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Summary 

Background 

Spinal muscular atrophy (SMA) is a progressive motor neuron disease causing loss of motor function and 

reduced life expectancy. No approved treatments exist. We investigated the efficacy, safety and 

tolerability of olesoxime in patients with Type 2 or non-ambulatory Type 3 SMA. 

Methods 

This randomized, double-blind, placebo-controlled, Phase 2 study (NCT01302600) was performed in 22 

neuromuscular care centres in Belgium, France, Germany, Italy, Netherlands, Poland and the UK. Safety 

and efficacy of olesoxime (TRO19622/RG6083) were assessed in patients aged 3–25 years with 

genetically confirmed Type 2 or non-ambulatory Type 3 SMA. A centralized, computerized 

randomization process allocated patients to receive olesoxime 10 mg/kg/day oral liquid suspension or 

placebo (2:1 ratio) for 24 months. Patients, study personnel and sponsor study personnel were masked 

to treatment assignment. The primary outcome measure was change from baseline in functional 

domains 1 and 2 of the Motor Function Measure (MFM D1 + D2) assessed in the full analysis population. 

Safety was assessed in the intention-to-treat population.  

Findings 

Of 198 patients recruited between November 2010 and September 2011, 165 were randomized to 

olesoxime (n=108) or placebo (n=57). The change from baseline to Month 24 on the primary outcome 

measure was 0.18 for olesoxime and –1.82 for placebo (treatment difference 2.00 points; 96% 

confidence interval [CI]: –0.25, 4.25; P=0.0676). The overall effect of olesoxime on this endpoint across 

all visits was 2.23 (95% CI: 0.58, 3.88; P=0.0084). Further post hoc analysis of the primary endpoint in 

three age groups (<6, 6–15 and >15 years) revealed a consistent significant benefit of olesoxime 

treatment over placebo in children aged 6–15 years throughout the study period (P=0.0107). In addition, 

patients achieving higher exposure to olesoxime (≥7500 ng/mL) demonstrated improvements in MFM 

D1 + D2 score compared with baseline at all visits, which were not observed in the lower exposure group 

or with placebo. Olesoxime appeared safe and generally well tolerated, with an adverse event profile 

similar to placebo.  

Interpretation 

Olesoxime was generally safe, well tolerated and demonstrated signs of maintaining motor function in 

patients with Type 2 and 3 SMA. 

Funding: AFM Téléthon, Trophos SA. 
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Research in context 

Evidence before this study 

Approved treatment for spinal muscular atrophy (SMA) is limited to nusinersen, an intrathecal-

administered, antisense oligonucleotide intended to restore deficient SMN protein in motor neurons. 

However, there remains unmet medical need in SMA for additional , potentially complementary 

therapies that may delay disease progression and/or augment benefit of other therapies; substantial 

efforts have been invested in identifying the key mechanisms of disease and testing potential 

compounds. There is growing evidence that mitochondrial dysfunction represents a key mechanism of 

disease and a valid therapeutic target in neurological diseases, including SMA. In vitro studies 

demonstrated that olesoxime localizes at the mitochondrial membrane, where it increases functional 

integrity of mitochondria in cortical neurons and protects against apoptosis by preventing release of 

pro-apoptotic cytochrome C from mitochondria. At the time of study design, only one prior large 

multicentre efficacy study had been performed in SMA, assessing riluzole in patients with Type 1 SMA, 

for which results had not been published. Nevertheless, the design of this prior study provided context 

for the olesoxime trial design, which was developed with the input of experts in the field. 

Added value of this study 

This study is the largest and longest multinational study performed so far in patients with SMA, and 

provides the opportunity to assess the efficacy and safety of olesoxime, a promising therapeutic 

compound, in a broad population of patients with Type 2 and Type 3 SMA. Although the study did not 

meet the primary endpoint, the results revealed indications of efficacy in terms of maintenance of 

motor function over 2 years. Recent evidence suggests that maintenance of motor function is a key 

aspiration for patients with SMA as it allows for preservation of current abilities with regard to activities 

of daily living. The study also allowed, for the first time, the prospective assessment of motor function 

using both the Motor Function Measure and Hammersmith Functional Motor Scale, providing important 

novel data for these measures in a large controlled study setting over a 24-month period. 

Implications of all available evidence 

The results of this study support the continued development of olesoxime as a therapy for SMA, a 

progressive, debilitating, disease for which only one approved therapy exists. The clinical development 

of olesoxime will continue with an open-label extension study (clinicaltrials.gov NCT02628743) and a 

Phase 3 trial is currently in the planning stages. Given the paucity of approved treatments for patients 

with SMA, the results of this study provide both invaluable information to investigators for future trial 

study design and encouraging evidence on the role that olesoxime could play as a novel therapeutic 

agent for SMA.  
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Introduction 

Spinal muscular atrophy (SMA) is a rare and severely debilitating neuromuscular disease that manifests 

predominantly in infancy and childhood.1,2 The clinical phenotype is broadly classified into four types (1-

4) according to highest achieved motor function and age at onset of symptoms.3-5 In the majority of 

Type 1 SMA cases, the disease leads to severe paralysis and death in the first few years of life.1,6 Patients 

affected by the more chronic forms of SMA (Types 2 and 3) have variable degrees of disability, and those 

at the more severe end of the spectrum may develop respiratory failure that, unless appropriately 

managed, can lead to premature death.1,6 The progressive nature of the disease frequently leads to loss 

of ambulation in initially ambulatory Type 3 patients.5,7 In Type 2 and Type 3 SMA, the deterioration of 

motor function, measurable by validated neuromuscular assessments including the Motor Function 

Measure (MFM) and Hammersmith Functional Motor Scale (HFMS), results in significant disability and 

impact on patients and their caregivers.8.  

SMA is an autosomal recessive disease caused by loss-of-function mutations in the Survival of Motor 

Neuron 1 (SMN1) gene. The absence of the SMN1 gene results in insufficient levels of SMN protein in 

cells; this particularly impacts on motor neurons and neuromuscular junctions (NMJs), leading to muscle 

weakness, hypotonia and atrophy.1,9 The variable phenotypes of SMA are associated with the disease-

modifying SMN2 gene, where SMN2 copy number varies between individuals and SMA types.  SMN2 is 

always retained in SMA patients, but is only capable of producing residual amounts of functional SMN 

protein.5,10  

Although reduced SMN protein levels is the triggering event in all SMA types, the downstream 

pathological disturbances of atrophy and denervation are related to mitochondrial dysfunction, which 

affects numerous different cell types throughout the body.11-14 Given their influence on energy 

production, mitochondria are vital for cells with a high energy demand, including motor neurons and 

muscle fibres that are central to the pathophysiology of SMA.11,13,15,16 Reduced mitochondrial 

respiration, decreased mitochondrial adenosine triphosphate (ATP) synthesis, decreased mitochondrial 

membrane potential, and increased oxidative stress level were reported in motor neurons of a mouse 

model of SMA.14 In addition, in a study of skeletal muscle biopsies from patients with SMA Types 1, 2 or 

3, muscle tissue showed impaired mitochondrial biogenesis, causing decreased mitochondrial DNA and 

depressed respiratory chain activities.13 

The majority of current therapeutic strategies in clinical development have aimed to increase SMN 

production systemically either by replacing SMN1 (e.g. gene therapy with AVXS-101) or by SMN2 splicing 

modulators (e.g. RO6885247, RO7034067 and LMI070).  Recently, a SMN2 splicing modulator for 

intrathecal administration (nusinersen), targeting motor neuron survival, has been approved by FDA for 

treatment of SMA .17 However, there are concerns that therapies which augment SMN levels may not 

benefit all patients based on evidence from mouse models suggesting a prime role of SMN in 

neuromuscular system development.18 Consequently, there may be an important role for systemic, non-

SMN therapies that target alternative mechanisms, possibly in a complementary manner, which might 

maintain motor units, muscle cells and other affected cell types particularly in the slower degenerative 

phase of the disease. 
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Olesoxime (TRO19622/RG6083) exerts cytoprotective properties via interactions with the mitochondrial 

membrane, and was identified through its survival-promoting activity on trophic-factor-deprived 

primary motor neuron cultures.19 Olesoxime specifically localizes at the mitochondria across cell types, 

and has been shown to prevent excessive permeability of the mitochondrial membrane under stress 

conditions,19-21 supporting continued function of the cell, preventing apoptosis by reducing the release 

of pro-apoptotic factors and maintaining energy production.19-21 Olesoxime demonstrated 

neuroprotective and neuroregenerative effects in several animal models of motor nerve degeneration, 

reducing pro-apoptotic factor release from neuronal mitochondria.19,22 In a transgenic mouse model of 

severe SMA (SMNF7/F7; NSE-Cre mice), daily olesoxime administration extended survival compared 

with vehicle-treated mice.19 Taken together, these data suggest that olesoxime may have a role in 

maintaining motor neuron function, and has the potential to be a therapeutic agent in SMA.19,22  

Following a Phase 1 study in SMA that assessed preliminary safety, tolerability and pharmacokinetics 

(PK),23 accompanied by excellent safety data in a Phase 2/3 trial in amyotrophic lateral sclerosis,24 this 

Phase 2 study was performed with the objectives being to assess the efficacy, safety and tolerability of 

olesoxime in patients with Type 2 or non-ambulatory Type 3 SMA. We hypothesized that the 

mitochondrial function improvements associated with olesoxime treatment would at least prevent 

worsening of, and potentially improve, motor function over a period of 2 years, while decline of motor 

function in the placebo group would follow the natural history of the disease. 

