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Abstract

Little is known about the neural mechanisms that allow humans and animals to plan actions
using knowledge of task contingencies. Emerging theories hypothesize that it involves the
same hippocampal mechanisms that support self-localization and memory for locations. Yet,
there is limited direct evidence for the link between model-based planning and the
hippocampal place map. We addressed this by investigating model-based planning and place
memory in healthy controls and epilepsy patients treated using unilateral anterior temporal
lobectomy with hippocampal resection. We found that both functions were impaired in the
patient group. Specifically, the planning impairment was related to right hippocampal lesion
size, controlling for overall lesion size. Furthermore, while planning and boundary-driven place
memory covaried with one another, this relationship was attenuated in the patient group, which
is consistent with both functions relying on the same structure in the healthy brain. These
findings clarify both the neural mechanism of model-based planning and the scope of
hippocampal contributions to behavior.

Introduction

Using knowledge of task contingencies, humans and other animals can plan novel courses of
action, such as trajectories through a maze. Although the neural substrates for such “model-
based” planning are poorly understood, this ability is often viewed as similar to other functions
supported by the hippocampus, like representing and remembering locations in space. Both
model-based planning (Tolman, 1948) and place memory (O’Keefe and Nadel, 1978) are often
described as requiring ‘cognitive maps’ of the environment or task structure, and are
contrasted against habitual response-based behaviors that depend on the basal ganglia. Still,
despite the commonalities, these functions are distinct in principle and it is unclear whether
they actually share a common neural mechanism and, if so, what that mechanism is.

Research into hippocampal spatial cognition most clearly emphasizes localization: determining
one’s position in allocentric space. This function is most famously exemplified by location-
selective neural responses in the hippocampus (O’Keefe and Nadel, 1978) and behaviorally
operationalized using spatial tasks such as the Morris Water Maze (MWM) (Morris et al.,
1982), where rodents have to find and remember the location of a hidden platform in an open
arena. This type of “place memory,” keyed to allocentric configurations of cues like boundaries,
is distinguished from more landmark-based strategies, such as egocentric stimulus-response
strategies (e.g., turn left or right) which rely more on the basal ganglia (McDonald and White,
1994, Packard and McGaugh, 1996, Pearce et al., 1998). An analogous dissociation between
hippocampal and basal ganglia-dependent memory has been demonstrated in humans using



functional magnetic resonance imaging (fMRI) in virtual spatial tasks (Hartley et al., 2003, laria
et al., 2003, Voermans et al., 2004, Doeller et al., 2008).

By contrast, research into planning investigates how organisms use knowledge of task
contingencies, like action outcomes and state transitions, to evaluate actions by mental
simulation. Experiments probing such functions, including reward devaluation in operant lever
pressing (Adams and Dickinson, 1981, Adams, 1982) and multi-step reinforcement learning
(Glascher et al., 2010, Daw et al., 2011), support a distinction between two classes of
strategies — referred to as goal-directed or model-based planning vs. habitual or model-free
learning (Balleine and Dickinson, 1998, Daw et al., 2005). This distinction seems to parallel the
place vs. response memory dichotomy from spatial cognition (Poldrack and Packard, 2003,
Kosaki et al., 2018) and the related declarative vs. procedural memory distinction from the
memory literature (Squire, 1992, Knowlton et al., 1996, Foerde and Shohamy, 2011, Daw and
Shohamy, 2015). Indeed, model-free learning, like landmark-based stimulus-response
strategies in some spatial tasks, is well captured by theories of dopamine and the basal
ganglia (Schultz et al., 1997, Bayer and Glimcher, 2005).

It is less clear what neural mechanisms are responsible for model-based planning. There are,
however, a number of suggestive reasons to suspect it shares a common hippocampal
substrate with place memory (Hirsch, 1974, Dickinson and Balleine, 1993, Eilan et al., 1993,
Johnson and Redish, 2007, Daw and Shohamy, 2015, Kumaran et al., 2016). Hippocampal
function, of course, extends beyond spatial cognition to support declarative memory, and
notably a role in encoding the relationships among environmental stimuli (Eichenbaum and
Cohen, 2001, Davachi and Wagner, 2002, Kumaran et al., 2009, Schapiro et al., 2016,
Boorman et al., 2016, Garvert et al., 2017). Knowing such relations is critical to building a
model of task contingencies. Tests of relational encoding have even relied on tasks which are
similar in logic to probes for model-based planning, like transitive inference or acquired
equivalence (Dusek and Eichenbaum, 1997, Heckers et al., 2004, Shohamy and Wagner,
2008, Wimmer and Shohamy, 2012). Moreover, the hippocampus has been implicated in the
ability to imagine or simulate future events, a function that may be critical to model-based
planning (Hassibis et al., 2007, Addis et al., 2011). Spatial navigation studies have further
demonstrated that the hippocampus and surrounding medial temporal areas, in addition to the
current location, encode other variables that are relevant to planning, such as boundaries or
the identity, direction, and distance to a goal (Spiers and Maguire, 2007, Viard et al., 2011,
Chadwick et al., 2015, Wikenheiser and Redish, 2015, Brown et al., 2016, Kaplan et al., 2017).
Non-local place-cell firing, such as preplay of locations ahead of the animal, has also been
proposed to support planning by mental simulation of candidate routes, drawing on a cognitive
model or map of the world (Johnson and Redish, 2007, Pfeiffer and Foster, 2013, Daw and
Shohamy, 2015, Mattar and Daw, 2017).

At the same time, there is a surprising lack of direct evidence for hippocampal involvement in
model-based planning. For predominant rodent models of model-based behavior, including
outcome devaluation and contingency degradation in operant lever-pressing, hippocampal
lesions have negligible effects (Corbit and Balleine, 2000, Corbit et al., 2002). One exception is
a recent rodent study in which hippocampal lesions impaired model-based planning in a multi-
step decision task (Miller et al., 2017). However, the extensive training needed to teach



animals such sequential decision tasks may elicit model-free strategies that only mimic the
signatures of planning in more lightly trained humans (Akam et al., 2015, Economides et al.,
2015). Even seemingly model-based rodent behavior (Miller et al., 2017) could thus rely on the
hippocampus for different reasons. Finally, with few exceptions (Simon and Daw, 2011), little
evidence links hippocampal activity in human neuroimaging, or rodent place cell preplay to
planning in tasks specifically designed to identify choice strategies that require knowledge of
task contingencies.

We therefore sought to directly test the hypotheses that model-based planning uses a
hippocampal mechanism in humans, and whether this substrate is shared with boundary-
driven place memory. To this end, we studied the performance on a model-based planning
task (Daw et al., 2011) and a spatial memory task (Doeller et al., 2008) in healthy controls and
patients with medically intractable epilepsy, treated by unilateral anterior temporal lobectomy
(ATL) with hippocampal resection. We investigated whether damage to the temporal lobe
impaired model-based planning and boundary-driven place memory and how it affected the
relationship between them. If the hippocampus is a common neural substrate for both
functions, we expected hippocampal damage to impair performance on both tasks.
Furthermore, a common substrate could lead to correlated performance across the tasks, but
this correlation should itself be attenuated if that substrate is impaired by hippocampal
damage. Finally, because the lesions also affected overlying cortex, we explored to what
extent performance in either task was related specifically to the extent of damage to
hippocampus on either side, controlling for the overall extent of the lesion.

Results
Participant Characteristics

We recruited 19 epilepsy patients, treated with unilateral anterior temporal lobectomy (ATL) i.e.
surgical removal of the anterior temporal lobe on one side (Table 1), and 19 healthy controls
(see Methods). Patients and controls displayed no significant group differences in 1Q (tss=
0.2200, p=0.8271), age (t36=-0.7760, p=0.4428) or number of males vs. females (z=-0.3261,
p=0.7444).

Patients Controls
Number of participants 19 19
Mean 1Q (SE) 109.7 (2.8) 108.7 (3.6)
Mean age (SE) 37.0 years (1.9) 39.3 years (2.3)
Males/Females 10/9 11/8

Table 1: Characteristics of patients and controls.

For 10 out of 19 patients ATL was right lateralized (Table 2). There were no significant
differences between the right and left lateralized ATL groups in 1Q (t= -0.5295, p= 0.6033), age
(t27=1.0876, p=0.2919) or number of males vs. females (z=-0.6752, p=0.4995). Participant-
wise lesion masks were normalized to the MNI template (see Figure 1) and compared to the
Harvard-Oxford Lexicon (p>.5) in order to estimate size of lesion to the hippocampus (See
Methods). There was no group difference in estimated size of hippocampal resection (ti7= -



1.1124, p= 0.2814), however, total lesion size was significantly larger in the right lateralized
group (t17=-2.6103, p=0.0183).

Right lateralized ATL

Left lateralized ATL

Number of patients

10

9

Mean IQ (SE) 111.1 (4.8) 108.1 (2.5)
Mean age (SE) 35.0 years (2.8) 39.2 years (2.7)
Males/Females 6/4 4/5

Mean total lesion (SE)

65314 Voxels (2791)

40536 Voxels (2296)

Mean hipp. lesion (SE)

2791 Voxels (321)

2296 Voxels (302)

Table 2: Characteristics for patients with right and left lateralized ATL.

Figure 1: Patient lesion masks. Slices (y=82, 92, 102, 112, 122, 132) showing all 19 hand-
drawn patient ATL lesion masks normalized to the MNI template. Heat maps indicate the
number of masks overlapping at a given voxel. The hippocampus, as defined by Harvard-
Oxford Lexicon (p>.5), is shown in blue.

