
 

 

1 

Hippocampal Contributions to  
Model-Based Planning and Spatial Memory 

 
Authors: Oliver Vikbladh (Lead Contact: omv208@nyu.edu), Michael R. Meager, John King, 

Karen E. Blackmon, Orrin Devinsky, Daphna Shohamy, Neil Burgess, Nathaniel D. Daw 

 
Abstract 
 
Little is known about the neural mechanisms that allow humans and animals to plan actions 
using knowledge of task contingencies. Emerging theories hypothesize that it involves the 
same hippocampal mechanisms that support self-localization and memory for locations. Yet, 
there is limited direct evidence for the link between model-based planning and the 
hippocampal place map. We addressed this by investigating model-based planning and place 
memory in healthy controls and epilepsy patients treated using unilateral anterior temporal 
lobectomy with hippocampal resection. We found that both functions were impaired in the 
patient group. Specifically, the planning impairment was related to right hippocampal lesion 
size, controlling for overall lesion size. Furthermore, while planning and boundary-driven place 
memory covaried with one another, this relationship was attenuated in the patient group, which 
is consistent with both functions relying on the same structure in the healthy brain. These 
findings clarify both the neural mechanism of model-based planning and the scope of 
hippocampal contributions to behavior. 

Introduction 
 
Using knowledge of task contingencies, humans and other animals can plan novel courses of 
action, such as trajectories through a maze. Although the neural substrates for such “model-
based” planning are poorly understood, this ability is often viewed as similar to other functions 
supported by the hippocampus, like representing and remembering locations in space. Both 
model-based planning (Tolman, 1948) and place memory (O’Keefe and Nadel, 1978) are often 
described as requiring ‘cognitive maps’ of the environment or task structure, and are 
contrasted against habitual response-based behaviors that depend on the basal ganglia. Still, 
despite the commonalities, these functions are distinct in principle and it is unclear whether 
they actually share a common neural mechanism and, if so, what that mechanism is. 
 
Research into hippocampal spatial cognition most clearly emphasizes localization: determining 
one’s position in allocentric space. This function is most famously exemplified by location-
selective neural responses in the hippocampus (O’Keefe and Nadel, 1978) and behaviorally 
operationalized using spatial tasks such as the Morris Water Maze (MWM) (Morris et al., 
1982), where rodents have to find and remember the location of a hidden platform in an open 
arena. This type of “place memory,” keyed to allocentric configurations of cues like boundaries, 
is distinguished from more landmark-based strategies, such as egocentric stimulus-response 
strategies (e.g., turn left or right) which rely more on the basal ganglia (McDonald and White, 
1994, Packard and McGaugh, 1996, Pearce et al., 1998). An analogous dissociation between 
hippocampal and basal ganglia-dependent memory has been demonstrated in humans using 
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functional magnetic resonance imaging (fMRI) in virtual spatial tasks (Hartley et al., 2003, Iaria 
et al., 2003, Voermans et al., 2004, Doeller et al., 2008).  

 
By contrast, research into planning investigates how organisms use knowledge of task 
contingencies, like action outcomes and state transitions, to evaluate actions by mental 
simulation. Experiments probing such functions, including reward devaluation in operant lever 
pressing (Adams and Dickinson, 1981, Adams, 1982) and multi-step reinforcement learning 
(Gläscher et al., 2010, Daw et al., 2011), support a distinction between two classes of 
strategies – referred to as goal-directed or model-based planning vs. habitual or model-free 
learning (Balleine and Dickinson, 1998, Daw et al., 2005). This distinction seems to parallel the 
place vs. response memory dichotomy from spatial cognition (Poldrack and Packard, 2003, 
Kosaki et al., 2018) and the related declarative vs. procedural memory distinction from the 
memory literature (Squire, 1992, Knowlton et al., 1996, Foerde and Shohamy, 2011, Daw and 
Shohamy, 2015). Indeed, model-free learning, like landmark-based stimulus-response 
strategies in some spatial tasks, is well captured by theories of dopamine and the basal 
ganglia (Schultz et al., 1997, Bayer and Glimcher, 2005).  
 
It is less clear what neural mechanisms are responsible for model-based planning. There are, 
however, a number of suggestive reasons to suspect it shares a common hippocampal 
substrate with place memory (Hirsch, 1974, Dickinson and Balleine, 1993, Eilan et al., 1993, 
Johnson and Redish, 2007, Daw and Shohamy, 2015, Kumaran et al., 2016). Hippocampal 
function, of course, extends beyond spatial cognition to support declarative memory, and 
notably a role in encoding the relationships among environmental stimuli (Eichenbaum and 
Cohen, 2001, Davachi and Wagner, 2002, Kumaran et al., 2009, Schapiro et al., 2016, 
Boorman et al., 2016, Garvert et al., 2017). Knowing such relations is critical to building a 
model of task contingencies. Tests of relational encoding have even relied on tasks which are 
similar in logic to probes for model-based planning, like transitive inference or acquired 
equivalence (Dusek and Eichenbaum, 1997,  Heckers et al., 2004,  Shohamy and Wagner, 
2008, Wimmer and Shohamy, 2012). Moreover, the hippocampus has been implicated in the 
ability to imagine or simulate future events, a function that may be critical to model-based 
planning (Hassibis et al., 2007, Addis et al., 2011). Spatial navigation studies have further 
demonstrated that the hippocampus and surrounding medial temporal areas, in addition to the 
current location, encode other variables that are relevant to planning, such as boundaries or 
the identity, direction, and distance to a goal (Spiers and Maguire, 2007, Viard et al., 2011, 
Chadwick et al., 2015, Wikenheiser and Redish, 2015, Brown et al., 2016, Kaplan et al., 2017). 
Non-local place-cell firing, such as preplay of locations ahead of the animal, has also been 
proposed to support planning by mental simulation of candidate routes, drawing on a cognitive 
model or map of the world (Johnson and Redish, 2007, Pfeiffer and Foster, 2013, Daw and 
Shohamy, 2015, Mattar and Daw, 2017).  
 
At the same time, there is a surprising lack of direct evidence for hippocampal involvement in 
model-based planning. For predominant rodent models of model-based behavior, including 
outcome devaluation and contingency degradation in operant lever-pressing, hippocampal 
lesions have negligible effects (Corbit and Balleine, 2000, Corbit et al., 2002). One exception is 
a recent rodent study in which hippocampal lesions impaired model-based planning in a multi-
step decision task (Miller et al., 2017). However, the extensive training needed to teach 
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animals such sequential decision tasks may elicit model-free strategies that only mimic the 
signatures of planning in more lightly trained humans (Akam et al., 2015, Economides et al., 
2015). Even seemingly model-based rodent behavior (Miller et al., 2017) could thus rely on the 
hippocampus for different reasons. Finally, with few exceptions (Simon and Daw, 2011), little 
evidence links hippocampal activity in human neuroimaging, or rodent place cell preplay to 
planning in tasks specifically designed to identify choice strategies that require knowledge of 
task contingencies.  
 
We therefore sought to directly test the hypotheses that model-based planning uses a 
hippocampal mechanism in humans, and whether this substrate is shared with boundary-
driven place memory. To this end, we studied the performance on a model-based planning 
task (Daw et al., 2011) and a spatial memory task (Doeller et al., 2008) in healthy controls and 
patients with medically intractable epilepsy, treated by unilateral anterior temporal lobectomy 
(ATL) with hippocampal resection. We investigated whether damage to the temporal lobe 
impaired model-based planning and boundary-driven place memory and how it affected the 
relationship between them. If the hippocampus is a common neural substrate for both 
functions, we expected hippocampal damage to impair performance on both tasks. 
Furthermore, a common substrate could lead to correlated performance across the tasks, but 
this correlation should itself be attenuated if that substrate is impaired by hippocampal 
damage. Finally, because the lesions also affected overlying cortex, we explored to what 
extent performance in either task was related specifically to the extent of damage to 
hippocampus on either side, controlling for the overall extent of the lesion. 

 

Results 
 
Participant Characteristics  
 
We recruited 19 epilepsy patients, treated with unilateral anterior temporal lobectomy (ATL) i.e. 
surgical removal of the anterior temporal lobe on one side (Table 1), and 19 healthy controls 
(see Methods). Patients and controls displayed no significant group differences in IQ (t36= 
0.2200, p=0.8271), age (t36=-0.7760, p=0.4428) or number of males vs. females (z=-0.3261, 
p=0.7444). 
 
 Patients  Controls  
Number of participants 19 19 
Mean IQ (SE) 109.7 (2.8) 108.7 (3.6) 
Mean age (SE) 37.0 years (1.9) 39.3 years (2.3) 
Males/Females 10/9 11/8 

Table 1: Characteristics of patients and controls.  
 
For 10 out of 19 patients ATL was right lateralized (Table 2). There were no significant 
differences between the right and left lateralized ATL groups in IQ (t= -0.5295, p= 0.6033), age 
(t17=1.0876, p=0.2919) or number of males vs. females (z=-0.6752, p=0.4995). Participant-
wise lesion masks were normalized to the MNI template (see Figure 1) and compared to the 
Harvard-Oxford Lexicon (p>.5) in order to estimate size of lesion to the hippocampus (See 
Methods). There was no group difference in estimated size of hippocampal resection (t17= -
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1.1124, p= 0.2814), however, total lesion size was significantly larger in the right lateralized 
group (t17=-2.6103, p=0.0183). 
 
  Right lateralized ATL Left lateralized ATL 
Number of patients 10 9 
Mean IQ (SE) 111.1 (4.8) 108.1 (2.5) 
Mean age (SE) 35.0 years (2.8) 39.2 years  (2.7) 
Males/Females 6/4 4/5 
Mean total lesion (SE) 65314 Voxels (2791) 40536 Voxels (2296) 
Mean hipp. lesion (SE) 2791 Voxels (321) 2296 Voxels (302) 

Table 2: Characteristics for patients with right and left lateralized ATL.  
 