Methods 

Study design 

This randomized, double-blind, placebo-controlled, multi-national Phase 2 study assessed the efficacy, 

safety and tolerability of olesoxime over 24 months in patients aged 3–25 years with Type 2 or non-

ambulatory Type 3 SMA. The main outcomes were change from baseline on measures of motor 

function. Patients were recruited from 22 study sites in 7 countries (Supplementary Table 1). All sites 

were care centres with expertise in treating SMA patients in line with the published standards of care 

for SMA.4 The study was approved by local institutional review boards and ethics committees. Analyses 

of the primary and secondary endpoints of this study have been previously published in abstract form.25 

This study is registered with ClinicalTrials.gov (NCT01302600). 

Participants 

Patients aged 3–25 years old with Type 2 or non-ambulatory Type 3 SMA were enrolled according to the 

following key inclusion criteria: weakness and hypotonia consistent with a clinical diagnosis of SMA Type 

2 or 3; genetic diagnosis of SMA with homozygous deletion of SMN1 exon 7, or a heterozygous deletion 

accompanied by a point mutation on the other allele; Motor Function Measure (MFM) relative score 

(percentage of the maximum sum of both dimensions) ≥15% (functional domain 1 [D1] + functional 

domain 2 [D2] score); Hammersmith Functional Motor Scale (HFMS) score at baseline ≥3 and ≤38 (non-

ambulatory); onset of symptoms at ≤3 years of age; and ability to take the study treatment (tested at 

screening after informed consent). Key exclusion criteria are provided in Supplementary Methods. All 
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patients and/or their parent/guardian provided written informed consent before screening. Patients 

were recruited mainly via information disseminated through the TREAT-NMD website, patient registries 

and in the clinics at each site. 

Randomization and masking 

Patients were randomized in a 2:1 ratio to receive olesoxime or placebo, with stratification by SMA type 

and centre. All investigators, site personnel, patients and the sponsor study personnel were masked to 

treatment assignment, and treatment allocations were masked until completion of the study.  

Randomization lists were generated centrally by an independent statistician (Business & Decision Life 

Sciences, Montrouge, France) using validated randomization software (SAS® version 9.2, SAS Institute 

Inc., Cary, NC, USA). To maintain masking, active and placebo treatments were supplied in brown glass 

bottles, and randomization details were provided using secure procedures to the clinical research 

organization performing the packaging of the treatment units and to the laboratory performing the 

olesoxime PK bioanalysis assay.  

Procedures 

Patients received oral olesoxime 100 mg/mL liquid suspension formulation (manufactured by Minakem, 

Beuvry-la-Forêt, France, packaged by CRID PHARMA, Saint-Gély-du-Fesc, France) at a weight-based dose 

of 10 mg/kg once a day, or matching placebo, with the main daily meal for 24 months. Following 

screening and baseline visits, follow-up visits were scheduled at Week 4 and Week 13, after which 

participants were assessed every 13 weeks for a total of nine visits over the 24-month treatment period. 

The full schedule of assessments is provided in Supplementary Table 2. An interim efficacy analysis was 

performed by an independent statistician when all patients had been treated for 12 months, to assess 

the need to continue the study to reach the planned objective. In the event of positive and significant 

results in favour of olesoxime, the study was to be considered successful and all patients were to be 

switched to olesoxime to allow assessment of the sustainability of the treatment effect and safety. If the 

results were significantly in favour of placebo, the study was to be discontinued for failure (futility). The 

interim efficacy analysis was reviewed by an independent Data Monitoring Committee (iDMC). The final 

efficacy and safety analysis was performed at 24 months. 

Outcomes 

The primary outcome measure was the change from baseline at Month 24 in D1 + D2 of the 32-item 

MFM (MFM32), a valid and reliable scale designed to capture functional abilities of individuals with 

neuromuscular disorders.26 A shorter 20-item version (MFM20) specifically adapted for younger 

children27 was used to assess children aged <6 years. The MFM assesses standing, ambulation and 

transfers, and axial, proximal and distal function. The MFM is used in multiple centres globally to 

monitor the functional ability of individuals with Types 2 or 3 SMA. Longitudinal analyses have identified 

an MFM total score decline of approximately 0.9 points per year in Type 2 patients, and 0.6 points per 

year in Type 3 patients.7 Further information on the MFM is provided in Supplementary Methods.  
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In 17 patients (olesoxime n=12, placebo n=5) who were <6 years old at enrolment, MFM32 was used at 

all visits instead of the protocol-defined MFM20. To account for this, two separate analyses of MFM 

score were performed. In the primary analysis, a score for the MFM20 was calculated from the MFM32 

score for these 17 patients by using only the 20 items that are featured in MFM20. A secondary 

sensitivity analysis instead included data from whichever form of the MFM was used. 

Secondary outcomes included analyses of the change from baseline to Month 24 in total MFM score and 

individual MFM domains (D1, D2 and D3). In addition, the proportion of patients demonstrating 

maintenance or improvement in scores on MFM D1 + D2 and MFM total score (D1 + D2 + D3) was 

assessed; this is referred to as a responder analysis. Sensitivity analyses of the primary endpoint, which 

were pre-specified in the SAP following the interim analysis, included subgroup analyses of MFM D1 + 

D2 score, to assess the effect of age, country and SMA type. In a further post hoc sensitivity analysis, an 

assessment of the effect of olesoxime exposure on the primary outcome measure was performed 

(described further in the Supplementary Methods). The change from baseline to Month 21 in HFMS,6 

developed for use in Type 2 and non-ambulatory Type 3 SMA patients, was also included as a secondary 

motor function outcome. A responder analysis for HFMS scores was also performed.  

Non-motor function secondary endpoints included maximum compound muscle action potential (CMAP) 

and motor unit number estimation (MUNE), clinical global impression of change (CGI-C) assessed by 

patient/caregiver and physician, forced vital capacity (FVC), Pediatric Quality of Life Inventory (PEDsQL™) 

Neuromuscular Module,28 and safety. Safety assessments included adverse events (AEs), standard 

laboratory assessments, electrocardiograms and vital signs. 

Statistical analysis 

To test the hypothesis that olesoxime treatment would at least prevent worsening of motor function 

over a period of 2 years, it was estimated based on natural history studies available at the time of study 

initiation7 that a mean decrease of 1.9 points in the MFM D1 + D2 score would be observed over 24 

months in the placebo arm, with no worsening in the olesoxime arm, with an assumed standard 

deviation of 3.32. It was calculated that 150 patients (100 olesoxime patients and 50 placebo patients) 

would be necessary to reach a power of at least 85% at the final analysis (alpha = 0.04 to take into 

account the interim efficacy analysis conducted after 12 months [alpha=0.01]), assuming 5% of patients 

would be lost to follow-up. 

All efficacy analyses (including exposure–efficacy exploration) were based on the Full Analysis Set (FAS), 

which includes all randomized patients who received at least one dose of olesoxime or placebo and who 

had at least one post-randomization assessment of MFM available. All safety analyses are based on the 

safety evaluable population (all randomized patients who received at least one dose of the study drug). 

As per the pre-determined statistical analysis plan, change from baseline to Month 24 in MFM D1 + D2 

was analysed using a mixed-effects repeated measures (MMRM) model. Covariates in the primary 

model were: MFM score (D1 + D2) at baseline, SMA type, country, treatment group, visit and treatment 

group by visit interaction. Further detail on the model is provided in Supplementary Methods. Least 

square means, standard errors and the 96% confidence intervals (CIs) of treatment difference between 
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olesoxime and placebo were reported. Statistical tests for the primary analysis were performed using a 

two-sided test with a significance level (α) of 4%.  

