Glycine decarboxylase deficiency impairs motor behaviour in zebrafish rescued by counterbalancing glycine synaptic level.

Raphaëlle Riché1, Meijiang Liao1, Izabella A. Pena2, Kit-Yi Leung3, Nathalie Lepage2, Nicolas D.E. Greene3, Kyriakie Sarafoglou4, Lisa A. Schimmenti5, Pierre Drapeau1,6 and Éric Samarut1,6*.

1-Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
2- Children’s Hospital of Eastern Ontario Research Institute and Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario K1H 8L1, Canada
3- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
4- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
5- Mayo Clinic College of Medicine, Department of Otorhinolaryngology, Rochester, MN, United States; Mayo Clinic College of Medicine, Department of Pediatrics, Rochester, MN, United States; Mayo Clinic College of Medicine, Department of Clinical Genomics, Rochester, MN, United States.
6-DanioDesign Inc., Montréal, QC, Canada.

corresponding author: eric.samarut@umontreal.ca

The authors have declared that no conflict of interest exists.
Graphical Abstract
Abstract

Glycine encephalopathy (GE) or Non-Ketotic Hyperglycinemia (NKH), is a rare recessive genetic disease caused by defective glycine cleavage and characterized by an increased accumulation of glycine in all tissues. Here, based on new case-reports of GLDC loss-of-function mutations in GE patients, we aimed at generating a zebrafish model of severe GE in order to unravel the molecular substratum of the disease. Using CRISPR/CAS9, we knocked-out gldc gene and showed that -/- fish recapitulate GE on a molecular level and depict a motor phenotype reminiscent of severe GE symptoms. The molecular characterization of gldc -/- mutants showed a broad metabolic disturbance affecting amino acids and neurotransmitters other than glycine, with lactic acidosis at stages preceding death. Although a transient imbalance was found in cell proliferation in the brain of gldc -/-, the main brain networks are not affected thus suggesting that GE pathogenicity is mainly due to metabolic defects. We confirmed that the gldc -/- hypotonic phenotype is due to NMDA and glycine receptors overactivation, and demonstrated that gldc-/- larvae depict an exacerbated hyperglycinemia at these synapses. Remarkably, we were able to rescue the motor dysfunction of gldc-/- larve by counterbalancing pharmacologically or genetically the level of glycine at the synapse.
Introduction

Glycine encephalopathy (GE), also known as nonketotic hyperglycinemia (MIM 605899), is a rare genetic defect in glycine metabolism characterized by a considerable accumulation of glycine in all tissues, especially in the central nervous system (1-4). GE has an autosomal recessive inheritance pattern and is classically caused by mutations in proteins of the glycine cleavage system composed of a glycine decarboxylase (GLDC), an aminomethyltransferase (AMT), a hydrogen carrier protein (GCSH), and a dihydrolipoamide dehydrogenase (DLD) (4, 5). All four subunits are encoded by distinct genes and GLDC is mutated in 72% of the GE cases (2).

The symptoms of GE are commonly first observed during the neonatal period and are very heterogeneous among the patients, depending on the pathogenicity of the mutation (5, 6). In severe GE, the neonates present severe hypotonia, myoclonic jerks, lethargy and apnea due to respiratory depression, which often causes death within the first week of life. The patients with severe GE surviving the neonatal period make no developmental progress and show spasticity, intractable seizures and hypotonia. Individuals with attenuated GE often survive the neonatal period but show treatable seizures, spasticity, chorea and variable developmental delay that often leads to intellectual disability (5, 6).

The treatments available for GE patients are primarily used to alleviate the symptoms but do not resolve the underlying metabolic defects. Indeed, dextromethorphan, an NMDA receptor antagonist, is used to diminish the seizures, and sodium benzoate helps reduce glycine levels by elimination through the urine. Unfortunately, even when combined these treatments fail to improve the outcome of many GE patients (6). However, although the clinical research
done on human patients has helped identify the genetic causes of the disease and characterize
the spectrum of symptoms, it has not elucidated the molecular basis of GE.

A few research efforts have been made to model the disease. In mouse, a loss-of-
function gene-trap allele and a dominant-negative model of gldc that show features of GE, such
as early lethality, increased glycine, and hydrocephalus, were generated (7, 8). A zebrafish
model was described in which the hyperglycinemia is restricted to the brain, but it cannot be
used to study the classical form of the disease (9). These models help understand aspects of
GE, but did not focus on characterizing the pathogenic mechanisms underlying the disease. As a
result, this highlights the necessity of generating an accurate and reliable animal model of GE,
more amenable to metabolic analyses and high throughput drug screens.

Here we report two new cases of GE patients carrying loss-of-function mutations in one
or both GLDC alleles. At this juncture, we generated a zebrafish model of GE (gldc-/-) depicting
high level of glycine and displaying motor abnormalities and premature death, thus resembling
the fatal outcome of severe forms of GE. Next, we performed unbiased high-throughput
proteomics and transcriptomics analysis and showed that gldc loss-of-function induces broad
metabolic defects. We also confirmed synaptic glycine-signaling abnormalities and remarkably
were able to rescue the hypotonic phenotype of gldc -/- larvae by counterbalancing the
hyperglycinemia at the synapse.

Results

Two case-reports of GE associated with mono-allelic or bi-allelic LOF-mutations in GLDC
The first patient we examined was a deceased female infant born at 39 week gestational age. Pregnancy was uncomplicated and she was delivered vaginally with Apgar scores of 8 at one minute and 9 at five minutes. She was discharged from the nursery at 2 days of life. At 4 days of life she became lethargic with poor feeding and was admitted again. Her physical examination was significant for respiratory failure requiring intubation, diffuse hypotonia, absent deep tendon reflexes, withdrawal to painful stimuli, rhythmic hiccups and myoclonic movements of the right upper extremity. MRI on day 4 of life revealed a small but completely formed corpus callosum with a mild delay in myelination and a slightly lower volume of cerebral white matter. EEG revealed burst suppression pattern. Her seizures were treated with phenobarbital and ativan, but were relatively refractory to medication. Additional testing revealed an elevated plasma glycine level of 125 umol/dL (0-57) and elevated glycine CSF of 33.8 umol/dL (0.2-2.0). The CSF/plasma glycine ratio of 0.27 (pathognomonic ratio >0.08) was diagnostic of GE (or nonketotic hyperglycinemia). Given the grave prognosis of this disease, the infant’s family decided to withdraw life-sustaining treatment on day 10 of life. Newborn screening was negative and chromosomal studies were pending at the time of death. Molecular testing revealed two variants in the GLCD gene: c.1153 C>T (p.Q385X) and c.941 ins16nt fs100 (Figure 1).