 
Figure 1: Patient lesion masks. Slices (y=82, 92, 102, 112, 122, 132) showing all 19 hand-
drawn patient ATL lesion masks normalized to the MNI template. Heat maps indicate the 
number of masks overlapping at a given voxel. The hippocampus, as defined by Harvard-
Oxford Lexicon (p>.5), is shown in blue.  

 
Patients display shift from model-based to model-free strategy  
 
Participants completed 200 trials of a two-step Markov decision task (Daw et al., 2011) 
designed to quantify the reliance on model-based and model-free strategies (see Methods). 
The mean number of completed trials was 195.3 (SE 2.1) with no difference between control 
and patient groups (t38=1.2515, p= 0.2188). The mean number of rewards received was 107.9 
(SE 2.6), also, with no significant difference between control or patient group (t36= -0.0399, p= 
0.9684). In general, rewards in this task are by design highly stochastic and not sensitive to 
differences in strategy. 
 
On each trial the participant first made a choice between two spaceships. One spaceship most 
commonly (p=.7) transitioned to the purple planet, and otherwise made a rare transition (p=.3) 
to the red planet. For the other spaceship, probabilities were reversed. The participant then 
made a choice between two planet-specific aliens, each associated with a unique, slowly 
drifting probability of reward (see Figure 2).  
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Figure 2: Two-step Markov Decision-Task. On each trial the participants chose one of two 
first level actions (spaceships). One space ship transitions the participant to red planet with 
p=.7 while the other space ship transitions the participant to red planet with p=.3. Having 
transitioned to a second level state, participants chose between two second level actions 
(aliens) that were unique to each planet. Each alien was associated with a unique, slowly 
drifting, probability of receiving reward. 
 
Figure 3 shows markers of both as a function of group, estimated from a factorial logistic 
regression (see Supplementary Table 2), which predicts choosing the same spaceship as on 
the previous trial. Model-free learning is signaled by a main effect of reward, i.e. a tendency to 
repeat choosing the spaceship that led to reward, whereas in model-based learning, choice of 
spaceship is mediated by expectations about the planets to which it leads, indicated by an 
interaction between reward and whether a rare or common transition occurred on the last trial. 
If, for instance, a reward is received but following a rare transition, a model-based agent 
should be less likely to repeat the choice of spaceship on the next trial. The difference in these 
effects measures the relative strength of model-based vs model-free choice. The regression 
also controls for additional nuisance explanatory factors, age and IQ. 
 
The expression of model-based vs model-free strategies differed significantly by group, with 
controls showing a relatively even mixture of strategies (similar to previous reports using this 
task) but patients skewed away from model-based planning toward model-free learning. The 
relative reliance on model-based over model-free strategies, calculated by taking the 
difference between these effects, differed significantly between groups, indicating a specific 
strategy change rather than a general impairment. (z=2.0278, p=0.043). This finding is 
consistent with our hypothesis that hippocampal damage in the ATL lesion group specifically 
affects the use of internal models or maps of task contingencies. 
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Figure 

3: Model-free and model-based regression weights for controls and patients. Estimated 
with a logistic mixed-effects regression controlling for IQ and age. Error bars indicate standard 
error. The interaction of strategy (model-free vs. model-based) by group was significant 
(z=2.0278, p=0.043). 
 
For simplicity, the above factorial analysis only considers the effect of the preceding trial’s 
events on each trial’s choice. To verify that our results were not dependent on this assumption, 
and in keeping with previous work (Daw et al., 2011) we repeated our analysis (see 
Supplementary Table 13) by fitting participants’ choices with a full 6-parameter computational 
learning model (Daw et al., 2011, as modified by Gillan et al., 2016), which uses the full history 
of preceding rewards to predict each choice. The results recapitulate the findings from the 
regression: chiefly, a significant interaction of RL strategy and experimental group such that 
patients are biased away from model-based and towards model-free strategies (p=0.036). In 
addition, in this analysis (here going beyond the simpler regression analysis) the estimated 
strength of model-free learning is itself significantly higher in the patient group than the control 
group (p=0.043). The remaining parameters of the computational model did not differ 
significantly between groups.  

 
 
 

Patients display impaired boundary-driven place memory 
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Participants completed a spatial task (Doeller et al., 2008) where on each of 64 trials they had 
to indicate, from memory, the correct location of one of four objects in a virtual arena (see 
Methods). The mean number of completed trials was 61.3 (SE 0.5) with no significant 
difference between control and patient group in number of completed trials (t36= -0.2882, p= 
0.7749).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Left: Spatial Task Block Structure. Virtual 

arena as seen as from above. Between blocks the landmark (cone) moved in relation to the 
boundaries (large purple circle). Correct location of the two boundary objects (oB1 and oB2) 
stayed constant with respect to boundaries across all blocks. Correct location of the two 
landmark objects (oL1 and oL2) stayed constant with respect to the landmark across all blocks. 
Right: Measuring reliance on boundary and landmark cues. The landmark (cone) moves 
(dotted line) in relation to boundaries (large purple circle) between blocks. In a trial preceding a 
landmark move, an example object’s correct location (purple o), i.e. where the object appears 
during feedback, is in close proximity to the landmark (shaded cone). If participants remember 
this object location in relation to boundaries and distal cues, the predicted object location in the 
next block would also be indicated by the purple o. Conversely, if participants learned the 
object location in relation to the landmark, the predicted object location after the landmark 
moves to its new location (filled coned) would be the orange o. On the trials following 
movement of the landmark we thus operationalize place memory by the boundary distance 
error (dB) between their response (cross) and the location predicted by boundaries and distal 
cues (purple o). Response memory is operationalized by the landmark distance error (dL) 
between their response (cross) and the location predicted by the landmark cue (orange o). 
Lower dB and dL thus means greater reliance on boundary and landmark cues , respectively. 

 
For two of the objects, correct locations were defined in relation to distal boundary cues around 
the arena, and for the other two objects correct locations were defined in relation to a landmark 
inside the arena (see Figure 2 Left). Trials were presented in four blocks consisting of 16 trials 
each. Within the blocks, the landmark location was fixed with respect to the boundary cues, but 
between the blocks, the landmark moved (see Figure 2 Left). Participants were not instructed 
about the difference between landmark and boundary objects, or about the block-wise 
landmark movements.  
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The movements of the landmarks with respect to the boundary cues serve to dissociate spatial 
memory performance based on either type of cue. Given previous results (Pearce et al., 1998; 
Doeller et al., 2008), we hypothesized that hippocampal damage would preferentially impair 
boundary cue usage. Following Doeller et al. (2008), for each object, we therefore focused our 
analyses on the first trial following each of the three landmark movements (average total 11.4 
trials per participant, due to missed trials). This is because these trials cleanly dissociate 
performance based on recalling the object’s location in the previous block relative to each type 
of cue  (Figure 4, right). Note that since the boundary and landmark cues remain fixed with 
respect to each other within each block, performance on the remaining trials of each block is 
not as diagnostic of cue usage, since to the extent behavior is based on recalling the object’s 
most recent location with respect to either cue, this is equivalent for both cues (though see 
Supplementary Figure 2 and Supplementary Table 11 for results on these trials). Similarly, to 
avoid relying on the assumption that subjects were able to learn to differentiate landmark from 
boundary objects (which is only possible following experience with at least one of the three 
landmark movements) we analyzed landmark and boundary error for all objects rather than 
differentiating by object type (For results broken down by object type, see Supplemental 
Results and Supplementary Table 12). 
 
On the critical trials, those following movement of the landmark, we quantified reliance on 
either cue type by computing distance errors dB and dL, respectively, between the chosen 
location and the correct locations as predicted by boundary cues and landmark cues, based on 
the previous block (see Figure 4 Right). dB and dL thus inversely reflect performance with 
respect to boundary and landmark cues. To assess group differences we specified a 
regression model where the dependent variable, distance error (dB and dL for each trial) was 
regressed on the key explanatory variables lesion group (control vs. patient) and distance error 
type (dB or dL), while also controlling for additional nuisance explanatory factors, age and IQ. 
 
We found a significant interaction of group by distance error type (F1,97.58=5.5080, p=0.021), 
indicating a difference between groups in their relative reliance on the two cue types. This 
effect mainly reflected the finding that patient’s dB was significantly higher, i.e. patients’ 
performance was less driven by boundary cues (F1,39.41=2.5102, p=0.016) (see Figure 5 and 
Supplementary Table 1).  
 
In a follow-up analysis, aimed at simplifying the design for later elaboration by assessing 
relative reliance on boundary vs. landmark cues using a single explanatory variable, we 
defined a relative measure of error: the ratio dB/(dL+dB), which measures whether participants 
were relatively biased toward using boundary cues over landmark cues. Regressing it on 
group (controlling for nuisance variables age and IQ), we again found that patients were 
significantly biased towards relying on boundary cues (F1,432=8.213, p=0.004) (see 
Supplementary Table 9). All these results are consistent with our prediction that anterior 
temporal lobe structures like the hippocampus preferentially support boundary- over landmark-
driven memory. 
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Figure 5: 

Boundary (dB) and response (dL) distance error (arbitrary units) for all objects on trials 
that follow movements of the landmark. Estimated with a linear mixed-effects regression, 
controlling for IQ and age. Error bars indicate standard error. There was a significant group 
difference in boundary distance error (F1,39.41=2.5102,p=0.016), but not landmark distance 
error  (F1,85.3=0, p=0.9990) with a significant interaction of group by cue type (F1,97.58=5.5080, 
p=0.0210) 

 
Relationship between model-based planning and boundary-driven place memory  
 
So far, we have shown impaired model-based planning and boundary-driven place memory in 
the patient group. Next, we examined the relationship between these two functions, first by 
investigating their baseline correlation in neurologically intact control participants. We did this 
by calculating the mean boundary distance error dB for each participant, and using it as a 
covariate in the logistic regression model of our decision task. This approach is analogous to 
estimating participant-by-participant scores for model-based planning from the logistic model, 
then correlating those with dB in a second step, but preferable because it takes account of 
statistical uncertainty about the participants’ planning scores in computing their relationship to 
dB, which the naïve correlation neglects. IQ was also included as a nuisance covariate to 
account for task-general variation. 
 