CGI-C ratings were analysed using a Van Elteren test, a non-parametric test which compares the ranks of 

responses, stratified by country. A post hoc responder analysis of CGI-C was also conducted, mirroring 

the responder analyses for the MFM and HFMS. Patients rated as ‘No change or better ’ (i.e., stability or 

improvement) were considered to be ‘responders’, and patients rated as ‘Minimally worse or worse’ 

(i.e., decline) were considered to be ‘non-responders’. The proportion of responders and non-

responders were then compared across treatment arms using a log binomial model, controlling for SMA 

type. Other secondary endpoints were tested using two-sided tests with a significance level (α) of 5%. 

Further information on statistical analysis of secondary endpoints is provided in the Supplementary 

Methods. For the post hoc analysis of the primary outcome measure according to olesoxime exposure, 

the time course of the change from baseline (mean ± SEM) of the MFM D1 + D2 score was graphically 

compared between patients with low and high olesoxime exposure and the placebo group. Further 

information on this exposure–efficacy analysis is provided in Supplementary Methods. 

All analyses were performed using SAS software (Version 9.2, SAS Institute Inc., Cary, NC, USA). The 

iDMC was responsible for monitoring the safety of patients by review every 13 weeks. The iDMC also 

reviewed the olesoxime plasma trough concentrations at Weeks 4 and 13, and reviewed the efficacy 

data at Week 52 to make a recommendation on study continuation. 

AEs were reported at each patient visit and traced in source documents, which were then monitored, 

with all AEs reported in the eCRF by the investigation sites. In addition, a post hoc analysis was 

performed on a series of AE clusters defined as SMA-related complications. Further detail is provided in 

Supplementary Methods. 

Role of the funding source 

This study was funded by the French national patient advocacy group AFM-Téléthon, who also 

contributed to the trial design. JLA was an employee of Trophos SA and responsible for protocol 

development and study supervision until enrolment was completed. ED was an employee of Trophos SA, 

who also funded this study, and participated in the study management, data collection, data 

management and data analysis. Five authors (TB, PF, CR, PSD and EV) are employed by F. Hoffman-La 

Roche and performed primary, sensitivity and exploratory analyses of this study. The funders of the 

study had no other role in data interpretation or in the decision to submit the manuscript for 

publication. Roche also supported reporting of study results by procuring medical writing support. All 

authors had full access to all data in the study and had final responsibility for the decision to submit for 

publication. 

Results 

A total of 165 patients were enrolled and randomized to treatment between 18 November 2010, and 6 

September 2011. Of these, 108 patients received olesoxime and 57 patients received placebo (Figure 1). 

The final patient observation occurred in October 2013. Seventeen patients withdrew prematurely, 10 



 

10 
 

from the olesoxime group (12.3%) and 7 from the placebo group (9.3%). Of 108 patients allocated to 

olesoxime, five patients were excluded from the FAS due to the absence of post-baseline assessments. 

Protocol violations occurred in 30 patients (olesoxime n=19 [18%], placebo n=11 [19%]), including the 17 

patients aged <6 years old at enrolment who performed the MFM32 at all visits instead of the protocol-

defined MFM20. Other major protocol violations (olesoxime n=7; placebo n=6) included deviation from 

the inclusion screening criteria (use of forbidden medication, spinal rod or fixation for scoliosis within six 

months of enrolment), abnormal liver enzymes (ALT or AST >3 x upper limits of normal), treatment 

compliance ≤50% for at least two visits and delayed visit dates. The FAS comprised 160 patients 

(olesoxime: n=103; placebo: n=57) (Table 1). All efficacy analyses reported here were based on the FAS. 

Patient demographics and baseline characteristics were mainly well balanced between the treatment 

groups, including proportions of SMA Type 2 and Type 3 patients. However, both mean and median ages 

were lower in the olesoxime group than in the placebo group, with a difference of 2.1 years in mean 

ages and a difference of 4 years in median ages across treatment groups (Table 1). In addition, there 

were slight differences in the proportion of males and females between groups (Table 1). The interim 

efficacy analysis performed at Month 12 found that treatment effects were in favour of olesoxime but 

were not statistically significant. Therefore, the study continued with the full 2-year treatment period. 

In line with the underlying hypothesis, olesoxime treatment was associated with maintenance of motor 

function, with a mean change of +0.18 points on the primary outcome variable, change from baseline in 

MFM D1 + D2 score at Month 24, whereas the placebo group demonstrated a decline in MFM D1 + D2 

score (mean change from baseline: –1.82 points). This difference did not achieve statistical significance 

(2.00 points; 96% CI: –0.25, 4.25; P=0.0676, Table 2). The overall treatment difference across all visits 

was 2.23 points, which was statistically significant in favour of olesoxime (P=0.0084, Figure 2). In the key 

pre-specified sensitivity analysis, taking into account erroneous use of the MFM32 version in some 

patients younger than 6 years, the difference between the two treatment arms was statistically 

significant in favour of olesoxime (difference between treatments in change from baseline: 2.20 [95% CI: 

0.12, 4.27]; P=0.0379). To investigate the effect of differences in development and natural history of 

disease according to age, we analysed the change from baseline in MFM D1 + D2 score separately in 

three different age groups: <6 years, 6–15 years and >15 years (Figure 3). In the 6–15-year age group, 

clear separation was noted between olesoxime and placebo patients over the course of the study, with 

olesoxime patients showing improvements in scores compared with baseline at all time points and 

placebo patients showing a consistent decline (>3-point difference between treatments at all visits; 

overall mean P=0.0107). In that post hoc analysis, the difference between olesoxime-treated and 

placebo-treated patients at Month 24 was 3.61 points (P=0.036, Figure 3). In the other age groups, no 

significant differences were observed between the treatment groups. 

Results on secondary MFM endpoints are shown in Table 3. For MFM total score (D1 + D2 + D3), the 

difference between treatment arms did not achieve statistical significance (treatment difference: 2.04; 

95% CI: –0.21, 4.28; P=0.0755). Analysis of the individual domains of the MFM revealed that the 

olesoxime group remained relatively stable in D1 and D2, while the placebo group showed decline, and 

in domain 3 the olesoxime group appeared to improve while the placebo group was stable. However, 

these differences did not reach statistical significance (Table 3). The proportion of patients who 
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improved or remained stable over 24 months (response rate) was higher in the olesoxime arm 

compared with the placebo arm for both the primary outcome measure MFM D1 + D2 (olesoxime 

54.4%, placebo 38.6%; P=0.0609) and the MFM total score (olesoxime 56.3%, placebo 38.6%; P=0.0419) 

(Table 4). Subgroup analyses of the MFM D1 + D2 score revealed effects of olesoxime across country 

(data not shown), SMA type, gender, and disease severity at baseline (Supplementary Table 3). Analysis 

of the primary endpoint including age as a continuous covariate revealed no significant effect of age on 

MFM D1 + D2 scores (P=0.2481, data not shown). The HFMS score declined in both groups from baseline 

to Month 21, with a non-significant difference favouring the olesoxime group compared with placebo 

(Table 3). The proportion of patients who improved or remained stable over 21 months (response rate) 

on the HFMS was higher in the olesoxime arm compared with the placebo arm (olesoxime 49.5%, 

placebo 28.1%, P=0.0091; Table 4). The effects of olesoxime on the HFMS were observed across country 

(data not shown), age, SMA type and gender (Supplementary Table 3). 

Change from baseline to Month 24 was not statistically significant between treatment groups for the 

electrophysiology endpoints CMAP and MUNE (Supplementary Table 4). There was no difference in the 

change from baseline to Month 24 in FVC (calculated as a percentage of theoretical capacity based on 

height and age; see Supplementary Methods) between the two treatment groups (Supplementary Table 

4). For CGI-C (patient/caregiver or physician rated), the majority of patients in both treatment arms 

were rated as ‘No change’, with no clear differences between the treatment groups. However, in the 

post hoc responder analysis of CGI-C, a statistically significant effect favouring olesoxime over placebo 

was observed with physician-reported data (relative risk 1.23 [95% CI: 1.01, 1.49]; P=0.036). A similar 

pattern was observed with patient-/caregiver-reported data, with a trend favouring olesoxime over 

placebo (relative risk 1.19 [95% CI: 0.99, 1.44]; P=0.064) (Supplementary Table 5). 