The second patient was a 50-year-old gentleman who presented initially to adult neurology for a movement disorder. He was non-verbal, had limited facial expression, drooled, and had a constant tremor. He was unable to walk unassisted and required caretakers to assist with personal tasks such as feeding and toileting. He had a history of myoclonic jerks and was treated with valproic acid. Clinical evaluation identified a mild elevation of glycine. Genetic
testing identified two variants in GLCD c.1054delA(p.Thr352fs*65) and c.1705C>T(p.Ala569Thr) (NM00170.2, Figure 1) and paternal testing supported that the variants were in trans. Although the first allele carrying a nonsense mutation is pathogenic, the second one with a missense mutation has been recently reported as non pathogenic with a residual enzymatic activity of about 70% (10). After the diagnosis, valproic acid was promptly discontinued and the patient was started on dextromethoraphan and sodium benzoate. Glycine levels fell into the normal range and the patient had improved mobility, resolution of constant tremors, stopped drooling, and was able to feed himself. However, his general quality of life was still severely impaired since he needs daily assistance.

These two cases demonstrate the clinical heterogeneity of GE and are consistent with previous study linking the severity of the disease with the residual GLDC enzymatic activity of different missense mutations (11).

Zebrafish gldc is expressed in the CNS and its loss-of-function induces glycine accumulation

We started by examining the gldc sequence and its expression in zebrafish embryos. In contrast to the common gene duplication in teleost fish, a single copy of the gldc gene can be found in the zebrafish genome (ENSDAR00000035120) and it shows more than 60% overall amino acid identity with the human protein. We also assessed the expression pattern of gldc during zebrafish development by in situ hybridization from 8 hours post-fertilization (hpf) to 42 hpf. Gldc is broadly expressed in the nervous system until 32 hpf, and at 42 hpf its expression is in specific brain regions (Figure 2A). Interestingly, we observed that the expression become restricted to the midbrain/hindbrain boundary and the commissural regions of the brain from 3
From 4 dpf, gldc transcript starts to be strongly expressed in the liver, the intestine and the gut. This expression persists at 5 and 6 dpf with only a weak expression in the brain.

The significant level of identity between human and zebrafish GLDC and its strong expression in the embryonic CNS suggest a robust evolutionary conservation of GLDC function, thus supporting the pertinence of a gldc knock-out zebrafish to model the human disease.

In designing gRNAs for the CRISPR/CAS9-mediated mutagenesis, we targeted the beginning of the glycine cleavage domain with the aim of reproducing a pathogenic loss-of-function mutation. We selected a founder transmitting a 5 nucleotide deletion and 3 nucleotide mismatches early in the glycine cleavage domain, creating a stop codon at the 189th amino acid (Figure 2B-C). Using the high-resolution melting (HRM) analysis (12), we could easily identify all three genotypes (+/+, -/+,-/-) (Figure 2B). We confirmed gldc knock-out by RT-qPCR and showed that -/- embryos have reduced levels of gldc expression compared to their siblings, as seen in patients (13). More importantly, Liquid Chromatography – Mass Spectrometry (LC-MS) analysis of glycine levels in whole 7 dpf larvae supported the loss-of-function nature of the mutation, since gldc -/- larvae display 4 times more accumulated glycine than their siblings (Figure 2D). Altogether, these results show that our newly generated gldc-KO line recapitulates the main molecular hallmarks of GE.

Gldc -/- larvae die prematurely and depict GE-reminiscent motor phenotypes

While most of the gldc +/- and -/+ larvae survived for the first 10 days post fertilization, all the gldc -/- larvae died between 7 and 9 dpf (Figure 3A). After measuring the body length, eye size and inter-eye distance of -/- larvae compared to their siblings, we did not notice any
morphological abnormalities of the mutant larvae (Figure 3B). However, *gldc* -/- larvae from 6 dpf depict an evident hyperpigmentation, which is practical to easily separate them from the siblings (Figure 3C). This hyperpigmentation phenotype segregates with the mutant alleles of *gldc* through multiple generations of fish, thus suggesting that, although unexpected, it is specific to *gldc* loss-of-function. Although no major morphological differences was observed, we performed transverse sections of different regions of the larval brain (forebrain, midbrain, hindbrain and anterior spinal cord) and we did not notice any obvious morphological difference between *gldc*+/+ and -/- at 7 dpf (Figure 3D).

Since the GE patients show early motor symptoms such as hypotonia and lethargy, we analyzed the larval motor function of the *gldc* mutants. Spontaneous coiling is the first motor output in zebrafish embryos occurring between 17-21 hpf and consisting of frequent un-evoked movements of the tail in the chorion (14). Analysis of this motor behavior indicated a decrease in coiling frequency of *gldc* -/- embryos compared to their siblings (1.46 ± 0.31 n=14, 12.81 ± 2.73 n=11; Figure 3E). At the larval stage, we assayed the swimming activity of *gldc* mutants by recording the total distance swam over one hour and we noticed a reduction of swimming activity in *gldc* -/- larvae at 7 dpf (650.6mm ± 138.4 n=23, 1646mm ± 332.1 n=10; Figure 3F). Of note is that this reduced swimming behavior starts at 4 dpf and is more and more evident with age.

