streamline rProtein A 
media in a 25 mm diameter Streamline column. Operating flow  rates fo r  EBA were 
185 cm hr'1 (load and wash cycles, performed in expanded bed mode) and 90 cm hr~l 
(elution cycle, performed in packed bed mode).
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Figure 6.2.5 Comparison o f Fab’ breakthrough curves for packed bed (PBA) and 
expanded bed (EBA) chromatography. Breakthrough curves have been adjusted to 
account for differences in the concentration o f Fab ’ in the column feeds and for  
differences in column volumes. Data for EBA was only obtained up to 50% 
breakthrough.
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The pattern of breakthrough for packed bed chromatography was similar to the 

expected or ‘traditional’ chromatography breakthrough curve, however the 

breakthrough pattern for expanded bed adsorption was more unusual. Fab’ 

concentration in the flow-through from the expanded bed immediately increased to 

-30%  of the feed concentration from the onset of column loading; the level of 

breakthrough then continued to rise but at a much slower rate compared to both the 

initial increase and the rate of increase in breakthrough for packed bed 

chromatography. The higher levels of Fab’ loss in the expanded bed flow-through 

accounts for the lower Fab’ yields compared to packed bed purification. In addition, 

the very low matrix capacities at low levels of breakthrough can also be attributed to 

the immediate breakthrough to -30%.

Breakthrough from the expanded bed chromatography column was only monitored 

during one purification run, however similar patterns of breakthrough have also been 

observed during the expanded bed purification of alcohol dehydrogenase from yeast 

homogenates (personal communication, N. Willoughby). Losses of Fab’ during 

column loading in the experiments described above may have been exaggerated as a 

result of using a minimal volume of chromatography media. Increasing the volume of 

media will increase the column residence time, allowing more time for Fab’ binding 

and thereby reducing Fab’ losses in the column flow-through. Use of a small bed 

volume may also have resulted in streaming, with some product bypassing the bed 

completely. Such an effect would have further exaggerated Fab’ losses in the 

breakthrough.

When specifying operating conditions for a chromatographic purification process, 

there generally has to be a trade off between maximising the utilisation of expensive 

chromatography media (achieved by operation at high breakthrough) and minimising 

the loss of a high value pharmaceutical product (achieved by operation at low 

breakthrough). The trade off between product yield and matrix utilisation can be 

determined from a plot combining product recovery and matrix capacity data. Figure 

6.2.6 shows such a plot for the expanded bed purification of 4D5 Fab’. The operating 

conditions which maximise matrix utilisation whilst minimising product losses are 

determined from the intersection of the two sets of data, in this case 50%
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breakthrough. Operation at lower than 50% breakthrough will increase yields by 

reducing Fab’ losses, however the chromatography media will not be used to 

optimum capacity. Operation at higher than 50% breakthrough will improve media 

utilisation but at the expense of product yield. Economic data relating matrix costs 

and product value is also required to provide a more detailed cost analysis of the 

process and allow identification of the optimal operating conditions.
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Figure 6.2.6 Effect o f  the level o f  breakthrough on F ab ' yield and matrix dynamic 
binding capacity for the expanded bed purification o f 4D5 F ab ' from E. coli 
unclarified periplasmic extracts. Such information, combined with cost data fo r  
product revenue and matrix price, could form the basis o f  an economic analysis fo r  
the expanded bed purification process.
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Finally, the degree of process stream purification attained using packed and expanded 

bed chromatography was compared. Similar levels of purification were achieved, 

shown by the similar purification factors (Table 6.2.2). Comparable levels of Fab’ 

purity was also illustrated by SDS-PAGE analysis of the column eluates (Figure 

6.2.7).

Process
Stream

PE
Specific Fab’ 

(mg mL'1)

SA
Purification 

factor (-)

EE
Specific Fab’ 

(mg mL'1)

JA
Purification 

factor (-)
Column feed 0.078 - 0.101 -

Column eluate 1.1 14 1.26 12
Table 6.2.2 Comparison o f process stream purification achieved using packed bed 
(PBA) and expanded bed (EBA) affinity purification o f 4D5 Fab

On the basis of results from this study, packed bed affinity chromatography appears 

to be the more efficient purification method because of the higher Fab’ yields and 

matrix capacities at low levels of breakthrough. However, the study does not consider 

additional processing factors such as operating time and process costs. A major 

advantage of expanded bed adsorption is the fact that it can be performed on 

unclarified feedstocks. Packed bed adsorption requires clarification of the process 

stream prior to application to the column, which can add considerable time and cost 

to the process, and will result in reduced process yields. A disadvantage of expanded 

bed adsorption however is the high cost of the chromatography media and the 

requirement for large volumes of buffers during column equilibration and washing, 

which will further increase the operational costs. A more detailed comparison of 

packed and expanded bed purification processes, which includes reference to process 

yields and operating time, is given in Chapter 8.
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Figure 6.2.7 SDS-PAGE analysis o f  Fab' purity following packed bed (a) and 
expanded bed (b) protein A affinity’ purification o f 4D5 Fab \

(a) Packed bed affinity purification o f  4D5 Fab ’

Lane 1 Low molecular weight markers
Lane 2 Purified 4D5 Fab ' standard
Lane 3 Column load (clarified E. coli periplasmic extract)
Lane 4 Column eluate (purified 4D5 Fab )

(b) Expanded bed affinity> purification o f  4D5 Fab ’

Lane 1 Low molecular weight markers 
Lane 2 Purified 4D5 Fab ’ standard
Lane 3 Column load (unclarified E. coli periplasmic extract) 
Lane 4 Column eluate (purified 4D5 Fab ’)
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6.2.5 Summary

Packed bed and expanded bed affinity purification of 4D5 Fab’ have been compared 

on the basis of Fab’ yield, matrix capacity and the degree of process stream 

purification achieved.

Fab’ yields and dynamic binding capacities were greater for packed bed 

chromatography compared to expanded bed chromatography. Differences were 

attributed to the contrasting patterns of Fab’ breakthrough, with considerably greater 

losses of Fab’ in the flow-through from the expanded bed column. Estimates of the 

total binding capacity of the two matrices were similar; capacities of 12.5 mg mL’1 

and 13.5 mg mL'1 were obtained for packed and expanded bed media respectively. 

The degree of purification was also similar for the two processes; a purification 

factor of 14 was recorded for packed bed purification and 12 for the expanded bed 

process.

This study provides only an initial insight into the differences between the 

chromatographic processes. A detailed assessment of processing time and costs 

would also be required to give a more comprehensive view of the advantages and 

disadvantages of the process alternatives.
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7. BIOPROCESS MONITORING

7.1 Introduction

The monitoring of antibody fragments during production and purification processes 

has traditionally been performed by enzyme linked immunosorbant assay (ELISA). 

The ELISA is a multistage method which can take 3 hours or more to complete, 

therefore samples for ELISA analysis are generally stored until completion of the 

process and assayed together in one batch. This means the data generated can only 

provide an historical description of the completed process; the ELISA cannot be used 

to generate data in real time to allow decisions regarding the fate of the process to be 

made during process operation.

The optical biosensor has recently found application in monitoring of fermentation 

and chromatographic process (reviewed in Chapter 1). Advantages of the biosensor 

include the reduced sample processing time, with quantitative data available within 

minutes of sample addition to the device. Hence the biosensor has the potential to 

generate data regarding the state of the process in real time, providing the means for 

more effective process control.

During this study an optical biosensor employing a resonant mirror (Cush et al., 

1993) was used for the monitoring of 4D5 Fab’ during fermentation and 

chromatographic purification. Two optical biosensor assays were developed as an 

alternative to ELISA. The first assay used protein A as the biosensor ligand, the 

second a mouse anti-human monoclonal antibody labelled HP6045.

Staphylococcal protein A has two distinct binding sites on human immunoglobulins. 

It will bind the Fc region of most IgG molecules and, in addition, has been shown to 

bind to an ‘alternative’ site within the Fab region of certain immunoglobulins 

independent of their heavy chain isotype (Ibrahim et al., 1993). The Fab site that 

binds protein A has been localised to the V region of the Ig H chain and the ability to 

bind protein A is restricted to immunoglobulins that utilise heavy chain genes 

encoded by the VH (III) subfamily (Sasso et al., 1991). Protein A has been shown to
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bind 4D5 Fab’ with an association constant, ka, of 5.5 (±0.5) x 105 M '1 (Starovasnik 

et al., 1999).

HP6045 is the capture antibody used in the ELISA and binds the CHI domain of all 

subclasses of human immunoglobulin. Thus the HP6045 assay is generic for all 

human Fab whereas use of the protein A assay would be restricted to Fabs of the VH 

(III) subclass.

This chapter describes and compares the assays employed for quantification of 4D5 

Fab’. The ELISA is characterised in section 7.2.1. Section 7.2.2 describes the protein 

A and HP6045 biosensor assays developed during this work. The biosensor assays 

are compared to ELISA in the ability to quantify antibody titres during the induction 

stage of E. coli fermentation in section 7.2.3.1. Finally, the protein A biosensor assay 

is assessed as a technique for the monitoring of chromatography breakthrough and 

elution during packed and expanded bed affinity purification in section 7.2.3.2.

7.2 Results and discussion

7.2.1 ELISA

The primary technique used for antibody quantification in this study was ELISA. A 

schematic representation of the ELISA used for the detection of 4D5 Fab’ is 

illustrated in Figure 7.2.1, and the detailed protocol is given in section 2.3.1. The 

ELISA is a sandwich assay which detects correctly folded and assembled Fab’ and 

furthermore is generic for all human Fabs containing the kappa light chain. However 

it does not provide a measure of Fab’ activity.
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1. Solid Phase - 96 well microtitre plates

2. Capture Antibody - HP6045 (mouse anti-human monoclonal antibody - 
recognises CHI domain of all subclasses of human immunoglobulin)

3. Standard or Sample - 4D5 Fab’ antibody fragment

4. Antibody-enzyme conjugate - GDI2 peroxidase (commercially available 
mouse anti-human monoclonal antibody directed against human kappa light 
chain, conjugated to horseradish peroxidase)

5. Enzyme substrate - TMB (converted by horseradish peroxidase to a blue 
coloured compound detected at 630nm)

Figure 7.2.1 Schematic representation o f ELISA usedfor the quantification o f 4D5 
Fab\

7.2.1.1 Assay calibration

All antibody concentrations determined by ELISA were measured by comparison 

with standard 4D5 Fab’ solutions of known concentration. Standard curves were 

prepared by performing a 1 in 2 dilution series of a 1 pg mL"1 standard solution of 

4D5 Fab’ on every plate each time the ELISA was performed. A typical ELISA 

standard curve is illustrated in Figure 7.2.2. Concentrations of unknown samples 

were read from within the linear range of the curve, typically 0.125-0.015 

Hg(Fab’) mL'1.

HP
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Figure 7.2.2 Typical standard curve for the calibration o f  ELISA assays. Fab’ 
concentrations in unknown samples are read from the linear region o f  the standard 
curve (0.125 - 0.015 pg mL'1). Error bars represent the standard deviation o f  
duplicate measurements.

Initially 4D5 Fab’ standards were obtained from Celltech Chiroscience (Slough, UK). 

Later, protocols were developed for the production of standards ‘in house’. A 

summary of the methods involved in standard production is shown in Figure 7.2.3 

and the specific protocols are outlined in section 2.3.3.

The initial ‘in house’ standard was purified from periplasmic extracts produced by 

overnight incubation at 30°C. However, later work characterising the periplasmic 

extraction process (Chapter 4) revealed that such preparations contained a large 

proportion of incomplete or partially degraded Fab’ (Figure 4.2.5). Concentration of 

the standard was determined from its absorbance at 280nm, which provided a 

measure of total protein rather than complete, correctly assembled Fab’ detectable by 

ELISA. The consequence of using such a standard for ELISA calibration would have 

been to overestimate the concentration of Fab’ in unknown samples.
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FERMENTATION

Fab’ EXTRACTION

Fab’ PURIFICATION

60 °C Periplasmic extraction

Protein A affinity chromatography

DIALYSIS

ASSESS PURITY AND QUALITY

MEASURE CONCENTRATION

ASSAY STANDARD

Storage buffer : 100 mM acetate 
pH5.5, 125 mM sodium chloride, 

0.02% azide

SDS-PAGE and Western Blot

A280, extinction coefficient = 1.43 for  
a 1 mg mL'1 solution

ELISA

Figure 7.2.3 Summary o f the stages involved in the production o f 4D5 Fab’ 
standards.

Subsequent standards were purified from periplasmic extracts obtained by overnight 

incubation at 60°C. Such preparations were appreciably ‘cleaner’ than those 

produced from 30°C extracts (Figure 4.2.5), containing predominantly correctly 

assembled, disulphide bonded Fab’ and thus allowing a more accurate determination 

of the Fab’ concentration in unknown samples.

The use of different antibody standards is thought to have contributed towards the 

variation in Fab’ titres observed for the fermentations described in Chapter 3. Initial 

HCD fermentations (runs 1 and 2) produced very high Fab’ titres (>600 mg L"1), 

however titres recorded in later fermentations were notably lower (<230 mg L'1). The 

reduction in titres was thought to be a direct consequence of switching from the old
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standard (purified from 30°C extracts) to a new standard (produced from 60°C 

extracts) rather than being a real phenomenon. This highlights the importance of 

correct standard preparation and careful assessment of standard quality to ensure 

accurate determination of Fab’ concentration and allow valid comparisons of Fab’ 

titres in unknown samples.