Figure 6 displays the results of this regression (also see Supplementary Table 3), broken down 
by group. Boundary-driven place memory significantly predicted a control participant’s use of a 
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model-based strategy (z=6.6455, p= 0.001), consistent with the two measures sharing some 
underlying substrate. 
 
Next we engaged in a series of follow-up analyses to interrogate the specificity of this cross-
task relationship. First, we wished to examine whether the relationship was specific to model-
based and boundary-driven task strategies, rather than general to both strategies tested in 
each task. We first verified that the increase in model-based planning associated with dB is 
significantly larger than any corresponding effect for model-free choice (z=2.0473, p=0.0326), 
or in other words that dB is associated with a relative increase in model-based relative to 
model-free choice. Next, we refined this analysis to also probe its specificity to boundary over 
landmark error. In a new regression model (see Supplementary Table 14), we replaced the 
boundary error dB with the relative error ratio dB/(dL+dB) which measures whether participants 
were relatively biased toward using boundary cues over landmark cues in the spatial task. In 
the control group, as with absolute boundary error, relative error was also significantly 
associated with relative increase in model-based, minus model-free, choice (z=2.0578, 
p=0.039) (see Supplementary Table 10). Thus, in healthy controls there is a specific 
relationship between boundary-driven spatial memory and model-based choice, relative to 
their respective alternative strategies. 

 
We next tested the specificity of the cross-task relationship to controls vs patients. We 
reasoned that if the relationship in the control group depends on the intact hippocampus (e.g., 
if it arose due to a common substrate located there), then over and above the effects on each 
task separately, their relationship would be affected by hippocampal/MTL damage. Therefore, 
we tested the null hypothesis that the relationship between the tasks is unaffected by ATL 
damage, the rejection of which would support the alternative hypothesis that the ATL does 
affect their relationship. The relationship between boundary-driven memory and model-based 
planning was indeed significantly attenuated in the patient group (z=2.137, p=0.032). 
Reflecting this attenuation, the patient group, considered alone, did not display a significantly 
detectable relationship between the two functions (z=0.156, p=0.875). Critically, this null result 
does not imply that these functions are unrelated in the patient group.  

 
Finally, we repeated this analysis using the full computational learning model in place of the 
simpler regression-based index of learning (See Supplementary Table 14). Again, while 
controlling for IQ, we observed a strong positive correlation between model-based planning 
and place memory in the control group (p=0.030) but not the patient group (p= 0.803), 
although the group-wise interaction was merely trending in this version of the analysis 
(p=0.081). 
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Figure 6: Relationship between model-based planning and boundary distance error 
(arbitrary unit) in controls and patients. Estimated with a logistic mixed-effects regression, 
controlling for IQ. Error bars indicate 80% confidence intervals. Individual place memory 
performance is reflected by mean boundary distance error (dB) from the spatial task. Dots 
indicate estimates for individual participants, calculated from the mixed-effects logistic 
regression. The trend was significant in the control group (z=6.6455, p= 0.001), but not in the 
left patient group (z=0.156, p=0.875). The slope differed significantly between groups 
(z=2.137, p=0.032).  
 
Deficits are more robust for patients with right lateralized ATL 
 
Based on previous literature, we next sought to examine to what extent the reported effects 
might be preferentially associated with lesions lateralized to one side or the other. Breaking 
down the data this way requires examining small subgroups (N=9 and 10), meaning that the 
key analyses comparing the two laterality groups against one another are underpowered 
relative to comparing either group to controls. Also, lesion laterality is correlated with overall 
lesion extent in our sample (Table 2). Altogether, these analyses are fundamentally more 
exploratory and their results more tentative than those reported above.  
 
With those caveats, we expected boundary-based memory, and spatial relations generally, to 
be more strongly associated with the right hippocampus (Burgess et al., 2002). For instance, 
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boundary-memory-related hippocampal activity in the previous fMRI study of the spatial 
memory task we used was right-lateralized (Doeller et al., 2008). It is less clear, a priori, how 
model-based planning might be lateralized.  
 
Figure 7 shows decision task and spatial memory task performance with the patient data 
further subdivided by ATL laterality; and Figure 8 shows the relationship between model-based 
planning and dB also broken down by laterality. In all three cases the differences between 
patients and controls (from Figures 4-6) appeared to be driven by the right lesion patients, with 
the left lesion patients more similar to controls. This impression is only partly borne out by 
statistics, however (see Supplementary Tables 4, 5 and 6). In particular, in all three cases the 
right patients differ significantly from controls (dB minus dL: F1,92.22=4.4635, p=0.034; model-
based minus model-free: z=2.2950, p=0.022; across-task correlation between model-learning 
and boundary memory: z=2.5497, p=0.011), whereas the left patient group did not differ from 
controls in any case (dB minus dL: F1,100.7=2.644, p=0.107; model-based minus model-free: 
z=1.0008, p=0.317; across-task correlation between model-learning and boundary memory: 
z=0.4696, p=0.639). However, in no case were the lesion groups significantly different from 
one another (dB minus dL: F1, 97.8= 0.1503, p= 0.69903; model-based minus model-free: z=-
1.1490, p=0.251; across-task correlation between model-learning and boundary memory: 
z=1.5524, p=0.121).  
 
We also examined the breakdown, by lesion laterality, of the relationship between relative 
measures of planning and spatial memory, to account for alternative strategies. In the 
regression model specified earlier that included the relative error ratio dB/(dL+dB) as a 
covariate (see Supplementary Table 10), the association between relative preference for 
model-based (minus model-free) planning and the relative bias toward using boundary cues 
was larger in the left group than the right group (z=3.5278, p=0.005). An estimated effect in the 
same direction was also seen comparing the control with the right patient group, with the 
relationship being stronger in the control group, although it did not reach significance 
(z=1.7278, p=0.1170). 
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Figure 7 Top: Boundary (dB) 
and response (dL) distance error (arbitrary units) for controls and patients with right 
and left lateralized ATL. Estimated with a linear mixed-effects regression, controlling for IQ 
and age. Error bars indicate standard error. There was a significant difference between dB and 
dL when comparing the control and right patient group (F1,92.22=4.4635 p=0.034). Bottom: 
Model-free and model-based regression weights controls, right and left lateralized ATL 
patients. Estimated with a logistic mixed-effects regression, controlling for IQ and age. Error 
bars indicate standard error. The difference in model-free vs. model-based was significantly 
different between the control and right patient group (z=2.295 p=0.022). 
 
Thus, although noisy, there is a consistent suggestion across all three measures and different 
ways of examining the cross-task relationship that the results of this study were most robust in 
the right lesion group 
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Figu

re 8: Relationship between model-based planning and boundary distance error 
(arbitrary unit) for controls and patients with right and left lateralized ATL. Estimated with 
a logistic mixed-effects regression, controlling for IQ. Error bars indicate 80% confidence 
intervals. Individual place memory performance is reflected by mean boundary distance error 
(dB) from the spatial task. Dots indicate estimates for individual participants, calculated from 
the mixed-effects logistic regression. The association differed significantly between the control 
and right patient group (z=2.5497, p=0.011).  

 
Lesion-size in the right hippocampus predicts model-based planning deficits 
 
One way to sharpen the foregoing analyses is to focus specifically on not just the side but the 
particular anatomical region hypothesized to underlie the effects: the hippocampus. 
Accordingly, we tested how performance on the tasks co-varied with estimated lesion size on 
the right and left hippocampus respectively. Hippocampal lesion size for each patient (see 
Figure 1) was estimated by comparing the normalized anatomical masks to the Harvard-
Oxford Lexicon (p>.5) (see Methods). Importantly, the ATL procedure involves a pattern of 
damage to numerous temporal lobe structures in addition to hippocampus, which means one 
should be highly cautious interpreting results with respect to any particular structure. Although 
it is not practical to control for damage to many different MTL structures individually, we 
attempt to mitigate these concerns and focus on hippocampal lesion size by controlling for the 
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overall lesion size as a nuisance effect. The regression analyses also controlled for age and 
IQ.  

 
We found, as can be seen in Figure 9 (see Supplementary Table 7), that model-based 
planning was significantly worse for larger right hippocampal lesions (z=2.8305, p=0.005). 
Conversely, planning was not significantly related to the amount of hippocampal damage on 
the left hippocampus (z=1.0622, p=0.2882) and this difference between right and left effects 
was itself significant (z=2.5076, p=0.0122). These results indicate that the amount of damage 
to the right but not the left hippocampus is related to model-based deficits. However, in order 
to further test specificity, and ensure that the lesions in the right hippocampus are not simply 
causing general learning deficits, we also calculated the effect of each hemisphere’s 
hippocampal lesion size on the difference between model-based and model-free learning, as 
estimated by the logistic regression. As predicted, we found that right hippocampal lesion size 
was significantly related to a shift away from model-based towards a model-free strategy 
(z=4.0262, p=0.0028) and that this effect was significantly larger for right compared to left 
hippocampal lesions (z=4.5278, p=0.0001).  