Hypotonia and lethargy are respectively defined as a state of low muscle tone and a lack of vigor. Thus we tracked the path swam by *gldc* -/- larvae after applying a circular water current, as well as the time needed to immobilize in the dish (e.g. stabilize their position). While the siblings can actively swim against the water current in order to maintain their position, *gldc*
mutants were unable to fight against it and to stabilize their position. As a result, they were passively carried through the dish by the water current in a lethargic and hypotonic fashion (Figure 3G). Consistently, the time to stabilize their position after applying water current is significantly increased compared to their siblings (Figure 3H). Furthermore, we noticed an anomaly in the swimming balance of gldc -/- larvae. Indeed, we noticed that while the siblings are exploring their tank by swimming throughout it, most of the gldc -/- larvae float at the surface, unable to explore their environment, indicating a swimming balance impairment (Figure 3I-J(Figure 3C).). Of note is that although seizures are often reported in GE patients, electrophysiology recordings from larval brains did not detect any electrical discharge in gldc -/- (data not shown). Taken together these results show that the gldc -/- mutants display motor phenotypes reminiscent of GE symptoms in human patients, such as early lethality, hypotonia, and lethargy.

Metabolomics analysis indicates broad metabolic perturbations in gldc -/- larvae.

After characterizing the disease-related phenotype of gldc -/- mutants, we sought to describe the molecular mechanisms involved in pathogenicity. Since glycine acts as an essential amino-acid as well as a neurotransmitter in the CNS, we conducted a broad assay of metabolites by LC-MS in order to titrate the level of all proteinogenic and the main non-proteinogenic amino acids, as well as the main neurotransmitters. Interestingly, we found that extracts from gldc -/- larvae showed a significant increase in many amino acids other than glycine, such as sarcosine, proline, valine, cystathionine, leucine, and arginine (Figure 4A). Moreover, we found that gldc -/- larvae depicted a significant reduction in the levels of GABA
and glutamate compared to gldc +/- (Figure 4B) whereas dopamine and serotonin levels were not significantly affected. Likewise, this suggests that gldc-KO impairs the metabolism of amino-acid/neurotransmitters other than glycine. We next sought to determine if these changes are the result of an accumulation over time or if they are directly linked with GLDC-KO. Thus, we performed the same LC-MS analysis at 2 dpf and noticed that only sarcosine and glycine were already significantly increases in gldc/- (Figure S1). This suggest that the increased level of proline, valine, cystathionine, leucine and arginine arise with time. We also found that at this early stage, methionine is significantly decreases in mutant embryos although this change does not persist until 7 dpf.

The GCS is also involved in folate one carbon metabolism (FOCM) since by degrading glycine, gldc donates one carbon units to this metabolic cycle(7, 15, 16). Thus, we examined the levels of FOCM-related metabolites in gldc -/- larvae in order to check whether an imbalance in this metabolism is consistently observed in our fish model. However, LC-MS titration of different folate-related metabolites did not reveal any defect of the FOCM in gldc -/- larvae as compared to gldc +/- (Figure 4C). We also noted that THF makes up approximately 60% of total folate in zebrafish larvae. This is markedly different to mammalian (mouse and human) tissue or E.coli in which 5-methyl THF or formyl-THF are abundant(15).

Finally, we also investigated the levels of lactate, since lactic acidosis is common in a number of metabolic inborn errors and has been reported in patients with GE (17-19). We found that the levels of lactate in gldc -/- mutants were significantly increased at 7 dpf. Interestingly, there was no difference in the levels of lactate in gldc -/- and +/- at 2 dpf,
suggesting that there is a progressive accumulation of lactate that leads to lactic acidosis at 7 dpf, whereas the levels of glycine are already increased at 2 dpf in gldc -/- (Figure 3D).

Altogether, these results demonstrate that gldc loss-of-function induces previously unknown broad metabolic perturbations.

Transcriptomics analysis reveals differences in the expression of cell cycle, proliferation, and metabolism-related genes in the gldc -/- mutants

In the continuity of the unbiased metabolomics analysis in the gldc -/- mutants, we carried out a whole transcriptome analysis by deep-sequencing of RNAs extracted from 7 dpf gldc -/- and +/- larvae. There were 408 differentially expressed genes in gldc -/- versus gldc +/- larvae, of which 153 were up- and 255 were downregulated (Figure 5A). Using gene clustering and pathway analysis from the list of significant differentially expressed genes, we identified multiple pathways whose gene expression was affected. As expected, multiple genes involved in general metabolism are mis-regulated in gldc -/- larvae. As an example, the amino acid transporter slc6a19 was downregulated in gldc -/- (FC: -2.14, p=3.61E-16, and its mutation in human causes a metabolic disorder of neutral amino acid transport, Hartnup disease (Figure 5B) (20). Unexpectedly, only few brain-specific genes were found differentially expressed. However, one of them, glycine transporter 1 (slc6a9), was down-regulated (FC: -1.61, p=1.65E-08) in gldc/-/ compared to +/+, and is relevant in the context of a neurological disorder like GE.

In addition, genes involved in cell adhesion and the extracellular matrix (ECM), such as integrin beta 4 (FC: -1.5, p=6.18E-05) and laminin 3 (FC: -1.7, p=1.29E-05), were found downregulated in gldc -/- mutants. More interestingly, many genes involved in the cell cycle
(e.g. *gadd45ba*; FC: 1.72, p=3.39E-07, as well as known oncogenes (e.g. *c-fos* and *myc-b*; FC: 1.9, p=1.89E-07 and FC: 1.55, p=1.03E-07) and tumor suppressor genes (*bcl6a*; - FC: 1.45, p=1.03E-07) were mis-regulated in *gldc* -/- compared to *gldc* +/+ larvae.

Altogether, these transcriptomic data suggest that the majority of genes whose expression is affected by GLDC-KO are related to metabolism and that, surprisingly, no major transcriptomic changes occur in the CNS. Moreover, these data pointed out that cell-cycle homeostasis may be perturbed in *gldc* -/- larvae suggesting that cell proliferation may be affected in *gldc* -/- mutants.

