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Abstract

Electricity systems worldwide are transforming in-line with the global decarbonisation

goals. On the supply side, renewable energy resources are replacing fossil fuels which

introduces uncertainty in electricity generation. On the demand side, heating and transport

electrification coupled with continuous integration of small scale renewables and energy

storage are transforming the interactions between consumers and generators. These changes

are raising new challenges for system operators in terms of balancing electricity in the grid.

Demand-side management (DSM), whereby electricity consumption is coordinated

with variable supply from renewables, has been shown to offer a promising solution to the

above problem. However, the extent to which the future impact of DSM has been holisti-

cally assessed is arguable. Current model-based assessment of DSM primarily focuses on

its benefits, ignoring the potential challenges since the testing tends to be carried out in an

isolated and idealistic setting.

This work proposes a model for Electricity System Management using an Agent based

approach (or ESMA), which includes heterogeneous consumers, aggregators, the system

operator, and market. The main feature of the model is its capability to simulate different

regimes of DSM: decentralised (performed by consumers), semi-centralised (performed by

aggregators), and centralised (performed by the system operator). The impact of each DSM

regime is assessed in terms system costs, greenhouse gas emissions and consumer bills in

the context of the British electricity system for 2015-2050.

It is found that a trade-off exists between consumer autonomy and system optimality

with regards to DSM. It is argued that the level of information sharing between consumers

and the system can be minimised, as better learning and predicting algorithms are devel-

oped. The thesis is concluded with a discussion on the potential consumer tariff structure

which would reward consumer flexibility.



Acknowledgements

Writing this PhD has been a challenging and rewarding journey, during which I

learnt a great deal about the world as well as myself. However, it could not have

been achieved without the support I received from the following people whom I

would like to acknowledge.

Firstly, I would like to thank my supervisor Prof Mark Barrett for his valuable

support, advice and patience. I am grateful to Mark for giving me the freedom to

explore different opportunities offered to me throughout the PhD and filling me with

confidence that this piece of work will be completed. Over the past four years I have

thoroughly enjoyed our conversations on varying topics including energy, politics,

and books amongst others.

Secondly, I would like to thank my second supervisor Dr Ed Manley for help-

ing me to overcome my coding anxiety and offering his indispensable expertise in

the domain of agent based modelling and programming. I am grateful to Ed for

his thorough and honest view on this work, which has had a valuable impact on

improving its quality.

I would like to thank the UCL Department of Security and Crime Science

(SECReT) along with its staff for giving me the opportunity to complete this unique

Doctoral Program, where I learnt the power of multidisciplinary research. I am

grateful to the Engineering and Physical Sciences Research Council (EPSRC) for

supporting me financially throughout the last four years.

I would like to thank the UCL Energy Institute for offering me not only a place

to work but an opportunity to meet wonderful people during my time there. I will

miss the intellectual, crazy and funny kitchen conversations, drinks at The Hare and



Acknowledgements 5

never ending flow of interesting talks, seminars and organised parties.

During my time at the Energy Institute I had the privilege to complete a num-

ber of internships all over the world. I would like to thank the International Energy

Agency (IEA), the International Institute for Applied Systems Analysis (IIASA),

the Department of Electrical Engineering at Yale University, and the University of

Zurich for giving me the opportunity to participate in these mind-opening programs.

Amongst the great people I had the pleasure of interacting with during the place-

ments, I would like to thank Dr Artem Baklanov for continuously pushing me to be

a better researcher.

I would like to thank my partner Kris Gostynski for his support and patience

during the process of writing this PhD. I am grateful for the time he spent reading

endless drafts, helping me to learn to code, and always reassuring me in my abilities

to finish this PhD.

Finally, I am thankful to my friends and family. Especially, my parents for

inspiring me to do a PhD, my sister Lilia for always believing that I can do it, my

brother Marat for always taking an interest in my work, and my sister Alyona for

asking the most unexpected questions.

A special thanks goes to my mum for inspiring me to never lose the passion

for knowledge.



Impact Statement

This research investigates the future impact of deploying demand side management

(DSM) in a decentralised electricity system. In order to do that, a bespoke Electric-

ity System Management Agent based model (ESMA) has been built, whereby elec-

tricity can be managed by one of three stakeholder types: consumers, aggregators,

and the system operator. The investigation is carried out in the case of the British

electricity system in two boundary scenarios: Steady State and Two Degrees+.

Firstly, the impact of this research is regulatory. It highlights the need for

better regulation of activity between electricity utilities and end-users, as well as

requirements for more flexible and tailor-made end-user electricity tariffs. This re-

search explicitly demonstrates how incentivising end-users to consumer electricity

more efficiently with a real time price can lead to system losses as the market herds

towards the same cheap electricity time periods. The work also explores the nega-

tive consequences of energy utilities using DSM in order to compete in the market

and how allowing consumers to switch aggregators can aggravate the situation. Al-

though the analysis has been carried out in the case of the British electricity system,

the findings are applicable to any electricity market undergoing decentralisation and

so extend internationally. The results are primarily aimed at the energy regulator and

system operator but are also relevant to electric utilities and end-users.

Secondly, the impact is methodological. A bespoke open-source agent-based

model has been developed capable of simulating the interactions of an electric-

ity market undergoing decentralisation. The model considers different regimes for

demand side management ranging from a decentralised (performed by consumer),

semi centralised (performed by the aggregator), and centralised (performed by the
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system operator). ESMA incorporates four economic demand sectors, with explicit

modelling of heat and transport electrification. Finally, a new method for decen-

tralised DSM has been developed, which enables consumers to optimise day-ahead

electricity consumption by learning from past behaviour. As a result, feeding real

time prices becomes an effective way of coordinating consumers without raising

end-user privacy concerns.

The ultimately impact of this research is a more sustainable consumption of

electricity. The long-term benefits include decreased greenhouse gas emissions and

lower electricity prices, and as a result improved quality of the environment and

quality of life.
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LOLE Loss-of-load expectation
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MAS Multi-agent system
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List of definitions

Aggregator - an entity which is able to pool consumers together. An aggregator

can represent an energy utility (in which case it retails wholesale electricity

to end-users), or a Balancing Service Provider in which case it instructs end-

users on how to shift demand.

Ancillary services - services and functions used by the system operator in order

to balance supply and demand in the grid (also referred to as Balancing

services). Examples include frequency response, reserve services, reactive

power services (Energy UK, 2017).

Balancing mechanism - a tool used by the National Grid for the purpose of remov-

ing imbalances between system demand and supply. Balancing mechanism

gets activated at gate closure (or 1 hour before physical delivery of power)

and runs like a market where the system operator procures services from the

balancing mechanism units (BMUs).

Baseload - the minimum level of electricity demand required by the system over a

period of 24 hours. It is needed to provide power to components that keep

running at all times (also referred as continuous load). Base load is typically

met by invariable generators like nuclear and coal1.

Black start - refers to the procedure when power in the grid is restored in the event

of a total or partial shutdown of the national electricity transmission system2.
1http://sinovoltaics.com/learning-center/basics/base-load-peak-

load/
2https://www.nationalgrid.com/uk/electricity/balancing-services/

system-security-services/black-start

http://sinovoltaics.com/learning-center/basics/base-load-peak-load/
http://sinovoltaics.com/learning-center/basics/base-load-peak-load/
https://www.nationalgrid.com/uk/electricity/balancing-services/system-security-services/black-start
https://www.nationalgrid.com/uk/electricity/balancing-services/system-security-services/black-start
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Copper plate - an approximation made when modelling the electricity system,

which assumes that power can flow unconstrained from any generation site

to any demand site therefore ignoring physical constraints of the grid.

Dispatchable generation - electricity sources which can generate electricity on

demand, e.g. coal or gas power plants.

Distributed energy resources (DERs) - electricity generating resources or flexi-

ble loads that are directly connected to a local distribution system or a host

facility within the local distribution system. These include solar panels, elec-

tricity storage, electric vehicles, heat pumps, small scale combined heat and

power generators (Ieso, 2018).

Dynamic pricing - type of time variable pricing, whereby electricity price changes

throughout the day to reflect the real time cost of electricity generation.

Examples of dynamic pricing include real time pricing (RTP), time-of-use

(TOU) and critical peak (CPP)3.

Electricity tariff - retail price of electricity.

Energy utility - company which supplies consumers with energy.

Flexible load - part of consumer demand which can be shifted in time, e.g. from

an electric vehicle, battery or air conditioning.

Gate closure - the cut-off time of wholesale electricity trading (1 hour before phys-

ical delivery), also referring to the start of the balancing market.

Hot standby - refers to the situation when a generation unit is held in the state of

readiness4.

Load factor - ratio between average to peak demand.
3https://cdn.eurelectric.org/media/2113/dynamic pricing in electricity supply-

2017-2520-0003-01-e-h-7FE49D01.pdf
4https://www.nationalgrid.com/uk/electricity/balancing-services/

reserve-services/bm-start.

https://cdn.eurelectric.org/media/2113/dynamic_pricing_in_electricity_supply-2017-2520-0003-01-e-h-7FE49D01.pdf
https://cdn.eurelectric.org/media/2113/dynamic_pricing_in_electricity_supply-2017-2520-0003-01-e-h-7FE49D01.pdf
https://www.nationalgrid.com/uk/electricity/balancing-services/reserve-services/bm-start
https://www.nationalgrid.com/uk/electricity/balancing-services/reserve-services/bm-start
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Merit order stack - whereby generation units are arranged in the ascending order

of price for electricity (which often reflects the short run marginal cost of

production).

Microgrid - collection of electricity generation resources and loads that can op-

erates connected to and synchronous with the national electricity grid, or

disconnect to ‘island mode’ and function autonomously.

National Grid - system operator of the British electricity grid.

Non-deferrable demand - corresponds to activities requiring energy which cannot

be shifted in time, e.g. watching TV, lighting (in the case of electrical energy)

and heating (in the case of thermal energy).

Non-thermal demand - weather independent energy demand, e.g. lighting, oper-

ation of machinery.

Over the counter trade - electricity deal whereby the terms are agreed in private.

Renewable generation - electricity sources which generate electricity from renew-

able energy, e.g. solar, wind, and hydro.

Smart meter - a device which is able to measure electricity consumption and the

cost of its generation in real time.

System frequency - a measure of the balance between electricity supply and de-

mand in the grid.

Thermal demand - weather dependent energy demand required for heating and

cooling, e.g. water and space heating.

Time variable pricing - whereby the price for electricity varies throughout the day

depending on the cost of generating electricity, e.g. time-of-use (TOU) pric-

ing.
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List of symbols

α Damping term which supresses consumer response to real time prices

αc Consumer specific damping term which supresses consumer response to real

time prices

δ
j

ramp Absolute change in power generation from time t − 1 to t of technology j

[MW]

ε(t,d) Wholesale price uplift reflecting network and balancing costs [£/MWh]

η j Efficiency of generation technology j

ηboiler Efficiency of boiler

ηc
ES Efficiency of electrical storage of consumer c

ηc
HP Efficiency of a heat pump of consumer c in converting electricity to heat

ηmax
HP Carnot (or the theoretical maximum) efficiency of the heat pump of con-

sumer c

ηc
RH Efficiency of a resistance heater of consumer c in converting electricity to

heat

ηc
T ES Efficiency of an electrical store of consumer c

A Set of all aggregators

C Set of all consumers

C a Set of all consumers supplied by aggregator a

G Set of generation technologies at the transmission level
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S = {dom,com, ind, trans} Set of consumer sectors (domestic, commercial, in-

dustrial and transportation)

T = {HP,PV,ES,T ES} Set of consumer technologies

πa(t,d) Retail price offered by aggregator a in time t of day d [£/MWh]

θext External air temperature [°C]

θT ES Temperature of water in a thermal energy store [°C]

a Aggregator identifier index

aggDR ∈ [0,1] Share of aggregators participating in DSM

bES,bT ES Binary variable (0,1) which determines whether the energy storage is

charging or discharging

c Consumer identifier index

Ca(d) Cost of power incurred by aggregator a in day d [£]

Ca(y) Cost of power incurred by aggregator a in year y [£]

C j
dyn Dynamic cost of generation of technology j [£]

c j
f u Fuel cost required by generation technology j [£/MWh]

c j
op Variable operational and maintenance cost of generation technology j

[£/MWh]

C j
SRUC Short run unavoidable cost of generation of technology j [£]

c j
MC Marginal cost of generation by technology j [£/MWh]

c j
ramp Ramping cost of generation technology j per unit of change in demand

[£/MWh]
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cap j Capacity of generation technology j [MW]

conDR ∈ [0,1] Share of consumers participating in DSM

conExplore Proportion of the time consumer c explores the new strategy when

learning αc

conStep The deviation taken by consumer c from the αc during the α learning

algorithm

EEV,max,EEV,min Maximum and minimum energy storage capacity of electric trans-

port consumer [MWh]

Emin
PS ,Emax

PS Minimum and maximum energy constraints of pumped storage [MWh]

Emax,c
ES ,Emin,c

ES Maximum and minimum energy capacity constraints of electrical

storage of consumer c [MWh]

Emax,c
T ES ,Emin,c

T ES Maximum and minimum energy capacity constraints of thermal en-

ergy storage of consumer c [MWh]

f (t,d,m) Traffic flow distribution

G Total number of generating technologies

gk(t) Coordination signal sent by the aggregator to consumers at time t in iteration

k

h j
CO2 Emissions factor of generation technology j [tonne CO2eq/MWh]

j Generation technology index

k Iteration counter used in the DSM scheduling algorithm

L(t,d) Electricity system demand outturn at time t in day d [MWh]

La(t,d) Total electricity demand of aggregator a at time t in day d [MWh]
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lc(t,d) Non-deferrable electricity demand of consumer c at time t in day d [MWh]

lc
exp(t,d) Electricity exported by consumer c at time t in day d [MWh]

lc
net(t,d) Net or residual electricity demand of consumer c at time t in day d [MWh]

Lch
PS(t,d),L

dc
PS(t,d) Charge and discharge profiles of transmission level pumped

storage at time t in day d [MWh]

lEV,ch(t,d), lEV,dc(t,d) Charge and discharge profiles of an electric transport con-

sumer at time t in day d [MWh]

lEV,max, lEV,min Maximum and minimum power storage capacity of electric trans-

port consumer [MW]

l f leet,ch(t,d), l f leet,dc(t,d) Charging and discharging profiles of an electric vehicle

fleet in time t of day d

Lmin
PS ,Lmax

PS Minimum and maximum power constraints of pumped storage [MW]

lsec
tot , l

sec, lsec
therm Total, non-thermal and thermal electricity demand profile by a real

life end-user from economic sector sec ∈S at time t in day d [MWh]

Lagg(t,d) Electricity demand summed across all aggregators at time t in day d

[MWh]

lch,c
ES (t,d), ldc,c

ES (t,d) Electrical storage charge and discharge profiles of consumer c

at time t in day d [MWh]

lmax,c
ES , lmin,c

ES Maximum and minimum power capacity constraints of electrical stor-

age of consumer c [MW]

Lgen(t,d) Power output from all generation technologies in time t of day d [MW]

lc
HP(t,d) Electricity demand profile by a heat pump of consumer c at time t in day

d [MWh]
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lmax,c
HP , lmin,c

HP Maximum and minimum power constraints of a heat pump of con-

sumers c [MW]

Limport(t,d) Imported electricity at the transmission level at time t in day d [MWh]

Lloss(t,d) Losses experienced by the electricity system at time t in day d [MWh]

lc
RH(t,d) Electricity demand profile by a resistance heater of consumer c at time t

in day d [MWh]

lmax,c
RH , lmin,c

RH Maximum and minimum power constraints of a resistance heater of

consumers c [MW]

M Total number of aggregators

msec
type Consumer multiplier which corresponds to the actual number of end-users

each agent of sector sec and type type represents

N Number of consumers

NEV
stat(t,d),N

EV
move(t,d),N

EV
tot (t,d) Number of stationary, moving and total electric

vehicles in time t of day d

nsec
type Number of consumer agents of specific sector and type

p(t,d) Wholesale electricity price [£/MWh]

pCO2(y) Carbon price in year y [£/tonne CO2eq]

pSR(t,d) Short run wholesale electricity price excluding uplift ε(t,d) [£/MWh]

qc(t,d) Non-deferrable heat demand of consumer c at time t in day d [MWh]

q j Power generated by technology j [£/MWh]

qdom
CHM,heat(t,d),q

dom
CHM,gas(t,d) Heat and gas consumption by a domestic end-user

according to the Cambridge Housing Model in time t of day d [MWh]
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qc
HP(t,d) Heat output from a heat pump of consumer c at time t in day d [MWh]

qc
RH(t,d) Heat output from a resistance heater of consumer c at time t in day d

[MWh]

qch,c
T ES(t,d),q

dc,c
T ES(t,d) Thermal energy storage charge and discharge profiles of con-

sumer c at time t in day d [MWh]

qmax,c
T ES ,qmin,c

T ES Maximum and minimum power capacity constraints of thermal energy

storage of consumer c [MW]

R(t,d) Transmission level renewable generation at time t in day d

rc(t,d) Renewable generation profile of consume c at time t in day d [MWh]

Rused(t,d),Rcurt(t,d) Used and curtailed renewable generation at time t in day d

T,D,Y Maximum number of hours in a day, days in a year and years of simulation

t,d,y Hour, day and year indices

typei Consumer type which represents the type of resources the consumer has ac-

cess to, where i ∈ [1,10]

w Weighing parameter between 0 and 1 for previous system demand outturn

zc(d) Cost incurred by consumer c in day d

* Indicates a predicted value
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Introduction

1.1 The balancing challenge

Climate change is recognised as one of the biggest challenges of the 21st century.

Following the 21st Conference of the Parties of the United Nations Framework Con-

vention on Climate Change (UNFCCC) held in Paris, 195 states pledged to reduce

their greenhouse gas (GHG) emissions in order to avoid irreversible effects of global

warming (UNFCCC, 2016). Electricity and heat production contribute a quarter of

the total GHG emissions globally (IPCC, 2014), for which reason countries world-

wide are working on making their electricity systems more sustainable.

On the supply side, fossil fuel power plants (such as coal and gas) are being

replaced by renewable generators like biomass, onshore and offshore wind, and so-

lar. However, much of the renewable energy supply is variable and uncontrollable

meaning that electricity cannot be generated on demand like in the case of dispatch-

able power plants.

On the demand side, the need to decarbonise is driving the electrification of

transportation and heat, the integration of renewable (e.g. solar and wind) and more

energy efficient (e.g. combined heat and power, CHP) generation technology and

storage. As a result, the demand side is witnessing the integration of a multitude of

distributed energy resources (or DERs), such as electric vehicles, heat pumps, bat-

teries, rooftop solar, micro-CHP and small scale wind generators. Coupled with the

increasing accessibility of energy management and communication devices (such
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as smart meters and home control systems), DERs are changing the way electricity

is consumed making the demand side more proactive and unpredictable. Balancing

variable electricity supply with increasingly more unpredictable demand is present-

ing a major challenge for power system operators all over the world.

Demand-side management (DSM) refers to the modification of consumer de-

mand for electricity in order to optimise the dispatch of available generation re-

sources, and minimise the cost of maintaining a balanced flow of power in the grid.

DSM has been attracting a lot of attention from academia and industry as a

promising solution to the balancing challenge, by means of altering demand to bet-

ter accommodate for variable renewable supply (Ofgem, 2017a). Yet, as electricity

systems are transforming, the full scope of DSM impact has not yet been under-

stood.

1.2 The decentralisation of electricity system

management
The concept of electricity system management is not new. Since the creation of

power networks, electricity supply and demand had to be balanced in the grid in

real time, as it is notoriously expensive to store. Traditionally, the system operator

(SO) was responsible for ensuring a smooth flow of electricity in the grid, due to its

centralised design and the computational requirements for processing large amounts

of information.

Electricity balancing services on the supply side are typically provided by large

power plants which can be ramped up and down in order to increase and decrease

generation. In the UK, a condition for power generators to be connected to the trans-

mission network is to have the ability to perform ‘mandatory frequency response’

- a service which involves balancing the grid within seconds of an event occurring

(National Grid, 2017b).