7.2.1.2 Assay error

The error associated with the ELISA was estimated by performing 10 standard curves 

on the same microtitre plate and measuring the mean absorbance, the maximum 

deviation of any value from the mean and the 95% confidence interval (Cl) for each 

concentration. The equations for calculation of 95% Cl are given in Appendix 11. 

The maximum deviation of any value from the mean was ±11% , and the maximum 

error of the mean at the 95% Cl level was determined to be ± 5%. Because the 

method used to estimate error only takes into account a selection of the inaccuracies 

associated with the assay, the value of ± 11% was thought to give a more accurate 

indication of error, hence this is the value used to represent ELISA error in previous 

chapters of this thesis.

Sources of error include the large sample dilutions required prior to sample analysis 

(all samples must be diluted to within the linear range of the standard curve) and the 

propagation of errors caused by performing a dilution series of both standards and 

samples on each ELISA plate. The use of different standards, poor pipette calibration 

and the deterioration of assay reagents during storage can also contribute to the 

inaccuracies of the assay.

7.2.1.3 Non-specific binding

Before using the ELISA in the analysis of process samples a series of control 

experiments were carried out to determine background absorbance levels resulting 

from non-specific interactions between assay reagents. Standard curves were 

prepared using the combinations of reagents shown in Table 7.2.1. Where an 

antibody is shown as not being included, buffer alone was added to the wells and
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plates were incubated according to the standard protocol. All control curves gave 

maximum absorbances of <0.060 confirming that no appreciable signal is produced 

as a result of non-specific interactions between assay reagents.

Experiment Combination o f reagents used Non-specific 
interactions tested

Maximum
absorbance

HP6045 4D5
Standard

GD12
peroxidase

Substrate
solution

1 ✓ ✓ y y - 0.937
2 X y y HP6045 - GD12 0.053
3 / X y 4D5 - substrate 0.051
4 ✓ X X y HP6045 - substrate 0.049
5 X y y y Well - 4D5 0.055
6 X X y y W ell-G D 12 0.056
7 X X X y Well - substrate 0.059
8 X X X X Buffers 0.057

Table 7.2.1 Summary o f ELISA control experiments.

Prior to the analysis of complex process samples it was also necessary to determine 

the effects of non-specific binding on the ELISA assay. Contaminants within process 

samples, particularly lipids and DNA, can interact through non-specific hydrophobic 

or ionic interactions with the surface of the solid phase (the wells of the microtitre 

plate) or with antibodies used in the assay. Such interactions may result in ‘false 

positive’ responses and should be minimised during assay development by selection 

of the correct reagents and buffer systems (Kuen et al., 1993; Jones et al., 1992). The 

sample conjugate buffer used for the dilution of samples, standards and the revealing 

antibody GDI2 peroxidase contained NaCl, Tween and casein to minimise non­

specific binding. Salt and Tween reduce ionic and hydrophobic interactions 

respectively whereas casein acts as a ‘block’, binding to sites on the wells of the 

ELISA plate not occupied by the coating antibody.

The effects of non-specific binding were determined by comparing standard curves 

prepared in sample conjugate buffer with those prepared by spiking purified antibody 

into control fermentation supernatant (supplied by D. Bracewell, Department of 

Biochemical Engineering, UCL). The control supernatant was obtained from an E. 

coli fermentation (strain BMH 71-18) expressing the D1.3 Fv antibody fragment (J. 

Harrison, PhD Thesis, 1996). D1.3 Fv is derived from the murine monoclonal 

antibody D1.3 IgG raised against hen egg lysozme and therefore should not interact
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with antibodies employed for the ELISA assay, both of which are directed against 

constant regions of human antibodies. Purified 4D5 Fab’ was spiked into the 

fermentation supernatant to a concentration of 1 pg mL"1. This sample was assayed 

alongside 4D5 Fab’ standard diluted to 1 pg mL'1 in sample conjugate buffer. 

Conjugate buffer and fermentation supernatant without antibody added were included 

as negative controls on the same ELISA plate.

The ELISA response curves obtained are shown in Figure 7.2.4. Both curves are 

within error of each other, indicating no appreciable interference from components of 

the fermentation broth. In addition, no detectable signal was obtained from either 

negative control providing further evidence that the ELISA is not subject to 

interference by non-specific binding.
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Figure 7.2.4 ELISA calibration curves produced using Fab’ standard diluted in 
sample conjugate buffer (-M-) or E. coli fermentation supernatant (—O—). Both 
curves are within error o f each other indicating that contaminants within the 
fermentation supernatant do not interfere with the ELISA signal. Error bars 
represent the standard deviation o f duplicate measurements.
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7.2.2 Optical biosensor assays

Carboxymethyl dextran cuvettes prepared with either protein A or HP6045 

immobilised to the sensing surface were employed for antibody fragment 

quantification. Both capture ligands were immobilised using the standard protocol 

described in section 2.3.2.2. The amount of ligand immobilised was determined from 

the change in refractive index of the sensing surface (measured as the difference 

between pre- and post- immobilisation baselines). Typically, this was in the order of 

1000-2000 arc seconds, corresponding to 1-2 ng (bound protein) mm' (Richalet- 

Secordel eta/., 1997).

7.2.2.1 Assay calibration

The interaction of 4D5 Fab’ with each ligand was studied as described in section

2.3.2.3. The addition of known concentrations of purified 4D5 Fab’ to the biosensor 

cuvette containing the appropriate capture ligand resulted in a series of characteristic 

binding curves differing in initial binding rate. A set of such binding curves for the 

protein A assay is illustrated in Figure 7.2.5. Linear regression applied to the initial 

ten seconds of each binding curve (as described by Holwill et al., 1996) was used to 

determine the initial rate of binding and this in turn was plotted against concentration 

to produce a calibration curve for each assay.

Calibration plots for the protein A and HP6045 assays are illustrated in Figure 7.2.6. 

(In all calibration plots the 4D5 Fab’ concentration shown is the concentration prior 

to dilution in the biosensor cuvette). A linear correlation clearly exists between 

instrument response and sample concentration for both assays, however the range of 

this correlation is notably greater for the protein A assay (working range 0-400 pg 

mL'1) compared to the HP6045 assay (working range 0-200 pg mL'1). The linear 

range is likely to be limited by the number of sites available for antibody binding at 

the sensor surface which, in turn, will be influenced by the amount of capture ligand 

immobilised and the orientation of immobilisation (Bemey et al., 1997). The larger 

size of HP6045 (-150 kDa) compared to protein A (45 kDa) means that fewer
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HP6045 molecules will be immobilised, giving fewer sites for Fab’ binding, which 

may explain the reduced assay range.
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Figure 7.2.5 Interaction curves for binding o f  4D5 Fab ’ standard solutions o f  known 
concentration to immobilised protein A. Binding curves were produced using the 
IAsys optical biosensor. Linear regression was applied to the initial ten seconds o f  
each interaction curve to determine the initial rate o f  binding, as described by 
Holwill et al., (1996).
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Variations in the amount of ligand immobilised resulted in differences in the 

magnitude of the biosensor response to specific concentrations of 4D5 Fab’ and 

therefore variations in the slope of the standard curve. As a result, every cuvette 

required calibration. The gradient of the standard curve was also affected by the 

length of time for which the capture ligand had been stored prior to immobilisation. 

Therefore, only freshly reconstituted protein A or the latest HP6045 preparation was 

used for immobilisation purposes.

The effect of using different standards for assay calibration was assessed by 

calibrating a protein A and an HP6045 coated biosensor cuvette with two Fab’ 

standards produced ‘in house’. Both standards were purified from 60°C periplasmic 

extracts as described in section 2.3.3, and were initially shown to produce identical 

ELISA calibration curves. The biosensor calibration curves obtained are illustrated in 

Figure 7.2.7. It is apparent that both standards gave identical plots for the HP6045 

cuvette, however the interaction between protein A and Fab’ standard 1 was 

considerably stronger than between protein A and Fab’ standard 2.

The standards were purified from different feedstocks, using slightly different 

chromatographic techniques. Standard 1 was purified on a 7 mL Streamline rProtein 

A column whereas standard 2 was purified using 1.66 mL POROS® 50A protein A 

affinity chromatography media. Details of media, columns and associated operating 

conditions are given in section 2.4.3.1. The use of different media and flow rates may 

have resulted in the purification of non-identical populations of Fab’ molecules 

differing in their affinity for protein A. This identifies one of the potential problems 

associated with using a standard purified by affinity protein A chromatography to 

calibrate an assay based on the interaction between protein A and Fab’.
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1.2.2.2 Assay error and binding surface stability

To assess the stability of the binding surface and the error associated with each 

biosensor assay, ten replicate standard curves were prepared using six standard 

solutions covering the concentration range 200-6.25 pg mL'1. Samples were applied 

in random order of concentration to minimise systematic error. The surface was 

regenerated between assays using 50 mM HC1.

Comparison of initial binding rate of the 10 interaction curves at each concentration 

for the protein A assay showed no decrease in biosensor response over the number of 

regeneration steps employed. The error associated with the assay increased at lower 

concentrations of 4D5 Fab’; the maximum error (95% Cl) was ± 8% at Fab’ 

concentrations > 25 pg mL'1, compared to ± 23% at concentrations < 12.5 pg mL-1.

Analysis of interaction curves for the HP6045 assay revealed a notable decrease in 

biosensor response following multiple addition and regeneration cycles. This is 

illustrated in Figure 7.2.8 which shows the initial rate measured for each standard 

concentration over the first five replicate applications to the biosensor. Degradation 

of the sensing surface was minimised by regenerating the surface between assays 

with 10 mM HC1 instead of 50 mM HC1. Following ten replicate additions of the six 

standard solutions using 10 mM HC1 for surface regeneration, the error at each 

concentration was calculated. As for the protein A assay, the error increased at lower 

Fab’ concentrations; the maximum error of the mean (95% Cl) was estimated at 

± 9% at Fab’ concentrations > 25 pg mL'1 and ± 22% at Fab’ concentrations 

< 12.5 pg mL'1.

Sources of error during biosensor analysis include fluctuation of the instrument 

response with time, alteration of the immobilised ligand due to repeated regeneration 

and variations in the precise volume of samples applied to the sensing surface. The 

latter is likely to be the most significant source of error. Pipettes were used for the 

manual addition of 20 pL samples to the biosensor cuvette. Errors associated with the 

pipetting of such small volumes can be high and will be more significant at low ligate 

concentrations. Such errors could be reduced by the use of an automated sample 

handling device.
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Stability of the sensing surface over time was assessed by comparing standard curves 

for a protein A and an HP6045 cuvette prepared on the day of ligand immobilisation 

and following storage for 11 days and 19 days. Cuvettes were stored in PBS at 4°C. 

Figure 7.2.9 shows how the gradient of the standard curve decreased over time for 

both chips, indicating a degeneration of the sensing surface. Degeneration results 

from a combination of loss of ligand from the sensing surface due to repeated wash 

and regeneration steps, protein denaturation caused by harsh regeneration conditions 

and the natural denaturation over time. As a consequence of the observed 

degeneration, it was necessary to re-calibrated cuvettes every 2-3 days to ensure 

accurate concentration data.

1.2.23 Non-specific binding

Interference from non-specific binding during the analysis of complex bioprocess 

samples can be a major problem if quantitative data is required (A. Gill, PhD Thesis, 

1996). To assess the effects of non-specific binding on the protein A and HP6045 

biosensor assays, the interaction of fermentation supernatant obtained from another 

E. coli fermentation expressing the antibody fragment D1.3 Fv (supplied by D. 

Bracewell, UCL, see section 7.2.1.3) with immobilised protein A and HP6045 was 

assessed. Purified D1.3 Fv was initially shown not to interact with either protein A or 

HP6045.

For both biosensor assays an initial baseline was obtained by addition of PBS/T/S 

buffer to the biosensor cuvette. Buffer was replaced with fermentation supernatant 

for an interaction period of 5 minutes, after which the contents of the cuvette were 

replaced with PBS/T/S buffer and the effect on baseline examined. This procedure 

was repeated using fermentation broth supernatant spiked with purified Fab’ at a 

concentration of 200 pg mL'1. The results are illustrated in Figure 7.2.10. The initial 

increase in biosensor response following the addition of pure fermentation 

supernatant to the cuvette was caused by the change in refractive index. The return to 

baseline following buffer wash of the pure fermentation broth shows there to be no 

interaction between broth components and the cuvette sensing surface, compared to 

broth containing Fab’.
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The work described in section 7.2.3.1 compares the use of ELISA and biosensor 

assays in the monitoring of periplasmic 4D5 Fab’ during the induction phase of a 

fermentation. For this work it was felt necessary to gain a more accurate indication of 

the effect of background interference from components of the periplasmic extracts on 

signals obtained from both biosensor assays (it was envisaged that different 

background components may have differing effects on the biosensor signal).