 
For boundary memory, the effects of lesion size on performance were similar in magnitude and 
pattern, although not significant in either the right (F1,12.16=2.6082, p=0.1320) or the left patient 
group (F1,12.93=0.1204, p=0.7340) (see Supplementary Table 8). It should be noted that this 
analysis is based on many fewer trials than the sequential decision task analysis.   
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Figure 9: Relationships between model-based planning and hippocampal lesion size., 
for patients with right and left lateralized ATL. Estimated with a mixed-effects regressions, 
controlling for IQ, age, and total size of lesion. Error bars indicate 80% confidence intervals. 
There was a significant relationship in the right patient group (z=2.8305, p=0.005) but not in 
the left patient group (z=1.0622, p=0.2882), with a significant difference between the right and 
left patient groups (z=2.5076, p=0.0122).  
 

Discussion 
 
Although extensive evidence indicates that the hippocampus supports localization in allocentric 
space, there is relatively little direct evidence for the hypothesis that the same mechanisms 
extend to model-based planning. We addressed this gap by testing model-based planning and 
place memory in patients with extensive hippocampal damage as a result of unilateral ATL 
lesions and matched, neurologically typical controls. Our results are consistent with the 
hypothesis that both and model-based planning and boundary-driven place memory share a 
common mechanism, which is affected in ATL patients and, more tentatively, associated with 
right hippocampus. 
 
As predicted, ATL patients displayed significantly attenuated boundary-driven place memory in 
our MWM-like spatial memory task, alongside spared landmark-based memory. These results 
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echo the dual-systems view of navigation supported both by rodent lesion (O'Keefe and Nadel, 
1978, McDonald and White, 1994, Packard and McGaugh, 1996, Pearce et al., 1998) and 
human neuroimaging experiments (Hartley et al., 2003, Iaria et al., 2003, Voermans et al., 
2004,  Doeller et al., 2008), whereby the hippocampus supports fast learning of allocentric 
spatial maps and the striatum facilitates slow, incremental associations between stimuli and 
responses. That said, one weakness of the current task in operationalizing the place vs. 
response distinction is that although use of boundary cues clearly exercises allocentric spatial 
localization, landmark usage imperfectly captures a striatal response system as classically 
envisioned (for instance, because some allocentric information is still needed to place objects 
correctly relative to the landmark). Nevertheless, the use of boundary cues to index 
hippocampal function (the measure most important to our results) is unambiguous and well 
validated (Pearce et al., 1998, Doeller et al. 2008), even if the landmark foil imperfectly 
captures a hypothetical striatal contribution. Also, our distance error measures assess the 
tendency of participants to use either sort of cue. It cannot distinguish deficits in boundary-
driven place memory per se from performance deficits such as reduced attention to these cues 
or a greater belief that landmarks predict object locations. All these mechanisms, though, are 
consistent with the broader perspective that anterior temporal lobe is ultimately involved in 
allocentric spatial localization based on configurations of cues. 
 
The patients were also significantly biased away from using model-based planning and toward 
model-free habitual strategies in the two-step Markov decision task. This result provides causal 
evidence for the inference that temporal lobe structures support model-based planning, over 
and above their role in place memory. The appearance of a compensatory shift toward 
improved model-free learning, which is rarely reported with this task (Frank et al., 2004), 
indicates that behavior in the ATL patients is not simply noisier, and instead is consistent with 
models invoking multiple, potentially competing, reinforcement-learning systems in the human 
brain (Daw et al., 2005). Still, our results do not speak clearly to the perennial question 
whether the hippocampus plays a special role in such models for spatial vs. more abstract 
relational tasks. This is because although our planning task is structured like an abstract 
Markov decision process, its cover story, in terms of rocket trips to planets, might have elicited 
a spatial interpretation.  

 
Our results also complement and extend previous research with rodents. Unit recording 
studies have shown results suggestive of hippocampal involvement in model-based planning, 
notably replay of forward trajectories in hippocampal place cells (Johnson and Redish, 2007, 
Pfeiffer and Foster, 2013). However, in contrast to our results, previous studies with place cell 
recordings have not yet shown behavioral evidence for a link between the hippocampus and 
the use of this knowledge in planning, nor do they provide evidence for a causal role of 
hippocampus in such a function. In these respects, our results more closely parallel a recent 
report of a related deficit in model-based learning in rodents during inactivations of the dorsal 
hippocampus, using an analogous two-stage Markov decision task (Miller et al., 2017). The 
targeting of the inactivation to hippocampus in the rodent study sharpens the anatomical 
specificity of the effect. Conversely, our human result clarifies the contribution of the damaged 
structure, because we know more about the computations underlying model-based behavior 
on this task in humans. In particular, in humans, but not yet rodents, model-based choices 
have been explicitly linked to prospective neural activity at decision time (Doll et al., 2015). 
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This helps to rule out other potentially confounding strategies, such as that the apparently 
model-based choices in rodents are instead produced by some learned response switching 
rule contingent on events spanning multiple trials. It has been suggested that such model-free 
strategies might arise following overtraining of the sort used to teach animals this task (Akam 
et al., 2015, Economides et al., 2015); this might also implicate hippocampus for other, 
confounding reasons, such as its involvement in trace conditioning and latent states (Solomon 
et al., 1986, Büchel et al., 1999, Gershman et al., 2010). Our findings of a similar result in 
humans, without extensive training, thus help corroborate the interpretation of the rodent study 
as well. 

 
Comparing performance between our two tasks we also found that in healthy controls, 
boundary-driven place memory performance correlated with the extent of reliance on model-
based planning strategies. Importantly, this relationship was also significantly attenuated in the 
patient group, a result that suggests the lesion affects some common substrate for the tasks 
that is otherwise provided by the temporal lobes in the healthy brain. Following damage to this 
structure, however, the two tasks may be at least partly supported by differential compensatory 
mechanisms, leading to their decorrelation. These findings are consistent with the hypothesis 
that both model-based planning and place memory share a common mechanism, which is 
impaired in ATL patients.  
 
It is surprising and interesting that the effects we report emerge following damage to only one 
lobe, as unilateral temporal lobe damage is generally known to produce rather subtle effects 
on cognition in humans (Spiers et al., 2001) and animals (van Praag et al., 1998), relative to 
the famously dramatic effects of bilateral lesion (e.g. Scoville and Milner, 1957). This may 
relate to our use of two behavioral tasks that are well attuned to temporal lobe function. 
However, there exist inherent and important caveats in drawing conclusions about the neural 
bases of effects from a study of this sort. It is possible that the observed effects are caused, at 
least in part, by damage to the brain, including the hemisphere not surgically altered, as a 
result of the chronic epilepsy that prompted the surgery. Indeed, as with all studies of temporal 
lobe function in patients with epilepsy, the possibility that impaired behavior and cognition in 
patients is due to a history of epilepsy rather than the surgical intervention per se must be 
taken into account.  
 
For this reason and others, we must also be cautious about associating the damage with 
individual structures. Our analyses indicate that the size of lesion to the right hippocampus is 
significantly related to model-based planning deficits. Still, ATL lesions additionally affect a 
number of other regions including parahippocampal cortex, perirhinal cortex, and amygdala, 
which might also subserve these effects. Moreover, since the pattern of the lesions mainly 
varies in the extent that the temporal lobe has been removed in the dorsal direction, the 
patterns of damage to these structures tends to covary across individuals. Such collinearity 
makes it difficult to use variation across patients in damage to individual structures to fully 
disentangle their differential roles. We attempted to mitigate these issues by controlling for 
overall lesion size. Nevertheless, due to the very substantial analytic and interpretational 
issues, this anatomical specificity remains emphatically tentative.  

 



 

 

19

These caveats aside, a final question posed by our results concerns how model-based 
planning and boundary-driven place memory actually relate to one another. In the spatial 
literature, the notion of a cognitive map primarily refers to place-selective hippocampal activity, 
which allows organisms to recognize and remember discrete locations in allocentric space. 
From the perspective of planning, a cognitive map goes beyond such a representation, but is 
built upon it: the map captures the relationships between locations, which can be used to 
evaluate candidate actions. This function fits well with the broader view of hippocampus 
supporting relational memory (Eichenbaum and Cohen, 2001, Davachi and Wagner, 2002, 
Kumaran et al., 2009, Schapiro et al., 2016, Boorman et al., 2016, Garvert et al., 2017) which 
indicate that the planning deficit in patients stems from hippocampal damage being 
accompanied by attenuation of the knowledge of relationships between actions and states. 
This view is also consistent with recent computational models describing how the 
hippocampus might serve model-based planning. In spatial tasks, sequential activations of 
place-selective cells are hypothesized to provide, not only a mnemonic function through 
supporting reactivation of previously traversed trajectories, but a planning function by 
generating novel place cell sequences, based on the learned contingencies between 
locations (Johnson and Redish, 2007, Pfeiffer and Foster, 2013, Mattar and Daw, 2018). The 
related successor representation model (Stachenfeld et al., 2017, Garvert et al., 2017) also 
focuses on learned relationships among locations, by proposing that place selectivity itself is 
built from experience of state transitions to reflect expectations about future locations. A key 
challenge for future work addressing these ideas will be studying hippocampal activity in tasks, 
like the planning one used here, which manipulate animals' experience of environmental 
relationships to reveal how they leverage this knowledge to guide choice. 
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Methods 

Participants  

The patient sample consisted of 19 individuals who had undergone unilateral anterior temporal 
lobectomy (ATL) for the treatment of intractable epilepsy. Patients were recruited from the New 
York University (NYU) Patient Registry for the Study of Perception, Emotion and Cognition 
(PROSPEC). The control sample consisted of 19 healthy controls (HC), who were recruited 
from the local community through internet-based advertisement and gave consent to 
participate in the study. 

A clinical neuropsychologist (MRM or KB) conducted all standardized procedures for screening 
patients for inclusion into NYU PROSPEC. Patients were only selected for inclusion if there 
was no evidence of global cognitive dysfunction as measured by a comprehensive 
neuropsychological evaluation, an FSIQ (Wechsler Adult Intelligence Scale-Fourth Edition 
(Wechsler, 2008) above 80, no evidence of diffuse atrophy on MRI (e.g., brain tumor or 
idiopathic epilepsy), or and no history of psychiatric or neurologic disease other than the 
primary etiology for the focal brain lesion.  