Schemes to manage electricity consumption have been traditionally aimed at

influencing human behaviour through time variable pricing. In the UK off-peak

electric heating was introduced as early as 1960s with the intention to shift residen-
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tial consumer demand to times of low electricity prices at night (Carlsson-Hyslop

et al., 2013). ‘The Triad’ scheme, whereby utilities are penalised for consuming

electricity during the three most expensive half-hours during the year, is an exam-

ple of a DSM program aimed at non-domestic consumers (National Grid, 2015a).

Lowering costs for electricity storage, small scale generators and access to data

communication and processing technology have reignited political, industrial and

academic interest in demand side management. DSM schemes have been rapidly

emerging all over the world in the last few decades, especially in warmer regions

where synchronous operation of air conditioning can lead to the creation of large

demand peaks. For example in the United States, Southern California Edison of-

fers a discounted summer tariff in exchange for having consumer permission to

switch off air conditioning for a short period of time (SCE, 2017). Other exam-

ples include a scheme run by OhmConnect, whereby the utility sends end-users a

message to reduce consumption sometime in the near future in exchange for a fi-

nancial payment (OhmConnect, 2017). In the UK, aggregators like KiWi Power

contract non-domestic consumers to have the ability of controlling certain devices

like fridges and freezers in exchange for a financial incentive (KiWi Power, 2018).

In order to encourage the residential sector to consume electricity more sustainably,

the UK government plans to integrate each household with a smart meter by 2020,

which would inform end-users of the true cost of generating electricity in real time

(Smart Energy GB, 2016).

The utility business models are also changing in recognition of the benefits of

DSM. Tempus Energy is an energy utility which uses machine learning in order

to instruct end-users when to consume electricity. By doing so, Tempus aims to

reduce the projected cost of power purchased from the wholesale market and offer

a more competitive retail tariff to consumers (Tempus, 2018). In more recent years,

the emergence of blockchain technology has been an important driver for the ‘peer-

to-peer’ electricity trading model, whereby smaller consumers are able to buy and

sell electricity through an online platform without having to access the wholesale

market. Brooklyn microgrid (a pilot implemented by LO3 and Siemens), is one



1.2. The decentralisation of electricity system management 24

example of how this model can work in the real world (LO3 Energy, 2018)1.

In order to facilitate the decentralisation of the electricity system, the respon-

sibility for maintaining a balanced grid must shift away from the System Operator

towards distribution network operators (DNOs). This is especially relevant when

considering embedded renewable generation which is not registered at the trans-

mission level. For this reason the National Grid has been working on improving

the cooperation with DNOs, which are required to take a more active role is man-

aging generation and demand resources in the grid (National Grid, 2017c). Some

responsibilities envisioned for future distribution system operators (DSOs) include

(Butcher, 2017):

1. actively facilitating local electricity market for DERs in order to balance the

distribution grid,

2. owning and/or operating electric vehicle charging infrastructure,

3. providing energy efficiency and environmental consultancy services,

4. owning and/or operator of power storage and CHP plant in order to meet

demand in case of system scarcity.

Initiatives undertaken by DNOs today include offering DSR services to the

grid, such as in the case of the Northern Powergrid. Facilitated by a contract with

an aggregator Kiwi Power, the DNO operates a 2.5MW battery in order to provide

frequency response services to the high-voltage transmission network. In fact, the

electricity market regulator Ofgem claims that across all DNOs electrical storage

adds up to around 12.6MW. The concern with regards to DNOs owning storage is

that it could interfere with the development of a competitive market for flexibility

services 2. For this reason Ofgem introduced regulations, which allow DNOs to

own but not operate storage. To conclude, DNOs will play an increasingly more

active role in managing the electricity grid in the future, but the way this transition

happens is critical to the competiveness and efficiency of the future smart grid.
1See https://www.brooklyn.energy/ for more information
2See https://www.energy-storage.news/news/uk-regulator-sets-rules-on-dno-ownership-of-

energy-storage-as-one-puts-us5m

https://www.brooklyn.energy/
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1.3 Motivation for research

As different types of stakeholders, such as consumers and aggregators, gain the

technological capacity to manage electricity demand and supply at the local level,

electricity system management on the whole is becoming more decentralised. Al-

though these changes introduce many benefits and opportunities in making the elec-

tricity grid more sustainable (for example better utilisation of local renewable gener-

ation and storage), these do not come without a set of challenges. This is because a

decentralised electricity system constitutes an interconnected and complex network

of agents, central to which is the electricity market where prices are set depending

on the aggregate system demand. Consequently, actions taken by a single agent can

affect the whole market.

One of the main concerns with regards to the future implementation of DSM

is consumer herding – a situation when end-users shift demand to the same periods

of low electricity prices for the purpose of reducing the cost of electricity. When

a large enough number of consumers adopt the same strategy, it can result in in-

creased demand peaks, costs, and GHG emissions. Some studies already report that

consumer response to the same price signals can lead to the creation of new de-

mand peaks (Gottwalt et al., 2011; Ericson, 2009). Thinking further into the future

when consumer flexibility is projected to be much higher and consumer tariffs more

dynamic, herding is likely to become much more of an issue.

Aggregators can help alleviate the problem of consumer herding through coor-

dinated DSM, but only up to a point where they become greedy and start to exploit

their ability to shift demand in order to compete in the wholesale market. The first

point of concern is aggregator herding, the negative consequences of which are ex-

actly the same as consumer herding since aggregators merely instruct consumers to

shift demand. Another point of concern is strategic manipulation of flexible demand

by vertically integrated utilities, which has been shown to increase wholesale elec-

tricity prices (Prüggler et al., 2011). Since a vertically integrated utility profits from

selling electricity at high prices, it would be in the utility’s interest to strategically

increase system demand and therefore prices.
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Involving a central coordinator such as the System Operator can provide a

way of avoiding consumer and aggregator herding. However, this would involve

consumers sharing information on their consumption or flexibility (something that

might not seem appealing to some due to privacy concerns). An alternative to this

is decentralised coordination, whereby decisions are made locally rather than by a

central entity. However, the extent to which decentralised coordination has been

tested in the context of the whole system is limited.

Another major challenge of future DSM implementation is cost allocation to

different types of consumers. Whereas end-users with flexible resources (such as

electrical storage) act as price makers, inflexible consumers (which cannot alter

their demand) are price takers. Yet, the prices for electricity are set in the wholesale

market depending on the demand by the whole system. And so, it is important to

reward consumers for being flexible without penalising those who do not have the

resources to adjust demand. Appropriately structured electricity tariffs can address

this problem. Dynamic pricing has been shown to incentivise end-users to consume

electricity more efficiently, yet it can lead to chaotic system demand and electric-

ity prices. In contrast, flat tariffs do not account for time variability of consumer

demand and so do not incentivise load shifting. Hence the main challenge in struc-

turing the future electricity tariffs lies in encouraging flexibility and proactiveness,

whilst ensuring system security.

To summarise the above points, there are two major challenges with regards to

the future deployment of demand side management:

1. Control, or rather to whom and to what extent it can be given. Centralised

coordination can ensure that the grid is scheduled in an optimal manner, how-

ever stakeholders beyond the central coordinator lose (or partially lose) their

autonomy. In contrast, if multiple stakeholders are permitted to act freely, it

can harm the system as the market becomes chaotic.

2. Cost allocation once DSM has been implemented. Inappropriate electricity

tariff structure can discourage consumer participation in DSM and adoption

of DERs, whereas effective pricing of electricity can act as a strong driver for
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building a sustainable energy system.

Demand side management can prove to be an effective tool in ensuring a bal-

ance in the future electricity grid where renewable energy capacity and consumer

flexibility are high. However, this would not be possible without addressing the

above challenges, which is the main motivation for this research.

1.4 Research contributions and scope
In view with the revived interest in demand side management, a lot of focus by

the research community has been given to assessing the impact of DSM on the

electricity system (Boßmann and Eser, 2016; Yang et al., 2014). However, the extent

to which existing literature addresses the future challenges of DSM is arguable.

A large number of studies focus on the control aspect of implementing DSM,

yet they tend to test it in a stylised setting, e.g. where a set of homogeneous con-

sumers are being coordinated by a single aggregator (Voice et al., 2011; Gan et al.,

2013), by aggregating consumer agents to a single load curve (Chen et al., 1995), or

representing generation by a historical price function (Vytelingum et al., 2010). On

the other side of the spectrum are whole system models like (Strbac et al., 2012;

Fehrenbach et al., 2014), which pay a lot of attention to incorporating detailed

information on demand and generation but assume perfect consumer and market

behaviour in order to perform global optimisation. Consequently, dynamic inter-

actions between autonomous stakeholders are lost and issues of consumer herding

and aggregator competition are left unexplored. Others focus on the benefits of

specific technologies like electric vehicles (EVs) or heat pumps (HPs) but perform

analysis only for a single year (Lund and Kempton, 2008) or even a single day (Pa-

padaskalopoulos et al., 2013). The question of cost allocation to different type of

consumers is rarely explored. Moreover, simulations tend to be carried out with his-

torical data thus limiting the findings to past years. Finally, studies on DSM do not

consider all consumer sectors (often focusing on residential consumers only (Ram-

churn et al., 2011)), which ignores the issue of demand-side interconnectedness.

The electricity system constitutes a complex and interconnected network of
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agents, which are coupled via the wholesale market. In order to holistically assess

the impact of DSM, it is necessary to consider it in the context of the whole system.

Taking observations outside of the wider system context can lead to the omission of

vital system dynamics and the overlooking of potential challenges of DSM.

Up until now, the impact of DSM has not been addressed holistically meaning

that analysis has either been carried out on part of a system, or by ignoring certain

stakeholder interactions. The objective of this work is to explore the long-term

impact of DSM in the context of a decentralised electricity system, where different

stakeholders have their own agenda for deploying DSM.

This PhD explores not only the benefits but also the challenges of future de-

ployment of demand side management paying particular attention to extreme stake-

holder behaviour, such as competition for cheap power.

1.4.1 Research questions

The objective of this work is to answer the following research questions:

1. Up to which point is autonomous consumer cost minimisation based on the

real time price effective in reducing system costs and greenhouse gas emis-

sions?

2. How can aggregators facilitate effective demand side management and what

potential risks might they bring along?

3. What is the appropriate tariff structure for rewarding consumer flexibility?

4. Is it possible for consumers to schedule demand autonomously without com-

promising the stability and sustainability of the electricity system?

In order to address the above research questions a bespoke model for Electric-

ity System Management using an Agent based approach (or ESMA) is proposed.

The model integrates four economic sectors (domestic, commercial, industrial and

transport) represented by autonomous, competing consumers with varying flexible

resources (e.g. heat pumps, resistance heating, thermal storage, electrical storage,

and solar PV) and electricity demand profiles. Supplying consumers with power
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is the market composed of dispatchable and renewable energy resources which are

scheduled based on the short-run marginal cost of electricity generation. The retail

market consists of aggregators capable of coordinating consumers to shift electric-

ity demand. In turn, consumers are able to switch aggregators based on the daily

tariffs offered to them.

ESMA is built using a bottom-up approach allowing it to perform analysis into

the future. The main feature of the model is that it allows demand scheduling at

three hierarchal levels: consumer, aggregator and the system operator. ESMA is

applied in order to analyse the impact of DSM in the context of the British elec-

tricity grid for the period of 2015-2050. In particular, it is used to investigate the

consequences of consumer herding and aggregator competition, the value of a well-

coordinated DSM, and the issue of cost allocation to different types of consumer.

1.4.2 Research contributions

To summarise, the contributions of this PhD are as follows:

1. A holistic energy systems model is developed, which includes heterogeneous

consumers (representing four economic sectors), aggregators and the system

operator. The model explicitly considers electricity generation (including re-

newables and pumped storage), as well as different regimes of hierarchal

demand side management ranging from totally decentralised to totally cen-

tralised.

2. The issues of control and stakeholder autonomy are investigated by compar-

ing the benefits to the system and consumers under each demand side man-

agement regime. Situations are identified where a conflict of interest exists

between consumers, aggregators and the system in terms of financial benefits

to each side as a result of DSM deployment.

3. This work investigated the issue of cost allocation to different types of end-

users (i.e. with different resources and demand profiles) by comparing their

savings as a result of DSM deployment under dynamic and flat tariffs.
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4. An autonomous decentralised DSM algorithm is developed, whereby con-

sumers are able to learn the right response strategy to real time electricity

prices based on the outcome from the previous days.

5. The analysis is performed considering two extreme scenarios for the evolution

of the British electricity grid for the period of 2015-2050. These consist of the

Steady State scenario (where renewable capacity and consumer flexibility are

low) and Two Degrees+ (where renewable capacity and consumer flexibility

are high).

1.5 Thesis structure
Chapter 2 gives an overview of demand side management offering a formal defini-

tion, as well as its historical evolution. Relevant work in the domain of model-based

assessment of DSM is reviewed and research gaps are identified. The focus is given

to the thematic focus of studies as well as the chosen modelling approach. The

chapter is concluded by comparing the proposed model to existing approaches and

identifying how it can aid in addressing the research gaps.

Chapter 3 describes the process of building the modelling framework ESMA,

providing detailed information on the sources of data and the assumptions made in

representing the GB electricity system. Justification is given for the overarching

agent-based modelling approach, as well as the methods chosen for simulating the

electricity generation market and demand side scheduling regimes.

Chapter 4 introduces the simulation scenarios, for which two dimensions are

considered: the evolution of the GB electricity system and different DSM regimes.

The national scenarios are built based on the Future Energy Scenarios provided by

the National Grid, which are adapted in order to arrive with the most optimistic

(Two Degrees+) and the most pessimistic (Steady State) cases. Scenarios for DSM

regimes include the most decentralised control (implemented by the consumers),

semi-centralised control (implemented by the aggregators), and centralised hierar-

chal scheduling (implemented by the System Operator).

Chapter 5 describes the process of validating the model. ESMA is assessed
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in terms of recreating historical data and in terms of its agreement with the Future

Energy Scenarios developed by the (National Grid, 2017a). At the end of the chapter

sensitivity analysis of ESMA to different modelled parameters is performed in order

to check that the model functions as it should.

Chapter 6 addresses research question (1) and investigates the issue of con-

sumer herding when end-users schedule demand based on the real time price (RTP)

for electricity. This is largely motivated by the UK ‘smart meter’ integration plans,

as well as the widely adopted notion that dynamic pricing can encourage end-users

to consume electricity more sustainably.

Chapter 6.2 addresses research question (2) and demonstrates the benefits of

aggregator-led DSM, as well as the consequences of aggregators using DSM to

compete. The value of a centralised hierarchal DSM is demonstrated, whereby the

system operator informs the aggregators of the real cost of electricity generation,

which then coordinate consumers. The chapter is concluded by a discussion on how

the benefits from DSM might be allocated to consumers in the future. Dynamic and

flat electricity tariffs are compared, which addresses research question (3).

Chapter 6.3 addresses research question (4), where a totally distributed DSM

algorithm is developed. Different DSM regimes are compared in terms of bene-

fits to consumers and the system and the trade-off between system optimality and

consumer autonomy in discussed. All analysis in Chapters 6-6.3 is done for the

period of 2015-2050 in the Steady State and Two Degrees+. The impact of DSM is

assessed in terms system costs, GHG emissions and consumer bills.

Chapter 7 discusses the implications of the results and offers conclusions of

this work by evaluating the extent to which the research questions have been an-

swered. The chapter is concluded by addressing the main limitations of the model

and suggesting future areas for improvement.



Chapter 2

Literature review

Demand-side management (DSM) refers to the modification of consumer demand

for electricity in order to optimise the dispatch of available generation resources,

and minimise the cost of maintaining a balanced flow of power in the grid.

The broader definition of demand side management includes energy efficiency,

demand response and on-site generation and storage and can also refer to fuel

switching, e.g. using electrical heating as opposed to gas (Warren, 2018). Here,

DSM is considered primarily in the context of changing the load profile which is

can be categorised based on the objective of doing so (Figure 2.1).

Figure 2.1: Categorisation of Demand Side Management. Source: adapted from (Fleten
et al., 2002).
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The way in which load altering strategies can be achieved is referred to as a de-

mand response (DR) program. Traditionally, DR programs are split into two main

categories: price-based and incentive-based (Figure 2.2). Price-based DR programs

aim to influence consumer demand through dynamic pricing, such as time-of-use

(TOU), real-time pricing (RTP), and critical peak pricing (CPP). These constitute

voluntary consumer behaviour meaning that consumers are not obliged to partici-

pate. The Economy 7 scheme introduced in the UK in 1978 represents one example

of a price-based program. Residential consumers signed up under the scheme are

offered a cheaper rate for electricity during the night which constitutes time-of-use

(TOU) tariff structure (Ofgem, 2018b; Electricity Council, 1987). Outside the UK,

examples include critical peak pricing (CPP) scheme offered by Southern Califor-

nia Edison (SCE, 2017) and a TOU scheme proposed by the national energy utility

Eskom in the Western region of South Africa in 1990s (Eskom, 2009).

Figure 2.2: Categorisation of DSM programs in the wider context of the power system
operation. Source: (U.S. Department of Energy, 2006).

Participation in incentive-based DR programs obliges consumer to respond

in exchange for a financial incentive. These programs include direct load control

(DLC), interruptible/curtailable service (I/C), demand bidding, emergency demand

response, capacity market, and ancillary services (AS) (Falsafi et al., 2014). Under

DLC and I/C programs, consumer demand is directly controlled by a third party (an
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aggregator or a demand response service provider) which can reduce or interrupt

demand on short notice (subject to consumer agreement). Under a demand bidding

program, consumers bid their flexibility in the wholesale market and receive a pay-

ment from the system operator on delivery of the service at a pre-agreed rate. In

the case of emergency demand response, consumers receive a payment for reducing

load in an emergency event, the capacity market commits a share of the participant

demand flexibility to being used when the system so requires. Examples of interna-

tional incentive-based DR programs include the Base Interruptible Program offer by

The Pacific Gas and Electric Company in California, and the I/C scheme proposed

by the Australian Energy Market Operator together with the Australian Renewable

Energy Agency in 2017 (Daniel Silkstone, 2017). For a more in-depth discussion

the reader is referred to a paper by (Albadi and El-Saadany, 2008) which gives a

comprehensive overview.

A note on terminology. In the context of this work, the terms demand response

(DR) and demand side management (DSM) are used synonymously since both DSM

and DR achieve the same objective of altering demand. Moreover, the two terms

are often used interchangeably in the literature (although as pointed out earlier DR

is a subcategory of DSM).

2.1 The evolution of DSM

Demand side management has been receiving a lot of attention from academia and

industry in the last few decades as a promising solution to balancing the grid, es-

pecially as increasing capacities of variable wind and solar are introduced. Yet, the

concept of modifying consumption in order to optimise electricity flow in the grid

is not new. As a policy tool, it is believed that DSM (formerly referred to as load

management) emerged in 1978 under the US Public Utility Regulatory Policy Act

(PURPA) triggered by the energy crisis of the 1973 (Eto, 1996; Torriti, 2015). Fol-

lowing the Arab Oil Embargo of OAPEC in 1973-1974 and the Iranian Revolution

in 1978-1979, the US energy security was greatly affected. PURPA’s purpose was

to reduce the country’s dependency on imports, mainly through promoting energy
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conservation and domestic utilisation of renewable energy. However, going beyond

the electricity vector the notion of DSM has been around for much longer.