Patients display shift from model-based to model-free strategy

Participants completed 200 trials of a two-step Markov decision task (Daw et al., 2011)
designed to quantify the reliance on model-based and model-free strategies (see Methods).
The mean number of completed trials was 195.3 (SE 2.1) with no difference between control
and patient groups (t3s=1.2515, p= 0.2188). The mean number of rewards received was 107.9
(SE 2.6), also, with no significant difference between control or patient group (tss= -0.0399, p=
0.9684). In general, rewards in this task are by design highly stochastic and not sensitive to
differences in strategy.

On each trial the participant first made a choice between two spaceships. One spaceship most
commonly (p=.7) transitioned to the purple planet, and otherwise made a rare transition (p=.3)
to the red planet. For the other spaceship, probabilities were reversed. The participant then
made a choice between two planet-specific aliens, each associated with a unique, slowly
drifting probability of reward (see Figure 2).
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Figure 2: Two-step Markov Decision-Task. On each trial the participants chose one of two
first level actions (spaceships). One space ship transitions the participant to red planet with
p=.7 while the other space ship transitions the participant to red planet with p=.3. Having
transitioned to a second level state, participants chose between two second level actions
(aliens) that were unique to each planet. Each alien was associated with a unique, slowly
drifting, probability of receiving reward.
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Figure 3 shows markers of both as a function of group, estimated from a factorial logistic
regression (see Supplementary Table 2), which predicts choosing the same spaceship as on
the previous trial. Model-free learning is signaled by a main effect of reward, i.e. a tendency to
repeat choosing the spaceship that led to reward, whereas in model-based learning, choice of
spaceship is mediated by expectations about the planets to which it leads, indicated by an
interaction between reward and whether a rare or common transition occurred on the last trial.
If, for instance, a reward is received but following a rare transition, a model-based agent
should be less likely to repeat the choice of spaceship on the next trial. The difference in these
effects measures the relative strength of model-based vs model-free choice. The regression
also controls for additional nuisance explanatory factors, age and IQ.

The expression of model-based vs model-free strategies differed significantly by group, with
controls showing a relatively even mixture of strategies (similar to previous reports using this
task) but patients skewed away from model-based planning toward model-free learning. The
relative reliance on model-based over model-free strategies, calculated by taking the
difference between these effects, differed significantly between groups, indicating a specific
strategy change rather than a general impairment. (z=2.0278, p=0.043). This finding is
consistent with our hypothesis that hippocampal damage in the ATL lesion group specifically
affects the use of internal models or maps of task contingencies.
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Figure
3: Model-free and model-based regression weights for controls and patients. Estimated
with a logistic mixed-effects regression controlling for 1Q and age. Error bars indicate standard
error. The interaction of strategy (model-free vs. model-based) by group was significant
(z=2.0278, p=0.043).

For simplicity, the above factorial analysis only considers the effect of the preceding trial’s
events on each trial’s choice. To verify that our results were not dependent on this assumption,
and in keeping with previous work (Daw et al., 2011) we repeated our analysis (see
Supplementary Table 13) by fitting participants’ choices with a full 6-parameter computational
learning model (Daw et al., 2011, as modified by Gillan et al., 2016), which uses the full history
of preceding rewards to predict each choice. The results recapitulate the findings from the
regression: chiefly, a significant interaction of RL strategy and experimental group such that
patients are biased away from model-based and towards model-free strategies (p=0.036). In
addition, in this analysis (here going beyond the simpler regression analysis) the estimated
strength of model-free learning is itself significantly higher in the patient group than the control
group (p=0.043). The remaining parameters of the computational model did not differ
significantly between groups.

Patients display impaired boundary-driven place memory



Participants completed a spatial task (Doeller et al., 2008) where on each of 64 trials they had
to indicate, from memory, the correct location of one of four objects in a virtual arena (see
Methods). The mean number of completed trials was 61.3 (SE 0.5) with no significant
difference between control and patient group in number of completed trials (tzs= -0.2882, p=
0.7749).

Figure 4 Left: Spatial Task Block Structure. Virtual
arena as seen as from above. Between blocks the landmark (cone) moved in relation to the
boundaries (large purple circle). Correct location of the two boundary objects (og1 and 0g2)
stayed constant with respect to boundaries across all blocks. Correct location of the two
landmark objects (oL1 and o.2) stayed constant with respect to the landmark across all blocks.
Right: Measuring reliance on boundary and landmark cues. The landmark (cone) moves
(dotted line) in relation to boundaries (large purple circle) between blocks. In a trial preceding a
landmark move, an example object’s correct location (purple 0), i.e. where the object appears
during feedback, is in close proximity to the landmark (shaded cone). If participants remember
this object location in relation to boundaries and distal cues, the predicted object location in the
next block would also be indicated by the purple o. Conversely, if participants learned the
object location in relation to the landmark, the predicted object location after the landmark
moves to its new location (filled coned) would be the orange o. On the trials following
movement of the landmark we thus operationalize place memory by the boundary distance
error (dB) between their response (cross) and the location predicted by boundaries and distal
cues (purple 0). Response memory is operationalized by the landmark distance error (dL)
between their response (cross) and the location predicted by the landmark cue (orange o).
Lower dB and dL thus means greater reliance on boundary and landmark cues , respectively.

For two of the objects, correct locations were defined in relation to distal boundary cues around
the arena, and for the other two objects correct locations were defined in relation to a landmark
inside the arena (see Figure 2 Left). Trials were presented in four blocks consisting of 16 trials
each. Within the blocks, the landmark location was fixed with respect to the boundary cues, but
between the blocks, the landmark moved (see Figure 2 Left). Participants were not instructed
about the difference between landmark and boundary objects, or about the block-wise
landmark movements.



The movements of the landmarks with respect to the boundary cues serve to dissociate spatial
memory performance based on either type of cue. Given previous results (Pearce et al., 1998;
Doeller et al., 2008), we hypothesized that hippocampal damage would preferentially impair
boundary cue usage. Following Doeller et al. (2008), for each object, we therefore focused our
analyses on the first trial following each of the three landmark movements (average total 11.4
trials per participant, due to missed trials). This is because these trials cleanly dissociate
performance based on recalling the object’s location in the previous block relative to each type
of cue (Figure 4, right). Note that since the boundary and landmark cues remain fixed with
respect to each other within each block, performance on the remaining trials of each block is
not as diagnostic of cue usage, since to the extent behavior is based on recalling the object’s
most recent location with respect to either cue, this is equivalent for both cues (though see
Supplementary Figure 2 and Supplementary Table 11 for results on these trials). Similarly, to
avoid relying on the assumption that subjects were able to learn to differentiate landmark from
boundary objects (which is only possible following experience with at least one of the three
landmark movements) we analyzed landmark and boundary error for all objects rather than
differentiating by object type (For results broken down by object type, see Supplemental
Results and Supplementary Table 12).

On the critical trials, those following movement of the landmark, we quantified reliance on
either cue type by computing distance errors dB and dL, respectively, between the chosen
location and the correct locations as predicted by boundary cues and landmark cues, based on
the previous block (see Figure 4 Right). dB and dL thus inversely reflect performance with
respect to boundary and landmark cues. To assess group differences we specified a
regression model where the dependent variable, distance error (dB and dL for each trial) was
regressed on the key explanatory variables lesion group (control vs. patient) and distance error
type (dB or dL), while also controlling for additional nuisance explanatory factors, age and 1Q.

We found a significant interaction of group by distance error type (F1,97.56=5.5080, p=0.021),
indicating a difference between groups in their relative reliance on the two cue types. This
effect mainly reflected the finding that patient’'s dB was significantly higher, i.e. patients’
performance was less driven by boundary cues (F1,39.41=2.5102, p=0.016) (see Figure 5 and
Supplementary Table 1).

In a follow-up analysis, aimed at simplifying the design for later elaboration by assessing
relative reliance on boundary vs. landmark cues using a single explanatory variable, we
defined a relative measure of error: the ratio dB/(dL+dB), which measures whether participants
were relatively biased toward using boundary cues over landmark cues. Regressing it on
group (controlling for nuisance variables age and 1Q), we again found that patients were
significantly biased towards relying on boundary cues (F1,432=8.213, p=0.004) (see
Supplementary Table 9). All these results are consistent with our prediction that anterior
temporal lobe structures like the hippocampus preferentially support boundary- over landmark-
driven memory.
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Figure 5:
Boundary (dB) and response (dL) distance error (arbitrary units) for all objects on trials
that follow movements of the landmark. Estimated with a linear mixed-effects regression,
controlling for 1Q and age. Error bars indicate standard error. There was a significant group
difference in boundary distance error (F1,39.41=2.5102,p=0.016), but not landmark distance
error (F1,85.3=0, p=0.9990) with a significant interaction of group by cue type (F1,97.58=5.5080,
p=0.0210)

Relationship between model-based planning and boundary-driven place memory

So far, we have shown impaired model-based planning and boundary-driven place memory in
the patient group. Next, we examined the relationship between these two functions, first by
investigating their baseline correlation in neurologically intact control participants. We did this
by calculating the mean boundary distance error dB for each participant, and using it as a
covariate in the logistic regression model of our decision task. This approach is analogous to
estimating participant-by-participant scores for model-based planning from the logistic model,
then correlating those with dB in a second step, but preferable because it takes account of
statistical uncertainty about the participants’ planning scores in computing their relationship to
dB, which the naive correlation neglects. 1Q was also included as a nuisance covariate to
account for task-general variation.