On the day of testing, participants completed the two behavioral tasks separated by a short 
break. For all participants the sequential decision making task was given first, followed by the 
spatial memory task. For the control participants the completion of the tasks was followed by 
the administration of the WAIS-IV. For the patient participants, the WAIS-IV had been 
completed during screening procedures for inclusion into PROSPEC.  
 
MRI Scanning and Image Processing  

When post-surgical structural brain scans (T1 MP-RAGE) were not available from the referring 
center, the Department of Radiology at the NYU School of Medicine, patients were imaged at 
the NYU Center for Brain Imaging on a 3-Tesla Siemens Allegra head-only MR scanner.  
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Medical Center scans were obtained using 1.5 or 3-Tesla Siemens full-body MR scanners. 
Image acquisitions included a conventional three-plane localizer and two T1-weighted 
gradient-echo sequence (MP-RAGE) volumes (TE = 3.25 ms, TR = 2530 ms, TI = 1.100 ms, 
flip angle=7°, FOV=256 mm, voxel size=1×1×1.33 mm). Acquisition parameters were 
optimized for increased gray/white matter image contrast.  

The high-resolution structural images from each patient were normalized to Montreal 
Neurological Institute (MNI) standard space using FSL FLIRT (FMRIB’s Linear Image 
Registration Tool; http://fsl.fmrib.ox.ac.uk/fsl) (Jenkinson and Smith, 2001). This consisted of a 
two-step procedure: First, using MRIcron 
(http://www.mccauslandcenter.sc.edu/mricro/mricron/), a mask was drawn over the lesion and 
any craniotomy defect to prevent bias in the transformation, then masked voxels were 
assigned a weight of “0” and ignored during a subsequent 12-parameter affine transformation 
of the lesioned brain to the standard MNI 1 mm reference volume (Mackey et al., 2016). The 
second step was manually tracing the lesions on individual slices of the patients’ brains 
overlaid on the standard MNI brain template, while crosschecking in all three planes.  This 
tracing procedure produced a 3D mask with “1” indicating the presence of the lesion and “0” 
the presence of normal tissue. All patients had surgical lesions, which made the margins 
readily visible on the T1-weighted MRI images. In instances where there was uncertainty 
regarding the lesion margins, the treating neurosurgeon(s) and/or neuroradiologists were 
consulted. 

Lesion masks drawn in MNI space were subsequently overlaid on the Harvard-Oxford 
Structural Atlas) (Mazziotta et al., 2001) to estimate the extent of damage to the hippocampus 
(see Figure 1). Hippocampal lesion size was calculated as the voxel overlap between the 
individual lesion masks and the hippocampus as defined by the Atlas with p>.5.  

Spatial Memory Task  
 
Each participant completed 64 trials of a spatial memory task, identical (with one exception, 
see below) to the task used by Doeller et al. (2008). On each trial, participants navigated a 
virtual reality arena using keyboard presses. UnrealEngine2 Runtime software (Epic Games) 
was used to present a first-person perspective view of the arena. The virtual arena was 
bounded by a circular wall, contained a single intra-maze landmark in the form of a traffic cone, 
and was surrounded by distant cues (mountains, clouds, and the sun) projected at infinity. 
Both the boundary (wall) and landmark (cone) were rotationally symmetric, leaving the distal 
cues as the main source of orientation.  
 
At the beginning of each trial, a picture of one of four objects was presented on a grey 
background for 2 s. Participants were then placed in a random position within the arena 
without any objects, one-fifth of the radius from the center of the arena and facing a random 
direction (note that in Doeller et al. (2008) the starting radius was not restricted). Participants 
subsequently had 12 seconds to navigate to the correct location of the object as they 
remembered it from previous trials, and indicate that position by a button press. Following this 
button press, the object immediately appeared in its correct location. If no response had been 
made in 12 seconds, the object also appeared in its correct location automatically. Participants 
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ended the trial by collecting the object in its correct location. A fixation cross was then 
presented for 2 s, before the start of the next trial. 
 
The task consisted of 64 trials divided into 4 continuous blocks, each containing 4 pseudo-
randomized presentations of each of the 4 objects. Between blocks, the landmark moved in 
relation to the boundaries, such that there were four arena configurations, with the landmark 
roughly in the middle of the north, south, west, and east sectors of the arena, as defined by the 
distal cues (See Figure 2 Left). The order of arena configurations over blocks was 
counterbalanced across participants and experimental groups. Participants were not informed 
of the landmark movements prior to the experiment.  
 
During the first block, the correct location of all objects was in rough proximity of the landmark. 
Two of the objects were ‘boundary objects’, for which the correct locations were fixed relative 
to the environmental boundaries across the whole experiment. The other two objects 
(unannounced to the participants) were ‘landmark objects,’ for which correct locations were 
fixed at a constant distance and direction to the intra-maze landmark even as the landmark 
moved.  
 
The task probed for memory of correct object locations within the arena. Critically, by 
manipulating the landmark location in relation to the boundary and distal cues, the task 
distinguished whether participants stored place memory of allocentric location in relation to the 
boundary and distal cues, or by egocentric response memory in relation to individual 
landmarks (See Figure 4 Right). The original study, using the same procedure during fMRI in 
healthy participants, showed that place and response memory correlated with activity in the 
right posterior hippocampus and striatum, respectively (Doeller et al 2008).  
 
Participants practiced in an unrelated virtual environment with a different set of object stimuli 
before performing the experiment. Additionally, before the first trial, participants collected each 
of the objects once in their correct block 1 locations.  
 
Spatial Memory Task Analysis 
 
To measure memory of locations in relation to boundary and landmark cues, we focused our 
main analysis on the trials following the relative movement of the landmark in relation to the 
boundaries. Reliance on boundary cues was quantified by boundary distance error (dB), where 
dB was the distance from the response location to the correct location as defined by the 
boundary and distal cues in the previous block (See Figure 4 Right). Reliance on landmark 
cues was quantified by landmark distance error (dL), where dL was the distance from the 
response location to the correct location as defined by the landmark, according to the position 
of the object relative to the landmark in the previous block, translated with respect to the 
landmark’s new position (See Figure 4 Right). Low dB thus indicated greater reliance on 
boundary cues, which we interpret as ‘place memory’, and low dL indicated greater reliance on 
landmark cues, which we interpret as ‘response memory’. 

 
To capture the repeated-measure structure of the data, all statistical analyses of performance 
in the task were done using mixed-effects linear regression, treating participant as a random 
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factor. The models were estimated using the fitlme function in Matlab, with standard errors 
computed using the Satterthwaite approximation to the degrees of freedom when the model 
was linear, and Wald (asymptotic Gaussian) test for logistic models. The dependent variable, 
distance error (dB and dL respectively for each trial) was regressed on the key explanatory 
variables lesion group, distance error-type (dB or dL) and object type (boundary or landmark), 
while also controlling for additional nuisance explanatory factors, age and IQ.  

Sequential-Decision Making Task  

Participants also completed 200 trials of a two-step Markov decision task designed to quantify 
the extent to which participants use a world model to prospectively evaluate actions (Daw et 
al., 2011). The task was framed as a game about mining for space treasure (Decker et al., 
2016). Each trial involved two choices in succession, followed by reward (See Figure 2). 
Participants first made a choice between two actions, depicted as spaceships, randomly 
presented on the left and right. The choice resulted in a transition to one of two second-stage 
states (depicted as a red or purple planet). One spaceship most commonly (p=.7) transitioned 
to the purple planet, and otherwise made a rare transition (p=.3) to the red planet. For the 
other spaceship, probabilities were reversed. Participants were informed that each spaceship 
was more likely to go to a different planet but not which planet, nor the explicit transition 
probabilities.  
 
Subsequently, participants made a choice between two actions depicted as a pair of aliens that 
were unique to the planet, randomly presented on the left and right. Each alien was associated 
with a probability of monetary reward (vs nothing) that slowly diffused over trials according to 
an independent random walk. Rewards were paid out at the end of the experiment at a rate of 
15 cents per reward. The random change in the second-stage reward probabilities encouraged 
participants to adjust their choice preferences at both stages trial-by-trial, so as to maximize 
payoffs. For each choice, participants had 3 seconds to respond; or else the trial was aborted 
with a time-out message.  
 
Prior to the experiment, participants completed an extensive instructional tutorial. The tutorial 
included a 20-trial practice run, using a different set of visual stimuli (planets, spaceships, and 
aliens) but otherwise identical.  
 
Sequential-Decision Making Task Analysis 
 
The logic of the task exploits the noisy coupling between spaceships and planets to measure 
model-free learning - directly learning the value of spaceship choices vs. model-based 
planning - prospectively computing the value of the spaceship choices in terms of the planets 
they lead to. 
 
For instance, consider on some trial choosing the spaceship that usually transitions to the 
purple planet, but instead being taken to the red planet (a “rare” transition). On the red planet 
your choice of alien is subsequently rewarded. In this situation model-free and model-based 
strategies make conflicting predictions about first-level choice behavior on the next trial. 
Participants using a model-free strategy will be more likely to choose the same spaceship on 
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next trial, as it was rewarded. Conversely, participants using a model-based strategy will be 
more likely to switch and choose the other first-level action. This is because the model-based 
strategy computes the value of the spaceships using a cognitive map or model of their 
transition probabilities to the respective planets and the reward expected at the planets.  
 
The goal of analysis was to estimate, for each participant, the extent to which they followed 
either strategy. Following previous work (Daw et al., 2011), we did this two ways, using a 
factorial logistic regression that captures the above qualitative logic, and fits of a more 
elaborate, but more assumption-laden, computational learning model.  
 