A ‘control’ periplasmic extract was produced by taking cells harvested from 

fermentation HCD 4 and incubating overnight in periplasmic extraction buffer 

(section 2.4.1.1) at 60°C, 250 rpm. Endogenous 4D5 Fab’ was then removed from 

the extract by packed bed protein A affinity chromatography using the protocol 

described in section 2.4.3.1. Fab’ levels in the control extract following 

chromatography were determined by ELISA to be ~ 1 pg mL’1 which is below the 

detection limit of both biosensor assays. Serial 1 in 2 dilutions of purified Fab’ 

standard were performed in PBS and in the control periplasmic extract over the 

concentration range 200-6.25 pg mL-1. The standard solutions were applied to 

immobilised protein A and HP6045 to produce calibration plots, illustrated in Figure 

7.2.11.

The results indicate that interference from components of the periplasmic extract has 

an effect on the signal obtained from both assays. Interference caused an increase in 

recorded biosensor response for the HP6045 assay shown by the upwards shift in 

calibration curve for Fab’ diluted in control periplasmic extract. The opposite effect 

is observed for the protein A assay; interference from periplasmic extract 

components actually cause a decrease in observed biosensor response, shown by the 

downward shift in calibration curve for Fab’ diluted in control periplasmic extract. 

Such effects need to be taken into consideration when using these assays to obtain 

quantitative data from bioprocess samples.
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7.2.3 Bioprocess monitoring

In the following sections the biosensor assays are assessed as an alternative to ELISA 

for the quantitative detection of antibody fragments during fermentation and 

chromatographic purification processes.

7.2.3.1 Fermentation monitoring

The ELISA and biosensor assays were initially compared in their ability to produce 

quantitative data during the induction period of an E. coli fermentation. Fab’ 

concentrations were measured in extracellular and periplasmic fermentation samples 

taken throughout the induction phase of the 450 L fermentation described in section 

3.2.3. Periplasmic fractions were initially obtained by overnight extraction at 30°C. 

All assays were calibrated with the same standard. Calibration curves for the 

biosensor assays were produced using standards diluted in PBS. Extracellular and 

periplasmic Fab’ accumulation profiles obtained using the three assay techniques are 

illustrated in Figures 7.2.12 and 7.2.13 respectively.
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Figure 7.2.12 Comparison o f extracellular Fab’ titres recorded by ELISA and 
biosensor assays in the induction phase o f E. coli batch fermentation. Error bars 
represent the standard deviation o f triplicate sample measurements.
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Figure 7.2.13 Comparison o f ELISA and biosensor assays in the monitoring o f  
periplasmic Fab ' during the induction phase o f E. coli batch fermentation. The upper 
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standard deviation o f triplicate sample measurements.
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A comparison of the profiles reveals similar trends in Fab’ accumulation, however 

both biosensor assays measured appreciably higher titres than ELISA. The protein A 

assay recorded titres which were on average 60% higher than ELISA for the 

periplasmic samples and 200% higher for the extracellular samples. Concentrations 

recorded by the HP6045 biosensor assay were closer to ELISA; periplasmic titres 

were on average 15% higher and extracellular samples 55% higher than ELISA.

The high correlation in trends obtained using the three assays is illustrated in Figure 

7.2.13 (lower plot), which expresses the periplasmic concentration data as a 

percentage of the maximum recorded titre.

The differences in concentration data were thought to be primarily due to inherent 

differences in the Fab’ species detected by the three assays. The sandwich nature of 

the ELISA means it only records fully assembled Fab’ molecules. The capture 

ligands used in the biosensor assays both bind separate regions of the Fab’ heavy 

chain, hence these assays can potentially detect free heavy chain and any incomplete 

or partially degraded Fab’ molecules containing the appropriate binding region of the 

Fab’ heavy chain in addition to complete Fab’ molecules. Fermentation samples are 

likely to contain a proportion of free heavy chain and incomplete Fab’ which will be 

recorded by the biosensor assays but not ELISA, thus providing an explanation for 

the higher titres recorded by biosensor analysis.

To test this theory, Fab’ titres recorded in periplasmic fractions obtained by overnight 

incubation in extraction buffer at 30°C were compared to Fab’ titres recorded in 

equivalent periplasmic fractions obtained by overnight incubation at 60°C. Previous 

work has shown that operating the extraction at high temperature results in 

degradation of free heavy and light chain and incomplete or partially degraded Fab’ 

fragments, whereas the complete, correctly folded Fab’ molecule is stable and 

remains intact (Chapter 4). Fab’ titres recorded by ELISA and biosensor assays in 

30°C and 60°C periplasmic extracts are compared in Figures 7.2.14 and 7.2.15.
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Fab’ concentrations measured by ELISA are either within error or slightly lower in 

the 60°C periplasmic extracts compared to the 30°C extracts. Differences are likely 

to be due to degradation of free heavy and light chain which associate in solution and 

are therefore recorded in 30°C periplasmic extracts but are degraded by the high 

temperature during the 60°C extraction process.

Both biosensor assays record considerably lower Fab’ titres in the 60°C extracts than 

the 30°C extracts, supporting the theory that these assays are detecting incomplete 

Fab’ molecules which are degraded by the high temperature extraction. Further 

evidence of this is provided by an SDS-PAGE gel showing Fab’ preparations 

obtained by protein A affinity purification from 30°C and 60°C periplasmic extracts 

(Figure 4.2.5). The gel shows periplasmic samples before and after purification by 

protein A affinity chromatography (using the protocols described in section 2.4.3.1). 

The protein bands in the elution fractions (lanes 4 and 6) represent the material 

within the periplasmic extracts which binds to protein A. It is evident from the 

increased number of bands in the elution fraction obtained from the 30°C extract 

(lane 4) that protein A binds a large amount of material in addition to the complete 

Fab’ in the 30°C extract but not in the 60°C extract. The high temperature extraction 

produces a much ‘cleaner’ preparation in which the material that binds protein A is 

almost exclusively complete Fab’ (lane 6).
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Figure 7.2.14 Effect o f extraction temperature on periplasmic Fab ’ titres recorded 
by ELISA. Periplasmic fractions were obtained by overnight incubation in extraction 
buffer at 30X1 (O) or 60 X  (*). Error bars represent the standard deviation o f  
triplicate sample measurements.
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The Fab’ titres recorded by ELISA and biosensor assays in 60°C periplasmic extracts 

are compared in Figure 7.2.16. The graph shows improved correlation between the 

concentrations; titres measured by ELISA and the HP6045 biosensor assay are 

mainly within error, however titres recorded by the protein A biosensor assay average 

approximately 40% lower than those recorded by ELISA.
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Figure 7.2,16 Comparison o f periplasmic Fab ' titres recorded by ELISA and 
biosensor assays in the induction phase o f E. coli batch fermentation. Periplasmic 
fractions were obtained by overnight incubation in extraction buffer at 60 °C. Error 
bars represent the standard deviation o f triplicate sample measurements.

A final comparison was made in which Fab’ concentrations were adjusted to take 

into account interference from components of the periplasmic extracts. The ELISA 

was shown not to be affected by non-specific binding (Figure 7.2.4), however 

background interference during the analysis of periplasmic extracts was shown to 

increase the biosensor response for the HP6045 assay and decrease the response for 

the protein A assay (Figure 7.2.11). To account for this, Fab’ titres in the 60°C 

periplasmic extracts were read from calibration curves prepared using Fab’ standard
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diluted to known concentrations in control periplasmic extract rather than PBS 

(Figure 7.2.11). A comparison of the titres measured in 60°C periplasmic extracts 

taking background interference into account is shown in Figure 7.2.17. Improved 

correlation is observed between Fab’ concentrations recorded by ELISA and the 

biosensor protein A assay, with the biosensor measuring -25% lower titres than 

ELISA. Titres recorded by the HP6045 biosensor assay average -15% lower than 

those measured by ELISA, showing slightly poorer correlation compared to when 

assay interference was not taken into account.
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Figure 7,2.17 Comparison o f periplasmic Fab ’ titres recorded by ELISA and 
biosensor assays in the induction phase o f E. coli batch fermentation. Fab ’ titres 
recorded by the biosensor assays have been adjusted to take into account 
background interference from components o f the periplasmic extracts. Periplasmic 
fractions were obtained by overnight incubation in extraction buffer at 60 XI. Error 
bars represent the standard deviation o f triplicate sample measurements.

Discrepancies remaining in the titres recorded by ELISA and the protein A biosensor 

assay may be related to the standard used for assay calibration. It has already been 

observed that the protein A assay interacts differently with different Fab’ standards.
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The use of protein A to purify the standards may result in the selection of a 

population of Fab’ molecules with higher than average affinity for protein A. The 

consequence of using such a standard for calibration of the protein A biosensor assay 

would be to provide an underestimation of the Fab’ concentration in unknown 

samples. This may provide the explanation for the protein A biosensor assay 

recording lower Fab’ titres than both ELISA and the HP6045 biosensor assay. 

Furthermore, it again indicates one of the problems associated with using a protein A 

purified standard for calibration of an assay based on binding to protein A.

1.2.3.2 Monitoring of chromatography breakthrough and elution

Protein A affinity purification of 4D5 Fab’ has been discussed in Chapter 6. During 

the packed and expanded bed affinity purification runs described in sections 6.2.2 

and 6.2.3 respectively, 4D5 Fab’ breakthrough and elution was monitored using 

ELISA and the protein A biosensor assay.

The 4D5 Fab’ breakthrough profiles obtained for the packed bed chromatography run 

are shown in Figure 7.2.18. A 1 mL Pharmacia HiTrap rProtein A column was 

loaded with 300 mL of clarified E. coli periplasmic extract at a flow rate of 

1 mL min'1 (40 cm hr'1). Eluent from the column was passed through a 

spectrophotometer at 280nm to detect total protein. Fractions were assayed for 4D5 

Fab’ using ELISA and protein A biosensor assays. Concentration of 4D5 Fab’ in the 

feed was also assayed using both techniques to allow calculation of the percentage 

breakthrough.

The breakthrough profiles illustrated in Figure 7.2.18 show extremely good 

correlation between ELISA and biosensor assays, indicating the potential of the 

biosensor to provide an accurate measure of breakthrough during column loading. 

Such information allows improved process control during process operation, 

providing the ability to maximise column utilisation whilst minimising product loss.
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Figure 7.2.18 Breakthrough o f a 1 mL packed bed affinity protein A chromatography 
column monitored using ELISA (M) and biosensor protein A (O) assays. The column 
was loaded with clarified E. coli periplasmic extract at a flow rate o f  I mL m in 1 
(40 cm h r 1).

Breakthrough profiles were also obtained during expanded bed affinity purification 

(illustrated in Figure 7.2.19). A Streamline 25 column containing 25 mL Streamline 

rProtein A media was loaded with 3 L of whole (unclarified) E. coli periplasmic 

extract at a flow rate of 15 mL min'1 (185 cm hr'1). Eluent from the column was 

again passed through a spectrophotometer at 280nm to detect total protein. Due to the 

large number of fractions collected, assays were only performed on the first fraction 

o f every ten. For ELISA analysis, spheroplasts were removed prior to assay by 

centrifugation. Assays performed using the protein A biosensor assay were carried 

out on samples both before and after spheroplast removal to allow the effect of the 

presence of spheroplasts on the biosensor signal to be assessed.
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Again good correlation is observed between biosensor and ELISA data in Figure 

7.2.19, although the biosensor recorded on average slightly lower levels of 

breakthrough. The presence of spheroplasts in the samples did not adversely effect 

biosensor signals, moreover the sensor response to samples containing spheroplasts 

showed improved correlation to ELISA data compared to clarified samples. This 

provides further evidence of the suitability of the protein A biosensor assay for 

monitoring breakthrough during expanded bed purification, and shows the biosensor 

can be used confidently to measure Fab’ titres directly in the column eluate without 

the need for spheroplast removal prior to analysis.

80

60 A A ■ 
O ^

O)
o  40 O O

20

■ ■ ■0

- 1 0
16040 100 120 1400 20 60 80

Flowthrough (column volumes)

Figure 7.2.19 Breakthrough o f  a Streamline 25 expanded bed column containing 
25 mL Streamline rProtein A media, monitored using ELISA (M) and protein A 
biosensor assay (O, unspun samples; A, samples spun prior to assay to remove 
spheroplasts). The column was loaded with E. coli periplasmic extract at a flow  rate 
o f  15 mL m in 1 (185 cm h r 1).

Elution of 4D5 Fab’ from both the packed bed and the expanded bed protein A 

columns was also monitored using ELISA and biosensor analysis. Comparable 

results were obtained for both chromatographic processes, therefore only data from 

the expanded bed elution will be discussed.
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Elution of 4D5 Fab’ from the expanded bed was performed in sedimented bed mode 

at a flow rate of 7.5 mL min'1 (90 cm hr'1). Fractions were diluted to the appropriate 

concentration (~1 pg mL'1) prior to assay by ELISA, however samples were not 

diluted for biosensor analysis. This was because the biosensor assay was being 

assessed in its ability to produce on-line data for process control, and any required 

dilution of the process stream may be difficult to assess and to perform during on-line 

analysis.