Variability in the PEDsQL™ Neuromuscular Module total score was high, with no significant differences 

observed between the treatment groups in change from baseline to Month 24 (Supplementary Table 6). 

Two parent-reported PEDsQL™ subscales showed trends for less worsening from baseline to Month 24 

with olesoxime (family resources: difference between the means 6.18 [95% CI −0.87, 13.23; P=0.0851]; 

neuromuscular disease: difference between the means 3.75 [95% CI −0.79, 8.29; P=0.1050]). For all 

other subscores, comparisons did not approach statistical significance. 

We analysed MFM D1 + D2 score according to olesoxime exposure.  MMRM analyses of change from 

baseline in MFM D1 + D2 score was repeated with systematic, one by one exclusion of patients with the 

lowest PK exposure values (Caverage; Supplementary Figure 1). The smallest MMRM P-value (P=0.0088) 

was obtained for a Caverage of 7500 ng/mL. This value was reached after exclusion of 37 patients with the 

lowest exposure. Caverage values for the overall olesoxime treatment group and the two groups with 

exposure levels below or above this value (7500 ng/mL) are shown in Supplementary Table 7. Patients 

with olesoxime exposure ≥7500 ng/mL demonstrated improvements in MFM D1 + D2 score at all visits, 

with a 2.0-point improvement from baseline at Month 24 (Supplementary Figure 2).The group with 

olesoxime exposure <7500 ng/mL demonstrated a decline in MFM D1 + D2 score.  

Olesoxime appeared generally safe and well tolerated, and approximately equivalent proportions of 

patients in each group experienced at least one AE during the study (Table 5). Two patients died during 
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the study, with one death in each treatment group (olesoxime: attributed to cardiac arrest; placebo: 

attributed to increased bronchial secretion), but these deaths were not considered related to treatment 

by the treating physicians. Further information is provided in Supplementary Information. Several AEs 

were frequently reported (>5%), with fairly equal frequency in both treatment groups (Supplementary 

Table 8). A greater proportion of patients experienced serious AEs in the placebo arm than in the 

olesoxime arm (placebo 50.9%, olesoxime 31.5%, Table 5). The proportion of patients withdrawing from 

treatment due to AEs was low (olesoxime 3.7%, placebo 3.5%). A post hoc analysis investigating selected 

SMA disease-related AEs (further information on selection of these AEs is provided in Supplementary 

Information) showed a higher incidence in the placebo arm compared with the olesoxime arm, with a 

lower frequency of the following disorders with olesoxime treatment: lower respiratory tract infections, 

gastrointestinal disorders (reflux disorders and constipation) and other joint-related disorders (Table 5). 

Discussion 

This Phase 2 clinical trial tested the hypothesis that oral administration of olesoxime (10 mg/kg/day) 

would at least prevent decline of, and potentially improve, motor function in patients with Type 2 and 

non-ambulatory Type 3 SMA over a treatment period of 2 years, while the placebo group would 

demonstrate a decline in motor function in line with the natural history of the disease. The trial did not 

meet the primary outcome measure of improved motor function compared with placebo, as measured 

by change from baseline to Month 24 in MFM D1 + D2 score. However, we observed trends indicating 

maintenance of motor function with olesoxime compared with placebo. 

First, the overall treatment effect in terms of change from baseline on MFM D1 + D2 across all visits was 

significantly better with olesoxime than with placebo. In addition, the difference between the two 

treatment arms was statistically significant in favour of olesoxime at Months 6 and 18, as well as in a 

sensitivity analysis taking into account erroneous use of MFM32 in some patients aged <6 years. Second, 

the change from baseline on MFM D1 + D2 scores was significantly better with olesoxime treatment 

than with placebo in patients aged 6–15 years during the entire treatment period. This is a particularly 

important finding given that SMA patients in this age group generally experience profound declines in 

function associated with growth at puberty.29,30Given that the expected effect of olesoxime was 

primarily maintenance of function, and that demonstration of a treatment effect would therefore 

depend on functional decline in the placebo group, the greatest effect could be expected to be observed 

in this age group. In fact, the results indicate a change in the trajectory of motor function with olesoxime 

in 6–15 year olds, from decline to improvement. Such differences between treatment groups were not 

observed in the youngest (<6 years) and oldest (>15 years) age groups. This may be because children < 6 

years may experience improvements in motor function as they develop and achieve motor function 

milestones,31 whereas patients aged >15 years may experience periods of fairly stable function over 2–3 

years of observation.29,30Third, we observed that response on the primary outcome measure was closely 

associated with olesoxime exposure, with patients that experienced higher olesoxime exposure also 

demonstrating improved responses. Finally, we also observed positive effects of olesoxime treatment in 

the responder analyses of the MFM total score and HFMS, where a significantly greater proportion of 

olesoxime patients than placebo patients demonstrated stable or improved motor function over the 
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study period, and a trend towards a similar result was observed for MFM D1 + D2 scores. These results 

were confirmed in the post hoc responder analysis of CGI-C, a measure of global change relative to 

baseline. A significant benefit of olesoxime treatment compared with placebo was observed in the 

proportion of patients with stable or improved overall status as assessed by physicians. This benefit 

represents independent evidence supportive of a clinically relevant effect of olesoxime. Furthermore, 

this was supported by similar, though non-significant, evidence from patient or caregiver ratings.  

Given that many of the analyses showed signs of efficacy for olesoxime, it is perhaps surprising that 

olesoxime did not achieve significance on the primary outcome measure. A potential explanation is the 

higher than anticipated variability observed on the primary outcome measure in the study population, 

which caused the study to be underpowered. Our sample size calculation was based on a change of –1.9 

points in MFM score in the placebo group over 24 months, with no worsening in the olesoxime group, 

and an assumed standard deviation of 3.3. In fact, we observed a standard deviation for MFM D1 + D2 

of 6.8 points in the placebo arm, with a treatment difference of 2.0, in a population of 160 patients. Two 

longitudinal multicentre studies of motor function measures in SMA populations across multiple 

countries have been published. One study used the MFM32 in patients with SMA Types 1, 2 and 3 over a 

follow-up period of 1.2–66 months, and reported a slope of decline in MFM total score of –0.86 and –

0.55 points per year, with standard deviations of 1.45 and 3.99, in patients with Types 2 and 3 SMA, 

respectively.7 Another study used both the MFM20 and HFMS in a similar Type 2 and Type 3 SMA 

population over a 12-month period, and reported a range of changes in MFM20 of –11 to +7 points and 

in HFMS of –11 to +4 points at 12 months, with standard deviations of 2.94 and 2.74, respectively.32 The 

variability observed in our study was greater than the variability reported in these previous studies.  

The greater variability observed in our population may have arisen from several causes, including 

imputation of scores in cases of death or missing data, erroneous use of the MFM32 in some patients 

aged <6 years, and a relatively large age range with significant variation in stages of development and 

differences in potential motor function decline.30 In particular, the inclusion of a large number of 

children aged <6 years may also have contributed to the variability, as children ≤ 6 years have been 

shown to continue to improve and achieve motor milestones at these ages.31 Also, the exposure–

efficacy analyses suggest that the variability in treatment effect may have arisen from variations in 

olesoxime exposure. However, it is possible that the increased variability may simply arise from the 

differing contexts of the prior studies versus the present one. The prior studies did not include any 

treatment, and the absence of any expectation of improvement by the patients may in itself produce 

more homogeneous results. Furthermore, since the overall aim of the prior studies was to validate 

motor function scales, the methodology would have been more closely focused on demonstrating 

repeatability and reproducibility, again leading to more homogeneous data.  