We analyzed the first-level choices over spaceships using mixed-effects logistic regression 
(estimated using the fitglme function in Matlab). For each trial, the dependent variable (coded 
as stay with the same spaceship or switch, relative to the previous trial) was explained in terms 
of two events from the previous trial: whether reward was received, whether the planet 
encountered was reached following a common or rare transition given the spaceship chosen, 
and the interaction of these two factors. Our measure of model-free choice was the main effect 
of reward; our measure of model-based choice was the interaction of reward by transition type 
(common vs. rare). We further interacted the task factors with experimental group (lesion vs. 
control) as well as with two nuisance covariates, IQ and age, which have both been shown to 
affect behavior on this task (Gillan et al., 2016). The intercept, and the regression coefficients 
for reward, transition, and their interaction were all taken as random effects (allowed to vary 
across participants). 
 
To test our predictions about the relationship between reinforcement learning strategies 
employed in the decision-making task and place memory performance from the spatial 
memory task, we also specified a second regression model which interacted the task- and 
group-related factors (reward, common vs rare, group, and their interactions) with participant-
specific average boundary distance error (dB). IQ was also included as a nuisance variable. 
The interactions with dB (up to four-way) measure the extent to which the various effects in the 
decision task systematically vary, across participants, with their spatial memory performance; 
i.e. this is analogous to extracting per-participant effect sizes from the decision model and 
correlating them with dB, but by estimating that correlation as an effect within the regressing 
defining those decision effects, accounts properly for uncertainty in the per-participant 
estimates. We also calculated a ratio dB/(dL+dB), where dL and dB where participant wise 
means of landmark and response distance error. This ratio was also used in a separate model 
interacted with task- and group-related factors. 

 
Supplementary Methods for Computational Model Fit 

 
The logistic regression analysis considers only the previous trial’s experience in predicting 
each choice; this simplification is motivated by a limiting argument over the learning rate 
parameter in a more elaborate RL model of the data (Daw et al., 2011). In order to ensure that 
our results were not affected by neglecting the effect of earlier trials, we repeated our analyses 
fitting each participant’s trial-by-trial choices with a full RL model in which each choice depends 
on values learned from all previous rewards (based on Daw et al., 2011, but using the version 
from Gillan et al. 2016). To estimate the model we utilized Markov Chain Monte Carlo (MCMC) 
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methods, implemented in the Stan modeling language (Stan Development Team). Given an 
arbitrary generative model for data dependent on free parameters, the method permits 
samples to be drawn from the posterior probability distribution of parameter values, conditional 
on the observed data. From the quantiles of these distributions, we constructed confidence 
intervals – technically, credible intervals – over the likely values of the free parameters 
(Kruschke, 2010). We also report the posterior likelihood that the credible region contains zero, 
as one minus the size of the largest symmetric credible interval that excludes zero, which is 
roughly comparable to a two-sided P value.  
 
For each model, we produced 4 chains of 10,000 samples each. The first 250 samples from 
each chain were discarded to allow for equilibration. We verified the convergence of the chains 
by visual inspection, and additionally by computing for each parameter the ‘potential scale 
reduction factor’ �� (Gelman and Rubin, 1992). For all parameters, we verified that  �� < 1.1, a 
range consistent with convergence (Gelman, Carlin, Stern, and Rubin, 2003). 
 
We simultaneously estimated a model of all the data, incorporating individual parameters for 
each participant nested within a population-level model of the distribution of these parameters 
for each group.  
 
At the participant level, the model is the same as the one used by Gillan et al. (2016), and full 
equations are presented there. In brief, the model learns from experience to predict values 
�(�, �) for the different actions � (rockets, aliens) in the different states (planets and the 
starting state). Different RL algorithms, model-based and model-free, produce different 
estimates � at each step. First-level (spaceship) choices are determined by softmax choice, 
according to the weighted combination of model-based and model-free � values, with 
weightings controlled by the free inverse temperature parameters ��� and ���; a third 
parameter ������ captures any value-independent bias to stay or switch. Second-level (alien) 
choices are determined by a single set of � values (since model-based and model-free 
evaluation coincide for terminal actions), with inverse temperature �������. The various � 
values are updated according to delta rules with a free learning rate parameter �. Finally, the 
net model-free weighting ��� is itself derived from the weighted combination of � values 
learned by two variants of TD learning, TD(0) and TD(1), with weights ���� and ����. (This is 
a minor change of variables with respect to the standard model-free TD(�) algorithm used to 
hybridize these learning rules in Daw et al., 2011. Here the second temperature parameter 
replaces the eligibility trace parameter � used in that model, which has the advantage of 
eliminating its 0,1 boundaries.) Following estimation, we reverse the change of variables by 

computing the net model-free weighting as ��� =
����

�
+ ����, where the � accounts for a 

difference in scaling between the two parameters (see Gillan et al., 2016). When making group 
comparisons, group estimates of ���� are scaled by the estimated � of the corresponding 
group. 

The model thus estimates six free parameters per participant: �, ���, ����, ����, ������ , and 
�������, and our main hypotheses of interest concern group-wise differences in ��� and the 
net ���.  



 

 

34

Group-level modeling and estimation  
 
The model was specified hierarchically, so that the participant-specific parameter estimates 
were assumed to be drawn from a population-level distribution, separately for the patient and 

control groups. In particular, parameters �⃗� (a six-vector) for each participant � were modeled 
as drawn from a multivariate normal with mean �⃗ and covariance �. An additional vector �⃗��� 
coded any difference in means for the lesion group (i.e., their mean was �⃗ + �⃗���, allowing us 
to test for group differences in each parameter by comparing the corresponding element of �⃗��� 
to zero). For the parameter � (which is constrained to 0,1), the corresponding element of 

�⃗� (which has infinite support) was transformed through the CDF of the standard normal. 
 
We jointly estimated the posterior distribution over the individual and group-level parameters 
using MCMC as described above, which required specifying prior distributions (‘‘hyperpriors’’) 
on the parameters of the group level distributions. In particular, priors for the elements of �⃗ and 
�⃗��� were individually normal (mean=0, SD=2), which is uninformative within the relevant 
range. The covariance � was specified (as recommended in the Stan documentation) as the 
product of a correlation matrix � (which had an LKJ prior with shape � =2; Lewandowski et al., 
2009) scaled element wise by the outer product of a scale vector �⃗ (whose elements were 
again taken as normal, mean=0, sd=2) with itself. This model also included individual IQ 
scores and age as covariates.  

 
In order to test the interaction between performance in the two tasks, we then expressed a 
new model with group-specific parameter estimates (priors were normal distributions with 
mean = 0 and sd=1) that specified how individual z-scored estimates of place memory (dB 
predicted the participant-specific parameter estimates. dB was extracted identically as 
previously. This model also included individual IQ scores as a covariate. 
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Supplementary Results from Spatial Task: 
 
We compared the behavior of patients and controls in the spatial memory task, which probes 
the extent to which they can learn locations via boundary or landmark cues. During the first 
block the landmark has not yet moved and it is therefore not possible to distinguish which cue 
type is used (See Supplementary Figure 1). This is because boundary cues and landmark 
cues (fixed to one another and to each object) predict the same position, so distance error with 
respect to either cue type is the same.  
 
Mean distance error across the whole first block was not quite significantly greater for patients 
during this first block (F1,38= 4.0279, p=0.0519). Note that the low distance error already from 
object presentation 1 reflects the fact that some learning had already taken place, since the 
location of each object was shown once to participants before they made their first response. 

 
Supplementary Figure 1: Distance error (arbitrary units) for all objects during the first 4 
presentations that constitute block. Error bars indicate standard error. 

 
Distance error for all trials in blocks 2-4 can be seen in Supplementary Figure 2, now broken 
down with respect to error relative to either cue type’s position in the previous block. Following 
object presentation 4, 8 and 12 (i.e. after block 1,2 and 3) the landmark moved in relation to 
boundaries of the arena. This movement allows us to establish to what extent object locations 
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were learnt in relation to boundary cues or landmark cues on the most recent block. The 
distinguishability should be the greatest on the trials immediately following the movement of 
the landmark. Performance differences are not necessarily expected on the remaining trials, as 
performance based on the object’s most recent location, with respect to either cue, would there 
be equivalent. Even so, when calculating the boundary and landmark distance error for each 
object on all trials in block 2-4, based on location in the most recent block, we still see group by 
distance error type interaction on mean distance error (F1, 37.7 = 4.1524, p= 0.0486) (see 
Supplementary Table 11). 
 
Similarly, we expected that attempting to break down performance according to the true object 
type (landmark or boundary) would limit our ability to see effects because subjects could only 
have understood this distinction, if at all, in the latter portion of the experiment. Accordingly, in 
a regression model where we, for the critical trials following the landmark moves, additionally 
interacted group and distance error type by object type (see Supplementary Table 12) we did 
find a two-way interaction of object type by eror type (F, p), indicating that subjects were 
ultimately able to treat the two object types differently. However, we found no significant three-
way interaction of object type by error type by group (F1, 782.1 = 0. 2.6427, p= 0.1044),indicating 
that we did not detect no group differences in this respect. 