Figure 6 displays the results of this regression (also see Supplementary Table 3), broken down
by group. Boundary-driven place memory significantly predicted a control participant’s use of a
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model-based strategy (z=6.6455, p= 0.001), consistent with the two measures sharing some
underlying substrate.

Next we engaged in a series of follow-up analyses to interrogate the specificity of this cross-
task relationship. First, we wished to examine whether the relationship was specific to model-
based and boundary-driven task strategies, rather than general to both strategies tested in
each task. We first verified that the increase in model-based planning associated with dB is
significantly larger than any corresponding effect for model-free choice (z=2.0473, p=0.0326),
or in other words that dB is associated with a relative increase in model-based relative to
model-free choice. Next, we refined this analysis to also probe its specificity to boundary over
landmark error. In a new regression model (see Supplementary Table 14), we replaced the
boundary error dB with the relative error ratio dB/(dL+dB) which measures whether participants
were relatively biased toward using boundary cues over landmark cues in the spatial task. In
the control group, as with absolute boundary error, relative error was also significantly
associated with relative increase in model-based, minus model-free, choice (z=2.0578,
p=0.039) (see Supplementary Table 10). Thus, in healthy controls there is a specific
relationship between boundary-driven spatial memory and model-based choice, relative to
their respective alternative strategies.

We next tested the specificity of the cross-task relationship to controls vs patients. We
reasoned that if the relationship in the control group depends on the intact hippocampus (e.g.,
if it arose due to a common substrate located there), then over and above the effects on each
task separately, their relationship would be affected by hippocampal/MTL damage. Therefore,
we tested the null hypothesis that the relationship between the tasks is unaffected by ATL
damage, the rejection of which would support the alternative hypothesis that the ATL does
affect their relationship. The relationship between boundary-driven memory and model-based
planning was indeed significantly attenuated in the patient group (z=2.137, p=0.032).
Reflecting this attenuation, the patient group, considered alone, did not display a significantly
detectable relationship between the two functions (z=0.156, p=0.875). Critically, this null result
does not imply that these functions are unrelated in the patient group.

Finally, we repeated this analysis using the full computational learning model in place of the
simpler regression-based index of learning (See Supplementary Table 14). Again, while
controlling for 1Q, we observed a strong positive correlation between model-based planning
and place memory in the control group (p=0.030) but not the patient group (p= 0.803),
although the group-wise interaction was merely trending in this version of the analysis
(p=0.081).
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Figure 6: Relationship between model-based planning and boundary distance error
(arbitrary unit) in controls and patients. Estimated with a logistic mixed-effects regression,
controlling for 1Q. Error bars indicate 80% confidence intervals. Individual place memory
performance is reflected by mean boundary distance error (dB) from the spatial task. Dots
indicate estimates for individual participants, calculated from the mixed-effects logistic
regression. The trend was significant in the control group (z=6.6455, p= 0.001), but not in the
left patient group (z=0.156, p=0.875). The slope differed significantly between groups
(z=2.137, p=0.032).

Deficits are more robust for patients with right lateralized ATL

Based on previous literature, we next sought to examine to what extent the reported effects
might be preferentially associated with lesions lateralized to one side or the other. Breaking
down the data this way requires examining small subgroups (N=9 and 10), meaning that the
key analyses comparing the two laterality groups against one another are underpowered
relative to comparing either group to controls. Also, lesion laterality is correlated with overall
lesion extent in our sample (Table 2). Altogether, these analyses are fundamentally more
exploratory and their results more tentative than those reported above.

With those caveats, we expected boundary-based memory, and spatial relations generally, to
be more strongly associated with the right hippocampus (Burgess et al., 2002). For instance,
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boundary-memory-related hippocampal activity in the previous fMRI study of the spatial
memory task we used was right-lateralized (Doeller et al., 2008). It is less clear, a priori, how
model-based planning might be lateralized.

Figure 7 shows decision task and spatial memory task performance with the patient data
further subdivided by ATL laterality; and Figure 8 shows the relationship between model-based
planning and dB also broken down by laterality. In all three cases the differences between
patients and controls (from Figures 4-6) appeared to be driven by the right lesion patients, with
the left lesion patients more similar to controls. This impression is only partly borne out by
statistics, however (see Supplementary Tables 4, 5 and 6). In particular, in all three cases the
right patients differ significantly from controls (dB minus dL: F1,92.22=4.4635, p=0.034; model-
based minus model-free: z=2.2950, p=0.022; across-task correlation between model-learning
and boundary memory: z=2.5497, p=0.011), whereas the left patient group did not differ from
controls in any case (dB minus dL: F1,100.7=2.644, p=0.107; model-based minus model-free:
z=1.0008, p=0.317; across-task correlation between model-learning and boundary memory:
z=0.4696, p=0.639). However, in no case were the lesion groups significantly different from
one another (dB minus dL: F1, 97.8= 0.1503, p= 0.69903; model-based minus model-free: z=-
1.1490, p=0.251; across-task correlation between model-learning and boundary memory:
z=1.5524, p=0.121).

We also examined the breakdown, by lesion laterality, of the relationship between relative
measures of planning and spatial memory, to account for alternative strategies. In the
regression model specified earlier that included the relative error ratio dB/(dL+dB) as a
covariate (see Supplementary Table 10), the association between relative preference for
model-based (minus model-free) planning and the relative bias toward using boundary cues
was larger in the left group than the right group (z=3.5278, p=0.005). An estimated effect in the
same direction was also seen comparing the control with the right patient group, with the
relationship being stronger in the control group, although it did not reach significance
(z=1.7278, p=0.1170).
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Figure 7 Top: Boundary (dB)
and response (dL) distance error (arbitrary units) for controls and patients with right
and left lateralized ATL. Estimated with a linear mixed-effects regression, controlling for 1Q
and age. Error bars indicate standard error. There was a significant difference between dB and
dL when comparing the control and right patient group (F1,92.220=4.4635 p=0.034). Bottom:
Model-free and model-based regression weights controls, right and left lateralized ATL
patients. Estimated with a logistic mixed-effects regression, controlling for IQ and age. Error
bars indicate standard error. The difference in model-free vs. model-based was significantly
different between the control and right patient group (z=2.295 p=0.022).

Thus, although noisy, there is a consistent suggestion across all three measures and different
ways of examining the cross-task relationship that the results of this study were most robust in
the right lesion group
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Figu
re 8: Relationship between model-based planning and boundary distance error
(arbitrary unit) for controls and patients with right and left lateralized ATL. Estimated with
a logistic mixed-effects regression, controlling for 1Q. Error bars indicate 80% confidence
intervals. Individual place memory performance is reflected by mean boundary distance error
(dB) from the spatial task. Dots indicate estimates for individual participants, calculated from
the mixed-effects logistic regression. The association differed significantly between the control
and right patient group (z=2.5497, p=0.011).

Lesion-size in the right hippocampus predicts model-based planning deficits

One way to sharpen the foregoing analyses is to focus specifically on not just the side but the
particular anatomical region hypothesized to underlie the effects: the hippocampus.
Accordingly, we tested how performance on the tasks co-varied with estimated lesion size on
the right and left hippocampus respectively. Hippocampal lesion size for each patient (see
Figure 1) was estimated by comparing the normalized anatomical masks to the Harvard-
Oxford Lexicon (p>.5) (see Methods). Importantly, the ATL procedure involves a pattern of
damage to numerous temporal lobe structures in addition to hippocampus, which means one
should be highly cautious interpreting results with respect to any particular structure. Although
it is not practical to control for damage to many different MTL structures individually, we
attempt to mitigate these concerns and focus on hippocampal lesion size by controlling for the
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overall lesion size as a nuisance effect. The regression analyses also controlled for age and

Q.

We found, as can be seen in Figure 9 (see Supplementary Table 7), that model-based
planning was significantly worse for larger right hippocampal lesions (z=2.8305, p=0.005).
Conversely, planning was not significantly related to the amount of hippocampal damage on
the left hippocampus (z=1.0622, p=0.2882) and this difference between right and left effects
was itself significant (z=2.5076, p=0.0122). These results indicate that the amount of damage
to the right but not the left hippocampus is related to model-based deficits. However, in order
to further test specificity, and ensure that the lesions in the right hippocampus are not simply
causing general learning deficits, we also calculated the effect of each hemisphere’s
hippocampal lesion size on the difference between model-based and model-free learning, as
estimated by the logistic regression. As predicted, we found that right hippocampal lesion size
was significantly related to a shift away from model-based towards a model-free strategy
(z=4.0262, p=0.0028) and that this effect was significantly larger for right compared to left
hippocampal lesions (z=4.5278, p=0.0001).

For boundary memory, the effects of lesion size on performance were similar in magnitude and
pattern, although not significant in either the right (F1,12.16=2.6082, p=0.1320) or the left patient
group (F1,12.93=0.1204, p=0.7340) (see Supplementary Table 8). It should be noted that this
analysis is based on many fewer trials than the sequential decision task analysis.
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Figure 9: Relationships between model-based planning and hippocampal lesion size.,
for patients with right and left lateralized ATL. Estimated with a mixed-effects regressions,
controlling for 1Q, age, and total size of lesion. Error bars indicate 80% confidence intervals.
There was a significant relationship in the right patient group (z=2.8305, p=0.005) but not in
the left patient group (z=1.0622, p=0.2882), with a significant difference between the right and
left patient groups (z=2.5076, p=0.0122).