Recent developments in communication and data management tools (smart

meters, mobile internet, cloud computing), alongside lowering costs for renewables

and storage have reignited academic, industrial and political interest in demand side

management, especially in light with the increasing global awareness of climate

change issues. The main difference between the traditional and the ‘new’ DSM

schemes is that the latter are becoming more distributed, automated and faster in

their implementation as a result of technological progress. More recent work on

DSM often assumes the presence of an advanced meter enabling two-way com-

munication between the consumers and the utility, or a smart controller capable of

optimising consumer demand based on the information such as the real-time price

of electricity (RTP) or a signal from the aggregator. This allows for more elaborate

demand response algorithms implemented by the aggregator or consumers them-

selves - an area of research which has been receiving a lot of attention in the last few

decades. Increasing and more accurate data on consumption and generation from

renewables, the emergence of new directions for research (machine learning, Big

Data, blockchain), coupled with concerns of consumer information privacy, mean

that more and more attention is given to making DSM algorithms decentralised and

autonomous. That said, some of the earlier works involving local demand schedul-

ing date back to 1980s (Schweppe et al., 1980, 1989), where the authors proposed to

use alternating current as a vehicle for real-time pricing in order to signal consumers

on how to adjust their demand.

In view with the revived interest in demand side management, a lot of focus by

the research community has been given to assessing the impact of DSM on the elec-

tricity system. The volume of research in this domain is large, however the extent

to which it provides a holistic assessment is arguable. In the following chapter the

most relevant work in the domain of model-based assessment of DSM is reviewed

with the purpose of identifying state-of-the-art approached in modelling the impacts

of DSM and identifying research gaps.
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2.2 Model-based assessment of DSM
The literature is classified based on the physical scope of the system considered by

the researchers and the objective of the study (Figure 2.3).

Figure 2.3: Classification of literature based on the scope of study.

Consumer 

focus 

Aggregator 

control focus 

System focus 

(System Operator) 

Information processing unit 

(computer or human) 

Electricity generator 

(dispatchable and RES) 

Flexible resources 

e.g. storage, A/C, EV, fridge 

Inflexible resources 

e.g. lighting, heating, 

cooking, processes 

Information exchange 

e.g. prices, weather, 

generation 

Operation of resources 

Key: 

At the bottom level (consumer focus) the literature addresses the impact of

DSM on end-users from one or more economic sectors (domestic, commercial, in-

dustrial and electric transportation). The focus is primarily on how consumers re-

spond to different DR programs, or on how they should respond. These studies do

not explicitly model the system outside of the consumer environment (or do it in a

stylised manner) and wider system information such as prices is taken as an external

parameter.

The next category of research (aggregator control focus) is primarily con-

cerned with developing coordination strategies for distributed energy resources

(DERs) in the grid. These maybe individual technologies (e.g. a fleet of plug-

in electric vehicles (PEVs), distributed renewable resources (microCHP, solar and

small scale wind generators), or consumers which possess one of the earlier men-



2.2. Model-based assessment of DSM 37

tioned technologies. These studies typically consider a single aggregator coordinat-

ing multiple DERs but can also extend to hierarchal coordination, whereby schedul-

ing happens at multiple levels of aggregation (e.g. consumers scheduling devices

and the aggregator scheduling consumers). This can be done directly (through phys-

ically controlling end-users resources like in the case of DLC) or indirectly through

signalling specific system information such as prices. If a study considers an ag-

gregator which is passive (i.e. one which does not make any explicit decisions but

acts as a medium for passing information), then it is classified under the ‘consumer

focus’ category since the control is not implemented by the aggregator.

Literature categorised under system focus evaluates the impact of DSM in the

context of a closed system, meaning that electricity generation (or price formation)

and demand are explicitly considered within the modelling framework. Hence, a

closed system can represent a small disconnected microgrid, a distribution network,

a stylised grid and a whole system representing a country or a region. Typically,

‘system focus’ assumes centralised coordination of consumer resources initiated

by the system operator, which can be done directly (when consumer resources are

physically controlled by the SO), or indirectly (when a control signal is sent to

consumers straight from the system or via aggregators). In the case when a study

tests a control strategy within a closed system, it is first discussed from the point

of the coordination approach in the ‘aggregator control’ category, following which

the results of its deployment at the system level are covered in the ‘system focus’

category. When classifying literature judgement is made based on the level of atten-

tion given to developing the control strategy versus representing an existing system.

To elaborate, if a study offers an innovative coordination strategy but the context

of its deployment is theoretical it is classified as ‘aggregator control focus’. On the

contrary, if a study pays a lot of attention to modelling an existing system then it is

categorised under ‘system focus’.

Considering the plethora of academic research carried out in the domain of

DSM, the overview of the relevant work is guided by three reviews which perform

very succinct classification of the global research on DSM (Yang et al., 2014; Boß-
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mann and Eser, 2016; Howell et al., 2017). Whereas (Boßmann and Eser, 2016)

provide a broad overview of modelled-based assessment in relation to different DR

programs, (Yang et al., 2014) focus specifically on the mathematical methods used

for optimally scheduling electrical vehicles (applicable to any flexible loads), and

(Howell et al., 2017) offer a more recent overview of existing work on DSM and

discuss new directions of research in the context of the Smart Grid.

2.2.1 Consumer focus

Literature which considers the impact of DSM on consumers, constitutes some of

the earliest research and date back to 1980s (Caves et al., 1984; Schweppe et al.,

1980). It is observed that earlier work considers consumers as passive entities,

whereas later studies model consumers that are proactive with a common objective

to cost minimise. This observation is in-line with increasing proliferation of flexi-

ble technologies (such as plug-in electric vehicles (PEVs) and heat pumps (HPs)),

as well as smart software considered by the authors throughout the research pe-

riod. These studies can be split into two main groups: those which assess consumer

demand response empirically from DSM pilots and those that model consumer be-

haviour explicitly.

2.2.1.1 Empirical assessment of consumer DSM potential

Empirical assessment of consumer DSM potential includes calculating end-user

price elasticities (demand reduction) and cross-elasticities (substitution of peak

power with off-peak power) empirically by means of econometric analysis of con-

sumption data obtained from pilot DSM programs.

A significant number of such pilots are performed in the US with the majority

focusing on TOU tariffs (Mountain and Lawson, 1995; Baladi et al., 1998; Schwarz

et al., 2002; Zarnikau et al., 2007; Woo et al., 2013) and less on RTP (Taylor et al.,

2005; Allcott, 2011) and other programs (Faruqui and Sergici, 2011; Wolak et al.,

2011; Woo et al., 2013). For example, in (Faruqui and Sergici, 2011) the authors

investigate residential consumer response to critical peak pricing (CPP) and peak

time rebate (PTR) tariffs under the Smart Energy Pricing (SEP) pilot carried out in
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Baltimore and later in Michigan (Faruqui et al., 2014). By using constant elasticity

of substitution (CES) approach they are able to estimate consumer price elastici-

ties and conclude that demand can be influenced through dynamic tariffs. From

the second study the authors conclude that small commercial and industrial sectors

are less price responsive than domestic end-users, which is surprising considering

the economies of scale of non-domestic consumers. Larger studies of this type are

described in (Filippini, 1995) and (Filippini, 2011), where the author analyses con-

sumer response to TOU tariffs first across 21 Swiss cities during 1987-1990 and

then across 22 Swiss cities during 2000-2006. By deploying a number of econo-

metric approaches, the authors demonstrate that peak and off-peak electricity are

substitutes, meaning that it is possible to encourage end-users to shift demand from

periods of high electricity prices to periods of low electricity prices. The main short-

coming of studies in this group, is that the findings are sample-specific, making it

difficult to extrapolate results to larger populations as have been noted by some re-

searchers (Allcott, 2011; Cosmo et al., 2014; Thorsnes et al., 2012). Consequently,

the research is limited to past data and to specific regions meaning that the future

impact of DSM is left unexplored.

2.2.1.2 Modelling consumer behaviour under a DR program

Some authors opt for simulating consumer behaviour under a DR program using

economic models. For example, (Aalami et al., 2010) utilise customer benefit func-

tion approach in order to assess the impact of interruption and curtailment (I/C)

and capacity market programs in the context of the Iranian Grid. In (Venkatesan

et al., 2012) researchers evaluate the benefit of RTP pricing in terms of reducing

grid losses during peak hours by deploying the concept of price elasticity matrices,

whilst (Matsukawa, 2001) investigates TOU tariffs as a tool to reduce consumer

load in Japan through formulating an electricity expenditure function. However,

such models tend to utilise historical data for system and consumer parameters in-

cluding end-user price elasticities and so the issue of sample- and region-specific

results is not resolved.

The final group of studies in the ‘consumer focus’ category, model consumer
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response to market signals using a bottom-up approach, which allows them to cap-

ture the technical characteristics of end-user technologies explicitly. These typi-

cally focus on scheduling flexible devices such as fridges (Zehir and Bagriyanik,

2012; Hovgaard et al., 2012), batteries (Schweppe et al., 1989), air conditioning

(Ashok and Banerjee, 2003), or a whole smart home (Di Giorgio and Pimpinella,

2012; Houwing and Bouwmans, 2006; Houwing et al., 2007; Han and Lim, 2010;

Mohsenian-Rad and Leon-Garcia, 2010) for the purpose of minimising consumer

cost of electricity based on the real time prices (RTP). Optimisation is a popular ap-

proach for achieving this objective, especially formulated as a linear problem (LP)

(Samadi et al., 2010; Roos and Lane, 1998; Conejo et al., 2010) or a mixed inte-

ger linear problem (MILP) (Ashok, 2006; Middelberg et al., 2009; Mohsenian-Rad

and Leon-Garcia, 2010; Mitra et al., 2012; Di Giorgio and Pimpinella, 2012; Hov-

gaard et al., 2012; Di Giorgio and Liberati, 2014; Mohsenian-Rad and Leon-Garcia,

2010). Less frequent is a non-linear formulation of the optimisation problem (NLP).

Examples includes (Ashok and Banerjee, 2003), where the authors consider opti-

mal operation of a commercial office with air conditioning and (Setlhaolo et al.,

2014) who examine the benefits of scheduling domestic appliances under a TOU

tariff. Other approaches for scheduling a smart home include evolutionary algo-

rithms such as particle swarm optimisation (Gudi et al., 2012; Yimin Zhou et al.,

2014) and genetic algorithms (Khomami and Javidi, 2013; Hsu et al., 2011).

A number of studies utilise agent-based simulation approach combined with

optimisation, which allows the authors to decompose consumer actions into their

fundamental components and interactions. For example, (Zheng et al., 2014) pro-

pose a stochastic agent-based model in order to simulate the electricity demand of

an average household and conclude that consumer annual bill reductions from ef-

ficient deployment of storage can reach up to 48% (taking into account the capital

cost of storage). ABM is a popular approach for modelling consumers with gener-

ation and demand resources as a virtual power plant (VPP) (van Dam et al., 2008;

Houwing and Bouwmans, 2006; Houwing et al., 2007). For example, in (van Dam

et al., 2008) the authors consider a least-cost optimisation scheduling for consumers
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with micro-CHP and demonstrate that effective coordination of domestic resources

can lead to a 2 to 28% reductions in end-user bills.

Comments on the research gaps in the ‘consumer focus’ category. The main

limitation of the models in the ‘consumer focus’ category is that they ignore the

potential impact of a large number of end-users adopting a similar DSM strategy.

The main reason is that the consumer system is considered in isolation, meaning

that their actions are not evaluated in terms of how they affect the market. As

a consequence, the benefits of DSM are typically evaluated from the view point

of a single cost minimising consumer, who benefits from shifting demand from

periods of expensive electricity to periods of cheap electricity. In reality, wholesale

electricity prices depend on the demand for power aggregated across all consumers

in the market. Hence, if a large enough number of end-users shift demand based

on the same price signal this could lead to the creation of new demand peaks. This

effect is known as herding or avalanche and constitutes one of the main risks of

autonomous response of consumers to centrally-determined market signals such as

real time prices.

Some studies already provide evidence that there might be issues with con-

sumers scheduling demand based on the same price signal. For example, in (Er-

icson, 2009) the authors investigate the impact of a DLC program tested on 475-

household system during a 180-day trial in Norway. The study found that although

demand is notably reduced during disconnection (on average 0.5 kWh/h decrease

per household), an hour following the event demand goes up indicating a potential

for consumers to herd. Another example is (Gottwalt et al., 2011), where the au-

thors report that scheduling domestic appliances based on time variable prices can

produce an avalanche effect and the creation of new demand peaks.

One way to solve the issue of consumer herding is through an aggregator-

controlled DSM. The next section discusses different approaches adopted by re-

searchers which achieve this objective.
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2.2.2 Aggregator control focus

Research in the ‘aggregator control focus’ category primarily investigates differ-

ent methodologies for effectively scheduling distributed energy resources (DERs).

A typical set-up of the system in these studies includes a single aggregator coor-

dinating a pool of DERs (such as electric vehicles (EVs), heat pumps, or smart

consumers), however it can extend to hierarchal control at multiple network lev-

els. System components such as the market or a System Operator tend to be more

stylised in their representation, since the focus is on devising new control method-

ologies rather than recreating an existing electricity system. The literature in this

category can be split depending on whether the demand scheduling approach con-

sidered is centralised or a decentralised.

Centralised versus decentralised coordination. In a conventional sense,

incentive-based programs (such as DLC and I/C) represent centralised coordination,

since the aggregator has physical control of consumer resources and price-based

programs (RTP,TOU) constitute indirect control. However in the context of the

literature review, the type of coordination is defined depending on how it is math-

ematically formulated. To elaborate, a study may not explicitly mention that the

consumers operate under an incentive-based program but the problem will be for-

mulated as a global optimisation problem for the aggregator (assuming that it has

access to all of consumer information). This would constitute centralised schedul-

ing since in the context of the model consumers have no choice but to respond

to aggregator signalling. Some coordination approaches do not consider an ag-

gregator at all and consumers schedule their resources completely autonomously

based on the information received from its peers of local information (e.g. system

frequency). As a result the following definitions are adopted:

Centralised coordination - on scheduling the aggregator (which could repre-

sent a utility a demand response service provider or a System Operator) has total

knowledge and control of consumer resources. This may be explicitly formulated

as an incentive-based program or implicitly assumed through mathematical formu-

lation of the problem, e.g. global optimisation.
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Decentralised coordination - consumers schedule own demand autonomously

depending on the signal (e.g. prices or system frequency) communicated by the

aggregator, the market, its peers (or neighbours), or received locally (e.g. system

frequency).

2.2.2.1 Centralised coordination

Centralised coordination is the historically common approach for optimally

scheduling DERs. Studies deploying centralised coordination typically look at

scheduling a fleet of flexible demand resources such as PEVs (Sundstrom and

Binding, 2010; Sortomme et al., 2011), heat pumps (Wang et al., 2012), thermo-

statically controlled loads (Callaway, 2009; Lu and Zhang, 2013; Kundu et al.,

2011), or a pool of smart consumers (Zugno et al., 2013; Feuerriegel and Neumann,

2014) for the purpose of offering balancing services to the grid in order to reduce

system cost of for the purpose of minimising the cost of purchased electricity by

the aggregator (often representing a utility) from the wholesale market .

A large number of studies deploying centralised coordination consider mathe-

matical optimisation for this purpose. For example, non-linear programming (NLP)

has been used to study the impact of DR programs on the distribution grid (Acha

et al., 2010; Clement-Nyns et al., 2010; Faria and Vale, 2011) or to improve load

following (Mets et al., 2012, 2010). Another example includes (Doostizadeh and

Ghasemi, 2012) where the authors come up with a novel RTP policy and demon-

strate that it can result in lower system losses, reduced system demand peak and

higher load factor (calculated as a ratio between average to peak demand). Lin-

ear programming (LP) is deployed by (Feuerriegel and Neumann, 2014) in order

to measure financial benefit of DR programs to the retailer and in (Sundstrom and

Binding, 2010, 2012) to analyse the potential of avoiding grid congestion and volt-

age problems by means of scheduling a fleet of electric vehicles.

Optimisation is a classic approach for scheduling DERs in a microgrid (Las-

seter, 2002) for the purpose of optimising local resources and minimising the cost of

operation (Geidl and Andersson, 2007; Lee and Kim, 2013; Kuznetsova et al., 2014;

Rivarolo et al., 2013; Quiggin et al., 2012; Stluka et al., 2011; Morais et al., 2010;
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Chen et al., 2014). For example, in (Rivarolo et al., 2013) the authors use optimi-

sation in order to make better use of multiple energy sources in a microgrid at the

University of Genoa. The paper demonstrates the importance of an appropriate stor-

age system when it comes to maximising the utilisation of renewable energy. Others

assess microgrid scheduling in terms of the technical characteristics. (Kuznetsova

et al., 2014) use agent-based modelling in combination with robust optimisation in

order to demonstrate the benefit of scheduling resources for the purpose of improv-

ing microgrid reliability and lowering the cost of its operation.

Limitations of centralised control. Centralised control is the best approach for

offering optimal or near optimal solution and constitutes a very good choice in

some cases, e.g. a small microgrid. However, its main limitations is that it re-

quires consumers to give up control and information of their resources, which may

not be appreciated by some end-users, especially in the residential sector (Medina

et al., 2010; Rahimi and Ipakchi, 2010). Another shortcoming is scalability, since

centralised coordination requires communication of a large number of technical pa-

rameters from various DERs to the aggregator. Hence, as the number of flexible

consumer resources increases it becomes more computationally challenging for the

aggregator to arrive with the solution (Sonnenschein et al., 2014).

2.2.2.2 Decentralised coordination

Decentralised coordination typically assumes indirect control of smart load agents

using a signal like real time pricing or system frequency. However, communicating

the same signal to a sufficiently large population of agents may lead to consumers

‘herding’ as they adopt similar optimisation strategies. Hence, the challenge of

decentralised control lies in steering self-interested agents towards global optimum

without explicit control by a central entity.

A number of papers deploys iterative coordination, whereby an aggregator ne-

gotiates the demand profiles with a pool of consumers (or flexible demand units)

over a number of iterations until the system converges. Convergence is achieved

by either consumers or the aggregator adjusting (or learning) the strategy over the

course of the negotiations. For example, in (Vytelingum et al., 2010; Voice et al.,
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2011) the authors propose an algorithm in which consumers schedule demand based

on the real time price in order to cost minimise. In order to avoid large swings in

system demand, end-user response is supressed through a damping term which pe-

nalises them for shifting demand too much from the previous schedule. As a result

of this algorithm, consumers slowly adapt to the market and reach the point of

Nash equilibrium. In the context of the UK electricity market, the authors demon-

strate that the algorithm leads to a 17% reduction in the system peak and up to 6%

decrease in carbon emissions. In (Ramchurn et al., 2011) the same algorithm is

extended to include information of renewable generation in the system by means of

introducing carbon-based retail tariffs. In (Gan et al., 2013) the authors apply iter-

ative coordination for scheduling PEVs, but in contrast to (Ramchurn et al., 2011;

Voice et al., 2011) where each iteration represents a day, all negotiations between

EVs and the aggregator take place during the day-ahead scheduling. Using a simi-

lar approach, in (Li et al., 2011a; Guo et al., 2013) the researchers demonstrate that

theoretically dynamic pricing can be structured in a way as to ensure optimal result

for both the consumers and the utility. In contrast to the above studies, (Yousefi

et al., 2011) presents an approach whereby the aggregator learns the price signal to

send to consumers who then cost minimise.

Randomised control is an alternative approach for coordinating flexible loads

in a decentralised manner. Randomisation can be achieved in two ways: consumers

reacting differently to the same signal or reacting in the same way to different sig-

nals. The former case includes stochastic load response and is typically deployed for

the purposes of frequency control with a fleet of flexible resources such as electric

vehicles (Callaway and Hiskens, 2011; Meyn et al., 2015; Zhou and Cai, 2014) or

thermostatically controlled loads (Tindemans et al., 2015; Hao et al., 2014). How-

ever, this approach is tailored to managing a fleet of similar type of flexible re-

sources which can stochastically switch on and off or react very quickly, and so

becomes inapplicable to more complex demand scheduling. In the second case of

randomised control the aggregator calculates different signals for each consumer

which allows its application to coordinating a pool of smart consumers (Boait et al.,
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2007; Snape et al., 2013; Mohsenian-Rad and Leon-Garcia, 2010) or more generic

flexible loads (Papadaskalopoulos and Strbac, 2015). In (Ghasemi et al., 2016), the

authors use a two-point estimate method in order to model uncertainties associated

with renewable generation from wind and calculate optimal prices for cost minimis-

ing flexible end-users. However, the necessity of having a central entity which is

able to calculate different signals introduces the issue of scalability as the number

of consumers increases.