 
Supplementary Figure 2: Boundary (dB) and response (dL) distance error (arbitrary 
units) for all objects on trials across all object presentations in blocks 2-3. Dotted lines 
separate blocks. Error bars indicate standard error. 
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Note that our main result it Figure 5 were calculated as the mean of distance error from object 
presentations 5, 9 and 13 in Supplementary Figure 2. These trials were selected as in Doeller 
et al. (2008) since these trials cleanly dissociate performance based on what type of cue  

 
Supplementary Result Tables: 

 
Term F DF1 DF2 pValue Estimate SE 
'zIQ:dB' 15.29 1 39.42 0 -369.1 94.42 
'zAge:dB' 3.455 1 39.47 0.071 176.5 94.97 
'Controls:dB' 275.3 1 39.48 0 2219 133.7 
'Patients:dB' 406.2 1 39.51 0 2695 133.7 
'zIQ:dL' 1.425 1 85.45 0.236 -86.58 72.52 
'zAge:dL' 1.755 1 85.55 0.189 -96.65 72.95 
'Controls:dL' 615.8 1 85.56 0 2549 102.7 
'Patients:dL' 615.8 1 85.6 0 2549 102.7 

Supplementary Table 1: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme. Trials included are all critical trials 
following the movement of the landmark. Dependent variable is Distance Error. Age and IQ are 
z-scored. Effects seen for Patient group and Control group separately.  

 
Term z pValue Estimate SE 
'Patients' 7.57 0 1.635 0.2161 
'Controls' 7.13 0 1.533 0.2152 
'Reward:zAge' 1.55 0.121 0.0778 0.0502 
'Rare:zAge' 0.96 0.34 0.0515 0.0539 
'Reward:zIQ' 0.45 0.655 0.0234 0.0523 
'Rare:zIQ' 0.16 0.872 -0.0089 0.0555 
'Reward:Patients' 6.05 0 0.5114 0.0845 
'Rare:Patients' 1.01 0.313 -0.079 0.0783 
'Reward:Controls' 4.41 0 0.3664 0.0831 
'Rare:Controls' 0.55 0.579 -0.0426 0.0767 
'Reward:Rare:zAge' 1.45 0.147 0.0828 0.0571 
'Reward:Rare:zIQ' 0.99 0.322 -0.0582 0.0587 
'Reward:Rare:Patients' 1.35 0.176 -0.1158 0.0856 
'Reward:Rare:Controls' 3.32 0.001 -0.2794 0.0841 

Supplementary Table 2: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. Age 
and IQ are z-scored. Effects seen for Patient group and Control group separately.  
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Term z pValue Estimate SE 
'Controls' 6.74 0 1.505 0.2234 
'Reward:zIQ' 1.04 0.296 0.065 0.0623 
'Rare:zIQ' 0.62 0.533 0.042 0.0675 
' dB:Patients' 0.57 0.569 -0.1413 0.2482 
'Reward:Patients' 5.09 0 0.4601 0.0905 
'Rare:Patients' 0.71 0.479 -0.0579 0.0817 
' dB:Controls' 0.62 0.538 -0.1324 0.2151 
'Reward:Controls' 4.44 0 0.3964 0.0892 
'Rare:Controls' 0.13 0.898 0.0104 0.0809 
'Reward:Rare:zIQ' 0.58 0.564 0.0409 0.0708 
' dB:Reward:Patients' 1.29 0.196 0.132 0.1021 
' dB:Rare:Patients' 1.05 0.293 -0.098 0.0933 
'Reward:Rare:Patients' 1.46 0.145 -0.1271 0.0872 
' dB:Reward:Controls' 0.19 0.848 0.0195 0.1017 
' dB:Rare:Controls' 1.56 0.119 0.1516 0.0973 
'Reward:Rare:Controls' 2.12 0.034 -0.1834 0.0866 
'dB:Reward:Rare:Patients' 0.18 0.859 -0.0176 0.0991 
'dB:Reward:Rare:Controls' 2.66 0.008 0.2752 0.1036 

Supplementary Table 3: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. 
Controlling for z-scored IQ. dB is z-scored participant wise place memory performance. Effects 
seen for Patient group and Control group separately.  

 
 
Term F DF1 DF2 pValue Estimate SE 
'zIQ:dB' 15.21 1 39.36 0 -368.4 94.44 
'zAge:dB' 3.232 1 39.57 0.08 173.2 96.36 
'Controls:dB 275.7 1 39.4 0 2219 133.7 
'Left:dB' 192.7 1 41.36 0 2724 196.2 
'Right:dB' 208.3 1 38.11 0 2668 184.9 
'zIQ:dL' 1.35 1 88.62 0.248 -83.97 72.27 
'zAge:dL' 2.114 1 89.27 0.15 -107.3 73.8 
'Controls:dL' 621.7 1 88.67 0 2550 102.3 
'Left:dL' 304 1 95.42 0 2640 151.4 
'Right:dL' 308.5 1 84.24 0 2471 140.7 

Supplementary Table 4: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is Distance 
Error. Age and IQ are z-scored. Effects seen for Left patient group, Right patient group and 
Control group separately, each interacted with distance error types dL and dB seperately.  
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Term z pValue Estimate SE 
'Controls' 7.22 0 1.5300 0.2120 
'Left' 4.77 0 1.4760 0.3095 
'Right' 6.04 0 1.7720 0.2935 
'Reward:zAge' 1.58 0.1140 0.0802 0.0507 
'Rare:zAge' 1.19 0.2340 0.0622 0.0522 
'Reward:zIQ' 0.48 0.6300 0.0254 0.0526 
'Rare:zIQ' 0.15 0.8840 -0.0079 0.0539 
'Reward:Controls' 4.43 0 0.3634 0.0821 
'Rare:Controls' 0.66 0.5070 -0.0490 0.0739 
'Reward:Left' 3.69 0 0.4409 0.1193 
'Rare:Left' 1.96 0.0500 -0.2102 0.1072 
'Reward:Right' 4.84 0 0.5682 0.1175 
'Rare:Right' 0.31 0.7530 0.0336 0.1069 
'Reward:Rare:zAge' 1.59 0.1120 0.0892 0.0562 
'Reward:Rare:zIQ' 0.96 0.3360 -0.0554 0.0576 
'Reward:Rare:Controls' 3.38 0.001 -0.2810 0.0832 
'Reward:Rare:Left' 1.48 0.1400 -0.1789 0.1211 
'Reward:Rare:Right' 0.55 0.5840 -0.0653 0.1192 

Supplementary Table 5: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. Age 
and IQ are z-scored. Effects seen for Left Patient group, Right Patient group and Control group 
separately.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Term z pValue Estimate SE 
'Controls' 6.81 0 1.4980 0.2201 
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'Left' 4.4 0 1.5000 0.3405 
'Right' 6.02 0 1.8080 0.3002 
'Reward:zIQ' 0.42 0.6720 0.0276 0.0651 
'Rare:zIQ' 0.29 0.7730 0.0201 0.0697 
'Reward:Controls' 4.38 0 0.3763 0.0860 
'Rare:Controls' 0.04 0.9660 -0.0033 0.0778 
'Reward:Left' 2.41 0.0160 0.3154 0.1309 
'Rare:Left' 1.69 0.0900 -0.1993 0.1177 
'Reward:Right' 4.67 0 0.5586 0.1196 
'Rare:Right' 0.41 0.6810 0.0446 0.1086 
'Controls:zdB' 0.66 0.5090 -0.1400 0.2119 
'Left:zdB' 0.15 0.8790 -0.0523 0.3448 
'Right:zdB' 0.46 0.6470 -0.1631 0.3559 
'Reward:Rare:zIQ' 0.03 0.9760 -0.0022 0.0728 
'Reward:Rare:Controls' 2.42 0.0160 -0.2034 0.0841 
'Reward:Rare:Left' 1.84 0.0660 -0.2340 0.1275 
'Reward:Rare:Right' 0.5 0.6160 -0.0587 0.1168 
'Reward:Controls:zdB' 0.18 0.8560 -0.0182 0.0997 
'Rare:Controls:zdB' 1.32 0.1870 0.1258 0.0954 
'Reward:Left:zdB' 2.03 0.0420 0.2899 0.1429 
'Rare:Left:zdB' 0.01 0.9890 0.0018 0.1304 
'Reward:Right:zdB' 0.02 0.9810 -0.0036 0.1468 
'Rare:Right:zdB' 1.11 0.2680 -0.1500 0.1355 
'Reward:Rare:Controls:zdB' 2.29 0.0220 0.2332 0.1019 
'Reward:Rare:Left:zdB' 1.01 0.3150 0.1402 0.1394 
'Reward:Rare:Right:zdB' 1.17 0.2430 -0.1698 0.1453 

Supplementary Table 6: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. IQ 
and participant-wise dB scores are z-scored. Effects seen for Left Patient group, Right Patient 
group and Control group separately. 
 
 
 
 
 
 
 
 
 
 
 

Term z pValue Estimate SE 
'Left' 5.0003 0 1.5818 0.3163 
'Right' 5.7589 0 1.9119 0.332 
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'Reward:zAge' 2.7688 0.006 0.3278 0.1184 
'Rare:zAge' 0.5229 0.601 -0.068 0.1301 
'Reward:zIQ' 0.03 0.976 0.0026 0.0844 
'Rare:zIQ' 1.8214 0.069 0.1629 0.0894 
'Reward:Left' 3.8632 0 0.4548 0.1177 
'Rare:Left' 1.9511 0.051 -0.2516 0.1289 
'Reward:Right' 5.5357 0 0.9101 0.1644 
'Rare:Right' 0.4984 0.618 0.0886 0.1778 
'Left:HippLesion' 1.3754 0.169 0.4727 0.3437 
'Right:HippLesion' 1.4965 0.135 -0.6947 0.4642 
'Left:TotalLesion' 0.0424 0.967 0.0151 0.3584 
'Right:TotalLesion' 0.3306 0.741 0.1903 0.5757 
'Reward:Rare:zAge' 1.7328 0.083 0.2477 0.143 
'Reward:Rare:zIQ' 1.2396 0.215 0.125 0.1008 
'Reward:Rare:Left' 1.9357 0.053 -0.2573 0.1329 
'Reward:Rare:Right' 1.0946 0.274 0.2051 0.1874 
'Reward:Left:HippLesion' 1.8877 0.059 -0.2651 0.1404 
'Rare:Left:HippLesion' 1.4744 0.14 0.2301 0.156 
'Reward:Right:HippLesion' 0.4876 0.626 0.1115 0.2287 
'Rare:Right:HippLesion' 0.6427 0.52 0.1597 0.2485 
'Reward:Left:TotalLesion' 1.5294 0.126 0.235 0.1536 
'Rare:Left:TotalLesion' 1.7828 0.075 -0.3011 0.1689 
'Reward:Right:TotalLesion' 1.6206 0.105 -0.4798 0.2961 

Supplementary Table 7: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. 
Age, IQ Total Lesion size and Hippocampal Lesion size are z-scored. Effects seen for Left 
Patient group and Right Patient group separately.  
 