Discussion

Although extensive evidence indicates that the hippocampus supports localization in allocentric
space, there is relatively little direct evidence for the hypothesis that the same mechanisms
extend to model-based planning. We addressed this gap by testing model-based planning and
place memory in patients with extensive hippocampal damage as a result of unilateral ATL
lesions and matched, neurologically typical controls. Our results are consistent with the
hypothesis that both and model-based planning and boundary-driven place memory share a
common mechanism, which is affected in ATL patients and, more tentatively, associated with
right hippocampus.

As predicted, ATL patients displayed significantly attenuated boundary-driven place memory in
our MWM-like spatial memory task, alongside spared landmark-based memory. These results
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echo the dual-systems view of navigation supported both by rodent lesion (O'Keefe and Nadel,
1978, McDonald and White, 1994, Packard and McGaugh, 1996, Pearce et al., 1998) and
human neuroimaging experiments (Hartley et al., 2003, laria et al., 2003, Voermans et al.,
2004, Doeller et al., 2008), whereby the hippocampus supports fast learning of allocentric
spatial maps and the striatum facilitates slow, incremental associations between stimuli and
responses. That said, one weakness of the current task in operationalizing the place vs.
response distinction is that although use of boundary cues clearly exercises allocentric spatial
localization, landmark usage imperfectly captures a striatal response system as classically
envisioned (for instance, because some allocentric information is still needed to place objects
correctly relative to the landmark). Nevertheless, the use of boundary cues to index
hippocampal function (the measure most important to our results) is unambiguous and well
validated (Pearce et al., 1998, Doeller et al. 2008), even if the landmark foil imperfectly
captures a hypothetical striatal contribution. Also, our distance error measures assess the
tendency of participants to use either sort of cue. It cannot distinguish deficits in boundary-
driven place memory per se from performance deficits such as reduced attention to these cues
or a greater belief that landmarks predict object locations. All these mechanisms, though, are
consistent with the broader perspective that anterior temporal lobe is ultimately involved in
allocentric spatial localization based on configurations of cues.

The patients were also significantly biased away from using model-based planning and toward
model-free habitual strategies in the two-step Markov decision task. This result provides causal
evidence for the inference that temporal lobe structures support model-based planning, over
and above their role in place memory. The appearance of a compensatory shift toward
improved model-free learning, which is rarely reported with this task (Frank et al., 2004),
indicates that behavior in the ATL patients is not simply noisier, and instead is consistent with
models invoking multiple, potentially competing, reinforcement-learning systems in the human
brain (Daw et al., 2005). Still, our results do not speak clearly to the perennial question
whether the hippocampus plays a special role in such models for spatial vs. more abstract
relational tasks. This is because although our planning task is structured like an abstract
Markov decision process, its cover story, in terms of rocket trips to planets, might have elicited
a spatial interpretation.

Our results also complement and extend previous research with rodents. Unit recording
studies have shown results suggestive of hippocampal involvement in model-based planning,
notably replay of forward trajectories in hippocampal place cells (Johnson and Redish, 2007,
Pfeiffer and Foster, 2013). However, in contrast to our results, previous studies with place cell
recordings have not yet shown behavioral evidence for a link between the hippocampus and
the use of this knowledge in planning, nor do they provide evidence for a causal role of
hippocampus in such a function. In these respects, our results more closely parallel a recent
report of a related deficit in model-based learning in rodents during inactivations of the dorsal
hippocampus, using an analogous two-stage Markov decision task (Miller et al., 2017). The
targeting of the inactivation to hippocampus in the rodent study sharpens the anatomical
specificity of the effect. Conversely, our human result clarifies the contribution of the damaged
structure, because we know more about the computations underlying model-based behavior
on this task in humans. In particular, in humans, but not yet rodents, model-based choices
have been explicitly linked to prospective neural activity at decision time (Doll et al., 2015).
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This helps to rule out other potentially confounding strategies, such as that the apparently
model-based choices in rodents are instead produced by some learned response switching
rule contingent on events spanning multiple trials. It has been suggested that such model-free
strategies might arise following overtraining of the sort used to teach animals this task (Akam
et al., 2015, Economides et al., 2015); this might also implicate hippocampus for other,
confounding reasons, such as its involvement in trace conditioning and latent states (Solomon
et al., 1986, Blchel et al., 1999, Gershman et al., 2010). Our findings of a similar result in
humans, without extensive training, thus help corroborate the interpretation of the rodent study
as well.

Comparing performance between our two tasks we also found that in healthy controls,
boundary-driven place memory performance correlated with the extent of reliance on model-
based planning strategies. Importantly, this relationship was also significantly attenuated in the
patient group, a result that suggests the lesion affects some common substrate for the tasks
that is otherwise provided by the temporal lobes in the healthy brain. Following damage to this
structure, however, the two tasks may be at least partly supported by differential compensatory
mechanisms, leading to their decorrelation. These findings are consistent with the hypothesis
that both model-based planning and place memory share a common mechanism, which is
impaired in ATL patients.

It is surprising and interesting that the effects we report emerge following damage to only one
lobe, as unilateral temporal lobe damage is generally known to produce rather subtle effects
on cognition in humans (Spiers et al., 2001) and animals (van Praag et al., 1998), relative to
the famously dramatic effects of bilateral lesion (e.g. Scoville and Milner, 1957). This may
relate to our use of two behavioral tasks that are well attuned to temporal lobe function.
However, there exist inherent and important caveats in drawing conclusions about the neural
bases of effects from a study of this sort. It is possible that the observed effects are caused, at
least in part, by damage to the brain, including the hemisphere not surgically altered, as a
result of the chronic epilepsy that prompted the surgery. Indeed, as with all studies of temporal
lobe function in patients with epilepsy, the possibility that impaired behavior and cognition in
patients is due to a history of epilepsy rather than the surgical intervention per se must be
taken into account.

For this reason and others, we must also be cautious about associating the damage with
individual structures. Our analyses indicate that the size of lesion to the right hippocampus is
significantly related to model-based planning deficits. Still, ATL lesions additionally affect a
number of other regions including parahippocampal cortex, perirhinal cortex, and amygdala,
which might also subserve these effects. Moreover, since the pattern of the lesions mainly
varies in the extent that the temporal lobe has been removed in the dorsal direction, the
patterns of damage to these structures tends to covary across individuals. Such collinearity
makes it difficult to use variation across patients in damage to individual structures to fully
disentangle their differential roles. We attempted to mitigate these issues by controlling for
overall lesion size. Nevertheless, due to the very substantial analytic and interpretational
issues, this anatomical specificity remains emphatically tentative.
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These caveats aside, a final question posed by our results concerns how model-based
planning and boundary-driven place memory actually relate to one another. In the spatial
literature, the notion of a cognitive map primarily refers to place-selective hippocampal activity,
which allows organisms to recognize and remember discrete locations in allocentric space.
From the perspective of planning, a cognitive map goes beyond such a representation, but is
built upon it: the map captures the relationships between locations, which can be used to
evaluate candidate actions. This function fits well with the broader view of hippocampus
supporting relational memory (Eichenbaum and Cohen, 2001, Davachi and Wagner, 2002,
Kumaran et al., 2009, Schapiro et al., 2016, Boorman et al., 2016, Garvert et al., 2017) which
indicate that the planning deficit in patients stems from hippocampal damage being
accompanied by attenuation of the knowledge of relationships between actions and states.
This view is also consistent with recent computational models describing how the
hippocampus might serve model-based planning. In spatial tasks, sequential activations of
place-selective cells are hypothesized to provide, not only a mnemonic function through
supporting reactivation of previously traversed trajectories, but a planning function by
generating novel place cell sequences, based on the learned contingencies between
locations (Johnson and Redish, 2007, Pfeiffer and Foster, 2013, Mattar and Daw, 2018). The
related successor representation model (Stachenfeld et al., 2017, Garvert et al., 2017) also
focuses on learned relationships among locations, by proposing that place selectivity itself is
built from experience of state transitions to reflect expectations about future locations. A key
challenge for future work addressing these ideas will be studying hippocampal activity in tasks,
like the planning one used here, which manipulate animals' experience of environmental
relationships to reveal how they leverage this knowledge to guide choice.
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Methods

Participants

The patient sample consisted of 19 individuals who had undergone unilateral anterior temporal
lobectomy (ATL) for the treatment of intractable epilepsy. Patients were recruited from the New
York University (NYU) Patient Registry for the Study of Perception, Emotion and Cognition
(PROSPEC). The control sample consisted of 19 healthy controls (HC), who were recruited
from the local community through internet-based advertisement and gave consent to
participate in the study.

A clinical neuropsychologist (MRM or KB) conducted all standardized procedures for screening
patients for inclusion into NYU PROSPEC. Patients were only selected for inclusion if there
was no evidence of global cognitive dysfunction as measured by a comprehensive
neuropsychological evaluation, an FSIQ (Wechsler Adult Intelligence Scale-Fourth Edition
(Wechsler, 2008) above 80, no evidence of diffuse atrophy on MRI (e.g., brain tumor or
idiopathic epilepsy), or and no history of psychiatric or neurologic disease other than the
primary etiology for the focal brain lesion.