The elution profiles obtained are illustrated in Figure 7.2.20. The profiles show the 

measured 4D5 Fab’ concentration in each fraction, the eluate stream absorbance at 

280nm (which is an indication of total protein content) and the % Fab’ recovery 

calculated from the Fab’ concentration data. Analysis of the profiles shows that the 

assay data correlates well with the A280nm trace and furthermore that both biosensor 

and ELISA identify the same fractions as containing product. Concentrations 

determined by ELISA however are considerably greater than those measured using 

the protein A biosensor assay. In addition Fab’ recovery determined from ELISA data 

is >100% whereas recovery based on biosensor data is only -14%. This suggests that 

the biosensor assay is underestimating Fab’ titres in the elution fractions. A probable 

explanation is that the concentration of Fab’ in some of the fractions were so high 

that they were out of the linear calibration range. More accurate data may have been 

obtained by diluting the fractions prior to biosensor analysis, however this was not 

done for the reasons described previously. Although the concentration data provided 

by the biosensor assay was inaccurate, the data still provides a reliable indication of 

the fractions containing the product and hence could be used confidently to select the 

required product containing fractions for further purification. Identification of 

product-containing fractions by directly assaying for the product is both more 

accurate and more reliable than relying simply on correlations with A280 data.
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7.3 Summary

Two biosensor assays have been developed and compared to ELISA as analytical 

techniques for the monitoring of 4D5 Fab’ during fermentation and chromatographic 

purification. One biosensor assay utilised protein A as the capture ligand, the other 

HP6045 (the capture antibody used in ELISA). Specific advantages of the biosensor 

include reduced sample preparation time and reduced assay time, with an assay 

turnaround time of several minutes compared to several hours for ELISA.

Both biosensor and ELISA assays required calibration with 4D5 Fab’ standards of 

known concentration. ELISA standard curves had to be prepared on every plate each 

time the ELISA was performed. Due to differences in the quantity of ligand 

immobilised and deterioration of the sensing surface over time, each biosensor 

cuvette required calibration after ligand immobilisation and following storage for 

more than 2-3 days.

Methods were developed for the preparation of 4D5 Fab’ standards ‘in house’. The 

method employed was found to have a considerable effect on quality of the standard 

which in turn affected assay calibration, with improved quality standards purified 

from periplasmic extracts obtained by overnight incubation at 60°C rather than 30°C.

The protein A biosensor assay was shown to react differently to different Fab’ 

standards, which was thought to be a result of differences in methods of standard 

purification by protein A affinity chromatography. The effect identifies one of the 

problems associated with using a protein A based purification technique to purify 

standards for use in an assay based on interaction with protein A.

The error associated with the ELISA assay was calculated to be ± 5% at a 95% 

confidence interval. This was lower than the errors of the biosensor assays, which 

were up to ± 9% for Fab’ concentrations > 25 pg mL'1 and ± 23% at Fab’ 

concentrations < 12.5 pg mL’1.
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The ELISA was found to be unaffected by non-specific binding, however 

contaminants within process samples were shown to effect both biosensor assays. 

The biosensor response was increased in the presence of process contaminants in the 

case of the HP6045 assay, whereas a decrease in response was observed in the 

presence of process contaminants for the protein A assay.

The two biosensor assays were compared to ELISA in the ability to provide 

quantitative data of product accumulation during the induction phase of an E. coli 

fermentation. Good correlation was observed between the product accumulation 

profiles obtained with the three assay techniques. In addition, correct sample 

preparation and consideration of non-specific binding effects allowed quantitative 

data to be obtained from both biosensor assays which was comparable to ELISA 

data.

The protein A biosensor assay was also assessed as a technique for the on-line 

analysis of chromatography breakthrough and elution. The assay was successfully 

used to monitor breakthrough from a packed bed and an expanded bed affinity 

chromatography column, even in the presence of spheroplasts. The assay also 

successfully identified product-containing fractions during elution from the expanded 

bed column, however dilution of the fractions would be required to allow accurate 

concentration determination.

The results clearly demonstrate the potential of the optical biosensor as a technique 

for real time process monitoring to allow improved process control. However, due to 

a higher associated error, interference from non-specific binding and problems 

associated with biosensor calibration, the ELISA is still the method of choice for 

accurate quantification of 4D5 Fab’ in process samples.
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8. PROCESS MASS BALANCES

8.1 Introduction

This chapter draws together the results from the analysis of individual unit operations 

by comparing process alternatives for the recovery and purification of 4D5 Fab’ from 

E. coli fermentation broth. The process options which have been studied are 

illustrated in Figure 8.1.1. Process comparisons are made on the basis of Fab’ yield, 

level of purification achieved and total process operating time.

When designing a process for the production and purification of antibody fragments, 

the initial decision which must be made relates to fermentation design; whether the 

product should be fully retained within the periplasm or whether a degree of leakage 

into the extracellular broth should be encouraged. Advantages of periplasmic 

expression include easier purification from the relatively clean periplasmic extracts 

compared to purification from the complex mix of metabolic by-products in the 

extracellular medium. Extracellular expression has the further disadvantage that 

exposure to the extracellular environment for long time periods may have a 

detrimental effect on product quality, with protease activity or deamidation reactions 

resulting in antibody degradation. Chapter 3 illustrated how a fermentation process 

could be modified to improve retention of product within the periplasmic space. 

However, successful periplasmic retention can be more difficult to achieve at large 

scale. Therefore it is important to consider fully options for the purification of both 

periplasmic and extracellular material.

Four purification processes, illustrated in Figure 8.1.1, have been studied. Three 

focus on the recovery of exclusively periplasmic product whereas the fourth allows 

recovery of both periplasmic and extracellular antibody fragments. For the recovery 

of purely periplasmic product, a cell harvest step is needed at the end of the 

fermentation. Efficient cell harvest requires not only that as many cells as possible 

are recovered, but also that cell breakage during recovery is minimised. Breakage 

will result in both product losses and the release of intracellular contaminants such as 

proteases, lipids and DNA which may degrade product or cause processing problems
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in later purification stages. For this process study, the use of a tubular bowl 

centrifuge for cell harvest has been assumed, as improved dewatering is achieved 

compared to disk stack centrifugation. However, the use of a tubular bowl centrifuge 

for large scale processing maybe limited by the size of commercially available 

machines. (The largest available tubular bowl is the CARR P24 Powerfuge (CARR 

Separations Inc., Franklin, MA) which has a bowl size of 66L, achieves a relative 

centrifugal force of up to 15 OOOg and can be operated at flow rates of up to 

4000 L hr'1).

Product is released from harvested cells by the process of periplasmic extraction. 

Selective release of periplasmic material is desired to produce a concentrated liquid 

stream of antibody whilst minimising contamination of the process stream with 

intracellular products. Performing the extraction process at high temperature offers 

the additional advantage of process stream purification by degrading both 

contaminating E. coli proteins and incomplete or incorrectly folded antibody 

fragments.

Following periplasmic release, Fab’ can be purified directly from unclarified 

periplasmic extracts by expanded bed affinity chromatography. Alternatively, Fab’ 

may be recovered by packed bed affinity chromatography following the clarification 

of periplasmic extracts by centrifugation and depth filtration. Process stream 

clarification can be achieved using a disk stack or a tubular bowl centrifuge. Again 

the aim is to maximise both clarification and dewatering whilst minimising cell 

breakage.

A more novel processing alternative which allows the recovery of both extracellular 

and periplasmic product involves performing the extraction process on whole 

fermentation broth. Fab’ can then be harvested directly from whole broth extracts by 

expanded bed affinity purification.
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In the following sections three examples of specific process alternatives are initially 

examined in the context of alternative purification schemes. Section 8.2.1 compares 

periplasmic and whole broth extraction. In section 8.2.2 the use of a disk stack 

centrifuge and a CARR tubular bowl centrifuge are compared for the clarification of 

spheroplast suspensions. Section 8.2.3 assesses packed bed and expanded bed 

purification routes for the recovery of Fab’ from periplasmic extracts. Finally, in 

section 8.2.4, the whole recovery processes illustrated in Figure 8.1.1 are compared 

on the basis of yield, purification and processing time.

8.2 Results and discussion

8.2.1 Periplasmic verses whole broth extraction

Important process considerations for comparison of the alternative extraction 

procedures include:

• Fab’ yield

• Process stream purification - degradation of contaminating E. coli proteins

- degradation of incorrectly assembled or partially 

degraded Fab’

• Fab’ quality following extraction (physiochemical characteristics, affinity, 

efficacy)

• Process time

Periplasmic and whole broth extraction were compared as individual unit operations 

in Chapter 4. Fab’ yields were higher for periplasmic extraction (85% Fab’ yield) 

than for whole broth extraction (41% yield). However, the two procedures showed 

similar degrees of process stream purification, and produced Fab’ preparations of 

similar quality as judged by Western blotting of periplasmic extracts and SDS-PAGE 

analysis of Fab’ purified from the extracts by affinity chromatography.
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To compare periplasmic and whole broth extraction as alternative processing routes, 

the cell harvest step prior to periplasmic extraction must also be taken into 

consideration. This will allow a more comprehensive indication of relative process 

yields and operating times. A comparison of the two extraction routes based on the 

processing of 100L fermentation broth is illustrated in Figure 8.2.1. The use of a 

Sharpies AS26 tubular bowl centrifuge (Alfa-Laval Engineering Ltd.) was assumed 

for the cell harvest process. The flow rate required for 95% cell recovery was 

determined experimentally during the harvest of fermentation 150L3. The AS26 

centrifuge has a bowl volume of 6.0L, hence two centrifuge bowls are required for 

the harvest of 100L fermentation broth containing 10% (v/v) solids. The estimated 

operating time for cell harvest therefore includes 15 minutes to allow for the 

centrifuge to be run down and the bowl to be changed. Other assumptions made are 

listed in Table 8.2.1. Fab’ yields and purification factors for the extraction processes 

were determined experimentally in Chapter 4.

Yields for the periplasmic extraction route are reduced from 85% to 65% by taking 

into account the centrifugation step, firstly because all the extracellular product is 

discarded and secondly because the efficiency of centrifugal cell harvest is less than 

100%. In addition, the processing time is increased for the periplasmic route and 

operating costs will be greater because of the requirement for an additional unit 

operation. Differences in process time and operating costs will become more 

significant as the operational scale is increased. Thus, although a direct comparison 

of yields for the individual extraction processes suggested periplasmic extraction is 

by far the more efficient option, comparison in the wider context of a purification 

scheme has shown that following optimisation, the whole broth extraction process 

may present a more viable process alternative which offers the additional advantages 

of lower operating costs and reduced process time.
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Figure 8.2.1 Comparison o f periplasmic and whole broth extraction based on the 
processing o f  100L fermentation broth. Comparisons are based on process yield, 
purification factor (PF) and the total process operating time. Assumptions made are 
given in Table 8.2.1.

OPERATION PROCESS VARIABLE ASSUMED VALUE
Fermentation Scale 100 L

Solids fraction 10% (v/v)
Fab’ titres 200 mg L '1
Fab’ distribution:
Periplasmic
Extracellular

80% (160 mg L'1) 
20% (40 mg L’1)

Cell harvest Flow rate 60 L hr"1
(AS26 tubular bowl * Process time 1.92 hours
centrifuge) Cell recovery 95%
Periplasmic extraction Extraction time 5 hours

Fab’ yield 85%
Purification factor 4.0

Whole broth extraction Extraction time 5 hours
Fab’ yield 41%
Purification factor 6.0

Table 8.2.1 Assumptions for the comparison o f  periplasmic and whole broth 
extraction processes. *Includes 15 minutes to allow for running down o f the 
centrifuge and changing o f the centrifuge bowl.
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8.2.2 Tubular bowl verses disk stack centrifugation

Important process considerations for the centrifugal clarification of spheroplast 

suspensions include:

• Product yield

• Dewatering

• Shear damage (to both Fab’ product and spheroplasts)

• Processing time

A tubular bowl centrifuge (the CARR P6 Powerfuge) and a disk stack centrifuge (the 

Westfalia CSA-1 centrifuge) were compared for the clarification of periplasmic 

extracts in Chapter 5. Results indicated that Fab’ yields were higher using the tubular 

bowl because of the improved liquid recovery (dewatering). No damage to the Fab’ 

or to cells was observed during either centrifugation process.

Yields and operating times for the clarification of 100L periplasmic extract by disk 

stack and tubular bowl centrifugation are compared in Figure 8.2.2. Process 

parameters used in the comparison are listed in Table 8.2.2. Process times are based 

on operation at the flow rate required for 95% clarification. The operating flow rates 

and process yields were both determined for small-scale centrifuges (the CSA-1 has a 

bowl volume of 0.6L; the CARR P6 Powerfuge has a bowl volume of 1.0L). Larger 

scale machines would have to be used for the processing of 100L periplasmic extract, 

however it has been assumed that the same process parameters would still apply. No 

additional time has been allowed for discharging the tubular bowl centrifuge as it has 

also been assumed that the machine utilised would have a bowl volume sufficient to 

allow processing of the entire extract in one batch.

Results indicate that although yields are higher for the tubular bowl, processing times 

are longer because the flow rate required to achieve 95% clarification is lower. Again 

the difference in process time will become more significant at increased scale. 