We further investigated effects of olesoxime treatment on the individual domains of the MFM 

(described in Supplementary Methods), and observed a trend for a treatment benefit in D2 and non-

significant smaller benefits with D1 and D3. This is in accordance with previous work, as the MFM D1 + 

D2 have previously been shown to be most responsive in patients with Type 3 and Type 2 SMA, 

respectively.7 Our study focused on Type 2 and weaker Type 3 patients, who were likely to experience 

the greatest responses on MFM D2. Conversely, large changes in MFM D1 were not expected in this 
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cohort of non-ambulatory SMA patients.32 On the secondary endpoints CMAP, MUNE, PEDsQL™ and 

FVC, no clear benefit of olesoxime treatment was observed. The correlation between CMAP and MUNE 

measurements and disease progression in SMA is uncertain and differences have been observed 

between SMA types,33 so these measures might not be expected to show any evidence of consistent 

changes across the study. The use of CMAP and MUNE in clinical trials has been limited thus far, and our 

data will provide additional information to the field. Further, gaps exist currently in establishing the 

validation and sensitivity of the PEDsQL™ in SMA patients, as factor analysis to explore construct validity 

and dimensionality has not yet been performed.28 For FVC, post-baseline height was not measured, 

which prevented accurate calculation of predicted FVC after this time, and inter-site variation may have 

played a role with different equipment used to perform this measure. On CGI-C, the initial analysis may 

not have been powerful enough to detect differences when the majority of responses reported no 

change. The results at Month 24 relied on the accuracy of a 2-year recall, which may be too long for 

optimal assessment.34 In addition, no instructions were provided to assessors on how to rate clinical 

change when completing the scale (e.g. what should be considered a minimal improvement or 

worsening), resulting in a potential lack of consistency amongst respondents. These endpoints will 

require refinement before use in future trials in SMA, and inter-centre performance would be improved 

by using standardized methods across study sites.  

Olesoxime appeared safe and well tolerated, and a post hoc analysis suggested that fewer patients 

receiving olesoxime experienced disease-related complications including pulmonary, gastrointestinal, 

and joint-related disorders.    

An ongoing difficulty with research in SMA is translating available clinical trial endpoints for 

measurement of motor function into clinical meaningfulness for patients.5 Our population of SMA 

patients was highly heterogeneous and represented young people at varying stages of development and 

with different needs. Further investigations are ongoing to investigate the treatment effects of 

olesoxime on specific items of the motor function scales that can be better related to a patient’s 

activities of daily living and translated to clinically meaningful benefits. However, there are strong 

indications from physician experience of treating patients with SMA and from direct discussions with 

patients and caregivers that maintenance of function is regarded by patients and their families as a 

meaningful outcome.8,35 

There was an age imbalance across the treatment groups, with a lower mean and median age of 

patients in the olesoxime group compared with the placebo group. As children aged <6 years may 

improve in motor function as they develop,30,31 there was potential that the therapeutic effect observed 

with olesoxime treatment was driven by the younger children in this treatment group. However, post 

hoc analyses demonstrated that there was no significant interaction between treatment and age, and no 

effect of age on the primary outcome. Furthermore, the effects of olesoxime on motor function 

appeared to be greatest in patients in the 6–15-years age group, further negating any impact of the age 

imbalance. The study also lacked an inclusion criterion relating to standard of care, which may have 

resulted in a heterogeneous population in terms of prior intervention. Evaluation and comparison of 

non-pharmacological management was not possible. However, all patients were treated in Europe and 
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the cohort was stratified across countries, with no significant effect of country observed in the subgroup 

analyses.  

A limitation of the study was the wide variability in olesoxime exposure. In the present study, total daily 

doses approaching 1000 mg have been administered over 2 years in some patients and were well 

tolerated, suggesting that the therapeutic window may be sufficiently wide for the administration of 

higher doses of olesoxime in SMA, to maximize benefit. Additional trials exploring higher doses might 

offer the opportunity to conclusively evaluate the efficacy of olesoxime. A further limitation is the lack 

of biomarkers to measure disease progression in SMA and the expected biological function of 

olesoxime.  

Currently, disease management in SMA involves supportive care and treating or preventing disease-

associated complications.4 Surveys of SMA patients indicate that avoiding further loss of function is one 

of the most meaningful benefits that could be achieved with any potential treatment.8 In the present 

study, we demonstrate encouraging results that olesoxime treatment may be associated with 

maintenance of motor function in SMA patients, with particularly notable effects in children aged 6–15 

years. Additionally, olesoxime is well tolerated and may be associated with decreases in the frequency 

of disease-related complications compared with placebo. Despite the acknowledged limitations, this 

study represents a landmark in SMA, being the longest and largest multinational, controlled study so far 

to collect prospective assessments with both the MFM and HFMS motor scales. These important, novel 

data represent a robust baseline for the improved design of future studies in similar SMA populations. 

Based on these results, olesoxime offers the potential to provide meaningful clinical benefits for patients 

with SMA, and given its mode of action, has the possibility of being utilized in combination with other 

drugs targeting complementary mechanisms of disease.  
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Tables 

Table 1. Patient demographics (FAS) 

    Olesoxime Placebo Total 
    n=103 n=57 N=160 

Sex, n (%) Male 55 (53.4) 25 (43.9) 80 (50.0) 

  Female 48 (46.6) 32 (56.1) 80 (50.0) 

Age at baseline, years Mean ± SD 9.1 ± 5.5 11.2 ± 6.0 9.9 ± 5.7 

  Median 7 11 8 

  Range 3–25 3–27 3–27 

Age categories, n (%) <6 years 35 (34.0)  13 (22.8)  48 (30.0) 

  ≥6 years 68 (66.0)  44 (77.6)  112 (70.0) 

SMA type, n (%)  Type 2 74 (71.8)  39 (68.4)  113 (70.6) 

  Type 3 29 (28.2)  18 (31.6)  47 (29.4) 
FAS=full analysis set; SD=standard deviation.  
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Table 2. Comparison between treatment groups on change from baseline at Month 24 in 
MFM D1 + D2 score (MMRM; FAS) 

Primary analysis Olesoxime 
(n=103) 

Placebo 
(n=57) 

Estimate (SE) 96% CI P-
value 

Baseline, mean (SD) 39.58 (11.701) 38.99 
(11.905) 

   

Change from baseline 
at Week 104, LS mean 
(SE) 

0.18 (0.717) –1.82 (0.901) 
   

96% CI –1.30, 1.66 –3.68, 0.04 
   

Difference from 
placebo 

 
 2.00 (1.088) -0.25, 

4.25 
0.0676 

Overall treatment 
effect 

 
 2.23 (0.835) 0.50, 3.96 0.0084 

Sensitivity analysis Olesoxime 
(n=103) 

Placebo 
(n=57) 

Estimate (SE) 95% CI P-
value 

Baseline, mean (SD) 39.01 (11.472) 38.69 
(11.689) 

   

Change from baseline 
at Week 104, LS mean 
(SE) 

0.24 (0.696) –1.96 (0.872) 
   

95% CI –1.14, 1.61 –3.68, –0.24 
   

Difference from 
placebo 

 
 2.20 (1.050) 0.12, 4.27 0.0379 

Overall treatment 
effect 

 
 2.36 (0.817) 0.74, 3.97 0.0044 

Primary analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score was 
calculated from MFM32 score. Sensitivity analysis: data as collected from whichever form of the MFM was used. 
See Supplementary Information for full explanation. 
CI=confidence interval; FAS=full analysis set; LS mean=least squares mean; MFM=Motor Function Measure; 
MMRM=mixed model-repeated measures; SD=standard deviation; SE=standard error.   
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Table 3. Change from baseline in secondary motor function endpoints (MMRM; analysis; FAS) 

MFM total score  
(to Month 24) 

Olesoxime 
(n=103) 

Placebo  
(n=57) 

Estimate  
(SE) 95% CI 

P-
value 

Baseline, mean (SD) 49.32 (10.993) 49.11 (11.432)    

Change from baseline 
at Week 104, LS mean 
(SE) 

0.59 (0.751) –1.45 (0.943)    

95% CI –0.90, 2.07 –3.31, 0.41    

Difference from 
placebo 

  2.04 (1.138) –0.21, 4.28 0.0755 

MFM D1 (to Month 24)      

Baseline, mean (SD) 6.76 (7.933) 7.28 (7.543)    

Change from baseline 
at Week 104, LS mean 
(SE) 

0.07 (0.554) –0.90 (0.706)    

95% CI –1.02, 1.16 –2.29, 0.49    

Difference from 
placebo 

  0.97 (0.854) –0.72, 2.66 0.2582 

MFM D2 (to Month 24)      

Baseline, mean (SD) 74.10 (18.610) 72.64 (18.882)    

Change from baseline 
at Week 104, LS mean 
(SE) 

0.38 (1.217) –2.78 (1.524)    

95% CI –2.02, 2.78 –5.79, 0.23    

Difference from 
placebo 

  3.16 (1.838) –0.47, 6.79 0.0873 

MFM D3 (to Month 24)      

Baseline, mean (SD) 85.41 (13.147) 86.05 (15.412)    

Change from baseline 
at Week 104, LS mean 
(SE) 

2.27 (1.264) 0.15 (1.606)    