Market-based coordination allows consumption and generation agents to ne-

gotiate settlement in a decentralised manner through interactive bidding into the

market, which is overseen by a third party (an auctioneer) that determines equi-

librium prices and ensures network balance. For example, (Motto et al., 2002)

propose a decentralised electricity market whereby supply and consumer agents re-

spond to real-time prices and optimise their surpluses. (Ghijsen and D’hulst, 2011)

apply market-based approach to evaluate its effectiveness in the case of EV charging

and specifically look at the effect on peak voltage. The main limitation of having

consumers bid into the market is that it introduces uneven opportunities, since the

scheduling is based on the order in which end-users react. Therefore, those which

bid quicker get the cheapest power, which solves the problem of resource allocation

but not necessarily in the fairest manner with regards to consumers. It is possi-

ble to imagine that end-users with better technology would be able to make faster

and more accurate decisions. Yet, the access to technology is closely linked to the

wealth of a particular end-user, which implies that those with more financial free-

dom would be able to obtain cheaper electricity.

Extensive work on market-based coordination has been carried out at the En-

ergy research Centre of the Netherlands (ECN), where the researchers have de-

veloped a hierarchal framework for market-based coordination in the context of a

multi-agent system (MAS) (Kok et al., 2005, 2010). A multi-agent system (MAS)

is a software system implemented as a collection of interacting autonomous agents

(Newell, 1982). In the context of MAS, an agent corresponds to any self-contained

software program that is representative of something (e.g. washing machine, EV)
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or someone (e.g. prosumer, smart home) (Kok et al., 2010). These software agents

are equipped with some specific rules on how to react to system signals and the

response (bidding into the virtual market) happens automatically without human in-

tervention (but taking into account human preferences of usage). The framework

has been tested in a number of scenarios and the technology is now commercially

available1. MAS is also a popular approach for scheduling microgrids in a decen-

tralised manner (Wernstedt et al., 2007; Lagorse et al., 2010; Booij et al., 2013;

Gonzalez De Durana et al., 2014). For example, (Wernstedt et al., 2007) use it to

dynamically schedule District Heating Systems and demonstrate the positive effect

it can have on shaving demand peaks without affecting the quality of service for

consumers.

Other approaches for decentralised coordination include game theory. An

interesting finding is made in (Zugno et al., 2013), where the authors model

aggregator-consumer interaction using as a Stackelberg game (where players rep-

resent leaders and followers (Von Stackelberg, 2011)). The study finds that under

the dynamic pricing scheme, the financial benefits are not distributed fairly between

the retailer and consumer indicating a conflict of interest between the two types

of stakeholders. This is an important finding and one which is not mentioned by

many researchers, considering its importance with regards to fair allocation of ben-

efits from DSM. Stackelberg game approach is also used in (Dai et al., 2017; Han

et al., 2017), where the authors examine DSM in the context of a competing retail

energy market. In both studies researchers find that a well-designed RTP tariff struc-

ture can benefit energy retailers as well as consumers. Game theoretic approach is

used in (Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Juri Jatskevich, Robert

Schober, 2010), where the authors come up with a smart billing strategy which

ensures that the system converges when consumers optimise on the price indepen-

dently. However, the authors assume that each consumer has demand information

of the rest of the market, which might be difficult to implement in the real world.

Moreover, the algorithm is tested with ten consumers over twenty-two iterations,

1See http://flexible-energy.eu/powermatcher/ for more information.

http://flexible-energy.eu/powermatcher/
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which questions its scalability to a system of millions of end-users.

Some researchers opt for heuristic methods of scheduling flexible resources.

Water-filling, whereby the surplus demand is shared across consumers in a similar

way to the water filling a vessel, is one such example. In (Mou et al., 2015) the

authors apply this approach in order to flatten aggregated demand from a fleet of

PEVs. As PEVs schedule autonomously, their aggregate demand is shared in the

network which leads to a valley-filling effect. Other examples include (Vandael

et al., 2011), where the grid imbalance is allocated to electric vehicles depending

on the time they leave and their earlier submitted intentions to charge. In (Changsun

Ahn et al., 2011) the authors discover that charging power is dependent on the state

of charge of the PEV battery and the availability of renewable energy. As a result of

these findings, the aggregator is required to signal consumers only once avoiding

the need for bi-directional flow of information. A similar method is offered in

(Zhang et al., 2014), where the researchers analytically deduce optimal dynamic

prices which lead to a valley-filling effect when PEVs cost minimise.

Finally, a group of studies develop decentralised coordination strategies which

do not require an aggregator at all. For example, in (Rahbari-Asr and Chow, 2014)

the authors propose a cooperative distributed algorithm for scheduling electric ve-

hicle charging. More recently research in decentralised DSM without the need for

an aggregator has been focusing on blockchain-enabled peer-to-peer trading be-

tween consumers (Li et al., 2017; Wu et al., 2017) and machine learning-inspired

algorithms enabling consumers to adjust to the market autonomously (Lopez et al.,

2018). However, these studies have been tested in a limited setting either for just

one type of technology (e.g. PEVs) or for a small pool of consumers. For one, an

autonomous system without a central coordinator would require a secure and reli-

able communication infrastructure between consumers. Hence, the extent to which

these methods can be applied in a realistic setting has not been fully evaluated.

2.2.2.3 Holonic coordination approach

More recently, researchers consider DSM in the context of a holonic energy system

(Ounnar et al., 2013; Vlad et al., 2014; Lubomir et al., 2014; Pahwa et al., 2015). A
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‘holon’ represents something that is a whole and a part, meaning that a holonic en-

ergy system is a system of systems. This representation means that coordination is

neither centralised not distributed (Figure 2.4). For example, in (Pahwa et al., 2015)

the authors combine a holonic representation of the energy system with MAS ap-

proach in order to provide a design for distribution system operation. They are able

to demonstrate that this approach offers an effective design to control reactive power

in a distribution grid with high PV penetration. Whilst holonic paradigm offers a

promising approach to link together the different methodologies explored at various

levels of hierarchy in the energy system, the research is still at the conceptual level.

Figure 2.4: Comparison of centralised, distributed and holonic system representation.
Source: (Howell et al., 2017).

Comments on the research gaps in the ‘aggregator control focus’ category.

Literature in the ‘aggregator control focus’ category covers very innovative and

useful methods for coordinating consumer demand, especially when carried out in a

decentralised manner. However, much to do with the focus of research placed in this

category, its main limitation is that the testing tends to be carried out in an isolated

setting. Moreover, consumers are often modelled as homogenous which enables

the authors to formulate the coordination problem more elegantly. For the same

reason electricity generation and pricing are taken as exogenous parameters. As a

result, the impact of DSM is not evaluated in the context of the whole system. For

example, typical outcome reported by researchers includes financial benefits to the

aggregator or its consumers. In reality, aggregators (especially those representing

utilities) compete in the wholesale electricity market. Thus, it is possible to imagine
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that they will use DSM as a tool to purchase cheap electricity for themselves which

can lead to aggregator herding. In fact in (Prüggler et al., 2011), the authors find that

strategic manipulation of demand by vertically integrated utilities can result in the

long term price increases and higher electricity bills for customers. This suggests

that in the future stricter regulation of utility activities might be required to avoid

such problems.

Following the research gaps identified in this category, in the next section the

focus is given to those studies which evaluate the impact of DSM in the context of

a closed system.

2.2.3 System focus

As the name suggests, ‘system focus‘ category incorporates all studies which evalu-

ate the impact of DSM at the system level. A distinguishing feature of these studies

is that they consider a closed or self-sufficient system, meaning that electricity gen-

eration (or costs) are explicitly modelled.

2.2.3.1 DSM and generation

A popular focus of research in this category is assessing the impact of DSM on the

generation dispatch (Chen et al., 1995; Kirschen et al., 2000; Zhong et al., 2015;

Zakariazadeh et al., 2014; Malik, 2001), especially in the context of unpredictable

renewable generation (Sioshansi, 2010; Broeer et al., 2014). A common approach

adopted by researcher is to consider load scheduling as part of the unit commit-

ment model formulated as an optimisation problem. For example, in (Sioshansi,

2010) the authors demonstrate how including DSM in the day-ahead generation

scheduling can reduce redispatch costs and improve reliability of a grid with uncer-

tain generation from wind. Other reported benefits of DSM include avoided voltage

violations (Papaioannou et al., 2013) and reduced cycling costs of power plants

(Malik, 2001). The main limitation of these studies is that scheduling is formulated

as an optimisation problem which corresponds to central coordination. This means

that the demand side interactions are not captured. In addition to this, the demand

side is often modelled as a single load curve, thus limiting the extent to which these
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studies constitute whole system assessment of DSM.

Another popular direction of research in this group of studies is examining the

impact of DSM on the energy mix (De Jonghe et al., 2012; Keane et al., 2011; Finn

et al., 2011; Pakka et al., 2013). A common conclusion of this work is that DSM

can lead to improved balancing of intermittent generation energy and consequently

lead to a higher installed renewable capacity. However, in (De Jonghe et al., 2012)

the assessment is done for a single day, whereas (Broeer et al., 2014) focus on one

historical year. (Keane et al., 2011) and (Finn et al., 2011) perform analysis for the

future year of 2020 but system assessment is done using linear optimisation and

once again stakeholder dynamics are not captured.

2.2.3.2 Benefits of flexible technologies

Another focus of research in this group is on assessing the benefits of specific tech-

nologies such as dishwashers (Finn et al., 2013), EVs (Bach et al., 2010; Babrowski

et al., 2014; Lund and Kempton, 2008; Finn et al., 2012), heat pumps (Wang et al.,

2012), or a combination of these (Papadaskalopoulos et al., 2013; Fehrenbach et al.,

2014) on balancing the grid. For example, in (Papadaskalopoulos et al., 2013) ex-

amine the capacity in which electric vehicles and heat pumps can help balance the

grid in the UK and find that DSM can lead to significant reductions in electricity

generation costs. However, by considering only a few technologies these studies

do not capture the full scope of system flexibility and hence fail to evaluate DSM

potential fully. Moreover, these studies tend to represent consumer demand in an

aggregate manner (Fehrenbach et al., 2014), therefore losing critical end-user inter-

actions.

2.2.3.3 Real world implementation of DSM coordination strategies

A few papers report on the results of pilots which test a specific coordination mech-

anism in an existing electricity system. For example, (Morais et al., 2010) deploy an

MILP scheduling strategy in managing a real world microgrid located at Budapest

Tech. The authors conclude that effective scheduling of storage can maximise the

utilisation of renewable energy (wind and solar) which optimises the use of other

fuels in the microgrid. Another example includes (Roossien et al., 2008), where re-
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searchers demonstrate the effectiveness of the PowerMatcher concept in managing

a cluster of households with microCHP in the Netherlands. They conclude that the

algorithm can lead to a 30-50% reduction in peak load without affecting consumer

comfort. However, both of the above examples constitute very small systems and

so wider implications of these approaches are not evaluated.

2.2.3.4 DSM and market

A number of studies assess DSM in terms of its effect on electricity market charac-

teristics. For example, (Joung and Kim, 2013) examine the impact of load flexibil-

ity on strategic price formulation of generators, whereas (Su and Kirschen, 2009)

propose new market clearing mechanism and (Tanaka, 2006; Nikzad et al., 2012)

develop new pricing policies. However, they do not demonstrate the implication

of these findings on a system-wide level and therefore do not constitute a holistic

assessment of DSM. In (Dou and Liu, 2014) the authors deploy a market-based co-

ordination algorithm in order to demonstrate how DSM can improve the reliability

of the grid as well as lead to lower system costs and emission levels. (Moghaddam

et al., 2011) use the concepts of consumer benefit function and consumer price elas-

ticities for the purpose of evaluating how different demand response schemes (i.e.

TOU, CPP, RTP, I/C, DLC) affect the market from the perspective of consumers,

utilities and the system operator. Yet, the authors perform the analysis using histor-

ical load profile and prices from the Iranian electricity grid on an annual peak day.

The main shortcoming of the models placed in the ‘system focus’ group is that they

consider a stylised representation of the electricity system, either by aggregating

the demand or the supply sides. They also tend to consider a very short period of

simulation (e.g. a day). As a result, these studies hide stakeholder interactions and

tend to evaluate the impact of DSM in a theoretical manner.

2.2.3.5 Whole system assessment of DSM

A group of studies have been identified to carry out the most holistic assessment of

DSM. For example in (Fehrenbach et al., 2014), the authors use TIMES modelling

framework in order to assess the economic potential of load management performed

by VPPs (representing residential consumers with micro-cogeneration plants, heat
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pumps and thermal storage) until 2050. They conclude that effective load manage-

ment can contribute to a more sustainable energy mix (e.g. oil-fired generators are

phased out) as well as significant reduction in CO2 emissions. Similar studies are

performed for Portugal (Moura and de Almeida, 2010) and Portuguese Island of

Azores (Pina et al., 2012), UK (Strbac et al., 2012), Germany (Klobasa, 2010) and

the European Union (Papagiannis et al., 2008). However, all of the above studies

use system-wide optimisation based on objectives such as least cost or minimum

emissions and so stakeholder interactions are not explored.

Agent-based modelling (ABM) offers an alternative approach. For example,

in (Valenzuela et al., 2012) researchers use ABM to assess the impact of DSM

on market prices, peak demand, consumer energy costs, and producer revenues in

South Korea. However, the study utilises historical end-user price elasticities in

addition to the assessment being done for one year. (Ramchurn et al., 2011) and

(Vytelingum et al., 2010) use ABM to model the impact of DSM in the UK, but they

only consider residential consumers. Another UK study is performed in (Roscoe

and Ault, 2010), where the researchers deploy a combination of analytical methods

including a probabilistic approach for modelling flexible demand and modelling the

price curve as an exponential function. However, the assessment is performed for a

6-week period, considering only residential DR as well as using historical electricity

prices.

Comments on the research gaps in the ‘system focus’ category. The literature

in the ‘system focus‘ category constitutes very insightful and interesting research.

However, it is found that studies which focus on the methodological component

of DSM implementation fail to assess it in the context of the wider system scope,

whereas research focusing on the representation of an existing system does not ad-

dress the heterogeneity of different stakeholders and their interactions.

This is either because assessment is performed on a test system (Falsafi et al.,

2014; Wang et al., 2013), a small part of the network (Logenthiran et al., 2011;

Valenzuela et al., 2012; Zakariazadeh et al., 2014; Boait and Snape, 2014), at a very

coarse temporal resolution (Papagiannis et al., 2008), or statically without captur-
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ing the dynamics of stakeholder interactions (Shaw et al., 2009). A limited number

of studies assess the future impact of DSM considering a variety of different con-

sumers. However, few go beyond 2020 (Klobasa, 2010; Moura and de Almeida,

2010; Pina et al., 2012; Finn et al., 2012) and even fewer beyond 2030 (Strbac et al.,

2012; Fehrenbach et al., 2014). In addition to this, long term analysis tends to be

performed using system-wide optimisation which does not capture dynamic stake-

holder interactions. An alternative to this are ABM models, but these only consider

the residential sector and do not assess DSM impact in the future (Ramchurn et al.,

2011; Vytelingum et al., 2010).

2.2.4 A note on dealing with uncertainty

One important issue with modelling energy systems is uncertainty in predicting

supply from renewable resources (especially wind) and demand (which is becoming

more unpredictable). There are two main approaches adopted by research to address

this: stochastic programming and modelling close to real time.

In contrast to deterministic mathematical programming, stochastic program-

ming involves formulating an optimisation problem in terms of expected values and

probabilistic constraints (Boyd and Vandenberghe, 2010). Stochastic programming

is often applied when the authors consider renewable generation (Fleten et al., 2002;

Falsafi et al., 2014; Keane et al., 2011) or to accommodate unpredictable demand

(Zheng et al., 2014; Deilami et al., 2011). For example, in (Keane et al., 2011)

the approach is used to model unit commitment with RES and load forecasts un-

certainty, whereas in (Zheng et al., 2014) the authors develop a stochastic demand

model for a smart home management system.

In order to reduce uncertainty some researchers adopt real time (or near real

time) optimisation in order to minimise the time between performing scheduling

and the event taking place. For example, in the case of wind generation the supply

can be predicted fairly accurately up to 4 hours ahead (Milligan et al., 2009). Hence,

scheduling loads with wind predictions of 2 hours ahead will be a lot more accurate

than scheduling 24 hours ahead. Real-time scheduling is also intuitively appeal-

ing in the context of individual device management and hence a popular approach



2.3. Conclusions of literature review 55

for scheduling randomly connecting electric vehicles. For example, (Deilami et al.,

2011) develop real-time smart load management control strategy for coordination

of PEV charging based on real-time (5 mins) minimisation of total cost of energy

generation by incorporating time varying market energy prices and PEV owner pre-

ferred charging time zones based on priority selection. Other examples of on-line

load scheduling include (Li et al., 2011b; Ma et al., 2015; Turitsyn et al., 2010).

In this work the second approach for dealing with uncertainty is chosen. As

described in Chapter 3, the market reschedules generators in real time following the

system operator obtaining the final information on system demand. In contrast to

stochastic programming, this approach is much quicker in its implementation since

it does not require a probabilistic formulation of the problem. This allows the pro-

gram to run faster (critical for long-term system modelling), whilst still preserving

the objective of the work - to evaluate the financial impact of demand side manage-

ment on the system in terms of the cost of generating electricity.

2.3 Conclusions of literature review
Following the literature review, the following research gaps are identified in the

domain of model-based assessment of DSM:

1. Studies which focus on demand scheduling mechanisms tend to test them

in an isolated or stylised setting, e.g. only considering a pool of consumers

being coordinated by a single aggregator. As a consequence the results are

taken outside of the wider system context.

2. Models which consider realistic simulation settings assume perfect consumer

behaviour formulated as a large optimisation problem. As a result different

stakeholder interactions are not considered and issues like consumer herding

or aggregator competition in the context of DSM are not explored.

3. A limited number of works focus on the future impacts of DSM. Those that

do often consider a limited number of flexible technologies or deploy system-

wide optimisation which ignores demand-side interactions.
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4. The majority of studies focus on the residential sector leaving the impact of

DSM on non-domestic consumers unexplored. Moreover, there is a lack of

literature which compares the impact of DSM on different consumers types,

i.e. with different resource accessibility.

In terms of the most relevant research in the domain of DSM assessment in the

context of the UK, a number of studies have been identified which are summarised

in Figure 2.5. Important contributions have been made by a team of researchers at

the De Montfort University, who consider a number of topics concerning the tran-

sition of the national electricity system towards a ‘Smart Grid’, such as integration

of distributed generation, electrification of transport and active consumer behaviour

(Snape et al., 2015; Boait and Snape, 2014; Pakka et al., 2013). However, the stud-

ies have so far focused on the residential sector only and have not explored issues

like consumer herding or aggregator competition. Researchers at the Southampton

University have provided valuable input in terms of coming up with decentralised

coordination approaches which help to overcome consumer herding (Voice et al.,

2011; Ramchurn et al., 2011). However, the authors only consider the residential

sector and test scenarios in a stylised setting using past data. A study prepared by a

team of researchers from Imperial College in collaboration with NERA Consulting

(Strbac et al., 2012), constitutes one of the most holistic assessment of DSM in the

context of the UK. However the authors perform system-wide optimisation and so

stakeholder interactions are ignored. Although the study provides some very valu-

able and interesting finding, some of the risks of DSM such as herding or aggregator

competition are not considered.