Processing time may be an important factor in the purification of labile products.
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Figure 8.2.2 Comparison o f  tubular bowl and disk stack centrifugation for the 
clarification o f  100L periplasmic extract. Comparison is based on process yield, 
purification factor (PF) and the total process operating time. Assumptions made are 
given in Table 8.2.2.

CENTRIFUGE PROCESS VARIABLE ASSUMED VALUE
Tubular bowl centrifuge Process stream volume 100L
(CARR Powerfuge) Process stream solids content 10% (v/v)

Centrifuge flow rate 53 Lhr*1
Process time 1.89 hours
Clarification 95%

Disk stack centrifuge Process stream volume 100L
Process stream solids content 10% (v/v)
Centrifuge flow rate 81 Lhr'1
Process time 1.23 hours
Clarification 95%

Table 8.2.2 Assumptions for the comparison o f  tubular bowl and disk stack 
centrifugation for the removal o f spheroplasts from periplasmic extracts.
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8.2.3 Packed bed verses expanded bed chromatography

Processing factors to be taken into consideration in the comparison of packed and 

expanded bed purification include:

• Product yield

• Purification factor

• Process time

• Matrix capacity and cost

• Overall processing costs

Packed and expanded bed purification were compared on the basis of process yield, 

matrix capacity and purification in Chapter 6. Packed bed chromatography was found 

to give higher yields and show improved matrix binding capacities, whereas levels of 

purification were similar for the two chromatographic operations.

Although the results indicated packed bed adsorption to be the more efficient method 

of purification, a disadvantage associated with this route is the initial requirement for 

process stream clarification. A comparison of packed and expanded bed processes, 

taking into account feedstock clarification by tubular bowl centrifugation and 

filtration is shown in Figure 8.2.3. Assumptions for the comparison are given in 

Table 8.2.3. Detailed calculations for the determination of column volumes and 

process times for the chromatographic purifications are given in Appendix 12.

The results show higher yields of Fab’ for the process involving packed bed 

adsorption, with similar levels of purification achieved in both recovery schemes. A 

disadvantage of the packed bed purification route however is the considerably greater 

process operating time.

Additional factors which have not been taken into consideration include operational 

costs and process reliability. Expanded bed adsorption suffers the disadvantage of 

requiring specifically designed media which is expensive, and large volumes of
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buffers which further add to the overall operational costs. During experimentation, 

operational problems associated with use of the expanded bed were also identified. 

The processing of high cell density feed streams frequently resulted in blocking of 

the lower adapter (column inlet). This was alleviated by nuclease treatment of the 

feed prior to column loading during purification from periplasmic extracts, however 

problems with column blocking were still encountered following nuclease treatment 

during the processing of whole broth extracts. Frequently encountered operational 

problems such as this will also influence decisions when specifying a purification 

scheme.

YIELD PF 
(%)

PROCESS 
TIME (hrs)

10.9

PBATUBULAR FILTRATION 
BOWL

PERIPLASMIC 
EXTRACT ,

4.6

EBA

Figure 8.2.3 Comparison o f packed bed (PBA) and expanded bed (EBA) purification 
o f 4D5 Fab’ from 100L periplasmic extract. Comparison is based on process yield, 
purification factor (PF) and the total process operating time. Assumptions made are 
given in Table 8.2.3.
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OPERATON PROCESS VARIABLE ASSUMED VALUE
Centrifugation Process stream volume 100L
(Tubular bowl) Process stream solids content 10% (v/v)

Centrifuge flow rate 53 Lhr'1
Process time 1.89 hours
Clarification 95%
Liquid recovery 96%
Fab’ recovery 94%

Filtration Process time 2 hours
Fab’ recovery 98%
Liquid recovery 100%

Packed bed Column volume 2.0 L
chromatography Column dimensions 50 mm x 100 cm

Chromatography media Protein A Sepharose 4 
fast flow

Flow rate 1000 cm hr"1
Process time 6.96 hours
Fab’ yield (10% breakthrough) 98%
Purification factor 14

Expanded bed Column Streamline 200
chromatography Column dimensions 20 cm x 15 cm

Bed volume 4.7 L
Chromatography media Streamline rProtein A
Flow rate 185 cm hr'1 (load and wash) 

90 cm hr'1 (elution)
Process time 4.59 hours
Fab’ yield (27% breakthrough) 83%
Purification factor 12

Table 8.2,3 Assumptions for the comparison o f packed and expanded bed 
chromatography in the purification o f 4D5 Fab’ from 100L E. coli periplasmic 
extract. Detailed calculations for the determination o f  column volumes and process 
times for the chromatographic purifications are given in Appendix 12.

8.2.4 Overall process mass balances

This chapter concludes with a comparison of complete purification schemes based on 

overall yield, purification factor and process time. The results, shown in Figure 8.2.4, 

give the yields for individual unit operations as well as the overall process yields. 

Detailed calculations of the column sizes, process volumes and process times for the 

chromatographic purification steps are given in Appendix 12. In addition, the process
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yield, purification factor and operation time for each unit operation in each of the 

four purification schemes are given in Appendix 13.

The most efficient process based on yield alone is the ‘traditional’ purification route 

involving Fab’ recovery from clarified periplasmic extracts by packed bed 

chromatography (58% yield), followed by the more novel method of Fab’ 

purification from unclarified periplasmic extracts by expanded bed adsorption (54% 

yield). The least efficient process is the one focusing on recovery of Fab’ directly 

from whole broth extracts by expanded bed adsorption (35% yield).

In contrast, the most efficient process based on both purification factor and 

operational time is the whole broth extraction route. The traditional purification 

scheme involving periplasmic extraction and packed bed chromatography, which 

gave the highest overall yield, proved to be the least efficient with respect to 

operating time. In addition, the process providing the second highest yield of Fab’ 

(expanded bed affinity purification of Fab’ from periplasmic extracts) proved the 

least effective with regard to process stream purification.

Thus each recovery process has associated advantages and disadvantages, and the 

most appropriate purification route will be determined by the specific requirements 

of the individual process. For example, in the recovery of a labile product, 

minimising process time may be of paramount importance, whereas for a product 

destined for therapeutic application, the process giving highest degree of purification 

may be preferred.

The comparisons made provide only an initial insight into the relative merits of the 

process alternatives. A number of other significant factors including process cost, 

scale-up potential and the quality of Fab’ produced (in terms of physiochemical 

characteristics and in vivo efficacy) also need to be taken into consideration to allow 

selection of the most efficient and economical purification scheme.
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8.3 Summary

This study has highlighted some of the operational factors which must be taken into 

consideration during the design and specification of a production and purification 

process based on an E. coli expression system. By comparing four alternative 

purification schemes, the study has illustrated that there is no single ‘ideal’ process, 

rather each purification route has associated advantages and disadvantages that need 

to be taken into consideration. Therefore, prior to process specification, the criteria 

for the final product must be defined to determine the objectives of the purification 

scheme. Only when the process objectives have been defined can the most 

appropriate purification route be elucidated.
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9. CONCLUSIONS

During this project, novel process options for the production of antibody fragments 

using an Escherichia coli expression system have been developed and characterised, 

and techniques designed to facilitate process design, integration and control have 

been assessed by application to the experimental system under investigation.

Initially, a fermentation process designed for the periplasmic expression of a Fab’ 

antibody fragment was characterised. Using the original fermentation protocol, 

antibody titres of up to 200 mg L'1 were achieved, however over the course of the 

induction period over 50% of the Fab’ leaked into the extracellular broth. The 

fermentation was modified to increase the control of product location by reducing 

leakage into the medium. Following process modifications, antibody titres were 

increased to -680 mg L"1 and, more significantly, 80-90% of product was 

consistently retained within the periplasmic space. Tight control of product location 

was maintained following scale up of the fermentation to 450L. However a number 

of problems associated with operating such a process at large scale were identified, 

including oxygen limitation, poor temperature control, foaming and difficulties 

keeping large quantities of lactose in solution.

A novel method for the specific release of periplasmic proteins was characterised. 

85% recovery of periplasmic Fab’ was achieved by suspending cells in a Tris-EDTA 

extraction buffer at 60°C. Operation of the extraction process at high temperature 

offered the additional advantages of process stream purification by the degradation of 

both contaminating E. coli proteins and incomplete or incorrectly folded Fab’ 

fragments.

Fab’ release and protein degradation during periplasmic extraction were modelled at 

scales from 65 mL to 100 L using simple first order kinetics. Fab’ release appeared to 

occur instantaneously during cell resuspension at all scales. The extent of protein 

degradation varied with different feed material and the rate of protein degradation 

was lower at large scale. Process variation with different feed material is difficult to
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predict and highlights one of the potential difficulties associated with the design and 

use of models for predicting the performance of biological processes.

The periplasmic extraction process was performed on whole fermentation broth with 

the aim of allowing the recovery of both extracellular and periplasmic antibody 

fragments. However yields were considerably lower than for periplasmic extraction, 

with only 41% Fab’ recovered. Reduced yields were thought to be due to a 

combination of increased Fab’ degradation (possibly due to the reduced thermal 

stability of extracellular Fab’) and a less efficient extraction procedure.

Removal of spheroplasts generated by periplasmic extraction was compared using a 

tubular bowl and a disk stack centrifuge. Operating both machines at the flow rate 

required for 95% clarification, 94% Fab’ was recovered using the tubular bowl, 

compared to 73% using the disk stack centrifuge. The higher recovery achieved with 

the tubular bowl was shown to be directly due to the greater level of dewatering 

achievable.

A scale-down version of the disk stack centrifuge and ultra-scale-down laboratory 

equipment were assessed for their ability to predict the recovery performance of the 

full-scale disk stack separator. Both scale-down and ultra-scale-down equipment 

were found to over-predict the recovery performance of the disk stack centrifuge 

during the clarification of spheroplast suspensions. The poor results were thought to 

reflect the inability to mimic accurately the shear fields in the industrial machine.

Expanded bed and packed bed adsorption were compared for the purification of 4D5 

Fab’ from unclarified and clarified periplasmic extracts respectively. Packed bed 

adsorption resulted in higher Fab’ yields and showed greater dynamic binding 

capacities compared to expanded bed purification. The differences were attributed to 

the contrasting patterns of Fab’ breakthrough, with considerably greater losses of 

Fab’ in the flow through from the expanded bed column. The results however were 

based on single process runs performed at different scales of operation. For a more 

accurate comparison the two processes should ideally be optimised individually for 

the specific system under analysis and then directly compared at equivalent scales 

using the same feed material.

242



Optical biosensor assays were developed and compared to the more traditional 

ELISA for the monitoring of Fab’ accumulation during fermentation. The two 

techniques yielded similar accumulation profiles, however Fab’ titres recorded by the 

assays differed considerably. Discrepancies were found to be due to subtle 

differences in the species detected by each assay and to interference from 

contaminants within process samples. Correct sample preparation minimised these 

discrepancies and resulted in comparable measured titres from each technique. The 

biosensor was also used to monitor breakthrough and elution during chromatographic 

purification. The sensor was shown to provide an accurate indication of breakthrough 

during column loading and also correctly identified product containing fractions 

during column elution.

The thesis concluded with a series of mass balance studies which compared the 

relative efficiencies of the different processing routes conducted at pilot scale. The 

mass balance studies highlighted the fact that there is unlikely to be a single ‘ideal’ 

purification scheme. The most suitable process will depend upon the specific 

requirements of the individual system under consideration. In the case of antibody 

fragment production processes where the ultimate product is a therapeutic for the 

treatment of chronic illness, the emphasis will be on maximising yields and 

minimising costs. Without a full economic analysis it is not possible to determine 

which of the four processes studied would prove the most economical. Based on 

yields alone, it is evident that the traditional process involving periplasmic extraction, 

clarification and packed bed adsorption is the preferred option. However, if loss of 

product during spheroplast removal continues to result in reduced yields at large 

scale, the process route involving expanded bed purification of the product directly 

from unclarified periplasmic extracts (which removes the requirement for a 

centrifugal clarification step) is likely to become a more attractive alternative, 

particularly following further optimisation of the expanded bed process.

Even when concentrating exclusively on antibody fragment production processes, the 

most suitable purification scheme will depend on the individual process under 

analysis. For example, the proportion of product which leaks into the supernatant 

during antibody fragment fermentations is, to an extent, dependent upon the nature of
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the fragment being expressed. For a product which is naturally ‘leaky’ optimisation 

of the ‘whole broth extraction’ route may provide the most economical process, 

particularly as this process contains the smallest number of unit operations. Similarly, 

the success of expanded bed adsorption (including the potential for column blocking) 

is dependent upon the antibody fragment being expressed as this can affect the 

properties of the cells at fermentation harvest and therefore also the properties of the 

periplasmic or whole broth extract. Hence, a process involving expanded bed 

adsorption may be the most economical route for one antibody product, however it 

may be unfeasible to use the same process for a different product which produces an 

extract with a greater tendency to aggregate and block the column inlet.