95% CI –0.22, 4.76 –3.02, 3.32    

Difference from 
placebo 

  2.12 (1.945) –1.72, 5.96 0.2773 

HFMS (to Month 21)      

Baseline, mean (SD) 16.47 (10.576) 14.86 (10.514)    

Change from baseline 
at Week 91, LS mean 
(SE) 

–0.78 (0.416) –1.72 (0.515)    

95% CI –1.60, 0.04 –2.74, –0.70    

Difference from 
placebo 

  0.94 (0.622) –0.28, 2.17 0.1309 
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Primary analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score was 
calculated from MFM32 score. Sensitivity analysis: data as collected from whichever form of the MFM was used. 
See Supplementary Information for full explanation. 
CI=confidence interval; D1=MFM domain 1 (standing position and transfers); D2=MFM domain 2 (axial and 
proximal motor function); D3=MFM domain 3 (distal motor function); FAS=full analysis set; HFMS=Hammersmith 
Functional Motor Scale; LS mean=least squares mean; MFM=Motor Function Measure; MMRM=mixed model-
repeated measures; SD=standard deviation; SE=standard error.   
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Table 4. Analysis of responders on change from baseline in motor function scores (FAS) 

  Olesoxime 
(n=103) 

Placebo 
(n=57) 

95% CI Relative 
risk 

P-value 

MFM D1 + D2  
(to Month 24), n (%) 

56 (54.4) 22 (38.6) 0.98, 2.08 1.43 0.0609 

MFM total score  
(to Month 24), n (%) 

58 (56.3) 22 (38.6) 1.01, 2.10 1.46 0.0419 

HFMS (to Month 21), n (%) 51 (49.5) 16 (28.1) 1.16, 2.86 1.82 0.0091 
Analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score was calculated 
from MFM32 score. CI=confidence interval; D1=MFM domain 1 (standing position and transfers); D2=MFM domain 
2 (axial and proximal motor function); FAS=full analysis set; HFMS=Hammersmith Functional Motor Scale; 
MFM=Motor Function Measure.   
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Table 5. Overview of adverse events (safety evaluable population) 
 

Olesoxime 
(n=108) 

Placebo 
 (n=57) 

Total  
(N=165) 

Total number of patients with ≥1 AE, n (%) 103 (95.4) 57 (100) 160 (97.0) 

Total number of AEs 1104 612 1716 

Total number of deaths, n (%) 1 (0.9) 1 (1.8) 2 (1.2) 

Total number of patients withdrawn from the 
study due to an AE, n (%) 

4 (3.7) 2 (3.5) 6 (3.6) 

Total number of patients with: 
 

 
 

≥1 AE with fatal outcome, n (%) 1 (0.9) 1 (1.8) 2 (1.2) 

≥1 serious AE, n (%) 34 (31.5) 29 (50.9) 62 (37.6) 

≥1 AE leading to withdrawal from treatment, 
n (%) 

9 (8.3) 2 (3.5) 11 (6.7) 

≥1 severe AE, n (%) 18 (16.7) 14 (24.6) 32 (19.4) 

Selected disease-related AEs: 
 

 
 

Lower respiratory tract infections, n (%) 13 (12.0) 10 (17.5) 23 (13.9) 

Respiratory failure, n (%) 2 (1.9) 2 (3.5) 4 (2.4) 

GI disorders: reflux disorders, n (%) 4 (3.7) 4 (7.0) 8 (4.8) 

GI disorders: constipation, n (%) 5 (4.6) 4 (7.0) 9 (5.5) 

Scoliosis pathology, n (%) 14 (13.0) 6 (10.5) 20 (12.1) 

Other joint-related disorders, n (%) 13 (12.0) 17 (29.8) 30 (18.2) 

Surgical procedures, n (%) 9 (8.3) 5 (8.8) 14 (8.5) 
AE=adverse event; GI=gastrointestinal.  
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Figures  

Figure 1. Trial profile 

 



 

30 
 

Figure 2. MFM D1 + D2 change from baseline (LS mean ± SEM; FAS, primary analysis) at Months 6, 12, 
18 and 24 

 

Primary analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score 
was calculated from MFM32 score. Error bars represent SEM. MFM=Motor Function Measure; 
SEM=standard error of the mean. 
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Figure 3. MFM D1 + D2 mean change from baseline to Month 24 in treatment groups split into three 
age groups (adjusted mean; FAS; primary analysis) 

 

Primary analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score 
was calculated from MFM32 score. See Supplementary Information for full explanation. Error bars 
represent SEM. MFM=Motor Function Measure; SEM=standard error of the mean. 
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Supplementary methods 

Participants 

Key exclusion criteria were evidence of renal dysfunction, blood dysplasia, hepatic insufficiency, 

symptomatic pancreatitis, congenital heart defect, known history of metabolic acidosis, hypertension, 

significant central nervous system impairment, or neurodegenerative or neuromuscular disease other 

than spinal muscular atrophy (SMA), any clinically significant electrocardiogram abnormality, use of 

medications intended for the treatment of SMA, inability to meet study visit requirements or cooperate 

reliably with functional testing, and surgical spinal rod or fixation for scoliosis within the past 6 months 

or anticipated need of rod or fixation within 6 months of enrolment. Patients that received surgical 

spinal rod or fixations for scoliosis > 6 months before screening and required no further intervention 

were included in the study.  There were no respiratory-related exclusion criteria. 

Outcomes 

The Motor Function Measure (MFM) consists of 32 items scored on a 4-point Likert scale from 0–3 and 

grouped by functional domain (domain 1 [D1]: standing position and transfers; domain 2 [D2]: axial and 

proximal motor function; and domain 3 [D3]: distal motor function).1 D1 and D2 were selected as they 

show particular sensitivity in Type 3 and Type 2 SMA patients, respectively. 1 The 20-item MFM includes 

items representative of all three functional domains and maintains the balance of domains included in 

the 32-item version.2  

Trained physiotherapists, using the detailed instructions in the manual, led the patients through a series 

of 32 physical assessments. The assessment order was designed to reduce the frequency of positional 

changes. For each item, the physiotherapist scored the ability of the individual to complete the task 

(e.g., placing both hands on their head) using the detailed description for each score (e.g., 1= raises both 

hands from the table but the forearms remain in contact with the table). The MFM D1+D2 score is the 

sum of the 25 items from the D1 and D2 domains, divided by the maximum possible score (75) and 

multiplied by 100, placing the scores on a 0-100 scale. Due to the training requirements and detailed 

instructions, subjectivity is limited (as demonstrated by excellent inter-rater reliability).3 Furthermore, 

the MFM D1+D2 score has been shown to be a valid and reliable assessment of motor function ability in 

individuals with Type 2 and non-ambulatory Type 3 SMA.4 

Statistical analysis 

Primary outcome measure 

Within the mixed-effects repeated measures (MMRM) model, visit was treated as a repeated variable 

within a patient (random effects). An unstructured variance–covariance matrix was applied to model the 

within-patient errors in the primary model. The Restricted Maximum Likelihood method was used for 

estimates of variance components. The Kenward Roger approximation was used to estimate the 

denominator degrees of freedom. 
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Secondary endpoints 

Motor function scores 

MMRM models described in the main Methods section for the primary outcome measure were used to 

analyse change from baseline to Month 24 in the MFM Total Score, MFM D1, D2 and D3 scores (primary 

and sensitivity analyses) and change from baseline to Month 21 for the Hammersmith Functional Motor 

Scale (HFMS) total score. Changes from baseline in the individual items of the MFM score (to Month 24) 

and the HFMS (to Month 21), respectively, were analysed using MMRM as described for the primary 

outcome measure with the exception that missing items were not imputed. In all MMRM analyses of 

MFM D1+D2 and Total scores, missing scores were imputed using a model based on placebo data and 

individual MFM items were imputed as follows: If an MFM item was “Not done” or “Not applicable” at 

baseline, a backward imputation was performed. The value of this item was imputed by the value of the 

same item at the 6-month visit. If an item was “Not done” or “Not applicable” at 6 months, 12 months 

or 18 months, the value of the item was imputed by the mean value of the next and previous visits for 

the same item. If an item was “Not done” or “Not applicable” at 24 months or at the last visit, a forward 

imputation was performed. The value of this item was imputed by the value of the same item at the 

previous visit.  

Responder analyses 

Responders were defined as patients with no worsening compared with baseline in the selected motor 

function measure. Patients who withdrew prematurely were classed as non-responders. Responder 

analyses were performed for MFM D1 + D2 at Month 24, MFM total score at Month 24 and HFMS at 

Month 21 (last scheduled HFMS assessment). 