On the day of testing, participants completed the two behavioral tasks separated by a short
break. For all participants the sequential decision making task was given first, followed by the
spatial memory task. For the control participants the completion of the tasks was followed by
the administration of the WAIS-IV. For the patient participants, the WAIS-IV had been
completed during screening procedures for inclusion into PROSPEC.

MRI Scanning and Image Processing
When post-surgical structural brain scans (T1 MP-RAGE) were not available from the referring

center, the Department of Radiology at the NYU School of Medicine, patients were imaged at
the NYU Center for Brain Imaging on a 3-Tesla Siemens Allegra head-only MR scanner.
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Medical Center scans were obtained using 1.5 or 3-Tesla Siemens full-body MR scanners.
Image acquisitions included a conventional three-plane localizer and two T1-weighted
gradient-echo sequence (MP-RAGE) volumes (TE =3.25 ms, TR = 2530 ms, Tl = 1.100 ms,
flip angle=7°, FOV=256 mm, voxel size=1x1x1.33 mm). Acquisition parameters were
optimized for increased gray/white matter image contrast.

The high-resolution structural images from each patient were normalized to Montreal
Neurological Institute (MNI) standard space using FSL FLIRT (FMRIB’s Linear Image
Registration Tool; http://fsl.fmrib.ox.ac.uk/fsl) (Jenkinson and Smith, 2001). This consisted of a
two-step procedure: First, using MRIcron
(http://www.mccauslandcenter.sc.edu/mricro/mricron/), a mask was drawn over the lesion and
any craniotomy defect to prevent bias in the transformation, then masked voxels were
assigned a weight of “0” and ignored during a subsequent 12-parameter affine transformation
of the lesioned brain to the standard MNI 1 mm reference volume (Mackey et al., 2016). The
second step was manually tracing the lesions on individual slices of the patients’ brains
overlaid on the standard MNI brain template, while crosschecking in all three planes. This
tracing procedure produced a 3D mask with “1” indicating the presence of the lesion and “0”
the presence of normal tissue. All patients had surgical lesions, which made the margins
readily visible on the T1-weighted MRI images. In instances where there was uncertainty
regarding the lesion margins, the treating neurosurgeon(s) and/or neuroradiologists were
consulted.

Lesion masks drawn in MNI space were subsequently overlaid on the Harvard-Oxford
Structural Atlas) (Mazziotta et al., 2001) to estimate the extent of damage to the hippocampus
(see Figure 1). Hippocampal lesion size was calculated as the voxel overlap between the
individual lesion masks and the hippocampus as defined by the Atlas with p>.5.

Spatial Memory Task

Each participant completed 64 trials of a spatial memory task, identical (with one exception,
see below) to the task used by Doeller et al. (2008). On each trial, participants navigated a
virtual reality arena using keyboard presses. UnrealEngine2 Runtime software (Epic Games)
was used to present a first-person perspective view of the arena. The virtual arena was
bounded by a circular wall, contained a single intra-maze landmark in the form of a traffic cone,
and was surrounded by distant cues (mountains, clouds, and the sun) projected at infinity.
Both the boundary (wall) and landmark (cone) were rotationally symmetric, leaving the distal
cues as the main source of orientation.

At the beginning of each trial, a picture of one of four objects was presented on a grey
background for 2 s. Participants were then placed in a random position within the arena
without any objects, one-fifth of the radius from the center of the arena and facing a random
direction (note that in Doeller et al. (2008) the starting radius was not restricted). Participants
subsequently had 12 seconds to navigate to the correct location of the object as they
remembered it from previous trials, and indicate that position by a button press. Following this
button press, the object immediately appeared in its correct location. If no response had been
made in 12 seconds, the object also appeared in its correct location automatically. Participants
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ended the trial by collecting the object in its correct location. A fixation cross was then
presented for 2 s, before the start of the next trial.

The task consisted of 64 trials divided into 4 continuous blocks, each containing 4 pseudo-
randomized presentations of each of the 4 objects. Between blocks, the landmark moved in
relation to the boundaries, such that there were four arena configurations, with the landmark
roughly in the middle of the north, south, west, and east sectors of the arena, as defined by the
distal cues (See Figure 2 Left). The order of arena configurations over blocks was
counterbalanced across participants and experimental groups. Participants were not informed
of the landmark movements prior to the experiment.

During the first block, the correct location of all objects was in rough proximity of the landmark.
Two of the objects were ‘boundary objects’, for which the correct locations were fixed relative
to the environmental boundaries across the whole experiment. The other two objects
(unannounced to the participants) were ‘landmark objects,’ for which correct locations were
fixed at a constant distance and direction to the intra-maze landmark even as the landmark
moved.

The task probed for memory of correct object locations within the arena. Critically, by
manipulating the landmark location in relation to the boundary and distal cues, the task
distinguished whether participants stored place memory of allocentric location in relation to the
boundary and distal cues, or by egocentric response memory in relation to individual
landmarks (See Figure 4 Right). The original study, using the same procedure during fMRI in
healthy participants, showed that place and response memory correlated with activity in the
right posterior hippocampus and striatum, respectively (Doeller et al 2008).

Participants practiced in an unrelated virtual environment with a different set of object stimuli
before performing the experiment. Additionally, before the first trial, participants collected each
of the objects once in their correct block 1 locations.

Spatial Memory Task Analysis

To measure memory of locations in relation to boundary and landmark cues, we focused our
main analysis on the trials following the relative movement of the landmark in relation to the
boundaries. Reliance on boundary cues was quantified by boundary distance error (dB), where
dB was the distance from the response location to the correct location as defined by the
boundary and distal cues in the previous block (See Figure 4 Right). Reliance on landmark
cues was quantified by landmark distance error (dL), where dL was the distance from the
response location to the correct location as defined by the landmark, according to the position
of the object relative to the landmark in the previous block, translated with respect to the
landmark’s new position (See Figure 4 Right). Low dB thus indicated greater reliance on
boundary cues, which we interpret as ‘place memory’, and low dL indicated greater reliance on
landmark cues, which we interpret as ‘response memory’.

To capture the repeated-measure structure of the data, all statistical analyses of performance
in the task were done using mixed-effects linear regression, treating participant as a random
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factor. The models were estimated using the fitlme function in Matlab, with standard errors
computed using the Satterthwaite approximation to the degrees of freedom when the model
was linear, and Wald (asymptotic Gaussian) test for logistic models. The dependent variable,
distance error (dB and dL respectively for each trial) was regressed on the key explanatory
variables lesion group, distance error-type (dB or dL) and object type (boundary or landmark),
while also controlling for additional nuisance explanatory factors, age and I1Q.

Sequential-Decision Making Task

Participants also completed 200 trials of a two-step Markov decision task designed to quantify
the extent to which participants use a world model to prospectively evaluate actions (Daw et
al., 2011). The task was framed as a game about mining for space treasure (Decker et al.,
2016). Each trial involved two choices in succession, followed by reward (See Figure 2).
Participants first made a choice between two actions, depicted as spaceships, randomly
presented on the left and right. The choice resulted in a transition to one of two second-stage
states (depicted as a red or purple planet). One spaceship most commonly (p=.7) transitioned
to the purple planet, and otherwise made a rare transition (p=.3) to the red planet. For the
other spaceship, probabilities were reversed. Participants were informed that each spaceship
was more likely to go to a different planet but not which planet, nor the explicit transition
probabilities.

Subsequently, participants made a choice between two actions depicted as a pair of aliens that
were unique to the planet, randomly presented on the left and right. Each alien was associated
with a probability of monetary reward (vs nothing) that slowly diffused over trials according to
an independent random walk. Rewards were paid out at the end of the experiment at a rate of
15 cents per reward. The random change in the second-stage reward probabilities encouraged
participants to adjust their choice preferences at both stages trial-by-trial, so as to maximize
payoffs. For each choice, participants had 3 seconds to respond; or else the trial was aborted
with a time-out message.

Prior to the experiment, participants completed an extensive instructional tutorial. The tutorial
included a 20-trial practice run, using a different set of visual stimuli (planets, spaceships, and
aliens) but otherwise identical.

Sequential-Decision Making Task Analysis

The logic of the task exploits the noisy coupling between spaceships and planets to measure
model-free learning - directly learning the value of spaceship choices vs. model-based
planning - prospectively computing the value of the spaceship choices in terms of the planets
they lead to.

For instance, consider on some trial choosing the spaceship that usually transitions to the
purple planet, but instead being taken to the red planet (a “rare” transition). On the red planet
your choice of alien is subsequently rewarded. In this situation model-free and model-based
strategies make conflicting predictions about first-level choice behavior on the next trial.
Participants using a model-free strategy will be more likely to choose the same spaceship on
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next trial, as it was rewarded. Conversely, participants using a model-based strategy will be
more likely to switch and choose the other first-level action. This is because the model-based
strategy computes the value of the spaceships using a cognitive map or model of their
transition probabilities to the respective planets and the reward expected at the planets.

The goal of analysis was to estimate, for each participant, the extent to which they followed
either strategy. Following previous work (Daw et al., 2011), we did this two ways, using a
factorial logistic regression that captures the above qualitative logic, and fits of a more
elaborate, but more assumption-laden, computational learning model.