To conclude, it remains clear that the most suitable purification strategy for antibody 

fragment production processes is system-specific, and will only become apparent 

following analysis of the specific process under consideration. The techniques of 

scale-down, modelling and rapid monitoring have all been developed to facilitate 

process analysis and specification of the most appropriate purification strategy.
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10. FUTURE WORK

Each section of the thesis has highlighted areas of interest which require further 

investigation. Chapter 3 illustrated how a fermentation could be designed to 

minimise leakage of periplasmic product into the extracellular broth. However, the 

specific factors responsible for controlling leakage were not identified. Further work 

is required to elucidate the relative effects of different factors on periplasmic 

retention, such as the addition of calcium and magnesium prior to induction, 

phosphate limitation and induction temperature. Further analysis of the effects of 

scale on periplasmic retention would also be useful for the design of large-scale 

production processes.

The key requirements of a fermentation process for the production of 

biopharmaceuticals are consistency and reproducibility at different scales of 

operation. The process should also be well controlled and straightforward to operate 

at small-scale so that potential large-scale operational problems are avoided. The 

fermentation studied not only showed considerable variation in growth patterns and 

product titres at small-scale, but also required a complex set of carbon source and 

nutrient additions at specific stages of culture growth which would be difficult to 

reproduce effectively on scale-up. Reproducibility of the fermentation could be 

improved by further development of the inoculum train to provide a more consistent 

inoculum culture. The fermentation protocol should also be simplified to improve 

control and consistency of operation. Potential simplifications include exponential 

feeding of glycerol to remove the requirement for batch glycerol additions and to 

allow control of both growth rate and the point of induction. Additionally the 

development of lactose feeding strategies may simplify process operation during the 

induction phase, and feeding of phosphate could enable precise control of phosphate 

concentration at the point of induction (which may affect product partitioning 

between the periplasm and the extracellular broth). In cases where the emphasis is on 

high product yields, it may also be possible to increase titres by further increasing the 

biomass at induction, or by adding nutrient supplements such as amino acids during 

the induction phase.

245



Performing the Tris-EDTA extraction process on whole fermentation broth is a 

potential method for increasing yields by allowing the recovery of both extracellular 

and periplasmic product. However further assessment of the thermal stability and 

quality of the extracellular Fab’, and optimisation of the extraction process in the 

presence of whole fermentation broth is required before the true potential of this 

technique can be realised. If successful, this method of extraction will be particularly 

attractive in processes where the Fab’ is naturally ‘leaky’ and a considerable quantity 

of the product is located in the fermentation broth at the end of the induction period.

Current methods for the scale-down of centrifuges do not provide an accurate 

prediction of the recovery performance of industrial machines during the processing 

of shear sensitive biological materials. The reason is thought to lie in the inability to 

reproduce accurately shear fields in the scale-down equipment. More accurate 

methods for estimating the levels of shear in the centrifuge feed zone based on 

computational flow dynamics are currently being developed. Improved techniques for 

the reproduction of shear in scale-down and ultra-scale-down equipment are also 

required. This may necessitate modifications to the centrifuge feed zone in the scale- 

down version of the disk stack machine. Additional studies into the effect of shear on 

spheroplast suspensions, including the effect on particle size distribution would 

provide a more accurate indication of the differences resulting from processing in 

full-scale and scale-down equipment.

The development of a scale-down model of the disk stack centrifuge which 

accurately mimics the observed partitioning of Fab’ with the solids phase during 

large-scale operation would greatly facilitate process development to minimise Fab’ 

losses during this recovery operation. It is thought that the partitioning could be 

minimised by altering the ionic strength of the process stream, thereby reducing 

charge interactions between the Fab’ and the solids. A scale-down model of the 

centrifuge would allow a range of feed streams of varying ionic strength to be tested 

in a short time period, so that the optimal operating conditions could be rapidly 

determined at minimal expense.
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Expanded bed adsorption provides a method for the purification of antibody 

fragments directly from unclarified feedstocks. However blocking of the bed inlet is a 

common problem during processing of high cell density or high viscosity feed 

streams. During this study column blocking was alleviated by benzonase treatment of 

the feed prior to the processing of periplasmic extracts. However, blocking still 

occurred following benzonase treatment during processing of whole broth extracts. 

Also, addition of nuclease to process streams may not be permitted by regulatory 

authorities in the purification of products destined for therapeutic use. Therefore 

alternative methods need to be developed to minimise the potential for blocking. 

Redesign of the bed distributor may be required. Alternatively, mild homogenisation 

of the process stream may break up cell clumps within the feed stream and thus 

alleviate the problem for certain feedstocks. Given that certain feedstocks are more 

likely to cause column blockage than others, it would also be useful to develop a 

scale-down model of the expanded bed to allow assessment of process performance 

and identification of potential operational problems at small-scale, early during the 

development of a purification scheme.

Limitations of expanded bed adsorption include the high cost of affinity adsorbents 

and limitations on the scale of operation. The high cost of affinity matrices means ion 

exchange chromatography is the only practical option for large scale processing. 

Current limitations on the scale of operation of the expanded bed may restrict the 

utility of this technique until larger columns and higher capacity matrices can be 

designed.

The results of the biosensor studies clearly indicate the potential of this device for the 

real-time monitoring and control of a bioprocess sequence. The biosensor assays 

could be improved by further reducing non-specific binding and developing methods 

to increase the uniformity and stability of the binding surface by oriented coupling of 

ligands, which may also increase assay range. Additional assays could also be 

developed for the detection of different product variants such as free heavy and light 

chain during fermentation and purification processes.
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A mass balance approach was used for the comparison of process options for the 

purification of Fab’ fragments from E. coli fermentation broth. The study illustrated a 

method for the comparison of process alternatives and highlighted the operational 

factors that should be taken into consideration when designing a purification scheme. 

However, the actual results were of limited use as a number of the values used were 

based on single process runs or on operations which had not been optimised for the 

process under investigation. Ideally, for a more thorough analysis of process 

alternatives, each unit operation should be optimised individually and then the four 

purification schemes should be assessed at equivalent scales of operation using the 

same feed material. In addition, a full economic analysis and a more detailed 

assessment of the quality of the product following each purification sequence is 

required to give a more accurate indication of the most suitable and efficient 

purification route.
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APPENDIX 1: Expression vector for the antibody fragment 4D5
Fab’

4D5-8 L chain
coRI 0.80

Seal 6.2

EcoRI 5.51

ompA

i - 8  H chain 

coRI 1.61

Xbal 4.21 EcoRV 3.61

Figure A l . l  Plasmid pAGP-4, used for expression o f  the antibody fragment 4D5 
Fab ’ in Escherichia coli. Restriction sites marked are the estimated position.
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APPENDIX 2: Properties of feed material used for downstream
processing trials

Table A2.1 indicates the source of material for each major downstream processing 

experiment and gives the properties of the fermentation broth at the time of cell 

harvest. All cell paste was frozen at -70°C following cell harvest, until required for 

DSP trials.

Fermentation DCW 
(g L-1)

Fab’ concentr 
Periplasmic

ation (mg L '1) 
Extracellular

DSP Trials

HCD4 (10L) 37 202 15 Laboratory scale PE
HCD5 (10L) 38 132 49 WBE
150L2 37 117 43 Scale-down 

centrifugation trials
450L 48 78 23 2L and 100L PE 

CARR/ CSA-1 
comparisons 

PBA and EBA
Table A2.1 Properties o f feed material used in downstream processing trials. Dry 
cell weights (DCW) and Fab ’ concentrations given are those measured immediately 
prior to cell harvest at the end o f the fermentation. DSP, downstream processing; 
PE, periplasmic extraction; WBE, whole broth extraction; PBA, packed bed 
adsorption; EBA, expanded bed adsorption.
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APPENDIX 3: Derivation of equations for modelling of antibody
release and protein degradation during 
periplasmic extraction

Antibody release and protein degradation during periplasmic extraction were 

modelled using first order kinetics. Derivations of the relevant equations are given 

below.

A3.1 Derivation of equations used for modelling antibody release

If it is assumed that the release of antibody from cells is a first order process, then it 

can be described by the equation:

( A 3 . 1 )

or ( A 3 . 2 )

where A = antibody released (fig mL'1)

Am = maximum antibody available for release (fig mL'1) 

ki = rate constant for antibody release (s'1) 

t = time (s)

Integration of equation A3.2, assuming the boundary conditions

1. A = 0 when t = 0

2. A —> Am as t —> oo

gives the relationship:

( A 3 . 3 )
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or rearranged,

A = A m( l - e “k,t) (A3.4)

Integration of equation A3.2, assuming the boundary conditions

1. A = Ao when t = 0

2. A —̂ Am as t —̂ oo

gives the relationship:

= k it (A 3-5)

or, rearranged,

A = Am(l -  e"k]l) + A0e 'k]l (A3.6)

A3.2 Derivation of equations used for modelling protein degradation

If it is assumed that the temperature-related denaturation of protein is a first order 

process, then it can be described by the equation:

dP / x
- - ^ ( P - P f )  (A3.7)

or, - ^  = k 2( P - P f) (A3.8)
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where P = functional (non-denatured) protein (mg mL'1)

Pf = functional protein remaining at the end of the denaturation 

process (i.e. protein which is stable at the temperature employed, 

mg mL’1)

k.2 = rate constant for protein degradation (s'1) 

t = time (s)

Integration of equation A3.8, assuming the boundary conditions:

1. P = Pm at t = 0 (where Pm is the total protein available for

denaturation)

2. P ->• Pf as t -> oo

gives the relationship:

- I n
p - p ,

p,„ -  pf
= k2t (A3.9)

or, rearranging,

P = Pme“k,t + Pf( l - e 'K’1)-k,t- (A3.10)
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APPENDIX 4: Periplasmic extraction scale up

Periplasmic extraction was scaled up by maintaining constant power per unit volume 
at the different scales of operation.

Power per unit volume given by following correlation:

3 t v  5P _ P0p  N Dj 
V V

( A 4 . 1 )

where P = Power (W)

P o  = impeller power number (-) 

p = density (kg m'3)

N = impeller speed (rps)

Di = impeller diameter (m)

V = liquid volume (m )

Constant power per unit volume was maintained by appropriate setting of the 

impeller rotational speed. Impeller speeds required to achieve a constant power per 

unit volume of 45 W m' are given in Table A4.1.

Extraction vessel 0.1L Stirred tank 3L Bioreactor 150L Bioreactor
Extraction volume 0.065L 2L 100L
P o 5 10 15
p (kg m‘3) 1014 1014 1014
N (rpm) 2 5 0 1 5 1 1 2 8

N (rps) 4.17 2.52 2.13
D i ( m ) 0.024 0.056 0.125
V (m3) 6.5x10'5 2x10‘3 0.1
P/V (W m'3) 4 5 4 5 4 5

Table A4.1 Impeller rotational speeds required to maintain constant power per unit 
volume at the different scales o f operation for periplasmic extraction.
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APPENDIX 5: Equations for 2 values of the laboratory batch
centrifuge, the tubular bowl and the disk stack 
centrifuge

Sigma theory was developed by Ambler in 1952 as a method of comparing the 

performance of different scales or designs of centrifuge. The sigma value, Z, 

indicates the required area of a gravity settling tank with the same clarifying capacity 

as the centrifuge under the same conditions. Equations for the Z factor of the 

laboratory batch centrifuge, the tubular bowl and the disc stack centrifuge are given 

below.

A5.1 The laboratory batch centrifuge

In the laboratory batch centrifuge, cylindrical containers are rotated with the axis of 

the cylinder at right angles to the axis of rotation. The £ value for the laboratory 

batch centrifuge is given by the equation:

Z  =
co2V

2gln
2r->

Vr, +  r j

( A 5 . 1 )

where V = liquid volume (m )

ri = distance from the centre of rotation to the liquid surface (m) 

i2 = distance from the centre of rotation to the surface of the 

sedimented cake (m) 

co = angular velocity (rad s'1)

A5.2 The tubular bowl centrifuge

The Z value for the tubular bowl centrifuge is given by the equation:
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I  =
CO K  L 

g
log.

r2 -  r \ 

2r.2 'N

2 2 Vr2 + r,V

(A5.2)

where L = length of bowl (m)

rj = distance from centre of rotation to the liquid surface (m)

X2 = distance from centre of rotation to the surface of the bowl (m)

A5.3 The disk stack centrifuge

The E value for the disk stack centrifuge is given by the equation:

(r3 -  r3)
E = 2 ; r W V  ^ F L (A5.3)

3gtan0 L v 7

where n = number of disks in the disk stack (-)

0 = lower angle of conical disk (rad) 

r0 = outer disk radius (m) 

rj = inner disk radius (m)

Fl is a correction factor to account for rib spacers on the disks which hold the disks 

apart. The rib spacers occupy area within the disk stack and hence reduce the 

equivalent settling area of the machine.