 

Sensitivity analyses 

Subgroup analyses 

Subgroup analyses of the MFM D1 +D2 were performed as per the primary outcome measure analysis 

for the following groups: age (<6 years vs ≥6 years), SMA type (Type 2 vs Type 3), country and baseline 

severity (< median vs ≥ median). To further investigate the effect of age on the primary outcome, we 

split the population into three age groups: <6 years, 6–15 years and >15 years at enrolment and 

repeated the analysis with the MMRM model (as for the primary analyses). 

Exploratory exposure–efficacy analysis 

Exposure–efficacy post hoc analyses were conducted to investigate whether variability in PK exposure 

could explain part of the variability in MFM D1 + D2 efficacy outcomes in patients treated with 

olesoxime. One patient included in the Full Analysis Set for the majority of the analyses was excluded 

from the exploratory exposure–efficacy analysis due to missing post-baseline MFM data (the patient 

died shortly after randomization). Individual pharmacokinetic (PK) exposure (Caverage) was defined as the 

average of all the individual plasma trough concentrations measured according to schedule of 
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assessment (Supplementary Table2). Caverage reflects steady-state concentrations. The MMRM analysis 

conducted for the primary outcome measure was conducted repeatedly as subjects with the lowest 

Caverage were systematically excluded, one by one (Supplementary Figure 1). The Caverage above which the 

MMRM analysis yielded the smallest P-value was determined. In a second step, the identified Caverage was 

used as a threshold PK exposure to define patients with low and high olesoxime exposure 

(Supplementary Table 7) and the time course of the change from baseline (mean ± SEM) of the MFM D1 

+ D2 score between patients with low and high exposure value and the placebo group graphically 

explored (Supplementary Figure 2). 

Other secondary endpoints 

Compound muscle action potential (CMAP) measurements were recorded as 1st, 2nd and 3rd increment 

in mV. Motor unit number estimation was calculated using the formula:  

CMAP (mV) *1000 / SMUP (μV) 

where SMUP (Single Motor Unit action Potential) is the maximum value of increments for wrist site plus 

the maximum value of increments for 4 cm proximal to wrist plus the maximum value of increments for 

ulnar groove), all divided by the total number of increments for 3 sites. The change from baseline to 

Month 24 was performed on all validated measures on the same nerve over time, assessed using 

analysis of covariance. The covariance model included the same covariates as specified for the primary 

outcome measure.  

 

Forced vital capacity (FVC) was performed in all patients at least 5 years old. To adjust the FVC according 

to individual height, weight and gender, the FVC results were divided by the theoretical capacity (TC, 

calculated using equations below) and calculated as a percentage.  

 For females aged <18 years: TC = 1.4507 + (1.48 + 0.0127A) x H.5 

 For males aged <18 years: TC = 1.2782 + (1.3731 + 0.0164A) x H.5 

 For females aged >18 years: TC = 4.43H – 0.026A –4.34.6 

 For males aged >18 years: TC = 5.76H – 0.026A –4.34.6 

H=height at baseline(m); A=age at baseline(years). 

If height could not be measured accurately, for example in the presence of scoliosis or contractures, 

ulna length was used to calculate a surrogate height measure. The change in baseline of FVC/TC % was 

then analysed using analysis of covariance, with baseline score, SMA type, country and treatment group 

included as covariates.  

 

Pediatric Quality of Life Inventory Neuromuscular Module scores at Month 24 were analysed using 

analysis of covariance within 6 subgroups defined as young children aged ≤7 years, children aged 8–12 

years, teenagers aged 13–18 years, adults aged >18 years, parents of minors and parents of adults, as 

well as all patient and all parent ratings grouped. 
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Adverse events 

Adverse event (AE) clusters were defined as SMA-related complications based on existing literature,7 

with subsequent refinement by external experts. The following medical conditions were defined as 

disease-related: lower respiratory tract infections, respiratory failure, gastrointestinal disorders–reflux 

disorders, gastrointestinal disorders–constipation, scoliosis pathology, other joint-related disorders and 

surgical procedures. 

Supplementary Results 

Two patients died during the study, neither death was attributed to study treatment. Further 

information surrounding these deaths is supplied below. 

Patient 1213: Placebo 

This 6-year-old girl with SMA Type 2 was generally in good health. She was randomized to placebo. On 

Day 17, she took a 10-minute fun fair ride and was cyanotic at the end of the ride. She died at hospital 

from unknown cause, probably suffocation. The investigator assessed the event as unrelated to study 

medication and unrelated to clinical trial procedure, and considered that the most likely cause of the 

serious AE was suffocation. 

Patient 0107: Olesoxime 

This 11-year-old boy was diagnosed with SMA Type 2 in 2000. His health status was weak at inclusion 

(HFMS 4, MFM 31.25%), with restricted respiratory function (FVC 16%). On Day 553, the boy 

experienced an acute secretion impaction at home. Respiratory physiotherapy, cough assistance, 

aspiration and suction remained unsuccessful as well as resuscitation by a rescue team. The boy died at 

home and no autopsy was performed. The investigator assessed the event as unrelated to study 

medication and unrelated to clinical trial procedure. 
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Supplementary Tables 

Supplementary Table 1. Patient cohort by country (Full Analysis Set) 

  Placebo Olesoxime Total 
Country, n n=57 n=103 N=160 

Belgium (2 sites) 5 11 16 

France (6 sites) 11 16 27 

Germany (3 sites) 7 13 20 

Italy (6 sites) 17 33 50 

Netherlands (1 site) 4 5 9 

Poland (1 site) 5 15 20 

UK (3 sites) 8 10 18 
Number of patients included in this study by country and treatment group, number of individual study sites 

included in parentheses after country name.
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Supplementary Table 2. Schedule of assessments 

Assessments/Visits Screening 
V–1 

Inclusion 
V0 

V1 T1 V2 V3 V4 V5 V6 V7 V8 V9 

Week –4 to –1 Day 0 4 9 13 26 39 52 65 78 91 104 

Month   1 2 3 6 9 12 15 18 21 24 

Informed consent ●            
Medical and surgical history ●            
Genotyping if not documented ●            
Genotyping SMN2 copy number  ●            
Inclusion/non-inclusion criteria ● ●           
Randomization  ●           

Efficacy 

Motor Function Measure (MFM)  ●    ●  ●  ●  ● 
Hammersmith Functional Motor Scale (HFMS) ●    ●  ●  ●  ● ● 
Electromyography (CMAP/MUNE)  ●    ●  ●  ●  ● 
Forced Vital Capacity (FVC)  ●   ● ● ● ●  ●  ● 
Clinical Global Impression (CGI) by physician  ●   ● ● ● ● ● ● ● ● 
CGI by patients/parents  ●  ● ● ● ● ● ● ● ● ● 
Pediatric Quality of Life Inventory (PEDsQL™) 
Neuromuscular Module 

 ●      ●    ● 

Safety 

Adverse events and concomitant treatments  ● ● ● ● ● ● ● ● ● ● ● 
Physical examination/vital signs/ECG ● ● ●  ● ● ● ● ● ● ● ● 
Laboratory assessments ●  ●  ● ● ● ● ● ● ● ● 
Pregnancy test ●      ● ●    ● 

Pharmacokinetic sampling   ●  ●   ●  ●  ● 

Biobank blood and urine sample ●       ●    ● 

IMP dispensation  ● ●  ● ● ● ● ● ● ●  
IMP return   ●  ● ● ● ● ● ● ● ● 

CMAP=compound muscle action potential; ECG=electrocardiogram; IMP=investigational medicinal product; MUNE=motor unit number estimation; 

SMN=survival of motor neuron; V=visit.
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Supplementary Table 3. Effects of olesoxime on motor function across subgroups (FAS, MMRM 

analyses) 

 Adjusted mean (95% CI) 

Age <6 years (n=48) ≥6 years (n=112) 

MFM D1 + D2 0.75 (–3.86, 5.35) 2.21 (–0.21, 4.62) 

HFMS 1.54 (–1.25, 4.33) 0.68 (–0.71, 2.06) 

SMA type 2 (n=113) 3 (n=47) 

MFM D1 + D2 2.06 (–0.78, 4.90) 2.06 (–0.83, 4.94) 

HFMS 0.89 (–0.51, 2.29) 0.72 (–1.72, 3.16) 

Gender Male (n=80) Female (n=80) 