The main brain networks are not affected by *gldc*-KO despite a transient decrease of proliferation in *gldc* -/- brain

The imbalance in the expression of proliferation-related genes observed in *gldc* -/- mutants from the RNAseq analysis led us to investigate the proliferation homeostasis in the brain throughout neurodevelopment. Moreover, a decreased proliferation at embryonic stages has been reported in a mouse model of GLDC-KO (7). Thus, we performed immunohistochemistry (IHC) at different developmental time points (1, 3 and 7 dpf) using an antibody against the phosphorylated form of Histone 3 (pH3), which marks cells undergoing mitosis. Interestingly, this assay revealed a significant decrease in cellular proliferation in the brain of *gldc* -/- mutants at 1 and 3 dpf (Figure 6A and 6I). However, this slight decrease in proliferation does not sustain until later stages, since no difference is observed at 7 dpf between *gldc* -/- and +/+ larvae (Figure 6I).
Since a difference in proliferation homeostasis at early stages of neurodevelopment may have an impact on the content of specific neural cell populations, we sought to investigate whether the major cell populations and/or structures of the brain neuronal networks were affected. First, we checked the general morphology of neuronal fibers in the brain of gldc -/- larvae compared to their siblings by immunolabelling acetylated tubulin (ac-Tub). No difference in the labeling of axonal tracks in the brain of gldc -/- and +/- was observable at 24 hpf, nor later stages (4 dpf) (Figure 6B). Then, we aimed at checking the structure and neural content of (i) the GABAergic network using the [dlx5-6:GFP] transgenic line (Figure 6C) (21), (ii) glutamatergic network using the [vglut:RFP] transgenic line (Figure 6D) (22), (iii) the dopamine network through immunolabelling against tyrosine hydroxylase (TH) (Figure 6E), as well as (iv) the cerebellum through immunolabelling against paravalbumin 7 (PAV7, labeling Purkinje cells) and vglut1 (labeling granule cells) (Figure 6F and 6G). When comparing the cell content and/or immunolabeled morphology of these neuronal networks at different time points (3, 5 and 7 dpf), we were unable to observe any differences in any of these brain network markers between gldc -/- to +/- brains. Finally, we also examined the branchiomotor neuron population using the [islet1:GFP] transgenic line as it is a sensitive measure of neural tube abnormalities and found no aberrant development or migration of the trigeminal, facial and vagal motorneurons at 3 dpf gldc -/- mutants (Figure 6H) (22). These results indicate that the transient proliferation deficit observed at 3 dpf in gldc -/- does not lead to any major morphological defect in other brain networks. Thus, it is likely to solely reflect a transient difference in the proliferating rate of neural progenitors that has no aftermath on brain neural content and therefore no specific relevance to the motor phenotype.
Genetically and pharmacologically counteracting the exacerbated hyperglycinemia at the synapse rescues the motor phenotype of gldc -/-

Since our previous results suggest that GLDC-KO is not affecting neural networks, we hypothesized that gldc -/- phenotype may be mainly due to metabolic defects, as described above. As a neurotransmitter, glycine is involved in synaptic signaling through binding to glycine receptors at inhibitory synapses and to NMDA receptors at excitatory synapses. Thus, we wondered whether the hyperglycinemia observed in gldc -/- larvae was affecting both inhibitory and excitatory synaptic transmission. To test this, we performed a pharmacological assay treating gldc embryos with either a glycine receptor antagonist (strychnine) or an NMDA receptor antagonist (dextromethorphan). Overnight treatment with a low dose of strychnine, a dose not affecting WT larval behavior, rescued significantly the hypotonic swimming phenotype of 7 dpf gldc -/- larvae (Figure 7A). Moreover, acute treatment with dextromethorphan did not significantly rescue the early motor deficiency of gldc -/- embryos at 21 hpf, but a daily exposure rescue the swimming defect at 7 dpf (Figure 7B and C). These results show that the hyperglycinemia is indeed over-activating both glycine receptors and NMDA receptors throughout the brain, which contribute to the GE-related hypotonic motor phenotype.

Then, we hypothesized that diminishing the hyperglycinemia at the synapse by overexpressing GlyT1 (a glycine transporter clearing glycine from the synaptic cleft) in gldc -/- embryos may improve their motor deficits. To test this assumption, we cloned the GlyT1 cDNA and in vitro synthesized its mRNA in order to inject it in the first cell of gldc zebrafish embryos. We co-injected it with a GFP-encoding mRNA (as a positive readout) to allow us to select the
GFP-positive embryo that overexpress GlyT1 ubiquitously in the embryo for up to 48 hpf. Interestingly, overexpression of GlyT1 in gldc -/- embryo was sufficient to completely rescue their early motor defect back to the level of their siblings (Figure 2D).

Altogether, these results confirm that the hyperglycinemia of gldc -/- larvae is affecting normal glycinergic and NMDA signaling. Remarkably, counterbalancing this local hyperglycinemia at the synapse through the overexpression of GlyT1 completely rescues the motor phenotype of gldc -/- embryos (Figure 7E).

Discussion

In this work, we described two new cases of severe and mild GE and generated a zebrafish model of GE by knocking-out gldc using CRISPR/CAS9, with the goal of characterizing the molecular mechanisms underlying GE. After showing the reminiscence of the gldc -/- phenotype with the symptoms of severe GE patients, we sought for unbiased changes in the metabolome and transcriptome, and our analysis revealed unexpected imbalances in the metabolism of amino acids and neurotransmitters other than glycine. Moreover, we found that gldc -/-mutants display lactic acidosis preceding their death. They do not show obvious abnormalities in the folate profile. Given the cell-type specific expression of gldc at the 7dpf it is possible that defect in 1C supply is subtle in whole embryo samples. A key output of FOCM is nucleotide biosynthesis and we find cell that proliferation in the brain is slowed down during development, leading to a transient decrease in the number of dividing cells at 1 and 3 dpf. This is consistent with finding of diminished cell proliferation in the neuroepithelium of Gldc mutant embryos in mouse(7). However, this is not associated with any gross morphological anomaly in
the main brain structures or neuronal networks of gldc −/−, suggesting that this transient reduction of proliferation may be the consequence of metabolic perturbation, without having direct consequences on the motor phenotype. Finally, we confirmed that the hypotonic motor phenotype of gldc −/− mutants is mainly due to the overactivation of NMDA and glycine receptors by glycine at the synapse. Very interestingly, we showed that this hyperglycinemia at the synapse can be recovered by pharmacologically antagonizing these receptors, as well as by genetically increasing the expression of glycine transporter 1.