(A5.4)
4^.r2 l - ( r 0/i; )3

where Fl = E correction factor to account for disk ribs (-)

zl = number of ribs per disk (-) 

bc = rib width (m)
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APPENDIX 6: Technical data for the CARR Powerfuge

A6.1 Data for calculation of L

Length of bowl (L) 0.1273 m

Distance from centre of rotation

to the liquid surface (ri) 0.0508 m

Distance from centre of rotation

to the surface of the bowl fo) 0.0762 m

Centrifuge rotational speed (co) 1602 rad s’1 (15 300 rpm)

A6.2 CARR Powerfuge specifications

Bowl volume 1.0 L

Solids holding volume 0.9 L

£ value at 15300 rpm 1037 m2

Correction factor 0.9-1.0

The correction factor for the CARR is close to unity because the tubular bowl has 

simpler flow patterns than most centrifuges and therefore operates more closely to 

the Sigma theory prediction (and the implied assumptions).
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APPENDIX 7: Technical data for the Westfalia CSA-1 disk stack
centrifuge

A7.1 Data for calculation of 2

Number of disks in the disk stack (n)

Lower angle of conical disk (0)

Outer disk radius (r0)

Inner disk radius (rj)

Centrifuge rotational speed (©)

Number of ribs per disk (zl)

Rib width (bc)

A7.2 CSA-1 specifications

Bowl volume 0.6 L

Solids holding volume 0.3 L

Minimum discharge interval 2 min

£ value at 9810 rpm 1602 m2

A7.3 CSA-1 scale-down configuration

Number of active disks in the disk stack 12 

Bowl volume 0.13

Solids holding volume 0.089

£ value at 9810 rpm 427 m2

45

0.66 rad 

0.053 m 

0.021 m

1027 rads'1 (9810 rpm) 

6

0.005 m
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APPENDIX 8: Determination of operating conditions of the

The Beckman J2-M1 laboratory centrifuge, operated with the JS 13.1 swing out 

rotor, was used to predict recovery performance of the Westfalia CSA-1 disk stack 

separator. The laboratory centrifuge was operated at the same RCF as the CSA-1 and 

the relationship between clarification efficiency and equivalent Q/E compared to that 

obtained for the industrial machine.

Section A8.1 shows calculation of the rotational speed of the laboratory centrifuge 

required to produce the same RCF as the CSA-1 operating at 9810 rpm. Section A8.2 

details the method and equations used to calculate the equivalent Q/E of the 

laboratory machine, and shows the centrifuge spin times and corresponding Q/E used 

for assessment of recovery performance.

A8.1 Calculation of operating speed of the laboratory centrifuge 
required to give the same RCF as the CSA-1

A8.1.1 Calculation of RCF of CSA-1 operating at 9810 rpm

laboratory centrifuge required to predict the 
recovery performance of an industrial disk stack 
centrifuge

RCF = (A8.1); (A8.2)r,
g

For the CSA-1 r, =0.021 m

r0 = 0.053 m 

co = 1027 rads'1

=> RCF = 3716
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A8.1.2 Calculation of laboratory centrifuge rotational speed

R C F Lab =  R C F csa-i =  3 7 1 6

RCFlab = r in (LAB
( A 8 . 3 ) ;

r, - r ,
l n ( L A B )

In!
(A8.4)

For the laboratory centrifuge ri = 0.044 m

r2 = 0.114 m

= >  r i n ( L A B )  = 0.0735 m

o) = J g C R C ^ g )  ( A 8 . 5 )

r i n ( L A B )

co = 704 rads'1 (= 6723 rpm)

A8.2 Calculation of equivalent Q/2 for the laboratory centrifuge

The equation defining recovery performance for a laboratory batch centrifuge 

(derived in full by Ambler, 1959) is:

2gln
2r,

Vii+r27
co21

( A 8 . 6 )

where ri = distance from the centre of rotation to the liquid surface (m) 

r2 = distance from the centre of rotation to the surface of the 

sedimented cake (m) 

co = the angular velocity around the centre of rotation (rad s '1) 

t = the total time for centrifuging (s)
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For a batch centrifuge, Q is defined as:

(A8.7)

where V = the volume of material in the centrifuge tube (L) 

t = the run time of the centrifuge at constant speed (s)

Equation A8.6 applies for constant speed of operation only. It has been adapted by 

Maybury et al., (2000) to account for the acceleration and deceleration periods of the 

centrifuge bowl.

The modified equation is:

where y = the fraction of overall centrifugation time for acceleration (-) 

x = the fraction of overall centrifugation time for deceleration (-) 

tc = total centrifugation time (s)

Equation A8.8 is based on the assumption that the acceleration and deceleration 

periods are represented by linear relationships. Analysis of the centrifuge acceleration 

profile (Maybury et al., 2000) shows that the initial acceleration phase (0-500 rpm) 

and the end of the deceleration phase (500-0 rpm) are non-linear. However, the 

contribution of these regions to the overall Q/E was found to be small (<1%); 

therefore they have been ignored. Hence, for the calculation of Q/E values, the total 

centrifugation time, tc, was taken as the time between the bowl speed reaching 500 

rpm during the acceleration phase and reducing to 500 rpm during deceleration.

The centrifuge run times and corresponding Q/E values used in the centrifuge spin 

tests to determine the relationship between clarification efficiency and equivalent 

Q/E are shown in Table A8.1 The ‘centrifuge run time’ given in Table A8.1 is the

Q = _______________
E 6>2( 3 - 2 x - 2 y ) t (

(A8 .8 )
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actual run time set on the centrifuge control panel. This corresponds to the time from 

the beginning of acceleration to the beginning of deceleration. The time taken for the 

centrifuge to accelerate to 500 rpm was measured at approximately 15 seconds, 

therefore the relationship between the centrifuge run time (in minutes) and tc is given 

by the equation:

Centrifuge run time = (tc - time for centrifuge deceleration + 15)/60 (A8.9)

Table A8.1 shows that as the centrifuge run time varies, the duration of operation at 

the maximum speed of 6720 rpm varies, however the duration of the acceleration and 

deceleration stages remains constant.

Centrifuge 
run time 
(mins)

Equivalent 
Q/E (ms'1)

Total 
centrifugation 

time (tc)
( s )

Time for 
centrifuge 

acceleration
( s )

Total time 
at 6720 rpm

( s )

Time for 
centrifuge 

deceleration
( s )

3.5 8.24x10'8 290 76 120 94
6 4.45x10'8 439 76 269 94
10 2.56x1 O'8 679 76 509 94
15 1.67x1 O'8 981 76 811 94
20 1.24x1 O'8 1282 76 1112 94
29 8.49x1 O'9 1819 76 1649 94
47 5.20x1 O'9 2899 76 2729 94

Table A8.1 Centrifuge run times and corresponding Q/E values used for the 
construction o f recovery curves for the laboratory centrifuge. The centrifuge run time 
is the actual run time set on the centrifuge control panel and corresponds to the time 
from the beginning o f centrifuge acceleration to the beginning o f  deceleration. The 
total centrifugation time (tc) is the time used for calculation o f  Q/E values and 
corresponds to the time between the bowl speed reaching 500 rpm during the 
acceleration phase and reducing to 500 rpm during deceleration.
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APPENDIX 9: Operational flow rates and corresponding Q/2
values for the CSA-1 disk stack centrifuge and 
CARR Powerfuge

Tables A9.1 and A9.2 show the feed flow rates and corresponding Q/E values used 

during experimentation to determine the relationship between clarification efficiency 

and Q/E for the Westfalia CSA-1 disk stack centrifuge and the CARR P6 Powerfuge. 

Equations used for calculations of the relevant E factors are given in Appendix 5.

Feed flow rate 
(Lhr'1)

Bowl speed 
(rpm)

E
(m2)

Q/E
(ms'1)

11.2 9810 1602 1.9x1 O'9
20.2 9840 1612 3.5x1 O'9
29.2 9840 1612 5.0x1 O'9
49.4 9840 1612 8.5xl0'9
83.2 9840 1612 1.4x1 O'9
98.9 9870 1642 1.7x1 O'8

Table A9.1 Feed flow rates and corresponding Q/E values used to determine the 
relationship between clarification efficiency and Q/E for the Westfalia CSA-1 disk 
stack centrifuge. (E values were calculated using equation A5.3).

Feed flow rate 
(Lhr'1)

Bowl speed 
(rpm)

E
(m2)

Q/E
(ms’1)

15 15 320 1040 4.0x1 O'9
20 15 320 1040 5.3xl0'9
30 15 320 1040 8.0x10'9
50 15 320 1040 1.3x10"*
58 15 320 1040 1.5x10-*
90 15 320 1040 2.4x10"*

Table A9.2 Feed flow rates and corresponding Q/E values used to determine the 
relationship between clarification efficiency and Q/E for the CARR P6 Powerfuge 
(tubular bowl centrifuge). (E values were calculated using equation A5.2).
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APPENDIX 10: Operational flow rates and corresponding Q/E 
values for CSA-1 in full stack and scale-down 
configurations

Tables A 10.1 shows the feed flow rates and corresponding Q/E values used during 

preparation of recovery curves for the CSA-1 centrifuge operated in full-scale and 

scale-down configurations. E factors for the CSA-1 are given in Appendix 7.

CSA-1 (Full-scale) CSA-1 (Scale-down)

Flow rate 
(Lhr'1)

Q/E
(ms-1)

Q/cE
(ms-1)

Flow rate 
(Lhr'1)

Q/E
(ms"1)

Q/cE
(ms’1)

100 1 .73x1  O'8 4 .3 3 x l0 '8 27 1 .7 3 x l0 " 8 4 .3 3 x l0 " 8
5 0 8 .6 7 x 1  O'9 2 .1 7 x 1 0'8 13 8 .6 7 x 1  O’8 2 .1 7 x 1 0"8

3 0 5 .2 0 x 1  O'9 1 .30x1  O'8 8 5 .2 0 x l0 " 9 1 .3 0 x 1 0"8

2 0 3 .4 7 x 1  O'9 8 .6 8 x l0 '9 5 .3 3 .4 7 x 1 0"9 8 .6 8 x l0 " 9

10 1 .7 3 x l0 ‘9 4 .3 3 x l0 '9 2 .7 1 .7 3 x l0 " 9 4 .3 3 x 1  O'9

Table A  10.1 Flow rates and corresponding Q/E values used in the preparation o f  
recovery curves for the CSA-1 disk stack centrifuge operated in full-scale and scale- 
down configurations. To account for non-ideal flow a correction factor, c, o f 0.4 was 
used in the calculation o f Q/E
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APPENDIX 11: Equations for the calculation of assay error

The error associated with ELISA and biosensor assays was measured by repeating a 

calibration curve for each assay 10 times and calculating the error of the mean for 

each concentration using the equations given below:

<7
1. Standard error of the mean, SE = ~i= (A ll.l)

2. 95% confidence interval, 95% Cl = tSE (A11.2)

Cl
3. Error of the mean at 95% Cl = —  100 (Al 1.3)

x

where x = mean value for each concentration

a  = standard deviation for each concentration 

n = number of times each assay was repeated (=10) 

t = t value obtained from t-tables for (n-1) degrees of freedom at 

the 95% confidence interval
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APPENDIX 12: Mass balance analysis: calculation of operating 
parameters for packed and expanded bed 
purification processes

Chapter 8 compares four process for the purification of antibody fragments from E. 

coli fermentation broth. Each purification scheme concludes with a protein A packed 

or expanded bed affinity purification step. The following sections show the 

calculations for the determination of column size, process yield, process stream 

volume and operating time for these chromatographic purification processes.

A12.1 Purification Scheme 1

The individual unit operations, associated yields and overall process yields for 

purification scheme 1 are give in Table A12.1.

UNIT OPERATION YIELD (%) OVERALL YIELD (%)
1 Fermentation 100 100
2 Tubular Bowl Centrifugation 76 76
3 Periplasmic Extraction 85 64.6
4 Tubular Bowl Centrifugation 94 60.7
5 Filtration 98 59.5
6 Packed Bed Adsorption (PBA) ? ?
Table A12.1 Individual unit operation yields and total process yields for purification 
scheme 1.

A12.1.1 Calculation of column size required for packed bed adsorption

Fermentation assumptions Scale 100L

Solids fraction 10% (v/v) 

Fab’ yield 200 mg L-1

Total Fab’ 20 g

Process yield following filtration 59.5%

. .Total Fab’ to be processed by PBA 20 x 0.595 = 11.9 g
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Assuming the process is operated at 10% Fab’ breakthrough, this will give 98% Fab’ 

yield and a dynamic binding capacity of 47% of the total matrix binding capacity 

(determined from Figures 6.2.3 and 6.2.4, Chapter 6).

Total matrix binding capacity 12.5 mg mL'1

(determined experimentally for rProtein A 

Sepharose®Fast Flow, Table 6.2.1, Chapter 6)

Dynamic binding capacity (at 10% breakthrough) 12.5x0.47 = 5.9 mg mL-1 

Volume of matrix required to purify 11.9g Fab’ 11.9/ 5.9 = 2L

Therefore it was assumed an XK 50 mm x 100 cm column (Amersham Pharmacia 

Biotech, Uppsala, Sweden) containing 2L protein A Sepharose 4 Fast Flow 

chromatographic media (Amersham Pharmacia Biotech) would be used for the 

purification.

A12.1.2 Calculation of operating time for the packed bed adsorption process in 
purification scheme 1

Assumptions following periplasmic extraction:

Volume of process stream 

Solids fraction of process stream 

Liquid volume of process stream 

Liquid recovery by tubular bowl centrifugation 

(determined experimentally, Table 5.2.7, Chapter 5)

Liquid recovery during filtration (assumed) 100%

Volume of liquid to be process by PBA 90 x 0.96 x 1.0 = 86.4L

Assuming the chromatographic process is operated at a flow rate of 1000 cm hr'1 

(= 19.6 L hr'1), the total process time is determined as shown in Table A12.2.