MFM D1 + D2 0.6 (–2.51, 3.70) 3.05 (–0.11, 6.21) 

HFMS 1.5 (–0.32, 3.33) 0.72 (–1.02, 2.47) 

Baseline severity < Median (n=79) ≥ Median (n=81) 

MFM D1 + D2 2.97 (–0.36, 6.31) 1.25 (–1.64, 4.15) 
CI=confidence interval; HFMS=Hammersmith Functional Motor Scale; FAS=full analysis set; MFM=Motor Function 
Measure; D1=dimension 1 of the MFM (standing and transfers); D2=dimension 2 of the MFM (axial and proximal 
motor capacity). Analysis: for children aged <6 years age who erroneously performed the MFM32, MFM20 score 
was calculated from MFM32 score. See Supplementary Information for full explanation. 
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Supplementary Table 4. Change from baseline to Month 24 for electrophysiology and 
respiratory function endpoints (FAS; ANCOVA) 

CMAP, mV Olesoxime (n=70) Placebo (n=34) P-
value 

Baseline, mean (SD) 3.74 (2.370) 4.02 (2.718)  

Month 24, LS mean (95% CI) –0.07 (–0.49, 0.36) –0.16 (–0.74, 0.43) 0.7865 

MUNE Olesoxime (n=58) Placebo (n=30)  

Baseline, mean (SD) 39.70 (35.096) 36.24 (32.149)  

Month 24, LS mean (95% CI) –4.51 (–12.21, 3.18) –6.69 (–16.86, 3.48) 0.7117 

FVC/TC % Olesoxime (n=64) Placebo (n=38)  

Baseline, mean (SD) 66.53 (28.321) 61.32 (21.863)  

Month 24, LS mean (95% CI) 4.28 (–0.32, 8.88) 6.16 (1.00, 11.33) 0.5655 
No differences between treatment groups were observed with electromyography measurements (CMAP and 

MUNE) or respiratory function assessment (FVC/TC; P>0.05). ANCOVA=analysis of covariance; CI=confidence 

interval; CMAP=compound muscle action potential; FAS=full analysis set; FVC=forced vital capacity; LS mean=least 

square mean; MUNE=motor unit number estimation; TC=theoretical capacity. 
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Supplementary Table 5. Responder analysis for CGI-C (FAS; log binomial model) 

 Response rate, % Relative risk 
(95% CI) 

P value 

 Olesoxime (n=103) Placebo (n=57) 

Patient/caregiver ratings 85.4% 70.2% 1.19 (0.99, 1.44) 0.064 

Physician ratings 86.4% 70.2% 1.23 (1.01, 1.49) 0.036 
Qualitative assessment of overall global function using the CGI-C was performed by patients or their caregivers 

(CGI-C patient/caregiver) and physicians (CGI-C physicians). CGI-C=clinical global impression of change; 

CI=confidence interval; FAS=full analysis set.  
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Supplementary Table 6. Change from baseline to Month 24 in PEDsQL™ Neuromuscular 
Module (FAS; ANCOVA) 

Group 

Number of patients Difference between 
the means (95% CI) P-value Olesoxime Placebo 

Patients     

Young children ≤7 
years 

27 8 –7.70 
(–20.19, 4.79) 

0.2163 

Children 8–12 years 25 9 –0.48  
(–9.90, 8.94) 

0.9172 

Teenagers 13–18 
years 

11 17 3.13  
(–7.54, 13.80) 

0.546 

Adults >18 years 8 3 5.12  
(–6.07, 16.32) 

0.273 

All patient ratings 
(patients >5 years old) 

71 37 0.25 
(–4.58, 5.08) 

0.9185 

Parents     

All parent ratings 90 46 3.62 
(–0.77, 8.01) 

0.1054 

Subscore: Family resources 

Parent reports 90 46 6.18 
(–0.87, 13.23) 

0.0851 

Patient reports 
(≥8 years) 

43 29 4.11 
(–4.17, 12.40) 

0.3427 

Subscore: Neuromuscular disease 

Parent reports 90 46 3.75 
(–0.79, 8.29) 

0.1050 

Patient reports 71 37 –0.34 
(–5.25, 4.56) 

0.8899 

Subscore: Communication 

Parent reports 88 46 –0.66 
(–8.44, 7.13) 

0.8679 

Patient reports 
(≥8 years) 

43 29 4.83 
(–3.11, 12.78) 

0.2288 

Differences between means are estimates of the mean difference between the treatment groups (olesoxime - 
placebo). 95% CIs are the mean differences between the treatment groups (olesoxime - placebo). 
ANCOVA=analysis of covariance; CI=confidence interval; FAS=full analysis set; PEDsQL™=Pediatric Quality of Life 
Inventory.   
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Supplementary Table 7. Exploratory exposure–efficacy analysis: summary of individual 
olesoxime exposure Caverage (PK dataset) 

 
Olesoxime  

(all, N = 103) 
Low exposure Caverage 

<7500 ng/mL  
(n = 37) 

High exposure 
Caverage ≥7500 ng/mL  

(n = 66) 

Mean exposure, 
Caverage, ng/mL (SD) 

8590 (2400) 6145 (859) 9960 (1823) 

Median, ng/mL 8448 6362 9700 

Range, ng/mL 4130–16567 4130–7485 7518–16567 
Individual pharmacokinetic (PK) exposure (Caverage) using 7500 ng/mL as a threshold for PK exposure to define 
patients with low and high olesoxime exposure. See Supplementary Information for details of the exploratory 
exposure–efficacy analysis. Caverage=mean plasma olesoxime concentration; PK=pharmacokinetics; SD=standard 
deviation.  
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Supplementary Table 8. Adverse events observed in more than 10% of patients (safety-
evaluable population) 

 
Olesoxime, n (%) 

(N=108) 
Placebo, n (%) 

(N=57) 

Nasopharyngitis 
Upper respiratory tract infection 
Bronchitis 
Gastroenteritis 
Respiratory tract infection 
Pharyngitis 
Influenza  
Rhinitis 
Pneumonia 
Vomiting  
Abdominal pain 
Diarrhoea 
Cough 
Oropharyngeal pain 
Pyrexia 
Pain in extremity 
Scoliosis 
Arthralgia 
Fall 
Headache 

25 (23.1) 
23 (21.3) 
17 (15.7) 
16 (14.8) 
17 (15.7) 
15 (13.9) 
11 (10.2) 
14 (13.0) 

6 (5.6) 
25 (23.1) 
20 (18.5) 
18 (16.7) 
32 (29.6) 
16 (14.8) 
34 (31.5) 
14 (13.0) 
13 (12.0) 

2 (1.9) 
10 (9.3) 

22 (20.4) 

15 (26.3) 
13 (22.8) 
17 (29.8) 
10 (17.5) 
6 (10.5) 
6 (10.5) 
9 (15.8) 
6 (10.5) 
6 (10.5) 

16 (28.1) 
11 (19.3) 
12 (21.1) 
16 (28.1) 
9 (15.8) 

16 (28.1) 
5 (8.8) 
5 (8.8) 

7 (12.3) 
7 (12.3) 

13 (22.8) 
Adverse events occurring with >10% frequency within olesoxime and placebo treatment groups, safety-evaluable 

population.  
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Supplementary Figures 

Supplementary Figure 1. MMRM P-value versus the lowest Caverage value in the analysis dataset (PK 
dataset) 

 
Levels of statistical significance (primary y-axis) achieved on the primary endpoint (MFM D1 + D2) when 
patients with lower Caverage plasma olesoxime concentrations are excluded from the analysis (secondary 
y-axis). The corresponding P-value for the MMRM analysis performed is plotted in red. Horizontal blue 
lines represent alpha 0.01, 0.02 and 0.04 values, indicating the number of patients included in the 
dataset to achieve these probabilities. Caverage=mean plasma olesoxime trough concentration; D1=MFM 
domain 1 (standing position and transfers); D2=MFM domain 2 (axial and proximal motor function); 
MFM=Motor Function Measure; MMRM=mixed model-repeated measures; PK=pharmacokinetic.  
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Supplementary Figure 2. Time course of MFM D1 + D2 change from baseline (mean ± SEM) for placebo 
and olesoxime treatment groups with low and high PK exposure (PK dataset) 

 

Caverage=mean plasma olesoxime trough concentration; D1=MFM domain 1 (standing position 
and transfers); D2=MFM domain 2 (axial and proximal motor function); MFM=Motor Function 
Measure; PK=pharmacokinetic; SEM=standard error of the mean.  
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