Interestingly, our findings suggest that there is an exacerbated hyperglycinemia at the synapse of gldc −/− mutants. Indeed, rather than compensating for the excess of glycine at the synapse, we found that some of the metabolic and transcriptomic changes induced by GLDC-KO could worsen the level of glycine in the synaptic cleft. In fact, GlyT1 expression is significantly decreased in gldc −/− compared to their siblings, suggesting that the clearance of glycine from the cleft may be slowed. Moreover, our metabolomics analysis revealed a significant increase of sarcosine in gldc −/− larvae, a non-proteogenic amino acid known to be a potent antagonist of GlyT1 activity. Indeed, sarcosine has raised a significant therapeutic interest in the recent years as a potential treatment for schizophrenia by increasing glycinergic response in the brain of patients (23). Moreover, the level of sarcosine is already significantly elevated at 2 dpf in gldc−/− embryo suggesting that this increase may be the result of a more direct effect of GLDC loss-of-function than the other changes in amino acid level that are accumulating over time. As a result, dampening the increase in the level of sarcosine from early stages may be an interesting experiment to test the relevance to target sarcosine therapeutically. Altogether, our findings highlight the fact that the elevated glycine level at the synapse may not be solely due to a
defect of glycine degradation, but also to other synergic changes that may be good candidates as therapeutic targets (Figure 7E).

Consistent with the excess of glycine at the synapse, we showed that the overexpression of GlyT1 in the embryo was sufficient to fully rescue their motor condition. This is of prime interest for further therapeutic strategies targeting GlyT1 activity. A significant interest has been raised to develop potent antagonists of glycine transporters for the treatment of schizophrenia, increasing glycinergic synaptic signaling (23). In contrast, our results strongly suggest that an agonistic action on GlyT1 could be a key component for GE treatment. Here we propose that agonizing GlyT1 activity may have a broader action in the brain by counterbalancing hyperglycinemia both at the glycinergic and glutamatergic/NMDA synapse. However, the attenuation of glycine signaling in the brain can have important side effects that have to be considered, as exemplified by the poisoning effect of strychnine, a potent glycine receptor antagonist (24). As a result, such a therapeutic strategy would require the design and development of GlyT1 agonists with varying potency, whose activity could be efficiently adjusted to each GE patients.

At this juncture, our GLDC-KO zebrafish model could be of prime interest for drug-screen purposes. Indeed, we showed that motor phenotypes relevant to the disease can be accurately observed and quantified as early as 20 hours post fertilization. Moreover, we used an automated quantification of coiling behavior that would allow for high-throughput phenotyping. As a result, our zebrafish line and our phenotyping assay could serve as an initial screening tool for testing the effects of newly designed drugs, such as GlyT1 agonists, that could then be tested in mammalian models. Of note that many CNS-related disorders have been
successfully modeled in the past such as Amyotrophic Lateral Sclerosis and Spinal Muscular
Atrophy, epilepsy, and autism (25-29).

Our work shed new light on another facet of GE as our metabolomics analysis unraveled
unexpected changes in other metabolites than glycine itself. Interestingly, some of the amino
acids that are increased in gldc-/- larvae (i.e. leucine and valine) are associated with another
metabolic disease, maple syrup urine disease (MSUD). In patients suffering from MSUD, the
metabolism of branched-chain amino acids (BCAA), such as leucine, isoleucine, and valine, is
impaired due to mutations in subunits of the branched-chain α-keto acids dehydrogenase
(BCKD). The levels of BCAA are thus increased in the urine, leading to a peculiar maple syrup
smell. Remarkably, MSUD patients show some common symptoms to GE patients, such as
hypotonia, seizures and the only efficient treatment is a BCAA-free diet. In order to test the
effect of an excess of valine or leucine on the motor phenotype of zebrafish, we treated WT
embryos with these single amino-acids or in combination and found that they induce a
reduction of the coiling and swimming activity as strong as when treated with glycine (data not
shown). These results therefore suggest that valine and leucine may play a role in GE
pathogenesis. However, GE patients’ blood and urine samples are rarely tested for other
amino-acid levels, thus limiting our interpretation.

We believe these findings should instigate more profound metabolic testing of human
patients, such as dosage of BCAAs, lactate in the blood and/or urine, and glutamate and GABA
in the CSF. This could allow identifying putative defects in other amino acid metabolism, and
therefore opening new therapeutic strategies that may not have been considered, such as a
BCAA-free diet. However, the fact that all BCAAs are not found elevated in gldc-/- fish (such as
isoleucine) suggests that this effect could not be generalized to all BCAAs but may rely on more specific mechanisms targeting leucine and valine. In this regard, a potential molecular link between GE and MSUD might involve the dihyrolipoamide dehydrogenase (DLD) subunit, which is part of both the GCS and the BCKD complexes. In human, DLD-deficiency leads to various symptoms, such as severe seizures and encephalopathy, muscle weakness, accumulation of pyruvate, lactate, BCAA and the related metabolites (30, 31). Interestingly, we observed common phenotypes such as hypotonia, increased BCAA (e.g. valine, leucine) as well as lactate in gldc -/- mutants, suggesting that gldc knockout might affect the activity of other metabolic complexes and therefore induce a broad metabolic defect. Our metabolomic assay also showed an increase of arginine in gldc-/— larvae. It is worth noting that as a precursor of nitric oxide and polyamine, L-arginine regulates basic physiological functions and it has been shown to be a player in age-related degenerative diseases such as Alzheimer’s disease(32).