We analyzed the first-level choices over spaceships using mixed-effects logistic regression
(estimated using the fitglme function in Matlab). For each trial, the dependent variable (coded
as stay with the same spaceship or switch, relative to the previous trial) was explained in terms
of two events from the previous trial: whether reward was received, whether the planet
encountered was reached following a common or rare transition given the spaceship chosen,
and the interaction of these two factors. Our measure of model-free choice was the main effect
of reward; our measure of model-based choice was the interaction of reward by transition type
(common vs. rare). We further interacted the task factors with experimental group (lesion vs.
control) as well as with two nuisance covariates, IQ and age, which have both been shown to
affect behavior on this task (Gillan et al., 2016). The intercept, and the regression coefficients
for reward, transition, and their interaction were all taken as random effects (allowed to vary
across participants).

To test our predictions about the relationship between reinforcement learning strategies
employed in the decision-making task and place memory performance from the spatial
memory task, we also specified a second regression model which interacted the task- and
group-related factors (reward, common vs rare, group, and their interactions) with participant-
specific average boundary distance error (dB). IQ was also included as a nuisance variable.
The interactions with dB (up to four-way) measure the extent to which the various effects in the
decision task systematically vary, across participants, with their spatial memory performance;
i.e. this is analogous to extracting per-participant effect sizes from the decision model and
correlating them with dB, but by estimating that correlation as an effect within the regressing
defining those decision effects, accounts properly for uncertainty in the per-participant
estimates. We also calculated a ratio dB/(dL+dB), where dL and dB where participant wise
means of landmark and response distance error. This ratio was also used in a separate model
interacted with task- and group-related factors.

Supplementary Methods for Computational Model Fit

The logistic regression analysis considers only the previous trial’'s experience in predicting
each choice; this simplification is motivated by a limiting argument over the learning rate
parameter in a more elaborate RL model of the data (Daw et al., 2011). In order to ensure that
our results were not affected by neglecting the effect of earlier trials, we repeated our analyses
fitting each participant’s trial-by-trial choices with a full RL model in which each choice depends
on values learned from all previous rewards (based on Daw et al., 2011, but using the version
from Gillan et al. 2016). To estimate the model we utilized Markov Chain Monte Carlo (MCMC)
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methods, implemented in the Stan modeling language (Stan Development Team). Given an
arbitrary generative model for data dependent on free parameters, the method permits
samples to be drawn from the posterior probability distribution of parameter values, conditional
on the observed data. From the quantiles of these distributions, we constructed confidence
intervals — technically, credible intervals — over the likely values of the free parameters
(Kruschke, 2010). We also report the posterior likelihood that the credible region contains zero,
as one minus the size of the largest symmetric credible interval that excludes zero, which is
roughly comparable to a two-sided P value.

For each model, we produced 4 chains of 10,000 samples each. The first 250 samples from
each chain were discarded to allow for equilibration. We verified the convergence of the chains
by visual inspection, and additionally by computing for each parameter the ‘potential scale
reduction factor’ R (Gelman and Rubin, 1992). For all parameters, we verified that R < 1.1, a
range consistent with convergence (Gelman, Carlin, Stern, and Rubin, 2003).

We simultaneously estimated a model of all the data, incorporating individual parameters for
each participant nested within a population-level model of the distribution of these parameters
for each group.

At the participant level, the model is the same as the one used by Gillan et al. (2016), and full
equations are presented there. In brief, the model learns from experience to predict values
Q(s, a) for the different actions a (rockets, aliens) in the different states (planets and the
starting state). Different RL algorithms, model-based and model-free, produce different
estimates Q at each step. First-level (spaceship) choices are determined by softmax choice,
according to the weighted combination of model-based and model-free Q values, with
weightings controlled by the free inverse temperature parameters M2 and pM¥; a third
parameter Btk captures any value-independent bias to stay or switch. Second-level (alien)
choices are determined by a single set of Q values (since model-based and model-free
evaluation coincide for terminal actions), with inverse temperature g5¢49¢2, The various Q
values are updated according to delta rules with a free learning rate parameter «. Finally, the
net model-free weighting fMF is itself derived from the weighted combination of Q values
learned by two variants of TD learning, TD(0) and TD(1), with weights g0 and gMF1. (This is
a minor change of variables with respect to the standard model-free TD(A) algorithm used to
hybridize these learning rules in Daw et al., 2011. Here the second temperature parameter
replaces the eligibility trace parameter 1 used in that model, which has the advantage of
eliminating its 0,1 boundaries.) Following estimation, we reverse the change of variables by

MFo
computing the net model-free weighting as pMF = BT + pMF1 where the a accounts for a

difference in scaling between the two parameters (see Gillan et al., 2016). When making group
comparisons, group estimates of M9 are scaled by the estimated « of the corresponding
group.

The model thus estimates six free parameters per participant: a, M8, pMF0, pMF1 pstick and
pst*9¢2 and our main hypotheses of interest concern group-wise differences in g5 and the
net pMF,
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Group-level modeling and estimation

The model was specified hierarchically, so that the participant-specific parameter estimates
were assumed to be drawn from a population-level distribution, separately for the patient and

control groups. In particular, parameters 55 (a six-vector) for each participant s were modeled
as drawn from a multivariate normal with mean (i and covariance X. An additional vector i
coded any difference in means for the lesion group (i.e., their mean was ji + ‘s, allowing us
to test for group differences in each parameter by comparing the corresponding element of ji‘¢s
to zero). For the parameter a (which is constrained to 0,1), the corresponding element of

55 (which has infinite support) was transformed through the CDF of the standard normal.

We jointly estimated the posterior distribution over the individual and group-level parameters
using MCMC as described above, which required specifying prior distributions (“hyperpriors”)
on the parameters of the group level distributions. In particular, priors for the elements of ji and
fi'es were individually normal (mean=0, SD=2), which is uninformative within the relevant
range. The covariance X was specified (as recommended in the Stan documentation) as the
product of a correlation matrix 2 (which had an LKJ prior with shape v =2; Lewandowski et al.,
2009) scaled element wise by the outer product of a scale vector 7 (whose elements were
again taken as normal, mean=0, sd=2) with itself. This model also included individual IQ
scores and age as covariates.

In order to test the interaction between performance in the two tasks, we then expressed a
new model with group-specific parameter estimates (priors were normal distributions with
mean = 0 and sd=1) that specified how individual z-scored estimates of place memory (dB
predicted the participant-specific parameter estimates. dB was extracted identically as
previously. This model also included individual IQ scores as a covariate.
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Supplementary Results from Spatial Task:

We compared the behavior of patients and controls in the spatial memory task, which probes
the extent to which they can learn locations via boundary or landmark cues. During the first
block the landmark has not yet moved and it is therefore not possible to distinguish which cue
type is used (See Supplementary Figure 1). This is because boundary cues and landmark
cues (fixed to one another and to each object) predict the same position, so distance error with
respect to either cue type is the same.

Mean distance error across the whole first block was not quite significantly greater for patients
during this first block (F1,3s= 4.0279, p=0.0519). Note that the low distance error already from
object presentation 1 reflects the fact that some learning had already taken place, since the
location of each object was shown once to participants before they made their first response.

St All Objects

e Controls
e Patients

1500

Distance Error
)

1000

500
1 2 3 4

Object Presentation

Supplementary Figure 1: Distance error (arbitrary units) for all objects during the first 4
presentations that constitute block. Error bars indicate standard error.

Distance error for all trials in blocks 2-4 can be seen in Supplementary Figure 2, now broken
down with respect to error relative to either cue type’s position in the previous block. Following
object presentation 4, 8 and 12 (i.e. after block 1,2 and 3) the landmark moved in relation to
boundaries of the arena. This movement allows us to establish to what extent object locations
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were learnt in relation to boundary cues or landmark cues on the most recent block. The
distinguishability should be the greatest on the trials immediately following the movement of
the landmark. Performance differences are not necessarily expected on the remaining trials, as
performance based on the object’s most recent location, with respect to either cue, would there
be equivalent. Even so, when calculating the boundary and landmark distance error for each
object on all trials in block 2-4, based on location in the most recent block, we still see group by
distance error type interaction on mean distance error (F1,37.7=4.1524, p= 0.0486) (see
Supplementary Table 11).

Similarly, we expected that attempting to break down performance according to the true object
type (landmark or boundary) would limit our ability to see effects because subjects could only
have understood this distinction, if at all, in the latter portion of the experiment. Accordingly, in
a regression model where we, for the critical trials following the landmark moves, additionally
interacted group and distance error type by object type (see Supplementary Table 12) we did
find a two-way interaction of object type by eror type (F, p), indicating that subjects were
ultimately able to treat the two object types differently. However, we found no significant three-
way interaction of object type by error type by group (F1, 7821 = 0. 2.6427, p= 0.1044),indicating
that we did not detect no group differences in this respect.
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Object Presentation
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w| § 7 '
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5 6 7 8 9 10 1 12 13 14 15 16
Object Presentation

Supplementary Figure 2: Boundary (dB) and response (dL) distance error (arbitrary
units) for all objects on trials across all object presentations in blocks 2-3. Dotted lines
separate blocks. Error bars indicate standard error.
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Note that our main result it Figure 5 were calculated as the mean of distance error from object
presentations 5, 9 and 13 in Supplementary Figure 2. These trials were selected as in Doeller
et al. (2008) since these trials cleanly dissociate performance based on what type of cue

Supplementary Result Tables:

Term F DF1 DF2 pValue  Estimate SE

'z1Q:dB" 15.29 1 39.42 0 -369.1 94.42
'zAge:dB' 3.455 1 39.47 0.071 176.5 94.97
‘Controls:dB' 275.3 1 39.48 0 2219 133.7
‘Patients:dB' 406.2 1 39.51 0 2695 133.7
'zIQ:dL' 1.425 1 85.45 0.236 -86.58 72.52
'zAge:dL’ 1.755 1 85.55 0.189 -96.65 72.95
‘Controls:dL' 615.8 1 85.56 0 2549 102.7
‘Patients:dL" 615.8 1 85.6 0 2549 102.7

Supplementary Table 1: Results from linear mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Trials included are all critical trials
following the movement of the landmark. Dependent variable is Distance Error. Age and IQ are
z-scored. Effects seen for Patient group and Control group separately.