100L 

10% (v/v)

100 x 0.9 = 90L 

96%
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CHROMATOGRAPHIC
STAGE

VOLUME (CV) VOLUME (L) TIME (hr)

Column equilibration 10 20 1.02
Load - 86.4 4.41
Wash 5 10 0.51
Elution 10 20 1.02
TOTAL TIME - - 6.96
Table A12.2 Calculation o f operating time for the packed bed purification o f Fab ’ in 
purification scheme 1.

A12.2 Purification Scheme 2

The individual unit operations, associated yields and overall process yields for 

purification scheme 2 are give in Table A 12.3.

UNIT OPERATION YIELD (%) OVERALL YIELD (%)
1 Fermentation 100 100
2 Tubular Bowl Centrifugation 76 76
3 Periplasmic Extraction 85 64.6
4 Disk Stack Centrifugation 73 47.2
5 Filtration 98 46.3
6 Packed Bed Adsorption 

(PBA)
? ?

Tabir£ A12.3 Individual unit operation yields and total process yields for purification
scheme 2.

A12.2.1 Calculation of column size required for packed bed adsorption

Fermentation assumptions Scale 100 L

Solids fraction 10% (v/v) 

Fab’ yield 200 mg L'1

Total Fab’ 20 g

Process yield following filtration 46.3%

/.Total Fab’ to be processed by PBA 20 x 0.463 = 9.3 g
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Assuming the process is operated at 10% Fab’ breakthrough, this will give 98% Fab’ 

yield and a dynamic binding capacity of 47% of the total matrix binding capacity 

(determined from Figures 6.2.3 and 6.2.4, Chapter 6).

Total matrix binding capacity 12.5 mg mL'1

(determined experimentally for rProtein A 

Sepharose®Fast Flow, Table 6.2.1, Chapter 6)

Dynamic binding capacity (at 10% breakthrough) 12.5x0.47 = 5.9 mg mL'1 

Volume of matrix required to purify 9.3g Fab’ 9.3/ 5.9 = 1.6 L

Therefore, it was assumed an XK 50 mm x 100 cm column containing 1.6 L protein 

A Sepharose 4 Fast Flow chromatographic media would be used for the purification.

A12.2.2 Calculation of operating time for the packed bed adsorption process in 
purification scheme 2

Assumptions following periplasmic extraction:

Volume of process stream 100L

Solids fraction of process stream 10% (v/v)

Liquid volume of process stream 100 x 0.9 = 90L

Liquid recovery by disk stack centrifugation 77%

(determined experimentally, Table 5.2.5, Chapter 5)

Liquid recovery during filtration (assumed) 100%

Volume of liquid to be process by PBA 90 x 0.77 x 1.0 = 69.3L

Assuming the chromatographic process is operated at a flow rate of 1000 cm hr'1 

(= 19.6 L hr'1), the total process time is determined as shown in Table A12.4.
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CHROMATOGRAPHIC
STAGE

VOLUME (CV) VOLUME (L) TIME (hr)

Column equilibration 10 16 0.82
Load - 69.3 3.54
Wash 5 8 0.41
Elution 10 16 0.82
TOTAL TIME - - 5.59
Table A12.4 Calculation o f operating time for the packed bed purification o f Fab ’ in 
purification scheme 2.

A12.3 Purification Scheme 3

The individual unit operations, associated yields and overall process yields for 

purification scheme 3 are give in Table A12.5.

UNIT OPERATION YIELD (%) OVERALL YIELD (%)
1 Fermentation 100 100
2 Tubular Bowl Centrifugation 76 76
3 Periplasmic Extraction (PE) 85 64.6
4 Expanded bed adsorption (EBA) ? ?
Table A12.5 Individual unit operation yields and total process yields for purification 
scheme 3.

A12.3.1 Calculation of column size required for expanded bed adsorption

Fermentation assumptions Scale 100L

Solids fraction 10% (v/v) 

Fab’ yield 200 mg L-1

Total Fab’ 20 g

Process yield following PE 64.6%

. .Total Fab’ to be processed by EBA 20 x 0.646 = 12.9 g
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Because expanded bed columns are only available in a limited range of sizes, it was 

assumed a Streamline 200 column (20 cm x 15 cm) would be used, containing 4.7 L 

Streamline rProtein A media (both manufactured by Amersham Pharmacia Biotech, 

Uppsala, Sweden).

The total binding capacity of the Streamline rProtein A matrix was determined 

experimentally to be 13.5 mg(Fab’) mL'1 (matrix) (Table 6.2.1, Chapter 6). Therefore, 

the total binding capacity of 4.7 L matrix is 63.5 g(Fab’).

Total Fab’ to be processed 12.9 g

Total binding capacity of matrix 63.5 g(Fab ’)

.’. binding capacity of matrix utilised 100 x 12.9/ 63.5 = 20% 

(following complete loading of the Fab’)

Operating at a binding capacity of 20% of the total matrix capacity gives the 

following process parameters (from Figure 6.2.6, Chapter 6):

Level of Fab’ breakthrough 27%

Fab’ yield 83%

A12.3.2 Calculation of operating time for the expanded bed adsorption process 
in purification scheme 3

Volume to be processed 100L

Assuming the equilibration, load and wash steps are performed at a flow rate of 185 

cm hr'1 (= 58.1 L hr'1) and elution is carried out at a flow rate of 90 cm hr'1 (= 28.3 L 

hr'1), the total process time is determined as shown in Table A12.6.
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CHROMATOGRAPHIC
STAGE

VOLUME (CV) VOLUME (L) TIME (hr)

Column equilibration 10 47 0.81
Load - 100 1.72
Wash 5 23.5 0.40
Elution 10 47 1.66
TOTAL TIME - - 4.59
Table A l  2.6 Calculation o f operating time for the packed bed purification o f  Fab ’ in 
purification scheme 3.

A12.4 Purification Scheme 4

The individual unit operations, associated yields and overall process yields for 

purification scheme 4 are give in Table A12.7.

UNIT OPERATION YIELD (%) OVERALL YIELD (%)
1 Fermentation 100 100
2 Whole Broth Extraction (WBE) 41 41
3 Expanded bed adsorption (EBA) ? ?
Table A12.7 Individual unit operation yields and total process yields for purification 
scheme 4.

A12.4.1 Calculation of column size required for expanded bed adsorption

Fermentation assumptions Scale 100L

Solids fraction 10% (v/v)

Fab’ yield 200 mg L '1

Total Fab’ 20 g

Process yield following WBE 41%

.*. Total Fab’ to be processed by PBA 20 x 0.41 = 8.2 g

For the reasons described previously (section A l2.3.1), it was assumed a Streamline 

200 column (20 cm x 15 cm) would be used, containing 4.7 L Streamline rProtein A 

media.
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The total binding capacity of the Streamline rProtein A matrix was determined 

experimentally to be 13.5 mg(Fab’) mL'1 (matrix) (Table 6.2.1, Chapter 6). Therefore, 

the total binding capacity of 4.7 L matrix is 63.5 g(Fab’).

Total Fab’ to be processed 8.2 g

Total binding capacity of matrix 63.5g Fab’

/. binding capacity of matrix utilised 100 x 8.2/ 63.5 = 13%

(following complete loading of the Fab’)

Operating at a binding capacity of 13% of the total matrix capacity gives the 

following process parameters (Figure 6.2.6, Chapter 6):

Level of Fab’ breakthrough 24%

I Fab’ yield 85%

!
|

| A12.4.2 Calculation of operating time for the expanded bed adsorption process
in purification scheme 4

Volume to be processed 110L

ii
Assuming the equilibration, load and wash steps are performed at a flow rate of 185 

cm hr’1 (= 58.1 L hr’1) and elution is carried out at a flow rate of 90 cm hr'1 (= 28.3 L 

hr’1), the total process time is determined as shown in Table A12.8.

CHROMATOGRAPHIC
STAGE

VOLUME (CV) VOLUME (L) TIME (hr)

Column equilibration 10 47 0.81
Load - 110 1.89
Wash 5 23.5 0.40
Elution 10 47 1.66
TOTAL TIME - - 4.76
Table A12.8 Calculation o f operating time for the packed bed purification o f  Fab ’ in 
purification scheme 4.
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APPENDIX 13: Mass balance analysis summary

Chapter 8 compares four purification schemes for the recovery of antibody fragments 

from E. coli fermentation broth. Tables A13.1-A13.4 show the yield, purification 

factor and operating time calculated for each unit operation in each of the four 

purification schemes.

UNIT OPERATION YIELD (%) PURIFICATION 
FACTOR (-)

OPERATING 
TIME (hours)

Fermentation 100 - -

Tubular Bowl Centrifugation 76 - 1.92
Periplasmic Extraction 85 4.0 5
Tubular Bowl Centrifugation 94 - 1.89
Filtration 98 - 2
Packed Bed Adsorption 98 14 6.96
PROCESS TOTAL 58% 56 17.8 hours
Table A13.1 Yield, purification factor and operating time calculated for each unit 
operation in purification scheme 1.

i

UNIT OPERATION YIELD (%) PURIFICATION 
FACTOR (-)

OPERATING 
TIME (hours)

Fermentation 100 - -

Tubular Bowl Centrifugation 76 - 1.92
Periplasmic Extraction 85 4.0 5
Disk Stack Centrifugation 73 - 1.23
Filtration 98 - 2
Packed Bed Adsorption 98 14 5.59
PROCESS TOTAL 45% 56 15.7 hours
Table A13.2 Yield, purification factor and operating time calculated for each unit 
operation in purification scheme 2.
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UNIT OPERATION YIELD (%) PURIFICATION 
FACTOR (-)

OPERATING 
TIME (hours)

Fermentation 100 - -

Tubular Bowl Centrifugation 76 - 1.92
Periplasmic Extraction 85 4.0 5
Expanded bed adsorption 83 12 4.59
PROCESS TOTAL 54% 48 11.5 hrs
Table A13.3 Yield, purification factor and operating time calculated for each unit 
operation in purification scheme 3.

UNIT OPERATION YIELD (%) PURIFICATION 
FACTOR (-)

OPERATING 
TIME (hours)

Fermentation 100 - -

Whole Broth Extraction 41 6.0 5
Expanded bed adsorption 85 12 4.76
PROCESS TOTAL 35% 72 9.8 hrs
Table A13.4 Yield, purification factor and operating time calculated for each unit 
operation in purification scheme 4.

275



NOMENCLATURE

A absorbance -

A antibody released mg mL"1

Am maximum antibody available for release mg mL'1

A0 initial antibody release mg mL'1

bc rib width m

c concentration mg mL'1

c E correction factor to account for non-ideality -

C ad Fab’ concentration in solids stream mg mL'1

C af Fab’ concentration in feed stream mg mL'1

C as Fab’ concentration in supernatant stream mg mL'1

C pd protein concentration in solids stream mg mL'1

C pf protein concentration in feed stream mg mL'1

Cps protein concentration in supernatant stream mg mL'1

ds diameter of particle m

D dilution factor -

D i impeller diameter m

E extinction coefficient mL pmol'1 cm

Fl E correction factor to account for disk ribs -

g acceleration due to gravity m s'2

G centrifugal force term -

ki rate constant for Fab’ release s'1

k2 rate constant for protein degradation s'1

ka molar association constant M '1

K dimensional constant (equation 4.1) p-2.9

1 path length cm

L length of bowl m

N number of passes through homogeniser -

N impeller speed rps

n number of active disks in the disk stack -

O D optical density -

P pressure Pa
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p

p

Pf

Pm

Po

Ps

Po

Pioo

Q

R

Rm

r

ri

*2

re

rj

rG

RCF

Se

t

VFDIS

VFF

VFSUP

V dis

V feed

V sup

Vg

Vz

V

y

X

Z,

power

functional protein

remaining functional protein at end of process 

total functional protein 

impeller power number

Extracellular protein/ enzyme concentration in sheared sample

Background protein/ enzyme concentration

Total enzyme/ protein available for release

volumetric flow rate

protein released

maximum protein available for release 

radial position of particle 

inner radius 

outer radius

effective radius of the centrifuge 

inner disk radius 

outer disk radius 

relative centrifugal force 

effective settling distance 

time

volume solids fraction of solids stream

volume solids fraction of feed stream

volume solids fraction of supernatant stream

volume of solids stream

volume of feed stream

volume of supernatant stream

settling velocity under gravity

settling velocity in a centrifugal field

volume

the fraction of overall centrifugation time for acceleration 

the fraction of overall centrifugation time for deceleration 

number of ribs per centrifuge disk

- l

W 

mg mL 

mg mL*1 

mg mL*1

-lmg mL 

mg mL’1 

mg mL’1
3 -1m s

mgg 
mg g 
m 

m 

m 

m 

m 

m

m

s

-l

-l

L 

L 

L 

m s 

m s’ 

m

-l
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Greek symbols

s extinction coefficient mL mg'1 cm'

0 lower angle of conical disk rad

p suspension dynamic viscosity Ns m‘2

V volume of sample in cuvette mL

p density kgm '3

Ps density of the particles kgm '3

PL density of the suspending fluid kgm '3

E equivalent centrifuge separating area m2

CO the angular velocity around the centre of rotation rad s '1
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