Previous studies from Greene et al. showed an imbalance in folate-related metabolites in Gl dc knock-out mice(7, 16). However, we did not detect any anomaly in the levels of FOCM compounds in gldc -/- larvae (7). One possible explanation for this is that serine degradation, another source of one-carbon units to the FOCM, could compensate for the loss of carbon-units from glycine degradation(33), in addition, to the possibility that such an effect would be cell-type or stage-specific (see above). Moreover, the proportion of 1C carrying folates was found to be markedly lower in fish larvae than in mammalian tissue (pre- and post-natal). Thus, THF represents approximately 60% of total folate, perhaps suggesting a lesser requirement for 1C-carrying folates in zebrafish larva than in mammalian cells and tissues (mouse and human) or bacteria in which 5-methyl THF or formyl-THF are predominant(15). Thus, these results suggest
that FOCM disturbances may not be directly involved in the motor dysfunction associated with
GE, but rather specifically in structural malformations such as neural tube defects.

Altogether, the present work confirmed the central role played by the hyperglycinemia
in motor dysfunction associated with GE, but also unraveled an unexpected broader metabolic
disturbance that could also be essential in GE pathogenesis. Both aspects of the disease should
be considered in the design of new therapeutic strategies aiming at saving GE neonates as well
as ameliorating surviving GE patients’ quality of life. Among these strategies, our findings
suggest that the development of glycine transporter 1 agonists would be a putative promising
avenue, as well as BCAAs-free diet.

Methods

Genetic testing and glycine titration in patients
Blood sample from patients have been tested for NKH by PCR amplification and direct DNA
sequencing in both directions of the 9 exons of AMT gene and 25 exons of GLDC gene as well as
the intron/exon borders. All the genetic testing have been performed at Denver Genetic
Laboratories.

Fish Husbandry and fish lines
Wild-type zebrafish (Danio rerio) were reared at 28.5°C, kept under a 12-hour dark, 12-hour
light cycle and staged as described previously (34). They were bred according to standard
procedures (35). All experiments were performed in compliance with the guidelines of the
Canadian Council for Animal Care and conducted at the Research Center of the University of Montreal Hospital Center (CRCHUM). The dlx5-6:GFP, islet1:GFP and vglut2a:RFP transgenic lines are gifts from Marc Ekker and Shin-ichi Higashijima respectively (21, 36).

Whole mount in situ hybridization and probe cloning

A Specific gldc probe corresponding to the 5’ part of the coding sequence and first exon (951bp amplified with the following primers: Forward-gaaggaccttttgagattacgg; Reverse-taatgcaggccagtgag) was cloned within the pCS2+ vector using TOPO TA cloning kit (Invitrogen). Whole-mount in situ hybridization of zebrafish embryos was performed as described by (37).

sgRNA and cas9 preparation and microinjection

The following gRNA sequence targeting the fourth exon of the gldc gene was designed using the online tool CRISPRscan ((PAM site is indicated in brackets): gggacacctgggctggta(cgg). Synthesis of gRNA and Cas9 mRNA was performed as described by (12). Wild-type embryos were collected for microinjection. A 1nL drop of a mix of 100 ng/μL of Cas9 mRNA and 30 ng/L of gRNA was injected into one-cell stage embryos.

High-resolution melting (HRM)

Primers were designed using the Universal Probe Library Assay Design Center (Roche). Forward: TTCAGTGAGTATTTGTGTTCTCTACAGG; Reverse: TGGTCTGATAGTTGAGTAAGCTCTCC. The PCR reactions was performed as described by (12).
Coiling analysis and swim tracking

20hpf embryos were embedded in low melting agarose and covered with water, their movements inside the chorion were recorded using a camera for 20 minutes. The Danioscope software (Noldus) was then used to quantify the number of bursts over time. At 7 dpf, larvae were transferred individually into a 96-well plate and swim distance was recorded using Basler GenCam camera and DanioVision recording chamber (Noldus). Analysis was performed using the Ethovision XT 12 software (Noldus) to quantify the distance swam.

Hypotonia and swim balance tests

One gldc-/- mutant and one sibling 7 dpf larva were placed in the center of a water-filled petri dish and a water current was manually applied. For the swimming balance test, a heat map tracking the movement of the larvae using the Noldus Danio Vision software was generated over 10 minutes.

Mass spectrometry liquid chromatography

Analysis of multiple folates was performed by UPLC-MS/MS as described previously (16). Amino acids were detected and quantified by LC-MS/MS as previously described (38, 39). Processing of the chromatograms obtained by LC-MSMS was done using TargetLynx (Waters), including peak detection, peak integration and concentration estimation based on calibration curves. For statistical analyses, Student’s T-test was used. Significance testing and graphing was
performed with GraphPad Prism 7 software. Analysis of the neurotransmitter and lactate was performed as described by (40). The extraction details are available upon request.

Transcriptomic assay, differential expression assay and pathway analysis

Total RNA was extracted from 7 dpf *gldc* -/- and +/- larvae using picopure RNA extraction kit (Thermo Fisher Scientific) following the manufacturer’s standard protocol. Quality of total RNA was assessed with the BioAnalyzer Nano (Agilent) and all samples had a RIN above 9.

Library preparation was done as described by (41). Sequencing was performed with the Illumina NextSeq500 using the SBS Reagent Kit v3 (100 cycles, paired-end) with 1.6 nM of the pooled library. Cluster density was targeted at around 800k clusters/mm². Between 73 and 98 million reads were generated for each sample. Library preparation and sequencing was done at the Institute for Research in Immunology and Cancer’s Platform (University of Montreal). About 95% of high quality reads were mapped onto the zv9 version of the zebrafish genome (ensemble release 77) using TopHat version 2.0.10.

Differential gene expression analysis was assessed by DeSeq2 package using R software. Differential gene expression was filtered on a False Discovery Rate (or adjusted p value > 0.05).

Pathway analysis was performed using DAVID bioinformatics resources (42). The list of differentially expressed genes was uploaded onto DAVID analysis wizard and a list of all expressed genes found in our dataset was used as a background for gene enrichment analysis.