Term z pValue Estimate SE

'‘Patients’ 757 O 1.635 0.2161
'‘Controls’ 713 O 1.533 0.2152
'Reward:zAge' 1.55 0.121 0.0778 0.0502
'Rare:zAge' 0.96 0.34 0.0515 0.0539
'Reward:zIQ' 0.45 0.655 0.0234 0.0523
'Rare:zIQ’ 0.16 0.872 -0.0089 0.0555
'Reward:Patients' 6.05 O 0.5114 0.0845
'Rare:Patients' 1.01 0.313 -0.079 0.0783
'Reward:Controls' 441 O 0.3664 0.0831
'Rare:Controls’ 0.55 0.579 -0.0426 0.0767
'Reward:Rare:zAge' 145 0.147 0.0828 0.0571
'Reward:Rare:zIQ' 0.99 0.322 -0.0582  0.0587

'Reward:Rare:Patients' 1.35 0.176 -0.1158 0.0856

'Reward:Rare:Controls’ 3.32  0.001 -0.2794  0.0841
Supplementary Table 2: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. Age
and 1Q are z-scored. Effects seen for Patient group and Control group separately.



Term

'‘Controls'
'Reward:zIQ'
'‘Rare:zIQ'

' dB:Patients’
'Reward:Patients'
'Rare:Patients’

" dB:Controls'
'Reward:Controls
'Rare:Controls’
'Reward:Rare:zIQ'

' dB:Reward:Patients'

' dB:Rare:Patients'
'Reward:Rare:Patients'

' dB:Reward:Controls'

' dB:Rare:Controls'
'Reward:Rare:Controls'
'dB:Reward:Rare:Patients'
'dB:Reward:Rare:Controls'

Supplementary Table 3: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1.

z

6.74
1.04
0.62
0.57
5.09
0.71
0.62
4.44
0.13
0.58
1.29
1.05
1.46
0.19
1.56
2.12
0.18
2.66

pValue
0
0.296
0.533
0.569
0
0.479
0.538
0
0.898
0.564
0.196
0.293
0.145
0.848
0.119
0.034
0.859
0.008

Estimate
1.505
0.065
0.042
-0.1413
0.4601
-0.0579
-0.1324
0.3964
0.0104
0.0409
0.132
-0.098
-0.1271
0.0195
0.1516
-0.1834
-0.0176
0.2752

SE

0.2234
0.0623
0.0675
0.2482
0.0905
0.0817
0.2151
0.0892
0.0809
0.0708
0.1021
0.0933
0.0872
0.1017
0.0973
0.0866
0.0991
0.1036
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Controlling for z-scored 1Q. dB is z-scored participant wise place memory performance. Effects
seen for Patient group and Control group separately.

Term F
'zIQ:dB' 15.21
'zAge:dB' 3.232
'‘Controls:dB 275.7
'Left:dB' 192.7
'Right:dB" 208.3
'zIQ:dL' 1.35
'zAge:dL' 2.114
'‘Controls:dL’ 621.7
'Left:dL’ 304
'Right:dL" 308.5

Supplementary Table 4: Results from linear mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is Distance
Error. Age and 1Q are z-scored. Effects seen for Left patient group, Right patient group and
Control group separately, each interacted with distance error types dL and dB seperately.

T
=

RPRRPRRPRRPRRRRRLRRLQO

DF2

39.36
39.57
39.4

41.36
38.11
88.62
89.27
88.67
95.42
84.24

pValue
0
0.08
0

0

0
0.248
0.15
0

0

0

Estimate SE
-368.4 94.44
173.2 96.36
2219 133.7
2724 196.2
2668 184.9
-83.97 72.27
-107.3 73.8
2550 102.3
2640 1514
2471 140.7



Term

'‘Controls'

'Left'

'Right’
'Reward:zAge'
'Rare:zAge'
'Reward:zIQ'
'Rare:zIQ'
'Reward:Controls'
'Rare:Controls'
'Reward:Left'
'Rare:Left'
'Reward:Right'
'Rare:Right’
'Reward:Rare:zAge'
'Reward:Rare:zIQ'
'Reward:Rare:Controls'
'Reward:Rare:Left’
'Reward:Rare:Right'

Supplementary Table 5: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last

z

1.22
4.77
6.04
1.58
1.19
0.48
0.15
4.43
0.66
3.69
1.96
4.84
0.31
1.59
0.96
3.38
1.48
0.55

pValue
0

0

0
0.1140
0.2340
0.6300
0.8840
0
0.5070
0
0.0500
0
0.7530
0.1120
0.3360
0.001
0.1400
0.5840

Estimate
1.5300
1.4760
1.7720
0.0802
0.0622
0.0254
-0.0079
0.3634
-0.0490
0.4409
-0.2102
0.5682
0.0336
0.0892
-0.0554
-0.2810
-0.1789
-0.0653

SE

0.2120
0.3095
0.2935
0.0507
0.0522
0.0526
0.0539
0.0821
0.0739
0.1193
0.1072
0.1175
0.1069
0.0562
0.0576
0.0832
0.1211
0.1192
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trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. Age
and IQ are z-scored. Effects seen for Left Patient group, Right Patient group and Control group

separately.

Term
'‘Controls’

z
6.81

pValue Estimate SE

0

1.4980

0.2201



"Left’

'Right’

'Reward:zIQ'

'Rare:zIQ'
'Reward:Controls'
'Rare:Controls’
'Reward:Left'
'Rare:Left'
'Reward:Right’
'Rare:Right'
'‘Controls:zdB'
'Left:zdB'

'Right:zdB'
'Reward:Rare:zIQ'
'Reward:Rare:Controls'
'Reward:Rare:Left’
'Reward:Rare:Right’
'Reward:Controls:zdB'
'Rare:Controls:zdB'
'Reward:Left:zdB'
'Rare:Left:zdB'
'Reward:Right:zdB'
'‘Rare:Right:zdB"
'Reward:Rare:Controls:zdB'
'Reward:Rare:Left:zdB'
'Reward:Rare:Right:zdB'

Supplementary Table 6: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last

4.4

6.02
0.42
0.29
4.38
0.04
2.41
1.69
4.67
0.41
0.66
0.15
0.46
0.03
2.42
1.84
0.5

0.18
1.32
2.03
0.01
0.02
1.11
2.29
1.01
1.17

0

0

0.6720
0.7730
0

0.9660
0.0160
0.0900
0

0.6810
0.5090
0.8790
0.6470
0.9760
0.0160
0.0660
0.6160
0.8560
0.1870
0.0420
0.9890
0.9810
0.2680
0.0220
0.3150
0.2430

1.5000
1.8080
0.0276
0.0201
0.3763
-0.0033
0.3154
-0.1993
0.5586
0.0446
-0.1400
-0.0523
-0.1631
-0.0022
-0.2034
-0.2340
-0.0587
-0.0182
0.1258
0.2899
0.0018
-0.0036
-0.1500
0.2332
0.1402
-0.1698

0.3405
0.3002
0.0651
0.0697
0.0860
0.0778
0.1309
0.1177
0.1196
0.1086
0.2119
0.3448
0.3559
0.0728
0.0841
0.1275
0.1168
0.0997
0.0954
0.1429
0.1304
0.1468
0.1355
0.1019
0.1394
0.1453
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trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. IQ
and participant-wise dB scores are z-scored. Effects seen for Left Patient group, Right Patient

group and Control group separately.

Term
'Left’
'Right’

z
5.0003
5.7589

pValue Estimate SE

0
0

1.5818
1.9119

0.3163
0.332



'Reward:zAge' 2.7688 0.006 0.3278 0.1184

'‘Rare:zAge' 0.5229 0.601 -0.068 0.1301
'Reward:zIQ' 0.03 0.976 0.0026 0.0844
'‘Rare:zIQ’ 1.8214 0.069 0.1629 0.0894
'‘Reward:Left’ 3.8632 0 0.4548  0.1177
'Rare:Left’ 1.9511 0.051 -0.2516 0.1289
'Reward:Right’ 5.5357 0 0.9101 0.1644
'Rare:Right’ 0.4984 0.618 0.0886 0.1778
‘Left:HippLesion' 1.3754 0.169 0.4727 0.3437
'Right:HippLesion’ 1.4965 0.135 -0.6947 0.4642
‘Left:TotalLesion’ 0.0424 0.967 0.0151 0.3584
'Right:TotalLesion’ 0.3306 0.741 0.1903 0.5757
'Reward:Rare:zAge' 1.7328 0.083 0.2477 0.143

'Reward:Rare:zIQ' 1.2396 0.215 0.125 0.1008
'Reward:Rare:Left' 1.9357 0.053 -0.2573 0.1329
'Reward:Rare:Right' 1.0946 0.274 0.2051 0.1874
'Reward:Left:HippLesion' 1.8877 0.059 -0.2651 0.1404
'Rare:Left:HippLesion' 1.4744 0.14 0.2301 0.156

'Reward:Right:HippLesion' 0.4876 0.626 0.1115 0.2287
'Rare:Right:HippLesion' 0.6427 0.52 0.1597  0.2485
'Reward:Left:TotalLesion’ 1.5294 0.126 0.235 0.1536
'Rare:Left:TotalLesion’ 1.7828 0.075 -0.3011 0.1689
'Reward:Right: TotalLesion' 1.6206 0.105 -0.4798 0.2961

Supplementary Table 7: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1.
Age, 1Q Total Lesion size and Hippocampal Lesion size are z-scored. Effects seen for Left
Patient group and Right Patient group separately.