 
 
 
 
 
 
 
 
 
 

 
Term F DF1 DF2 pValue Estimate SE 
'zIQ' 2.7923 1 216 0.096 0.1305 0.0781 
'zAge' 0.7262 1 216 0.395 -0.0918 0.1077 
'Left' 1.5152 1 216 0.220 0.1429 0.1161 
'Right' 0.0236 1 216 0.878 -0.0212 0.1380 
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'Left:HippLesion' 0.0888 1 216 0.766 0.0468 0.1572 
'Right:HippLesion' 1.7341 1 216 0.189 -0.2611 0.1983 
'Left:TotalLesion' 4.3513 1 216 0.038 0.3157 0.1514 
'Right:TotalLesion' 0.8002 1 216 0.372 0.2263 0.2530 

Supplementary Table 8: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme.  Dependent variable is Boundary 
Distance Error. Age, IQ Total Lesion size and Hippocampal Lesion size are z-scored. Effects 
seen for Left Patient group and Right Patient group separately.  
 

 
Term F DF1 DF2 pValue Estimate SE 
'(Intercept)' 939.9385 1 432 0 0.4586 0.0150 
'zIQ' 0.5339 1 432 0.4650 -0.0128 0.0175 
'zAge' 1.7860 1 432 0.1820 0.0218 0.0163 
'Patients' 8.2130 1 432 0.0040 0.0608 0.0212 

Supplementary Table 9: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme. Trials included are all critical trials 
following the movement of the landmark. Dependent variable is ratio dB/(dB+dL). Age and IQ 
are z-scored. Effect of Patient is the difference to control group.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Term FStat pValue Estimate SE 

'Controls' 47.411 5.75E-12     1.4836     0.2155 

'Left' 15.792 7.07E-05     1.3798     0.3472 

'Right' 30.443 3.44E-08     1.7744     0.3216 

'Reward:zIQ' 1.2543 0.26273     0.0692     0.0618 

'Rare:zIQ' 3.20E-05 0.99549     0.0004     0.0638 

'ratio:Controls' 0.72676 0.39394     1.8831     2.2089 

'Reward:Controls' 21.275 3.98E-06     0.3864     0.0838 
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'Rare:Controls' 0.20918 0.64741    -0.0347     0.0759 

'ratio:Left' 0.4084 0.52278    -4.1843     6.5476 

'Reward:Left' 4.716 0.029883     0.2910     0.1340 

'Rare:Left' 4.3656 0.036671    -0.2524     0.1208 

'ratio:Right' 0.001657 0.96753     0.2433     5.9776 

'Reward:Right' 18.587 1.62E-05     0.5550     0.1287 

'Rare:Right' 0.14136 0.70693     0.0441     0.1173 

'Reward:Rare:zIQ' 0.00029568 0.98628     0.0011     0.0642 

'ratio:Reward:Controls' 0.45995 0.49765    -0.6826     1.0065 

'ratio:Rare:Controls' 0.099326 0.75264    -0.2978     0.9448 

'Reward:Rare:Controls' 8.2962 0.0039729    -0.2320     0.0806 

'ratio:Reward:Left' 4.7003 0.030158    -6.1804     2.8507 

'ratio:Rare:Left' 0.77308 0.37927    -2.3035     2.6198 

'Reward:Rare:Left' 5.3569 0.02064    -0.2967     0.1282 

'ratio:Reward:Right' 0.076529 0.78206     0.6662     2.4083 

'ratio:Rare:Right' 0.37175 0.54205     1.3451     2.2061 

'Reward:Rare:Right' 0.203 0.65231    -0.0560     0.1243 

'ratio:Reward:Rare:Controls' 3.3529 0.067086    -1.8130     0.9901 

'ratio:Reward:Rare:Left' 3.2995 0.0693    -5.0096     2.7579 

'ratio:Reward:Rare:Right' 0.6052 0.4366     1.8149     2.3329 
Supplementary Table 10: Results from binomial mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme. Dependent variable is whether 
participant stay with the first same first level action as on the last trial. Rare transition on last 
trial coded as 1, common as -1. Rewards on last trials coded as 1, no reward coded as -1. 
These are interacted by the participant specific estimate of dB/(dB+dL). Effects seen for Left 
Patient group, Right Patient group and Control group separately.  
 

 
 
 
 
 
 
 
 
 
 
Term F DF1 DF2 pValue Estimate SE 
'zIQ:dB' 1.6794 1 37.5803 0.203 -162.8533 125.6656 
'zAge:dB' 0.0082 1 37.9909 0.928 10.466 115.5669 
'Patients:dB' 560.5218 1 37.7903 0 2516.7 106.3016 
'Controls:dB' 450.8038 1 37.8373 0 2236.8 105.348 
'zIQ:dL' 0.1111 1 37.473 0.741 26.8459 80.545 
'zAge:dL' 0.8551 1 38.3598 0.361 -68.7394 74.3367 
'Patients:dL' 1204.1 1 37.9252 0 2368 68.2585 
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'Controls:dL' 1206.7 1 38.0391 0 2350.9 67.676 
Supplementary Table 11: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme. Trials included are all trials in blocks 
2-4. Dependent variable is Distance Error. Age and IQ are z-scored. Effects seen for Patient 
group and Control group, each interacted with distance error types dL and dB separately 
 

Term F DF1 DF2 pValue Estimate SE 
'zIQ:dL' 1.1611 1 104.5756 0.2840 -74.4111 69.0562 
'zAge:dL' 1.8066 1 105.4405 0.1820 -93.2646 69.3873 
'Controls:dL' 416.4943 1 75.2530 0 2.9607e+03 145.0740 
'Patients:dL' 425.7442 1 75.3192 0 2.9934e+03 145.0733 

'zIQ:dB' 13.0348 1 45.6346 
1.0000e-
03 

-332.5745 92.1164 

'zAge:dB' 4.0539 1 45.5598 0.0500 186.2976 92.5279 
'Controls:dB' 152.4128 1 39.9651 0 2.2115e+03 179.1342 
'Patients:dB' 183.1393 1 39.9833 0 2.4239e+03 179.1084 
'Controls:dL:L_Object' 18.7613 1 156.0378 0 -817.8130 188.8092 
'Patients:dL:L_Object' 21.8280 1 156.0260 0 -882.1264 188.8096 
'Controls:dB:L_Object' 0.0039 1 173.4617 0.9500 11.6564 186.8515 
'Patients:dB:L_Object' 8.2023 1 173.6667 0.0050 535.1180 186.8446 

Supplementary Table 12: Results from linear mixed regression model, with participant as 
random factor, implemented using Matlab function fitglme. Trials included are all trials in blocks 
critiacal trials following landmark movements. Dependent variable is Distance Error. Age and 
IQ are z-scored. Effects seen for Patient group and Control group, each interacted with 
distance error types dL and dB separately. There variables are additionally interacted with a 
variable L_object which is coded 1 for landmark objects and 0 for boundary objects.  
 

 
 
 
 
 
 
 
 mean 2.5%  97.5% 
MB

cont 0.33 0.1 0.55 
MF0

cont -0.06 -0.14 0.01 
MF1

cont 0.30 0.15 0.46 
stick

cont 1.16 0.78 1.54 
2stage

cont 1.17 0.85 1.5 
cont  0.26 0.18 0.38 
MB

pat_diff -0.2 -0.52 0.13 
MF0

pat_diff 0.05 -0.05 0.15 
MF1

pat_diff 0.2 -0.02 0.42 
stick

pat_diff 0.25 -0.29 0.79 
2stage

pat_diff -0.04 -0.49 0.41 
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pat_diff 0.07 -0.06 0.22 
 

Supplementary Table 13: Estimates (mean, 2.5% confidence interval and 97.5% confidence 
interval) from the full RL model which includes age and IQ as covariates but not individual 
place-memory performance estimates.  Cont indicated free-parameter estimates of the control 
group. Pat_diff indicates how patient group free-parameter estimates differ from control group.  

 

 

 

 mean 2.5%  97.5% 
MB-dB

cont -0.27 -0.52 -0.02 
MF0-dB

cont 0.00 -0.08 0.07 
MF1-dB

cont 0.12 -0.07 0.31 
stick-dB

cont -0.13 -0.59 0.32 
2stage-dB

cont -0.38 -0.73 -0.03 
-dBcont  0.24 0.15 0.34 
MB-dB

pat_diff 0.29 -0.05 0.63 
MF0-dB

pat_diff -0.03 -0.15 0.09 
MF1-dB

pat_diff -0.05 -0.31 0.21 
stick-dB

pat_diff 0.06 -0.54 0.66 
2stage-dB

pat_diff 0.51 0.03 0.97 
-dBpat_diff 0.06 -0.06 0.22 
 

Supplementary Table 14: Estimates (mean, 2.5% confidence interval and 97.5% confidence 
interval) from the full RL model which includes IQ and individual place memory performance 
estimates as covariates. Cont indicates effect of place-memory (dB) on free-parameter 
estimates of the control group. Pat_diff indicates how patient group effect of place-memory on 
free parameter estimates differ from control group.  
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