In order to address existing research gaps this work proposes an Energy Sys-

tem Management Agent-based model (or ESMA), which will fulfils the following

criteria (see last row of table in Figure 2.5):

1. Explicitly consider generation and costs from dispatchable and renewable en-

ergy resources;

2. Include heterogeneous consumers representing all economic sectors with dif-

ferent combination of flexible and inflexible resources;
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3. Explore future scenarios as far as 2050 for the British electricity system rang-

ing from the most pessimistic to the most optimistic one;

4. Model interactions between consumers and aggregators and explore the im-

pact on the system when they pursue selfish objectives;

5. Address the issue of electricity cost allocation.

2.3.1 Open source modelling platforms

A number of open source whole system energy models have been identified dur-

ing the literature review. For long-term analysis researchers tend to use model like

TIMES (bottom-up least cost optimization model)(ETSAP, 2018) or EnergyPLAN

(a simulation model which optimises the operation of a given system based on the

input parameters) (Sustainable Energy Planning Research Group at Aalborg Uni-

versity, 2018). However, these types of models do not capture dynamic stakeholder

interactions, for which reason they would be unsuitable in being used in the context

of an energy system where stakeholders are able to make decisions based on dy-

namic system parameters. Agent-based modelling has been identified as a suitable

approach for capturing such dynamic interactions. A number of open source ABMs

have been identified (Argonne National Laboratory., 2018; Grozev et al., 2018; De

Montfort University, 2018; Li and Tesfatsion, 2011). For example CASCADE (de-

veloped at the De Montford University) (De Montfort University, 2018) was created

especially to capture the complexity of the British electricity system. One of the

shortcomings of using a ready-made model is that the behaviour of agents amongst

each other and the system is predetermined by the original model developer. This

can make it difficult to introduce changes at the level of agent interactions. The ob-

jective of this research is to explore the sensitivities of the British electricity system

to different regimes of DSM. In order to fully realise this objective it has been de-

cided to create a new model, incorporating relevant ideas and methods discovered

during the literature review.
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Chapter 3

Methodology: building ESMA

Following the identification of research gaps in Chapter 2, a model for Electricity

System Management using an Agent based approach (or ESMA) is proposed, which

includes heterogeneous consumers (representing domestic, commercial, industrial

and transportation sectors), aggregators (representing entities which can pool con-

sumers and trade power in the wholesale market), the system operator (responsible

for overseeing the balance of electricity in the grid) and the market (representing a

pool of transmission level generators and pumped storage). The main feature of the

model is its capability to simulate different regimes of demand side management

(DSM) ranging from totally decentralised (performed by consumers) to totally cen-

tralised (performed by the system operator).

The following chapter covers the methodology for building ESMA focusing

on justifying model assumptions, selecting model actors and choosing methods to

simulate their interactions. The British electricity system is taken as a case study,

since it represents a good example of a power system undergoing decentralisation.

However, the model is not country specific and can run with other data.
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3.1 Overview of the British electricity system

The schematic of the British electricity system is portrayed in Figure 3.1. It consists

of supply and demand sides linked together by the transmission and distribution net-

work. The supply side contains sources of electricity generation, such as renewables

(e.g. wind and solar) and dispatchable power plants (e.g. coal and gas generators),

storage (such as pumped) and interconnectors to other countries. The demand side

represents consumers from four economic sectors (domestic, commercial, industrial

and transport) in possession of electricity generation technologies and storage. The

transmission and distribution networks, which operate at different voltage levels,

impose physical network constraints on the power flow through the system.

Figure 3.1: Graphical representation of the British electricity grid.
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3.1.1 Electricity wholesale market

In deregulated electricity markets, such as in the case of the UK1, electricity is

largely traded in the wholesale market, which allows large consumers (e.g. indus-

trial or large commercial) or energy utilities (companies which retail power to pools

of smaller consumers) to purchase power from electricity generators.

Wholesale electricity trading can be split into over-the-counter (OTC) and ex-

change markets. OTC trades tend to be for delivery further into the future (months

and even years ahead), whereas exchange trades are typically for short term delivery

(intraday and day-ahead). In the UK (like many European markets), the majority

of power is traded in the OTC market, where parties negotiate volumes and prices

for electricity in private (Elexon, 2017b). Trading is carried out on three main ex-

changes: APX Group2, Nord Pool (or N2EX)3 and the Intercontinental Exchange

(or ICE) 4. In contrast to the OTC market, exchange trades come in standardised vol-

umes and the prices are made openly available. OTC prices are closely aligned with

exchange prices, since any arbitrage opportunity would be quickly exploited by the

market (Rademaekers et al., 2008). Both OTC and exchange markets include deals

which are executed by traders not for physical delivery but for realising an arbitrage

opportunity. In this work only the market for physical delivery is considered.

3.1.2 Balancing the grid

Unlike other commodities electricity in the grid must be balanced in real time,

meaning that whatever is being supplied into the grid must be taken out at the same

time, since power is still expensive to store. System balance is measured by its

frequency, which must stay within 1% of 50Hz (National Grid, 2016). Not enough

generation (or too much demand) will lead to the system frequency drop, and a big

drop in frequency can lead to a black-out. Too much generation (or not enough

demand), will increase system frequency and could result in the damage to the grid.

1Market arrangements are considered in the context of the United Kingdom, whereas the model
is built for the British electricity network only since Northern Ireland has a separate grid. Hence, the
data is taken to represent the British grid and excludes Northern Ireland.

2See https://www.apxgroup.com/
3See https://www.nordpoolgroup.com/
4See https://www.theice.com/index

https://www.apxgroup.com/
https://www.nordpoolgroup.com/
https://www.theice.com/index
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In Britain, the National Grid carries the responsibility for keeping the grid in

balance. The National Grid allows power to be traded in the wholesale market up

to one hour before physical delivery (known as gate closure) when it takes over to

remove any imbalances in the grid. This is done through the Balancing Mecha-

nism. The Balancing Mechanism runs like a market where the system operator can

procure balancing services from the balancing mechanism units (BMUs) — parties

capable of increasing or decreasing generation or consumption in the grid.

Balancing services can be mandatory and non-mandatory and act on different

time scales and for different purpose of maintaining the grid balance 3.2.

Figure 3.2: Categorisation of the balancing services offered by the National Grid. Source:
(National Grid, 2016)

For example, firm frequency response service (FFR) gets activated within

seconds of an event, whilst short term operating reserve (STOR) within minutes.

Mandatory services, like reactive power provision and frequency response, are a

prerequisite for large generators to be connected to the transmission grid (National

Grid, 2016). This means that the generator must automatically react to the system

frequency deviation in order to restore it. System management services, such as

black start and hot standby, are there for the purpose of keeping enough generat-

ing capacity ready. The system operator (SO) passes the cost of balancing the grid

on those parties which lead to system imbalance, whilst rewarding BMUs. Conse-

quently, the wholesale price of electricity includes the cost of balancing the grid.
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3.1.3 Electricity prices

Generally speaking, the closer to the time of physical delivery of power (i.e. the

shorter the notice to generate) the higher are the prices for electricity generation

and balancing services. For this reason, the majority of power (85%) is contracted

for delivery in the over-the-counter market to fulfil the bulk of the known demand

(or baseload) (Ofgem, 2016a). The remaining 15% of demand is traded on exchange

as shown in Figure 3.3. Since OTC deals are agreed in private, it is difficult to ob-

tain historical price information for the majority of electricity generated in the UK.

However, the OTC market is strongly influenced by exchange prices for electricity,

and so it is possible to use exchange prices as a proxy for OTC prices.

Figure 3.3: GB wholesale electricity trading volumes and churn, 2011 to 2016. Source:
ICIS, APX, Nord Pool Spot, ICE, BEIS Energy Trends (Ofgem, 2016b)

‘Churn’ is the number of times one unit of electricity is traded.

Figure E.1 demonstrates the historical relationship between system demand

and the wholesale price for electricity.

It can be seen that as demand increases so does the price. This happens because

cheaper units of electricity (those with lower short run marginal cost of generation)

like renewables and nuclear get sold first leaving more flexible and expensive gen-

eration (like gas and oil) closer to the time of physical delivery. This results in

what is known as the ‘merit order stack‘, whereby generation units are arranged
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Figure 3.4: Historical system prices and demand, Jan-Mar 2015. Source: (APX Group,
2015)

in the ascending order of price for electricity (which often reflects the short run

marginal cost of production). The short run marginal cost of generation depends

on the technical characteristic of the generation technology (its efficiency and vari-

able operational and maintenance cost), the cost of fuel and the cost of greenhouse

gases emitted from generating electricity. The rate at which a power generator can

increase and decrease generation (ramp rate) determines whether it will run contin-

uously or during peak times. For example, nuclear generators are expensive to cycle

and so they tend to run continuously, whereas gas generators can cycle quickly, and

are therefore used to meet peak demand. Hence, there can be situations when it is

cheaper for the generator to run and to offset the extra supply by increasing demand

rather than decreasing generation.

On the whole the process of electricity price formation is complicated as it

involves different long-term and short-term markets, which can be skewed by spec-

ulative trading activity. The physical characteristics of the grid, grid balancing costs,

prices for fuel carbon and external trading activity all affect the price for electric-

ity. With increasing renewable capacity, this process is likely to become even more

complicated. Since electricity generated from renewables comes at almost zero
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short run marginal cost it brings a structural change to the wholesale electricity

market, which traditionally accommodates dispatchable generators.

3.1.4 Consumer electricity prices

Whilst large consumers (large commercial and industrial) can purchase power di-

rectly from the wholesale market, smaller consumers (residential, small commer-

cial) can only obtain electricity from an energy utility in the retail market. Hence,

end-user prices for electricity differ depending on their size (Figure 3.5).

Figure 3.5: Historical annual consumer electricity prices by size, 2004-2015. Source:
(Ofgem, 2016a)

Energy utilities purchase power on behalf of small consumers (like domestic

or small commercial) in the wholesale market, whilst large commercial and indus-

trial consumers can purchase electricity straight from the wholesale market. The

costs incurred by the utility in the long-term, short-term and balancing markets all

contribute to the wholesale price of electricity. The utility then uplifts the wholesale

price to include the cost of using the transmission and distribution lines, as well as

operational costs incurred by the company. Typically, the wholesale price of power

contributes around a third to the retail price of electricity, whilst the network and the

operational costs constitute 28% and 16.5% respectively (Figure 3.6). The remain-

ing part of the retail price consists of environmental costs incurred by the utility

(government programmes to save energy, reduce emissions and encourage take-up
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of renewable energy) and taxes (value added tax is paid on households’ energy bills)

(Ofgem, 2016a).

Figure 3.6: Breakdown of an electricity bill. Source: (Ofgem, 2017b)

3.1.5 Electricity system decentralisation

Traditionally, the British electricity grid operated in a centralised manner, whereby

power generated by large generators was delivered to passive end-users. This set-up

worked well, since electricity generated from burning fossil fuels can be controlled

to match the electricity demanded by the system. However, in-line with the UK

decarbonisation goals more and more renewable energy is being integrated into the

grid (Figure 3.7).

Figure 3.7: UK fuel mix for generating electricity, 2000-2016. Source: (DECC, 2015)
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Although some renewables are dispatchable (biomass and hydro), solar and

wind generators suffer from unpredictability and variability of power generation.

Moreover, a significant proportion of renewable generators (like embedded wind

and solar) are smaller and geographically more dispersed. The demand side is also

witnessing an increasing capacity of renewable generation, especially rooftop solar.

This renders situations where end-users (especially in the residential sector) produce

more than they consume, which necessitates them to export the surplus electricity

back to the grid.

Heating and transportation electrification as well as lowering costs for storage

technologies, are making end-users more flexible in consuming power. In order to

engage end-users in utilising this flexibility, the UK government plans to equip ev-

ery household with a smart meter by 2020 which would communicate the cost of

electricity consumed in real time. This coupled with an increasing proliferation of

commercially available smart home management system offered by companies like

PassivSystems5 and Nest6 are making end-users more informed and more proac-

tive in the way they consume electricity. This offers new business opportunities

to energy utilities and aggregators. Companies like Tempus Energy, Ecotricity and

Good Energy are moving towards a more flexible approach rewarding consumers

who respond to dynamic tariffs therefore consuming more of renewable generation

(Ecotricity, 2018; Good Energy, 2018).

The resulting system renders the perfect case study for investigating the impact

of demand side management on the sustainability of the grid.

5https://www.passivsystems.com/
6Nest2017

https://www.passivsystems.com/
Nest2017
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3.2 Assumptions
In order to build the model, the real system is simplified by making the following

assumptions:

• The electricity network is modelled as a ‘copper plate’ (also known as ‘single-

node model’), meaning that power can flow unconstrained from any gener-

ation site to any demand site - a popular approach in economic modelling

(Medjroubi et al., 2017).

• Modelled consumer agents correspond to pools of real-life consumers of the

same type rather than individual entities. For example, all residential house-

holds with solar PV technology are modelled as one consumer agent. This

assumption is deemed acceptable since consumers of the same type behave in

the same manner.

• Speculative trading of electricity is omitted from the model, since it skews the

real cost of generating electricity.

• Although the settlement in the UK is done on half-hourly basis, the tempo-

ral resolution of the model is set at 1 hour mainly due to the limitations in

the temporal resolution of certain datasets. This assumption also makes the

conversion between power and energy much simpler, whilst preserving the

dynamic behaviour of the model.

• Wholesale electricity market is approximated as a single day-ahead market.

This assumption is done in order to preserve the speed of the model, whilst

still capturing the main mechanism of price formation.

• The balancing mechanism is approximated to a single generator rescheduling

process done on the day which corresponds to real time electricity dispatch.

Similarly to wholesale market assumption, this enables to preserve the speed

of the model.

• Electricity import and exports are assumed to be constant throughout the
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year. This assumption spans from the fact electricity systems outside of Great

Britain lie outside of the scope of this work.

• The cost of generating electricity is calculated based on the short-run costs

including the ramping cost and ignoring the cost of investment. This assump-

tion is justified by the fact that generation and storage capacities are taken as

external input parameters.

• Uncertainty in predicting renewable supply is ignored. This is largely moti-

vated by the fact that already today day-ahead wind forecasting errors amount

to a few percent (depending on the country) and are even lower for solar. In

the future, more data and better forecasting models are likely to reduce this

error even further (Hodge et al., 2012).

• Uncertainty in predicting non-deferrable demand is ignored. This is justified

by the fact that human activity like cooking, eating and working is unlikely to

change significantly in the future. Hence, uncertainty in electricity demand is

assumed to originate from operation of flexible resources like electric vehi-

cles, storage, and electric heating.

• If the consumer has agreed to participate in demand response, he does not

deviate from the demand profile after scheduling. This is because the social

aspect of decision making by consumers lies outside of the scope of this work.

• Technical characteristics of power generators are assumed to be the same for

the same type of power plants.

• District heating is not considered.

• Technical characteristics of power generators and consumer technologies

(apart from non-deferrable demand) do not change throughout the simulation

period.

• Seasonal environmental parameters (like external temperature, wind speed

and solar irradiance) vary throughout the year but do not vary between years.



3.3. Agent-based modelling approach 70

• In this work, DSM services offered by consumers are assumed to be free.

This stems from the assumption that shifting flexible demand (from electric

vehicles and/or electric heating) does not interfere with the quality of services

offered to end-users. In addition to this, consumers are compensated either

through a lower electricity tariffs achieved from a more optimal system de-

mand profile (in the case of aggregator-led scheduling), or through expected

cost reductions (when consumers schedule demand autonomously, in which

case it is their own decision to alter demand). In reality, end-users can offer

flexibility from shifting business-as-usual demand (e.g. cooking, watching

TV, etc.) which would require compensation from the aggregator which calls

for DSM services.

3.3 Agent-based modelling approach
The power sector represents a complex network of multiple stakeholders each with

varying objectives and ways of interacting amongst each other and the environment.

Traditional modelling approaches such as equilibrium modelling, optimisation and

game theoretic models suffer from certain shortcomings when it comes to modelling

real life socio-technical systems such as the power sector.

These include (Weidlich and Veit, 2008):

1. Modelling system actors as homogeneous agents, which is required to ele-

gantly formulate the model;

2. Ignore agent learning characteristics;

3. Often assume perfect information available to all agents;

4. Assume continuous supply and demand functions.

The key feature of the proposed model is its capability to represent heteroge-

neous system stakeholders, which are able to adapt to the environment and learn the

most favourable behaviour to them. Limitations discussed above make traditional

methods inappropriate in recreating such behaviour.
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Agent-based modelling (ABM) offers a way to decompose stakeholder inter-

actions into simpler rules and presents practically and intuitively an effective way

to model the proposed system. ABM uses autonomous decision-making entities

called agents. In contrast with aggregated modelling, ABMs are guided by agent

behaviour on the micro scale, which results in the emergence of system behaviour

on the macro scale (Bonabeau, 2002). This is particularly important for modelling

electricity system management, as the dynamics of demand and supply coordina-

tion very much depend on the behaviour of consumers which isn’t linear. ABMs

are flexible enabling to change the level of complexity of the model by adding or

removing agents, rules and methods.

There isn’t one set definition of what an agent is within the ABM community.

Rather, an agent is defined as an entity that possesses the following characteristics:

Table 3.1: Agent characteristics. Source: (Wooldridge and Jennings, 1995)

Autonomy Agents function independently and have control over
their actions.

Social ability Agents interact with other agents (or humans).

Reactivity Agents are able to respond to the changes in their sur-
rounding environment.

Pro-activeness Agents’ behaviour is guided by the rules and objec-
tives assigned to them.

Learning Agents can be equipped with learning algorithms
which allows them to adjust their strategy.

Thus, depending on the domain of where the ABM is applied an agent may

be an organism, human, business, institution, and any other entity that satisfies the

above characteristics (Railsback and Grimm, 2011).

3.4 ESMA overview
In-line with the definition presented in Table 3.1, four types of agents are identified

representing different actors in the British power system: consumers, aggregators,

the system operator and the market (modelled as an agent in possession of different

generation technologies) (Table 3.2). Agents have the capability to make decisions
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based on their observations of the environment, interact between each other and

learn the best strategy.

Table 3.2: Agents considered in the simulation.

Agent Description Objective

Consumer

End-users from residential, com-
mercial, industrial and transport
sectors that purchase electricity
from aggregators.

Fulfil own electricity de-
mand at lowest cost.

Aggregator
Represents an entity which is able
to pool consumers and buy electric-
ity from a wholesale market.

Fulfil consumer electric-
ity demand and maximise
profit.

System
Operator
(SO)

Represents the system operator in
Great Britain, i.e. National Grid.

Balance electricity supply
with electricity demand.

Market
Represents the pool of electricity
generators selling energy in the
wholesale market

Schedule generators and
calculate the wholesale
electricity prices.

Figure 3.8 shows how the agents interact in the model in terms of the type of

information they exchange. Consumers update aggregators with demand and gen-

eration profiles, who in exchange offer information on electricity prices and instruct

consumers on how to shift demand during coordination. Aggregators update the

system operator with consumer demand and generation profiles and receive infor-

mation on the wholesale electricity prices. The SO communicates to the market

system demand and generation data, based on which the market calculates genera-

tion volumes and electricity prices.

The following subsection explains the model in more detail going through each

step of ESMA modelling.

3.4.1 ESMA algorithm

The proposed model runs on hourly basis with day-ahead planning horizon. Hence

hourly and daily indices are introduced t = 1, ...,T and d = 1, ...,D, s.t. T = 24,

D = 365. The model is capable of performing long-term analysis which is achieved

through updating model parameters like installed generation capacities, fuel prices
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Figure 3.8: Graphical representation of model agent interaction in ESMA
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and consumer technology numbers annually. The simulation year is tracked by

index y = 1, ...,Y , where Y is the maximum number of simulated years. In our case

Y = 35, however this value is constrained purely by data availability.