Immunohistochemistry and pH3 and pav7 quantification
Gldc−/− and +/+ embryos were anaesthetized in 0.2% tricaine, fixed with 4% paraformaldehyde for 1h30 at room temperature (or in Dent’s overnight at 4ºC for pH3 IHC). Immunohistochemistry was performed as previously described (43) with anti Ac-Tub (1:1000, T6793, sigma), anti-pH3 (polyclonal, 1:500, 06-570, millipore), anti-TH (1:400, mab318, millipore), anti vGluT1 (1:500), or anti-pav7 (1:1000, both gifts of Masahiko Hibi). Quantification of Pav7- and pH3-positive cells was done blindly by using the count tool on Photoshop.

Drug treatments

All drugs were obtained through Sigma. The drug solutions were prepared as follows: 10mM stock solution of strychnine (S0532) was prepared by dissolving 33.4mg of powder in 10mL of water; 10mM stock solution of Dextromethorphan (D9684) was prepared by dissolving 37mg of powder in 10mL of water. The stock solution was dissolved in fish water to reach the final concentration. Embryos and larvae were individualized in glass beaker in a total volume of 50mL and were incubated overnight in a lightproof box at 28.5ºC.

Glycine Transporter 1 cloning and mRNA in vitro synthesis

Full-length cDNA of GlyT1 was cloned from 24 hpf total RNAs using the following primers:

Forward: ATGAACAGCAGAAGAATGGAGCA; Reverse: CTATGCCTGGGTGTGGG. The PCR product was cloned within the pCS2+ vector using TOPO TA cloning kit (Invitrogen). After sequencing, the corresponding mRNA was transcribed in vitro using SP6 RNA polymerase.

Statistics
Statistical analysis for comparing two groups were performed using a t-test. When comparing more than two groups, the statistical analysis performed corrected for multiple comparisons and also for repeated measures when comparing multiple measurements between groups using a Bonferroni correction for multiple comparisons. Raw results are displayed with box and whiskers showing the min and max values as well as the median value (line).

Study approval

Genetic testing were performed under written consent from the patients. All experiments were performed in compliance with the guidelines of the Canadian Council for Animal Care and conducted at the Research Center of the University of Montreal Hospital Center (CRCHUM). The vertebrate animal welfare assurance from the Institutional Animal Care and Use Committee (IACUC) for the use of adult zebrafish has been approved on 2015/08/31.

Author contributions

RR and ES designed and performed all the zebrafish research experiments as well as wrote the manuscript. IP, K-IL, NP and NG performed the mass spectrometry analysis. ML performed the molecular biology research. KS and LAS performed the clinical study. PD, RR and ES reviewed the manuscript.

Acknowledgments

We thank Marina Drits of the CRCHUM zebrafish platform, Florent Guilloteau and Patrick Gendron from the IRIC genomic platform. This work was funded by The Grand Défi Pierre
Lavoie, The Savoy Foundation, the Fonds de Recherche Québec Santé (FRQS), the Rare Disease Model and Mechanism network, FRQS-affiliated GRSNC (Groupe de Recherche sur le Système Nerveux Central), the Québec MEESR (Ministère de l’Éducation, de l’Enseignement Supérieur et de Recherche) and the CRCHUM. NG and KL were funded by the MRC (N003713) and Joseph’s Goal.

References

Figure 1: GLDC mutations associated with lethal or severe glycine encephalopathy. A. Genetic and molecular testing of the patients performed at the Denver Genetic Laboratories showing the mutation found in GLDC as well as plasma and cerebrospinal fluid (CSF) glycine level. B. The genetic position of each mutation is indicated on the scheme depicting the 25 exons of the GLDC gene. C. Consequences of the mutations on the expected GLDC protein size.
Figure 2: Zebrafish gldc is expressed in the central nervous system and its loss-of-function induces glycine accumulation. A. In situ hybridization of gldc transcript at 8, 18, 24, 32, and 42
hours post fertilization (hpf) showing the expression in the brain and spinal cord as well as in the intestine at later stages. B. CRISPR/CAS9 mutagenesis targeting the 4th exon of gldc led to substitution of 2 nucleotides and deletion of 5 nucleotides. These DNA mutations in gldc -/- induce a melting curve shift compared to +/- that allows for rapid genotyping. C. Scheme of several nonsense mutations identified in patients leading to insertion of stop codons in the glycine cleavage domain of the human GLDC protein. In red, the mutant variant of the glycine encephalopathy patient described here, and in red in the zebrafish GLDC protein, the location of the CRISPR mutation. D. RT-qPCR analysis of the gldc mRNA levels, reveals a significant decrease in gldc -/- and -/- compared to +/-, at 7 dpf (ANOVA, ***: < 0.0004; **: < 0.005, n>10, N=3). LC-MS dosage of glycine levels in whole 7 days post fertilization larvae reveals a significant increase in gldc -/-, but not -/-, compared to +/- (ANOVA, ****: <0.0001, n=3, N=3). Box and whiskers display min and max values and a line shows the median value. Each dot corresponds to an individual experiment (N) of at least 5 fish (n>5).
Figure 3: *Gldc* +/- larvae die prematurely and depict disease-reminiscent motor phenotypes. A. *Gldc* +/- larvae die prematurely between 7 and 9 days post fertilization. B. The general
mortality of the fish is not affected as shown by the quantification of the eye spacing
distance, eye diameter, and body length of gldc -/- compared to +/+. C. Although there is no
obvious morphological defect in gldc -/- at 7 dpf, -/- larvae are distinguishable from their
siblings thanks to their hyperpigmentation. D. Hematoxylin/Eosin staining performed on
transverse sections from 7 dpf gldc+/+ and -/- larvae show no obvious difference of brain
morphology. E. Analysis of the frequency of spontaneous coiling of the tail at 21 hours post
fertilization, the earliest motor phenotype in zebrafish embryo, reveals a decrease of this
behavior in gldc -/- larvae, compared to +/+ (ANOVA p=0.0002). F. Analysis of the total distance
swam over 1h at 7 days reveals a significant decrease of swimming in gldc -/- compared to +/+ (ANOVA p=0.0077). G. Tracking of the position of gldc +/+ and -/- 7 days post-fertilization larvae
from the center point after application of a water current show a balance problem of gldc -/-
larvae. H. Indeed, gldc -/- larvae take significantly more time to stabilize their swimming after
application of the water current compared to gldc +/+ (t-test, p=0.0008). I. Heatmap tracking of
the swimming zone of 7 dpf larvae over 10 min reveals that gldc -/- larvae are swimming only in
the upper part of water, whereas gldc +/+ swim in both upper and lower sections of the water.
J. Quantification of the time spent in the upper versus lower swimming zone of the water
reveals that gldc -/- spend significantly more time in the upper swimming zone compared to +/+ (ANOVA, p<0.0001). Box and whiskers display min and max values and a line shows the median
value. Each dot corresponds to an individual experiment (N) of at least 5 fish (n>5).
Figure 4: Metabolomics analysis indicates broad metabolic perturbations in *gldc* -/- larvae. A.