Term F DF1 DF2 pValue Estimate SE

'ZIQ' 2.7923 1 216 0.096 0.1305 0.0781
'zAge' 0.7262 1 216 0.395 -0.0918 0.1077
‘Left’ 1.5152 1 216 0.220 0.1429 0.1161
'Right' 0.0236 1 216 0.878 -0.0212  0.1380



‘Left:HippLesion'
'Right:HippLesion’
'Left:TotalLesion'
'Right:TotalLesion'

random factor, implemented using Matlab function fitglme. Dependent variable is Boundary

0.0888
1.7341
4.3513
0.8002

1 216
1 216
1 216
1 216

0.766
0.189
0.038
0.372

0.0468 0.1572
-0.2611  0.1983
0.3157 0.1514
0.2263 0.2530
Supplementary Table 8: Results from linear mixed regression model, with participant as

472

Distance Error. Age, IQ Total Lesion size and Hippocampal Lesion size are z-scored. Effects
seen for Left Patient group and Right Patient group separately.

Term F DF1 DF2
'(Intercept)’ 939.9385 1 432
'zIQ' 0.5339 432
'ZAge' 1.7860 432
'Patients’ 8.2130 432

pValue
0

0.4650
0.1820
0.0040

Estimate
0.4586
-0.0128
0.0218
0.0608

SE

0.0150
0.0175
0.0163
0.0212

Supplementary Table 9: Results from linear mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Trials included are all critical trials
following the movement of the landmark. Dependent variable is ratio dB/(dB+dL). Age and IQ
are z-scored. Effect of Patient is the difference to control group.

Term

'‘Controls'

"Left’

'Right’
'Reward:zIQ'
'‘Rare:zIQ'
'ratio:Controls'
'Reward:Controls'

FStat pValue Estimate
47.411 5.75E-12 1.4836
15.792  7.07E-05 1.3798
30.443  3.44E-08 1.7744
1.2543 0.26273 0.0692

3.20E-05 0.99549 0.0004
0.72676 0.39394 1.8831
21.275 3.98E-06 0.3864

SE
0.2155
0.3472
0.3216
0.0618
0.0638
2.2089
0.0838



'Rare:Controls’ 0.20918 0.64741 -0.0347 0.0759
'ratio:Left’ 0.4084 0.52278 -4.1843 6.5476
'Reward:Left' 4,716 0.029883 0.2910 0.1340
'Rare:Left’ 4.3656 0.036671 -0.2524 0.1208
‘ratio:Right’ 0.001657 0.96753 0.2433 5.9776
'Reward:Right' 18.587 1.62E-05 0.5550 0.1287
'Rare:Right’ 0.14136 0.70693 0.0441 0.1173
'Reward:Rare:zIQ' 0.00029568 0.98628 0.0011 0.0642
'ratio:Reward:Controls' 0.45995 0.49765 -0.6826 1.0065
'ratio:Rare:Controls' 0.099326 0.75264 -0.2978 0.9448
'Reward:Rare:Controls' 8.2962 0.0039729 -0.2320 0.0806
'ratio:Reward:Left' 4.7003 0.030158 -6.1804 2.8507
'ratio:Rare:Left' 0.77308 0.37927 -2.3035 2.6198
'Reward:Rare:Left’ 5.3569 0.02064 -0.2967 0.1282
'ratio:Reward:Right' 0.076529 0.78206 0.6662 2.4083
‘ratio:Rare:Right' 0.37175 0.54205 1.3451 2.2061
'Reward:Rare:Right' 0.203 0.65231 -0.0560 0.1243
'ratio:Reward:Rare:Controls' 3.3529 0.067086 -1.8130 0.9901
'ratio:Reward:Rare:Left’ 3.2995 0.0693 -5.0096 2.7579
'ratio:Reward:Rare:Right’ 0.6052 0.4366 1.8149 2.3329
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Supplementary Table 10: Results from binomial mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Dependent variable is whether
participant stay with the first same first level action as on the last trial. Rare transition on last
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1.
These are interacted by the participant specific estimate of dB/(dB+dL). Effects seen for Left

Patient group, Right Patient group and Control group separately.

Term F DF1 DF2 pValue  Estimate SE
'z1Q:dB" 1.6794 1 37.5803 0.203 -162.8533  125.6656
'zAge:dB' 0.0082 1 37.9909 0.928 10.466 115.5669
'Patients:dB' 560.5218 1 37.7903 O 2516.7 106.3016
‘Controls:dB' 450.8038 1 37.8373 0 2236.8 105.348
'z1Q:dL' 0.1111 1 37.473 0.741 26.8459 80.545
'zAge:dL’ 0.8551 1 38.3598 0.361 -68.7394 74.3367
'Patients:dL" 1204.1 1 37.9252 0 2368 68.2585



'Controls:dL'

1206.7 1

38.0391 O

2350.9
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67.676

Supplementary Table 11: Results from linear mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Trials included are all trials in blocks
2-4. Dependent variable is Distance Error. Age and 1Q are z-scored. Effects seen for Patient
group and Control group, each interacted with distance error types dL and dB separately

Term
'zIQ:dL'
'zAge:dL'
‘Controls:dL’
'Patients:dL'

'zIQ:dB'

'zZAge:dB’
‘Controls:dB'
‘Patients:dB'
'‘Controls:dL:L_Object'
'‘Patients:dL:L_Object'
‘Controls:dB:L_Object'
'Patients:dB:L_Object'

F

1.1611
1.8066
416.4943
425.7442

13.0348

4.0539
152.4128
183.1393
18.7613
21.8280
0.0039
8.2023

DF1 DF2
104.5756
105.4405
75.2530
75.3192

1

1

1

1

1 45.6346
1 45.5598
1 39.9651
1 39.9833
1 156.0378
1 156.0260
1

173.4617
1 173.6667

pValue
0.2840
0.1820
0

0
1.0000e-
03
0.0500
0

0

0

0
0.9500
0.0050

Estimate
-74.4111
-93.2646
2.9607e+03
2.9934e+03

-332.5745

186.2976
2.2115e+03
2.4239e+03
-817.8130
-882.1264
11.6564
535.1180

SE
69.0562
69.3873
145.0740
145.0733

92.1164

92.5279

179.1342
179.1084
188.8092
188.8096
186.8515
186.8446

Supplementary Table 12: Results from linear mixed regression model, with participant as
random factor, implemented using Matlab function fitglme. Trials included are all trials in blocks
critiacal trials following landmark movements. Dependent variable is Distance Error. Age and
IQ are z-scored. Effects seen for Patient group and Control group, each interacted with
distance error types dL and dB separately. There variables are additionally interacted with a
variable L_object which is coded 1 for landmark objects and O for boundary objects.

mean 2.5% 97.5%

BMBcont 033 0.1 0.55
BMFOc ot -0.06 -0.14 0.01
BMFLeont 0.30 0.15 0.46
Bstikeont 1.16 0.78 1.54
p&stage,y  1.17 0.85 1.5

Olcont 0.26 0.18 0.38
BMBpat_diff -0.2 -0.52 0.13
BMFO,q ait  0.05 -0.05 0.15
BMFloat ait 0.2 -0.02 0.42
Bstickoar ait  0.25 -0.29 0.79
B2stageny g -0.04 -0.49 0.41
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Olpat_diff 0.07 -0.06 0.22

Supplementary Table 13: Estimates (mean, 2.5% confidence interval and 97.5% confidence
interval) from the full RL model which includes age and 1Q as covariates but not individual
place-memory performance estimates. Cont indicated free-parameter estimates of the control
group. Pat_diff indicates how patient group free-parameter estimates differ from control group.

mean 2.5% 97.5%
BMB-dB gt -0.27 -0.52 -0.02
BMFO-dB ot 0.00 -0.08 0.07
BMFl'dBcont 0.12 -0.07 0.31
BStiCk'dBcont -0.13 -0.59 0.32
p2stage-dBo  -0.38 -0.73 -0.03
o-dBcont 0.24 0.15 034
BMB-dBpat it 0.29 -0.05 0.63
BMFO-dB . gir  -0.03 -0.15 0.09
BMFLI-dB . gr  -0.05 -0.31 0.21
pstick-dBo it 0.06  -0.54 0.66
pestage-dB o gr 0.51 0.03  0.97
o-dBpat_diff 0.06 -0.06 0.22

Supplementary Table 14: Estimates (mean, 2.5% confidence interval and 97.5% confidence
interval) from the full RL model which includes IQ and individual place memory performance
estimates as covariates. Cont indicates effect of place-memory (dB) on free-parameter
estimates of the control group. Pat_diff indicates how patient group effect of place-memory on
free parameter estimates differ from control group.
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