Figure 3.9 shows the overall model algorithm, whereby each block indicates

different actions taken by agents throughout the simulation. For example, algo-

rithm step R0 refers to the run initialisation, whilst C1 refers to consumers pre-

dicting renewable generation and daily residual demand profiles. The starred vari-

ables, e.g. L∗(t,d), lc∗(t,d) correspond to predicted values and can therefore change

throughout a simulation day, whereas non-starred variables, e.g. R(t,d),r(t,d)),

cannot. Hence, renewable generation and non-deferrable electricity consumption is

assumed to be deterministic in this model. The main source of uncertainty comes

from consumers scheduling flexible demand resources, i.e. electric vehicles, heat

pumps, and storage.
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3.4.1.1 Model initialisation

Each simulation run starts with the model initialising in step R0 (shown in the purple

box in Figure 3.9), which includes creating model agents and setting the scenario

according to which the system will evolve (see Chapter 4). This step is performed

only once during the simulation run. In the default setting (unless stated otherwise)

the model creates 31 consumer agents (across all types and sectors as described in

section 3.4.2.1), one aggregator, one system operator and one market agent.

At the beginning of each year all model agents reset their parameters accord-

ing to the chosen scenario (described in Chapter 4) and the year of simulation deter-

mined in step E0. The market agent resets the annual fuel prices, installed capacities

and import levels, consumers update installed technology capacities (e.g. electric

storage, heat pumps, electric vehicle numbers) (see Appendices C and D.1), and the

system operator updates the grid losses (see Appendix C).

3.4.1.2 Daily actions

Daily actions surrounded by the grey box consist of three main blocks of activities:

agent initialisation, day-ahead scheduling and on the day actions. During initial-

isation consumers set renewable generation rc(t,d) and residual demand lc∗
net(t,d)

in step C1. Consumers then pass the demand information onto aggregators which

predict total consumer demand profiles La∗(t,d) in step A1. The SO receives in-

formation on consumer demand from the aggregators and makes a prediction of the

system demand L∗(t,d) in step SO1. Meanwhile, the market pre-schedules gen-

erators based on the predicted system demand L∗(t,d) and renewables R(t,d) to

calculate predicted day-ahead electricity prices p∗(t,d).

Day-ahead scheduling involves agents reacting to the predictions made in the

initialisation stage by adjusting their demand. Different regimes for hierarchal DSM

are considered, depending on the hierarchal layer which is responsible for instruct-

ing consumer demand scheduling (see Section 3.5). Central to each DSM regime is

the demand response by consumers (CON DSM) to aggregator signal, which cor-

responds to algorithm step C3 surrounded by the orange box. CON DSM can be

implemented more than once as indicated by the iteration index k.
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Figure 3.9: Model algorithm.
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The simplest and the most decentralised demand side response DSM regime,

involves the consumers scheduling flexible demand based on the predicted real time

price for electricity, in which case gk(t,d) = p∗(t,d). The algorithm is referred to

as CON CM, which corresponds to the consumer cost minimising behaviour. With

CON CM consumers schedule demand only once.

The next level of complexity involves an aggregator coordinating a pool of

consumers (AGG DSM in the green box), in which case the aggregator sends a

signal gk(t,d) to consumers (algorithm step A2), who autonomously implement

CON DSM (algorithm step C3). Two types of AGG DSM schemes are consid-

ered: demand flattening (AGG DF) and cost minimising (AGG CM). Whilst DF

algorithm serves the grid through shaving peaks, the regime AGG CM represents

a more aggressive behaviour, whereby aggregators actively minimise the cost of

power. AGG DSM can involve many iterations until the system converges. In each

iteration k consumers update aggregators with their demand profile lc,k, whilst the

aggregators recalculate the signal gk(t,d).

The most centralised hierarchal coordination regime (SO DSM) surrounded

by the blue box), involves the system operator negotiating demand with the aggre-

gators, whilst constantly updating them with the new prices calculated by the mar-

ket in algorithm step M3. Under SO DSM the aggregators negotiate the demand

profile with consumers in order to ensure convergence, and so blocks AGG DSM

and CON DSM are active. Since the SO’s objective is to reduce system cost only

the cost minimising scheduling regime SO CM is considered. Under SO CM de-

mand scheduling is performed during a number of iterations until convergence of

the whole system is reached. Hence, algorithm steps C3, A1/A2, SO1 and M2 are

implemented multiple times.

On the day activities include aggregators calculating the final consumer de-

mand and generation profiles La
net(t,d),R

a
exp(t,d) in algorithm step A1, followed

by the SO aggregating final electricity demand and exports L(t,d),Rexp(t,d) from

utilities in algorithm step SO1. The market then reschedules electricity generators

in algorithm step M2 based on the final demand profile L(t,d) to calculate final
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wholesale prices p(t,d). Once the wholesale prices are received, the SO calculates

the cost of running the system in algorithm step SO2, aggregators calculate retail

electricity prices and costs πa(t,d),Ca(d) in A3 and consumers calculate the costs

based on retail prices. In some scenarios consumers are also allowed to switch

aggregators based in the tariff πa(d) offered to them.

The following sections describe the actions of model agents in more detail with

references to the algorithm in Figure 3.9.

3.4.2 Consumers

A set of N consumer agents is modelled C = {c1, ...,cN}, where each c ∈ C rep-

resents a group of real life end-users of a specific type. Consumers’ objective is to

fulfil own electricity demand at minimum cost.

3.4.2.1 Creating consumers

Consumer type is determined by the combination of technologies available to

the consumer. Five different technologies are considered: heat pumps (HP),

resistance heating (RH), solar PV (PV), thermal energy storage (TES), and

electrical storage (ES). Collectively these represent a set of technologies T =

{HP,RH,PV,T ES,ES}7, allowing to construct ten consumer types (Table 3.3).

Across the four economic sectors ESMA can build 31 different consumer

agents, since the transport agent only allows one consumer type (i.e. with ES) as

demonstrated in Table 3.4). In the default case, the model considers 31 consumer

agents. As will be seen later, only when aggregator competition is modelled does the

model build more than one consumer of each type. The numbers in each cell of Ta-

ble 3.4 are an input of the modeller and indicate how many consumer agents of each

type in each sector, nsec
type, are created when the model is initialised (Algorithm step

R0, Figure 3.9). For example, if ndom
type1 = 2 the model generates two agents, which

represent two identical pools of residential households without any resources. The

total number of consumer agents is calculated as N = ∑
10
type=1 ∑sec∈S nsec

type, where

S = {dom,com, ind, trans} corresponds to a set of different consumer sectors.

7Electric vehicles (EVs) are represented as moving consumers with ES.
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Table 3.3: Allocation of resources to consumer types.
hhhhhhhhhhhhhhhhhhConsumer type

Technology
HP RH PV TES ES

1 (no resources)