LC-MS analysis of the levels of the main proteogenic and non-proteogenic amino acids at 7 dpf reveals a significant increase in sarcosine, proline, glycine, valine, cystationine, leucine, and...
arginine in gldc -/- compared to +/- (t-test, respectively, p=0.035, p=0.0062, p<0.00001, p=0.0006, p=0.0006, p=0.029, and p=0.0006). B. LC-MS analysis of the main neurotransmitter at 7 dpf reveals a significant decrease in glutamate and GABA in gldc -/- compared to +/- (t-test, both p<0.00001). C. LC-MS analysis of folate compounds did not reveal any difference between gldc -/- and +/- at 7dpf. Box and whiskers display min and max values and a line shows the median value. Each dot corresponds to an individual experiment (N) of at least 3 fish (n>3).
Figure 5: Transcriptomics analysis reveals differences in the expression of cell cycle, proliferation, and metabolism-related genes in the \textit{gldc} -/- mutants. A. RNA sequencing analysis of 7 dpf larvae reveals that 408 genes are differentially expressed, with 255 up-regulated and 153 downregulated, in \textit{gldc} -/- compared to +/+. B. Pathway analysis of the differentially regulated genes reveals that genes involved in metabolism, cell cycle/growth, oncogene/proliferation and tumor suppressor, extracellular matrix, and one in neurotransmission are mis-regulated in \textit{gldc} -/- compared to +/+.
Figure 6: The main brain networks are not affected by gldc-KO despite a transient decrease of proliferation in gldc -/- brain. A. Immunohistochemistry against phospho-histone 3 (Ph3) labels proliferating cells on gldc -/- and +/- 3 dpf larvae. B. Immunohistochemistry against acetylated tubulin labelling axonal tracks did not reveal any gross morphological difference at 1 and 4 dpf
between *gldc*-/- and +/+ larvae. C. The transgenic dlx5/6:GFP line was used to visualize GABAergic cells in *gldc*-/- and +/+ 7 dpf larvae. D. Using the vGlut2:RFP transgenic line to label the glutamatergic network did not reveal any gross morphological difference between *gldc*-/- and +/+ 7 dpf larvae. E. Immunohistochemistry against tyrosine hydroxylase labelling dopaminergic neurons did not reveal any gross morphological difference between *gldc*-/- and +/+ at 5 dpf. F. Immunohistochemistry against paravalbumin 7 labels purkinje cells of the cerebellum on 5 dpf *gldc*-/- and +/+ larvae. G. Immunohistochemistry against vGluT1 labelling granule cells of the cerebellum did not reveal any gross morphological difference between 5dpf *gldc*-/- and +/+ larvae. H. Using the islet1:GFP transgenic line to label the branchiomotor neuron network did not reveal any gross morphological difference between *gldc*-/- and +/+ 3 dpf larvae. I. Quantification of the number of Ph3 positive cells revealed a significant decrease of proliferating cells in *gldc*-/- compared to +/+ at 1 and 3 dpf, but not 7 dpf (t-test, respectively, p=0.0223 and p=0.014). J. Quantification of the number of dlx5/6:GFP positive cells did not reveal any difference between *gldc*-/- and +/+ K. Quantification of the number of paravalbumin 7 positive cells did not reveal any difference between *gldc*-/- and +/+ Box and whiskers display min and max values and a line shows the median value. Each dot corresponds to an individual biological replicate (n>5).
Figure 7: Genetically and pharmacologically counteracting the exacerbated hyperglycinemia at the synapse rescues the motor phenotype of *gldc* -/-. A. Overnight treatment with
strychnine 5uM significantly rescues the hypotonic swimming of gldc -/- (n=6) at 7 days compared to vehicle treated gldc -/- (n=11) (p=0.0446; for vehicle treated -/- vs. sib/+,
p=0.0002). B. Overnight treatment with dextromethorphan 50uM decreases the hypotonic coiling of gldc -/- (n=23) compared to vehicle treated gldc -/- embryos (n=27) at 21 hpf, (vehicle-treated sib/+ vs. dextromethorphan-treated sib/+, p<0.0001; vehicle-treated sib/+ vs. -/-,
p=0.0013). C. Daily dextromethorphan 25uM treatment over 7 days significantly rescues the hypotonic swimming of gldc -/- (n=4) at 7 days, compared to vehicle-treated gldc -/- larvae (n=6) (p=0.0129; vehicle-treated sib/+ vs. -/-, p=0.0017). D. First-cell stage Glycine Transporter 1 (GlyT1) mRNA injection rescues the coiling defect of gldc -/- embryos at 21 hours post fertilization compared to GFP injected gldc -/- (n>15, N=4) (p=0.0064; GFP-injected sib/+ vs. -/-,
p=0.015). E. Model representation of NMDA and glycine synapses of gldc -/- compared to +/-.

Gldc -/- have an exacerbated hyperglycinemia at these synapses due to a decrease in GlyT1 and an increase in the levels of sarcosine. Box and whiskers display min and max values and a line shows the median value. Each dot corresponds to an individual experiment (N) of at least 5 fish (n>5).