2 (with HP) 3

3 (with HP and TES) 3 3

4 (with RH) 3

5 (with RH and TES) 3 3

6 (with PV) 3

7 (with PV and ES) 3 3

8 (with ES) 3

9 (with HP,PV,TES,ES) 3 3 3 3

10 (with RH,PV,TES,ES) 3 3 3 3

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

Table 3.4: Allocation of consumer agents to types.
``````````````̀Consumer type

Sector
Domestic Commercial Industrial Transport

1 (no resources) ndom
type1 ncom

type1 nind
type1 -

2 (with HP) ndom
type2 ncom

type2 nind
type2 -

3 (with HP and TES) ndom
type3 ncom

type3 nind
type3 -

4 (with RH) ndom
type4 ncom

type4 nind
type4 -

5 (with RH and TES) ndom
type5 ncom

type5 nind
type5 -

6 (with PV) ndom
type6 ncom

type6 nind
type6 -

7 (with PV and ES) ndom
type7 ncom

type7 nind
type7 -

8 (with ES) ndom
type8 ncom

type8 nind
type8 ntrans

type8

9 (with HP,PV,TES,ES) ndom
type9 ncom

type9 nind
type9 -

10 (with RH,PV,TES,ES) ndom
type10 ncom

type10 nind
type10 -

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

Whereas the number of consumer agents may change, the total number of ac-

tual end-users they represent (or consumer multipliers, msec
type) stays the same. Fig-

ure 3.10 shows the conceptual representation of the idea. If 24 million residential
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households are modelled using one consumer agent, then that agent corresponds

to the total number of residential households. However, if 24 million residential

households are represented by three consumer agents, then each agent will corre-

spond to 8 million residential households. This way of modelling preserves the total

number of consumer resources, whilst keeping the model fast and flexible. There

must be a minimum of one per each type enabling the analysis of the impact of

DSM on all kinds of end-users. Of course in ESMA there are 31 different consumer

groups depending on the type and consumer sector they represent. Therefore the al-

location of end-users to consumer agents is slightly more complicated as it involves

preserving the total number of technologies in the system.

Figure 3.10: An example of how real life end-users are represented by consumer agents.

1 agent per 

consumer type 

3 consumer agents 

per consumer type 

24 million 

Number of 
domestic 
households per 
agent 

Number of 
commercial 
businesses per 
agent 

Number of 
industrial 
businesses per 

agent 

Number of 
electrical 

vehicles per 
agent 

8 million 8 million 8 million 

6 million 2 million 2 million 2 million 

900 thousand 300 thousand 300 thousand 300 thousand 

51 thousand 17 thousand 17 thousand 17 thousand 

Once the numbers in Table 3.4 have been set by the modeller they do not

change during the simulation period. However, as the number of technologies

change from year to year during the simulation period, consumer multipliers msec
type

are adjusted to reflect this (see Appendix D.1). To give an example, if there is

one residential consumer agent of type 8 (ndom
type8 = 1) representing 5000 real-life

consumers (mdom
type8 = 5000) with 6kWh batteries each, the aggregate capacity of
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electrical store available to the consumer is calculated as:

6kWh×mdom
type8 = 6kWh×5000 = 30MWh.

However, if there are two consumer agents of type 8 ndom
type8 = 2 representing

5000 residential consumers of type 8, then each domestic agent of type 8 will have

storage capacity calculated as:
6kWh×mdom

type8

2
=

6kWh×5000
2

= 15MWh.

Consumers update their resource capacities at the beginning of each year by

multiplying individual technological capacities by the multipliers (algorithm step

C0, Figure 3.9). In the next section when consumer technologies are discussed,

technical characteristics refer to those of consumer agents rather than individual

end-users.

3.4.2.2 Consumer resources

At the point when ESMA creates a consumer agent, it activates the appropriate

technologies available to its type (Figure 3.11). Hence, a consumer of type 10 has

access to all resources, whilst consumer of type 1 only has a heat pump.

All consumer types have a non-deferrable daily electricity profile lc(t,d),

which represents electrical loads which cannot be shifted in time such as lighting

or watching TV. Consumers in possession of electric heating such as a heat pump

(HP) or a resistance heating (RH) also have a non-deferrable heat demand profile,

qc(t,d). This is not to say that consumers with gas heating have no heat demand

component, rather it is not considered as it does not contribute to the demand of

electricity 8.

Consumers with access to ES and TES are able to shift demand, through charg-

ing and discharging electricity and heat. As will be seen in section 3.5, there are

a number of potential mechanisms for scheduling demand serving consumer inter-

ests either directly or indirectly. The simplest one assumes cost minimisation or

demand smoothing by consumers performed once, whilst more complicated algo-

rithms use smart signalling by the aggregator to negotiate the optimum consumer

demand curve over a number of iterations. Finally, consumers in possession of a

8See Appendix A.1 for an explanation of how non-deferrable demand profiles are obtained
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Figure 3.11: General modelling set-up of the consumer agent
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Note: consumer can have either a heat pump or a resistance heater and not both.

renewable generator (here represented by solar PV) can fulfil a proportion of their

daily demand from own generated electricity rc(t,d)9.

Consumers calculate net electricity demand in step C1 (Figure 3.9) according

to the following equation:

lc
net(t,d) = lc(t,d)+ lch,c

ES (t,d)− ldc,c
ES (t,d)+ lc

HP(t,d)+ lc
RH(t,d)− rc(t,d), (3.1)

Where for consumer c in hour t and day d,

lc(t,d) - non-deferrable non-thermal electricity demand [MWh],

lch,c
ES (t,d) - electrical store charge [MWh],

ldc,c
ES (t,d) - electrical store discharge [MWh],

lc
HP(t,d) - electricity demanded by a heat pump [MWh],

lc
RH(t,d) - electricity demanded by a resistance heater [MWh], and

9See Appendix B.1 for an explanation on how these profiles are generated
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rc(t,d) - electricity generated by renewable resources [MWh].

It is noted that in relation to the grid, transport consumers do not have non-

deferrable demand lc(t,d), nor do they have any electric heating or renewable en-

ergy resources. Therefore for electric transportation, (3.1) is reduced to:

lc
net(t,d) = lch,c

ES (t,d), (3.2)

With respect to the vehicles themselves, transport consumers do have a non-

deferrable demand, which is expressed by the discharge profile ldc,d
ES (t,d) and rep-

resents consumer constraints for utilising the vehicles10.

3.4.2.3 Buying and exporting electricity

The net consumer demand, lc
net(t,d), calculated in (3.1) and (3.2) is what consumers

obtain from the aggregator at retail price or tariff πa(t,d) calculated in Section

3.4.3.3. The total daily cost incurred by consumers (see Algorithm step C3, Figure

3.9) is calculated as follows:

zc(d) =
T

∑
t=1

lc
net(t,d) ·πa(t,d), ∀c ∈ C a. (3.3)

Later in the analysis the model considers the possibility of consumers switch-

ing aggregators based on the offered retail price πa(t,d). In this case consumers

compare tariffs for electricity and choose one which is lowest.

In case the consumer generates more electricity than required, i.e. when

lc
net(t,d)< 0,

that electricity is exported back into the grid. Consumer exports are calculated

as:

lc
exp(t,d) =−min(0, lc

net(t,d)), (3.4)

where the negative sign in (3.4) makes sure that the exports are positive from

the perspective of the grid. In the default scenario, consumers get reimbursed for
10See Appendix C.2 for remaining technological constraints of consumer resources.
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exported electricity at the wholesale price p(t,d). As will be seen later the price for

exported electricity affects how consumers schedule demand.

3.4.3 Aggregators

Aggregators represent stakeholders of the middle layer in the electricity system,

which are able to pool consumers and supply them with electricity from the whole-

sale market. Aggregators can be vertically integrated and have the capability to sell

power in the wholesale market or not, in which case they serve as coordinating enti-

ties for consumers. Regardless of the type, all aggregators have an objective to fulfil

the demand for electricity of consumers that are contracted to them at minimal cost.

3.4.3.1 Creating aggregators

At the point of run initialisation (Algorithm step R0, Figure 3.9), ESMA creates a

set of M aggregators, A = {a1, ...,aM}, where each aggregator represents a com-

pany which supplies a pool of consumer C a with electricity. As a default setting,

it is assumed that consumers of each type are equally split between aggregators.

Hence, the number of consumer agents must be divisible by the number of aggre-

gators as demonstrated in Figure 3.12. In the default setting only one aggregator is

built by the model. However, when aggregator competition is explored (in the case

of AGG CM) and when consumers switch it is necessary to build more than one.

Aggregator daily activities include calculating total consumer demand and gen-

eration in algorithm step A1, scheduling consumers in step A2 and accounting at

the end of the day in step A3 (Figure 3.9).

3.4.3.2 Calculating consumer demand and generation

At the beginning of the day d ∈ [1,D] each aggregator a ∈A calculates total con-

sumer demand La(t,d) by summing net demand across the pool of consumers it

serves C a, i.e.

La(t,d) = ∑
c∈C a

lc
net(t,d), ∀ a ∈A , t ∈ [1,T ] (3.5)

Algorithm step A1 calculated in (3.5) is actioned during daily initiation,

scheduling and on-the-day actions. As the aggregator sums up net consumer de-
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Figure 3.12: Example of consumer aggregation.
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mand any exported electricity by consumers is shared across the whole pool of

consumers served by aggregator a.

3.4.3.3 Aggregator accounting

At the end of the day, each aggregator a calculates the cost of power purchased

during the day Ca(d) (step A3, Figure 3.9):

Ca(d) =
T

∑
t=1

La(t,d) · p(t,d). (3.6)

Finally, the aggregator calculates retail tariffs according to the following three

approaches:

(1) The real-time price (RTP) - calculated as the wholesale price for electricity,

π
a(t,d) = p(t,d), (3.7)

(2) Static price where the cost of electricity is averaged over the day,

π
a(t,d) =

Ca(d)

∑
T
t=1 L(d),

(3.8)
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(3) Static price where the cost of electricity is averaged over a year,

π
a(t,d) =

Ca(y)

∑
T
t=1 La(y),

(3.9)

Where,

La(y) = ∑
D
d=1 La(d) is the total electricity demand purchased by the aggregator

during the year y, and Ca(y) = ∑
D
d=1Ca(d) is the total cost of electricity incurred by

the aggregator during the year y.

In reality retail prices are set somewhere in between dynamic and fixed tariffs.

However, it is not certain how retail prices might be formed in the future, and so the

three retail pricing regimes are left for exploration in this model.

As mentioned in Section 3.1.4, retail prices for electricity vary depending on

the size of the consumer and include an uplift on the wholesale prices. Here the up-

lift is omitted because the focus of the work is to evaluate the intrinsic contribution

of individual consumers to the cost of generating power at the transmission level,

i.e. including the uplifts would include the operational costs of the aggregators.

3.4.4 System operator

The system operator (SO) represents the National Grid and carries the responsi-

bility for balancing the system demand and supply. Hence, the SO tracks system

electricity demand and supply in order to ensure a smooth flow. The SO stores the

information of system demand daily, which allows it to make predictions for the

day-ahead consumption. The SO communicates predicted demand to the market

agent enabling it to schedule power generators (see Section 3.4.5).

At the beginning of the year when the SO initialises (Algorithm step SO0,

Figure 3.9), it sets daily system losses Lloss(t,d) and import values Limport(t,d)

according to the scenario and the year of simulation as described in Appendix C. It

is assumed that the losses and imports are constant throughout the year and so the

hourly values are calculated by dividing the annual values obtained from (National

Grid, 2017a) by 8760 hours.

SO’s daily activities include predicting demand, calculating actual system de-

mand and accounting (steps SO1, SO2 and SO3, Figure 3.9).
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3.4.4.1 SO calculating system demand

Once the aggregators have made a prediction on the day-ahead consumer demand,

they pass this information to the system operator (SO), which aggregates it in algo-

rithm step SO1, Figure 3.9:

Lagg(t,d) = ∑
a∈A

La(t,d), ∀t ∈ [1,T ], (3.10)

The SO then makes a prediction for the day-ahead demand by weighing up

predicted demand by the aggregators against yesterday’s demand outturn:

L∗(t,d) = w · (Lagg(t,d)+(1−w) ·L(t,d−1)), (3.11)

where L(t,d−1) is the system demand outturn in the previous day,

Lagg(t,d) is the total electricity demand as predicted by the aggregators, and

w ∈ [0,1] represents the weighing parameter to previous demand outturn.

The SO then send the predicted demand information to the market agent, which

schedules electricity supply resources (see Section 3.4.5).

3.4.5 The Market

The electricity prices in the UK are set in a centralised market and depend on the

system demand as well as the generation characteristics of the grid. A popular ap-

proach adopted by researchers to model the electricity market involves representing

the historical demand and price relationship as a supply curve (Ramchurn et al.,

2011; Zhang et al., 2014; Voice et al., 2011). However, this limits the model to

sample-specific data making it inappropriate for simulating future electricity prices.

Another state-of-the-art approach is to use economic dispatch modelling which

schedules power plants based on the minimum cost of dispatch in order to fulfil

system demand. However, detailed economic dispatch models such as (Walters and

Sheble, 1993; Gaing, 2003; Hetzer et al., 2008; Chen and Chang, 1995) can take

a very long time to solve and compromise the speed of the simulation. Instead, a

simplified economic dispatch model is used based on (Van Den Bergh and Delarue,
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2015), where power plants are aggregated by technology type and the start-up costs

are omitted. An uplift to the resulting prices is then introduced in order to reflect the

costs of using the network and balancing the grid using historical data taken from

(Elexon, 2017a). This allows us to perform analysis into the future, whilst capturing

stakeholder interactions on an hourly basis.

A note on model limitations. It is noted that technical characteristics (such as

efficiency, ramping costs, operation and maintenance costs) of generators are fixed

throughout the simulation period, meaning that if the efficiency of a generator was

60% in 2015 it will be the same in 2050. In addition to this, only the short term

market is considered and the capital costs of generators are ignored. The limitations

of the pricing model are acknowledged, however the reader is reminded that the

focus of this work is to address the challenges associated with system control and

cost allocation to consumers in the context of demand side management. Moreover,

since generation capacities are taken as part of the scenarios, including investment

costs is not necessary for reaching this objective.

3.4.5.1 Market resources

The market represents a pool of operational power generators in Great Britain

grouped by technology type as demonstrated in Table 3.5. The model considers a set

of thirteen technologies G = { j1, ..., jG},s.t.G = 13, which includes ten dispatch-

able types, alongside pumped storage (PS), solar and wind generators in accordance

with the Future Energy Scenarios (FES) provided by (National Grid, 2017a).

Each power generation technology j is characterised by the price of fuel re-

quired to generate electricity (c j
f u), efficiency(η j), variable operation & mainte-

nance cost (c j
op), ramping cost (c j

ramp), emissions factor (h j
CO2) and capacity(cap j).

On creation of the market agent, ESMA generates a database which stores param-

eters of each technology type similarly to Table 3.5. Whereas technical generator

parameters (i.e. operation and maintenance cost c j
op, efficiency η j, ramping cost

c j
ramp and carbon intensity factor h j

CO2 are fixed for the whole simulation period,

fuel prices c j
f u and capacities cap j are updated annually in algorithm step M0 (Fig-

ure 3.9).
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Table 3.5: Technical specifications of generation technologies and fuel prices in 2015.
Sources: (UCL, 2016; Van Den Bergh and Delarue, 2015; IEA-ETSAP,
2010b,a,c; IAEA, 2014; Hawkes, 2010; Clark, 2013; Brander et al., 2011; ETI,
2016)

Technology
type

Index
(j)

Capacity
(cap j)
[MW]

Fuel
cost
(c j

f u)
[£/MWh]

O&M
cost
(c j

op)
[£/MWh]

Ramping
cost
(c j

ramp)
[£/MWh]

Efficiency
(η j)

Emission
factor
(h j

CO2)
[t/MWh]

Biomass 1 2,229 28.6 2.3 1.3 0.34 0

Gas CCS 2 0.0 14.6 3.35 0.36 0.5 54

CHP 3 4,683 14.6 2.30 1.0 0.4 500

CCGT 4 24, 059 14.6 2.30 0.36 0.6 360

Coal 5 15,210 5.2 2.09 1.3 0.45 910

Hydro 6 1,333 0 0.2 - 0.45 0

Marine 7 8.4 0 0.2 - 0.2 0

Nuclear 8 7,278 0.04 2.13 80 0.32 0

Other
therm †

9 1,270 23.7 0.88 1.3 0.45 610

Other RES
††

10 1,285 0 2.3 0.6 1 0

Pumped
storage

11 2,744 0 - 0 0.8 0

Solar PV 12 0.0 0 0 - 1 0

Wind ††† 13 13,049 0 0 - 1 0
† ‘other therm’ diesel, open-cycle gas turbines (OCGT), fuel oil, and onsite generation
††‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, waste CHP,
landfill gas, sewage, and biogas CHP
† † † wind is considered both embedded and at the transmission level

The cost of generating electricity by technology j in the short run is referred

to as the short run marginal cost of generation (c j
MC), which is calculated according

to the following formula:

c j
MC(y) = c j

op(y)+
c j

f u(y)

η j(y)
+h j

CO2(y) · pCO2, ∀ j = j1, ..., jG, (3.12)

Where pCO2isthecarbonprice[/ton].

The short run marginal cost of generation is updated annually in-line with the
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fuel prices and does not change throughout the year hence the index y.

3.4.5.2 Predicting renewable generation

The market forecasts renewable generation (Algorithm step M1, Figure 3.9) by scal-

ing historical generation profiles in accordance with the installed capacity of system

level renewables 11. Figure 3.13 demonstrate how the scaling for 2030 works for

solar and wind on the 14th April.

Figure 3.13: Demonstration of wind and solar generation scaling from 2015 to 2030 on the
14th April. Source:(National Grid, 2017a).

If the total wind capacity increases from 13,049 MW in 2015 to 29,293 in 2030,

then the generation output from wind in 2015 is multiplied by the relative capacity

increase ratio, i.e. 29,293
13,049 = 2.24. Similarly, if solar capacity increases from 9,161

MW in 2015 to 15,417 MW in 2030, electricity output from transmission level

solar in 2015 is multiplied by 1.68, calculated as 15,417
9,161 = 1.68. The profiles from

wind and solar are then added together to represent transmission level renewable

generation, R(t,d).

3.4.5.3 Scheduling power generators

In order to model the electricity market a simplified least-cost dispatch model pro-

posed by (Van Den Bergh and Delarue, 2015) is deployed. The market schedules

11see appendix C.1 for projected generation capacities.
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generators twice throughout the day: during the ‘day-ahead actions’ based on the

predicted system demand L∗(t,d) calculated in (6.1) and during ‘on the day actions’

based on the actual demand outturn L(t,d) calculated according to (3.10) (algorithm

step M2, Figure 3.9). Here, the scheduling process is described using L(t,d) to rep-

resents system demand but it is noted that the process is the same for pre-scheduling

based on L∗(t,d).

In order to validate the model against Future Energy Scenarios (FES) data pro-

vided by National Grid (2017a), system imports Limport(t,d)12 and losses Lloss(t,d)

are included in the model. Since only the annual values for these variables are avail-

able (see Appendix C.1), a constant level of hourly imports and losses are assumed

across the year by dividing the annual values by 8760 hours. Hence, transmission

level generation and imports must cover consumer demand and losses, i.e.

Lgen(t,d)+Limport(t,d) = L(t,d)+Lloss(t,d), (3.13)

Where Lgen(t,d) = ∑
G
j=1 q j(t,d) is the total electricity generated across all

technologies and q j(t,d) electricity generated by technology j in time t of day d.

The market schedules dispatchable generators in order to satisfy the balance

equation (3.13) at least cost:

min
q j(t,d)

T

∑
t=1

G

∑
j=1

(C j
SRAC(t,d)+C j

dyn(t,d)) ∀ j ∈ G . (3.14)

Equation (3.14) consists of two cost component: the short run unavoidable

cost (C j
gen(t,d)) and the dynamic cost (C j

ramp(t,d)) of generating electricity from

technology j at time t in day d.

Term C j
gen(t,d) corresponds to the cost of running a generation technology j at

short run marginal cost (or maximum efficiency) calculated as:

C j
SRAC(t,d) = c j

MC ·q
j(t,d), ∀t ∈ [1,T ], j ∈ [1,10], (3.15)

where c j
MC is the short run marginal cost of generation by technology j calcu-

lated according to (3.12) and q j(t,d) is the electricity output from technology j at

12Negative imports correspond to exports.
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time t in day d.

The dynamic part C j
dyn(t,d) corresponds to the cost of cycling a power plant

and hence includes the change in the generation level from one period to the next,

i.e.

C j
dyn(t,d) = c j

ramp ·δ j
ramp, ∀t ∈ [1,T ], j ∈ [1,10], (3.16)

where c j
ramp has been set in market initiation step M0 and δ

j
ramp = |(q j(t,d)−

q j(t − 1,d))| is the absolute change in power generation from time t − 1 to t of

technology j.

Mathematically (3.14) is solved for q j(t,d) (power generated by dispatch-

able technologies), Lch
PS(t,d),L

dc
PS(t,d) (charging and discharging profiles of pumped

storage) and Rcurt(t,d) (curtailed renewable profile) subject to the following opera-

tional constraints:

DC1: Total amount of generation from all resources must be equal to system

demand L(t,d) including losses:
10

∑
j=1

q j(t,d)+Ldc
PS(t,d)+Rused(t,d) = L(t,d)+Lch

PS(t,d)−Limports(t,d)+Lloss(t,d),

(3.17)

where Rused(t,d) is the amount of utilised renewable energy.

DC2: Pumped storage charge and discharge profiles are constrained by maxi-

mum and minimum power constraints:

0≤ Lch
PS(t,d)≤ Lmax

PS ,0≤ Ldc
PS(t,d)≤ Lmax

PS , (3.18)

DC3. The net amount of energy going into pumped storage is bound by its

efficiency:

Enet
PS (t,d) = ηPS ·Lch

PS(t,d)−Ldc
PS(t,d),

DC4. Total available energy stored by pumped storage EPS(t,d) is the sum

of the available energy in the previous time period t− 1 and the net charge in the

current period t:

EPS(t,d) = EPS(t−1,d)+Enet
PS (t,d),

DC5. The amount of discharge Ldc
PS(t,d) is limited by the available energy in
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the store:

Ldc
PS(t,d)≤ EPS(t,d),

DC6. Total available energy stored by pumped storage EES(t,d) must be

within the capacity constraints:

Emin
PS ≤ EPS(t,d)≤ Emax

PS ,

DC7. At the end of the day the amount of energy stored by pumped storage

must be the same as at the beginning:

EPS(0,d) = EPS(T,d),

DC8. : Total used Rused(t,d) and curtailed renewable generation Rcurt(t,d)

must add up to projected renewable generation R(t,d) at the system level:

Rused(t,d)+Rcurt(t,d) = R(t,d) t ∈ [1,T ]. (3.19)

3.4.5.4 Calculating wholesale prices for electricity

The wholesale prices in the short run are calculated at the average cost per unit of

energy demanded from the market, i.e.

pSR(t,d) =
∑

G
j=1(C

j
gen(t,d)+C j

ramp(t,d))

L(t,d)
, (3.20)

where C j
SRAC(t,d) and C j

dyn(t,d) are the predicted costs calculated according to

(3.15) and (3.16).

However, it is noted that pSR(t,d) is an underestimation of the real price of

electricity as it does not include capital costs of the generators and the cost for the

transmission and distribution network. In order to reflect the real cost of electricity,

a demand dependent uplift ε(L(t,d)) is introduced, which takes into account ad-

ditional costs of electricity generation such as the use of the network and the grid

balancing costs (see Appendix E.1 for the methodology of modelling the uplift).

The final wholesale electricity price is calculated as follows:

p(t,d) = pSR(t,d)+ ε(L(t,d)). (3.21)

Figure 3.14 shows an example of implementing the scheduling methodology.



3.4. ESMA overview 93

Figure 3.14 (A) shows day-ahead generation, whilst Figure 3.14 (B) shows resched-

uled generation after the consumers responded to the signals from the aggregators

under the AGG DF DSM regime.

Figure 3.14: Example of market rescheduling under demand flattening coordination with
100 % participation in 2030 under AGG DF algorithm (Two Degrees+).
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3.5 Demand side scheduling
Three hierarchal layers of demand side coordination are considered: consumer, ag-

gregator and the system operator (Figure 6.1), where the rational objective for per-

forming demand side response by each of the stakeholder is to minimise the cost of

power.

Figure 3.15: Agent hierarchy.

. . . 

Consumer layer (CON) 

Aggregator layer (AGG) 

System operator layer (SO) 

. . . 

Information flow Power flow Key: 

The Market 

Aggregator 

a 
Aggregator 

a+1 

Consumer 

c 

Consumer 

c+1 

At the bottom level the model considers consumer-led demand response

(CON CM) with the aim of minimising individual consumer cost of power based

on the projected real-time prices (RTP) received from the aggregator. Considering

regime CON CM is largely inspired by the popularity of using RTP as an incentive

for end-users to consume electricity in a more efficient way. However this approach

can lead to consumers herding towards the same periods of low prices leading to

some unwanted consequences for the grid like increased demand peaks.
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Aggregator-led coordination can overcome this problem, for which reason the

model considers DSM regime AGG DF based on the algorithm developed by (Gan

et al., 2013). The algorithm receives it name due to the demand flattening (DF)

effect it achieves. Yet, it is possible to imagine that aggregators may wish to make

use of consumer flexibility in order to minimise the cost of power purchased from

the wholesale market. In order to simulate such behaviour algorithm AGG DF is

slightly adapted into AGG CM by allowing aggregators to communicate wholesale

prices to consumers.

Finally, to simulate the most centralised yet hierarchal DSM regime algorithm

SO CM is developed, which is coordinated by the system operator whose objective

is to minimise the total system cost. The algorithm works on a similar principle

as AGG DF but involves all stakeholders in the negotiation process of consumer

demand profiles. Table 3.6 summarises all DSM regimes.

Table 3.6: Summary of demand side management (DSM) regimes.

Agent performing DSM Purpose DSM name

System operator Cost minimisation SO CM

Aggregator Cost minimisation AGG CM

Aggregator Demand flattening AGG DF

Consumer Cost minimisation CON CM

The following sections describe the algorithms for demand side coordination

in relation to each of the stakeholders.

A note on the choice of decentralised coordination algorithm. After reviewing

the literature on the different approaches for decentralised control it has been de-

cided to opt for the iterative approach proposed by (Gan et al., 2013), whereby

the aggregator slowly negotiates the demand profile with consumers over a number

of iterations. This method constitutes a very flexible method for communicating

the price information to consumers who have an equal chance to react. Other ap-

proaches include randomisation (Papadaskalopoulos and Strbac, 2016) and market-

based coordination (Motto et al., 2002), however both of these methods introduce
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uneven opportunities for consumers to respond which makes the process of cost al-

location more difficult. Finally heuristic methods (Vandael et al., 2011) and game

theoretic approaches (Zugno et al., 2013) are not able to accommodate a more com-

plex model of consumer behaviour with multiple flexible resources.

3.5.1 Consumer demand coordination algorithm (CON CM)

The simplest and the most decentralised DSM regime constitutes a case when con-

sumers cost minimise the projected cost of power based on the real time price

received from the aggregator (p∗(t,d)). The algorithm is formulated as a mixed

integer linear cost minimisation problem subject to constraints of consumer tech-

nologies (see Algorithm 1).

Algorithm 1: CON CM: Consumer cost minimisation DSM algorithm.
Input : Aggregator a knows the predicted day-ahead prices for

electricity p∗(t,d). Consumers know day-ahead non-deferrable
demand profiles, lc(t,d),qc(t,d), renewable generation profile
rc(t,d) and technical constraints of own resources.

Output: Consumer demand profiles:

lc
net(t,d) ∀c ∈ C a,∀t ∈ [1,T ]

1 Aggregator a sends consumers the predicted wholesale electricity prices:

p∗(t,d), ∀t ∈ [1,T ].

2 Each consumer c ∈ C a solves the following optimisation problem:

min
lc
net(t,d)

T

∑
t=1

lc
net(t,d) · p∗(t,d),∀t ∈ [1,T ],

subject to consumer technical constraints specified in Section 3.4.2.
3 Each consumer c ∈ C a finalises net demand:

lc
net(t,d) = lc(t,d)+ lc

HP(t,d)+ lc
RH(t,d)+ lc,ch(t,d)− lc,dc(t,d),

∀t ∈ [1,T ].
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Figures 3.16-3.17 demonstrate how a pool of domestic consumers of type 9

(with HP,PV,TES and ES) utilise electrical and thermal storage with CON CM in

order to shift demand to periods of low electricity prices on a winter and a summer

day.

Figure 3.16: Example of a daily demand profile by component for a pool of domestic con-
sumers on a summer and winter day before coordination, Steady State (2030).

Figure 3.16 demonstrates consumer demand profiles on a winter and summer

days in the business-as-usual (BAU) case before coordination. It is visible that in

the winter consumers require a lot more heating (chart A), whereas in the summer

solar generation profile is significantly higher (chart B). This translates into different

flexibility and demand constraints for consumers.

Figure 3.17 demonstrates how consumer demand profiles change after schedul-

ing with CON CM. In both winter (chart A) and summer days (chart B), consumers
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charge their stores during the cheapest periods for electricity (00:00-03:00) and dis-

charge them during the most expensive (09:00-12:00) and (15:00-18:00). In fact,

consumer demand becomes negative during the most expensive time periods, which

corresponds to end-users intending to export electricity. However, stricter con-

straints on heating demand and lack of solar generation energy means that in the

winter the export peak is lower (300 MW) compared to summer (600 MW) when

solar energy is abundant. On the other hand, demand peak is higher in the winter

(550 MW) compared to the demand peak in the summer (400 MW). This is because

in the summer consumers prioritise utilising storage for the purpose of absorbing

solar generation, whereas in the winter storage is used to shift demand.

Figure 3.17: Example of a demand profile by component for a pool of domestic consumers
on a summer and winter day after coordination with CON CM with 100%
participation, Steady State (2030).
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Figures 3.18 and 3.19 show how consumer utilises storage to discharge energy

during the most expensive periods on a winter day. Whilst non-deferrable heat and

electricity demands stay the same, the overall electricity demand profile changes

significantly. It is possible to see that thermal storage discharges during the morning

and evening peaks, i.e. (09:00-12:00) and (15:00-18:00).

Figure 3.18: Electricity demand profile from electric heating for a pool of domestic con-
sumers on a winter day before and after coordination with CON CM with
100% participation, Steady State (2030).

Figure 3.19: State of charge of TES and ES during coordination with CON CM on a winter
day with 100% DR participation, Steady State (2030).
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3.5.2 Aggregator demand coordination algorithms

When it comes to aggregator-led coordination, a major concern is consumer pri-

vacy. Algorithm put forward by (Gan et al., 2013) allows the aggregator to indi-

rectly schedule consumer demand over a number of iterations. The algorithm was

initially developed for load smoothing with electric vehicles, however it has been

adapted for scheduling consumers with any flexible load and renewable resources

and named AGG DF since it leads to aggregate demand flattening (see Algorithm

2). The algorithm works by supressing consumer cost minimising response to the

aggregator signal through a parameter α (step 5 in Algorithm 2). As a result con-

sumers are penalised for deviating from the previous demand profile which leads to

a slow convergence of the whole pool of consumers to an equilibrium profile.

Algorithm convergence is measured in terms of the daily system cost since the

objective of the algorithm is to reduce system cost. The convergence tolerance level

has been set taking into account the speed and the accuracy of the algorithm (see

Appendix E.2.1). In fact with a tolerance level of 0.005% the algorithm converges in

15 iteration the same as has been shown by the authors in the original work 13(Gan

et al., 2013). Hence the maximum number of iterations are capped at 20 and the

tolerance level is set at 0.005%,i.e. K = 20,ε = 0.005%.

In order to model a more aggressive behaviour of a cost minimising aggrega-

tor, algorithm AGG CM is developed by slightly changing AGG DF (see Algorithm

3). In AGG CM consumers receive the predicted prices for electricity rather than

the average demand profile as in 2. Since the first term in consumer optimisation

function now involves prices it was necessary to adjust the damping term α (origi-

nally set at 0.5 in algorithm AGG DF). In fact it has been found that with the same

tolerance level (ε = 0.00005) the algorithm performed best when α was set to 0

(see E.2.1), which rendered the same optimisation function for consumers as in

CON CM (Algorithm 1).

Figure 3.20 demonstrates how the two algorithms compare when it comes to

scheduling consumer demand. In Algorithm AGG CM the aggregator clearly tries

13Where the authors measure convergence as the difference between the optimal demand profile
and the demand profile achieves after the final iteration



3.5. Demand side scheduling 101

Algorithm 2: AGG DF: Aggregator demand flattening DSM algorithm.
Input : Aggregator knows the number of consumers Na it serves,

predicted electricity prices p∗(t,d) and aggregate consumer
demand profile La(t,d). Consumers know own day-ahead
non-deferrable demand profiles, lc(t,d),qc(t,d), renewable
generation profiles rc(t,d) and technical constraints of own
resources.

Output: Consumer demand profiles: lc
net(t,d) ∀c ∈ C a,∀t ∈ [1,T ]

1 Aggregator calculates initial cost of consumer power as:

C0(d) =
T

∑
t=1

La(t,d) · p∗(t,d).

2 Aggregator a sets k← 0 and La,0(t,d)← La(t,d)
3 while k < K do
4 Aggregator a calculates scheduling signal as the average of the

projected demand profile across all consumers:

gk(t) =
1

Na ·L
a,k(t,d), ∀t ∈ [1,T ].

5 Each consumer c ∈ C a solves the following optimisation problem:

min
lc,k
net(t,d)

T

∑
t=1

lc,k
net(t,d) ·gk(t)+α · (lc,k

net(t,d)− lc,k−1
net (t,d))2 ∀t ∈ [1,T ],

subject to consumer technical constraints specified in Appendix C.2.
6 Aggregator a recalculates consumer demand

La,k(t,d) = ∑
c∈C a

lc,k
net(t,d), ∀t ∈ [1,T ].

7 Aggregator a calculates new cost:

Ck(d) =
T

∑
t=1

La,k(t,d) · p∗(t,d),

if

| Ck(d)
Ck−1(d)

−1| ≤ ε

then
8 STOP.
9 else

10 Set k← k+1;
11 end
12 end
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Algorithm 3: AGG CM: Aggregator cost minimising DSM algorithm.
Input : Aggregator knows predicted wholesale prices, p∗(t,d),

aggregate consumer demand profile La(t,d), the total number of
consumers it serves Na, and the maximum number of iterations
K. Consumers know day-ahead non-deferrable demand profiles,
lc(t,d),qc(t,d), renewable generation profiles rc(t,d) and
technical constraints of own resources.

Output: Consumer demand profiles: lc
net(t,d) ∀c ∈ C a,∀t ∈ [1,T ]

1 Aggregator sets k← 0 and consumers initialise demand as

lc,0
net(t,d) = lc(t,d)− rc(t,d),∀t ∈ [1,T ], ∀a ∈ C .

2 Aggregator a initialises the cost of electricity as:

Ca,0(t,d) =
T

∑
t=1

p∗(t,d) ·La(t,d).

3 Aggregator a sends consumers projected electricity prices gk(t) = p∗(t,d).
4 while k ≤ K do
5 Each consumer c ∈ C a solves the following optimisation problem:

min
lc,k
net(t,d)

T

∑
t=1

lc,k
net(t,d) ·gk(t)+α · (lc,k

net(t,d)− lc,k−1
net (t,d))2 ∀t ∈ [1,T ],

subject to consumer technical constraints specified in Appendix C.2.
6 Aggregator a calculates new consumer demand as:

La,k(t,d) = ∑
c∈C a

lc,k
net(t,d),∀t ∈ [1,T ].

7 Aggregator a recalculates the predicted cost of power:

Ca,k(t,d) =
T

∑
t=1

p∗(t,d) ·La,k(t,d).

if

| Ck(d)
Ck−1(d)

−1| ≤ ε

then
8 STOP.
9 else

10 Set k← k+1;
11 end
12 end
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to maximise consumption at times of low electricity prices whilst in AGG DF the

result is a smoother demand curve.

Figure 3.20: Demonstration of algorithms AGG DF and AGG CM for 2050 in the Steady
State scenario.
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3.5.3 System operator demand coordination algorithm

Demand side scheduling by the system operator constitutes the most centralised

demand side management regime where all the parties negotiate the day-ahead de-

mand during a number of iterations (block SO DSM in Figure 3.9). However, it

still assumes indirect coordination since stakeholders send each other signals with-

out directly controlling the devices. The objective of the algorithm is to minimise

the system cost, hence it has been named SO CM. In each iteration the SO acquires

predicted price information from the market and communicates these to the ag-

gregators, which in turn scheduling consumers. The consumers update aggregators

with their new demand profiles and the aggregators pass this information back to the

SO. The SO updates the market with the new predicted system demand and in re-

turn receives prices from the SO after the market has scheduled generators (Section

3.4.5.3). The SO calculates projected day-ahead costs and the process continues

until the total cost has been minimised (based on the convergence tolerance set at

0.00005) (see Algorithm 4).

During the calibration procedure it has been found that the algorithm is sen-

sitive to the damping parameter α which comes as a result of the changing level

of the predicted electricity prices which counter balance the damping term in the

consumer optimisation function. Therefore, it has been found that α needs to be

adjusted daily depending on the average level of wholesale prices (see Appendix

E.2.2). Similarly to Algorithm AGG CM, algorithm SO CM is calibrated for pa-

rameter α to ensure convergence.

Figure 3.21 shows SO CM algorithm in action, whereby the projected system

cost is reduced over a number of iterations (right). In fact the SO stops instructing

aggregators to schedule after iteration 9 where the convergence tolerance is reached.
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Algorithm 4: SO CM: System operator cost minimising algorithm.
Input : The SO knows the predicted day-ahead system demand L∗(t,d),

prices p∗(t,d), and the maximum number of iterations K. Each
aggregator a ∈A knows the set of consumers it serves
C a = {a1, ...,aNa}. Consumers know day-ahead non-deferrable
demand profiles, lc(t,d),qc(t,d), renewable generation profiles
rc(t,d) and technical constraints of own resources.

Output: Consumer net demand profiles lc
net(t,d), ∀t ∈ [1,T ], ∀c ∈ C .

1 SO sets k← 0 and pk← p∗(t,d) and calculates initial system cost

C0
SO(d) =

T

∑
t=1

p∗(t,d) ·L∗(t,d);

while k < K do
2 The SO sends aggregators prices pk(t,d), ∀t ∈ [1,T ];
3 Each aggregator a ∈A signals its consumer set C a the predicted

wholesale prices

gk(t) = pk(t,d), ∀t ∈ [1,T ];

4 Each consumer c ∈ C a solves the following optimisation problem:

min
lc,k
net(t,d)

T

∑
t=1

lc,k
net(t,d) ·g(t)+α · (lc,k

net(t,d)− lc,k−1
net (t,d))2 ∀t ∈ [1,T ],

subject to consumer technical constraints specified in Appendix C.2.
5 Each aggregator a ∈A calculates new consumer demand profile

La,k
net(t,d) = ∑

c∈C a
lc,k
net(t,d), ∀t ∈ [1,T ]

and sends this information to the SO;
6 SO calculates new system demand profile

Lk(t,d) = ∑
a∈A

La,k
net(t,d), ∀t ∈ [1,T ]

and sends this information to the market;
7 The market calculates prices pk(t,d) according to (3.14);
8 The SO recalculates system cost as

Ck
SO(d) =

T

∑
t=1

pk(t,d) ·Lk(t,d), ∀t ∈ [1,T ].

if | Ck
SO(t,d)

Ck−1
SO (t,d)

−1|<= ε then

9 STOP;
10 else
11 Set k← k+1;
12 end
13 end
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Figure 3.21: Example of SO CM coordination algorithm performed for 2030 under Steady
State scenario.



Chapter 4

Scenarios

The key feature of ESMA is its ability to model long-term impact of demand side

management in the context of the British electricity grid. However, the model does

not make decisions in terms of the generation mix, carbon prices, or the type of

demand side management assumed in the system. Hence, when selecting simulation

scenarios these parameters were considered as an external input in terms of two

dimensions:

1. National electricity system - describing the physical evolution of the British

electricity grid, i.e. consumer technologies, generation mix, fuel prices, num-

ber of consumers; and

2. Demand side coordination regime - describing stakeholder behaviour in co-

ordinating the system demand, i.e. decentralised (coordinated by the con-

sumer) or centralised (e.g. coordinated by the system operator).

The national scenarios are based on the Future Energy Scenarios (FES) pro-

vided by the (National Grid, 2017a), whereas demand side management regimes

were constructed independently based on DSM regimes proposed in Section 3.5.

This chapter is split accordingly and describes the process of selecting scenarios for

each part.
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4.1 National Scenarios
Figure 4.1: The British energy system scenario matrix. Source: (National Grid, 2017a).

The National Grid considers four cases for the evolution of the electricity sys-

tem in Great Britain (GB): Steady State, Slow Progression, Two Degrees, and Con-

sumer Power. Scenarios are classified according to two dimensions: prosperity and

green ambition (Figure 4.1). The National Grid defines ‘prosperity’ as the amount

of finances available in the economy, which could be directed towards government

expenditure, investments in the private sector, and to consumers. ‘Green ambition’

reflects the level at which society and policies are prepared to direct finances to-

wards increasing environmental sustainability.

Steady State and Consumer Power scenarios assume the lowest level of green

ambition and see the least amount of renewable generation installed over the years.

This is in contrast to Two Degrees and Slow Progression scenarios, which project

the highest renewable capacity installed in the system in-line with the aspirations

for a sustainable grid (Figure 4.2).

In terms of prosperity, Consumer Power and Two Degrees scenarios assume

the highest level of wealth. Under the Two Degrees, finances are largely aimed
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towards reaching the green target, for which reason the system benefits from the

highest capacity of transmission level renewables and storage. Under the Consumer

Power, wealth is concentrated on the side of the consumers allowing them to acquire

distributed renewables and storage (Figure 4.3). Both scenarios see a large number

of electric vehicles (EVs). In contrast, Steady State and Slow Progression scenarios,

assume a low level of prosperity and hence the proliferation of distributed consumer

resources (such as electric vehicles, heat pumps and electric storage) is low (Figure

4.4).

Figure 4.2: Installed generation capacity by type. Source: (National Grid, 2017a).

Figure 4.3: Installed electric storage capacity. Source: (National Grid, 2017a).
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Figure 4.4: Number of electric vehicles on the road. Source: (National Grid, 2017a).

In order to narrow down the scenario scope, it has been decided to focus on

the boundary, or extreme cases with respect to balancing the grid. These extremes

originate from two sources: variability of electricity supply due to increased renew-

able generation capacity and unpredictability of demand due to the integration of

consumer technologies such as distributed power generators and flexible storage.

Extreme scenarios are considered with the objective of capturing the full spectrum

for the future evolution of the British electricity grid.

The Future Energy Scenarios (FES) are redefined with respect to system flexi-

bility and variability by considering the evolution of supply and demand sides sep-

arately (Figure 4.5). The y-axis characterises the system in terms of renewable

generation capacity, whereas the x-axis specifies the amount of flexible demand

resources (such as EVs and storage) assumed in the grid. This renders four bound-

ary scenarios as demonstrated in the figure. For this reason, the case where the

demand-side evolves according to Steady State and the supply-side according to the

Two Degrees+ FES scenario appears in the top left corner, as it corresponds to an

inflexible and variable system.

From the resulting four scenarios, the two most extreme cases are selected

which correspond to the least variable and least flexible system (Steady State) and

the most variable and most flexible system (Two Degrees+). Steady State scenario
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Figure 4.5: Flexibility-variability matrix for scenario chose.
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assumes a system, where demand is fulfilled mostly by fossil fuel, whilst nuclear

generation and storage capacity is low. In contrast, the Two Degrees+ scenario de-

scribes a system with a high renewable generation capacity (Two Degrees+ supply

scenario) and a high level of demand flexibility (Consumer Power demand sce-

nario). Together, Steady state and Two Degrees+ scenarios map out the full scope

for the future evolution of the British electricity system. Consequently, the data be-

ing fed into the model is based on the values related to each scenario for supply and

demand sides (see Appendix A).

In order to conserve time when running the simulations three snapshot years

are considered: 2015, 2030 and 2050. Year 2015 represents the base year against

which the model is calibrated, 2050 as the year furthest into the future which ESMA

can model (based on data availability), and 2030 as a midway point between the two,

allowing to check the validity of the results and extrapolate the data in-between1.

1Modelling every single year for the period 2015-2050 is possible with ESMA but, considering
the time it takes to run each single year and the level of uncertainty regarding the future evolution of
the system, the benefit of doing so is not justified.
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4.2 Demand side response regimes
For demand side coordination, three hierarchal levels have been identified with the

respect to the stakeholder which is responsible for scheduling. These range from

totally distributed (performed by consumers), through semi-centralised (performed

by the aggregators), to totally centralised when the System Operator oversees the

whole process (see Figure 6.1).

Figure 4.6: Graphical representation of stakeholder levels and their interaction.
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A note on terminology. It is important to mention that throughout the whole sim-

ulation, it is assumed that consumer resources are scheduled automatically via a

smart demand controller system (subject to consumer participation in DSM).
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To model different levels of DSM uptake, variables conDR and aggDR are in-

troduced which determine the share of consumers and aggregators which participate

in DSM. Both parameters lie between the values of 0% (no participation) and 100%

(all participate). The impact of each DSM regime is measured under Steady State

and Two Degrees+ scenarios in terms of system and consumer costs, greenhouse

gas emissions (GHGs), and system demand peak.

4.2.1 Consumer DSM scenarios

At the consumer level three types of demand side management regimes are con-

sidered: CON CM, CON CM+, and CON CM+(LEARN). Algorithm CON CM

represents the behaviour of a savvy consumer, who schedules demand in order to

minimise the day-ahead cost of power based on the predicted real time price for

electricity (see Section 3.5). Algorithm CON CM+ evolves during the course of this

PhD and represents an enhanced version of CON CM, where consumer response is

controlled via a centrally-set damping term α in order to avoid herding (see Section

6.3.1). In algorithm CON CM+(LEARN) consumers can adapt to the market by

learning consumer-specific damping term αc themselves (see Section 6.3.2).

Regime CON CM is considered in order to identify the conditions when con-

sumer herding might become harmful to the system and regime CON CM+ to

demonstrate how controlling consumer response can help alleviate this problem.

With CON CM+(LEARN) we investigate whether complete consumer autonomy

in demand scheduling is possible without compromising the security and stability

of the grid. For each consumer DSM regime, the simulation is run for three snap-

shot years (2015,2030, and 2050) and two national scenarios: Steady State and

Two Degrees+ (Table 4.1). For regime CON CM, we investigate how consumer

participation in DSM affects the system by considering three conDR settings (0%,

50% and 100%). Each DSM regimes is evaluated against the base case (when all

stakeholders are passive) in terms of system and consumer costs, greenhouse gas

emissions and system demand peak. Table 4.1 summarises the parameters for con-

sumer DSM scenarios.
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Table 4.1: Simulation scenarios for consumer DSM regimes.

DSM regime National scenario Year conDR

Base case Steady State,Two Degrees+ 2015,2030,2050 0%

CON CM Steady State,Two Degrees+ 2015,2030,2050 50,100%

CON CM+ Steady State,Two Degrees+ 2015,2030,2050 100%

CON CM+(LEARN) Steady State,Two Degrees+ 2015,2030,2050 100%
Note: For regimes CON CM+ and CON CM+ 50% consumer participation level was not
considered since comparison to other DSM regimes was done when conDR = 100% which
corresponds to the most flexible scenario.

4.2.2 Aggregator DSM scenarios

At the aggregator level, two DSM regimes are considered: AGG DF and AGG CM

(see Section 3.5 for details). In algorithm AGG DF, the aggregator serves the grid

by negotiating consumer demand for the purpose of smoothing system load. Hence

by deploying AGG DF, we explore the benefits of aggregator-led DSM. In algo-

rithm AGG CM, the aggregator actively minimises the cost of purchased power in

the wholesale market, allowing to investigate the issues which may arise as a result

of aggregators competing in the wholesale market.

In order to mimic the impact of DSM uptake by consumers and demon-

strate the benefits of regime AGG DF, parameter conDR is varied between 0%-

100%. Similarly to consumer DSM scenarios, the simulation is carried out for the

two national scenarios (Steady State and Two Degrees+) and three snapshot years

(2015,2030,2050). The benefits of AGG DF are evaluated against the base case

(when all stakeholders are passive) in terms of system and consumer costs, GHG

emissions and system demand peak (Table 4.2).

Table 4.2: Simulation scenarios under AGG DF coordination regime.

DSM regime National scenario Year conDR

Base case Steady state,Two Degrees+ 2015,2030,2050 0%

AGG DF Steady state,Two Degrees+ 2015,2030,2050 50%,100%

It is demonstrated that aggregator herding is possible by deploying algorithm
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AGG CM. The damping parameter α (used in the algorithm to control consumer

response to signalling) is varied in order to simulate different levels of aggregator

cost minimising behaviour. When α is small, the aggregator instructs consumers to

use more of their flexibility, whereas when α is high the aggregator penalises con-

sumers for deviating too much from the previous schedule. The simulation is run for

the period 2015-2050 in the Two Degrees+ scenario assuming that all aggregators

cost minimise (Table 4.3).

Table 4.3: Simulation scenarios under AGG CM (aggDR=100%).

DSM regime National scenario Year Alpha setting (α)

AGG CM Two Degrees+ 2015, 2030, 2050 0,0.005,0.05,0.5

For the last part, consumers are allowed to switch aggregators depending on the

offered retail tariff. The rate of switching is varied from daily to quarterly in order

to investigate how it might affect system prices and consumer costs. The analysis is

performed when two aggregators with different resources compete for consumers in

2050 Two Degrees+ scenario (the most variable and flexible system) and compared

to the base case (when all stakeholders are passive).

Table 4.4: Simulation scenarios under AGG CM coordination regime with consumer
switching.

DSM regime National scenario Year Consumer switching rate conDR

Base case Two Degrees+ 2050 none 0%

AGG CM Two Degrees+ 2050 none,daily,monthly,quarterly 100%



4.2. Demand side response regimes 116

4.2.3 System Operator coordination scenarios

The benefits of a centrally coordinated DSM are investigated by deploying algo-

rithm SO CM, which involves the System Operator communicating the cost of gen-

erating electricity directly from the market to the aggregators in real time (see sec-

tion 3.5.3 for mathematical formulation). Similarly to the previous scenarios, the

simulation is run for three snapshot years (2015,2030 and 2050) and two national

scenarios (Steady State and Two Degrees+) assuming that all consumers and aggre-

gators participate. The benefits SO CM are evaluated against the base case (when

all stakeholders are passive) in terms of system and consumer costs, GHG emissions

and system demand peak (Table 4.5).

Table 4.5: Simulation scenarios under SO CM coordination regime.

DSM regime National scenario Years conDR aggDR

Base case Steady state,Two Degrees+ 2015,2030,2050 0% 0%

SO CM Steady state,Two Degrees+ 2015,2030,2050 100% 100%



Chapter 5

Model validation

The following chapter describes the process of validating ESMA. The purpose of

doing so is two-fold: (1) to assess how good the model is at reproducing historical

data and (2) to compare the output from ESMA against the Future Energy Scenarios

developed by (National Grid, 2017a). The chapter is split accordingly.

In part one, output from ESMA for wholesale prices, demand and generation

volumes is compared to historical data in 2015 (which is referred to as the base

year). In part two, ESMA output is compared to the FES dataset for the period

2020-2050. The simulation is run for two key scenarios Steady State and Two De-

grees+ and assessed in terms of reproducing prices, annual demand and generation

volumes. Since FES data is used as an input to ESMA, comparing the two models

serves as a check that the programmed interactions within ESMA are valid.

Validation is performed for the base case, without demand side management

(DSM) for two boundary scenarios: Two Degrees+ and Steady State. This is be-

cause DSM is modelled explicitly in ESMA, therefore it is important to validate

the case when all stakeholders are passive. Moreover, DSM can be implemented

according to a multitude of scenarios and therefore it would be unreasonable to

validate ESMA against only one or a few of them. It is noted here that both his-

torical and FES datasets include a level of DSM, but it is not possible to detangle

the system from the impact of DSM and so the data is taken assuming no DSM.

Considering the level of uncertainty in modelling future consumer flexibility, it is

deemed appropriate to make this assumption.
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5.1 Historical data
ESMA is validated against the base year (2015) by comparing generated system

demand, prices and generation volumes to historical data.

A note on model assumptions. It is assumed that in the base year consumers do

not participate in demand side management, however the system can utilise pumped

storage in order to meet demand. This assumption allows us to obtain a reference

point with regards to which consumers are considered as passive.

5.1.1 System demand

Figure 5.1 shows an hourly plot of historical and modelled system demand values

split by season. The high correlation coefficient suggests that ESMA is effective at

recreating the historical demand curve.

Figure 5.1: Comparison of hourly simulated and historical demand data by season in 2015.
Source: ESMA and (National Grid, 2015c).
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However, it is possible to see that the agreement between modelled and histor-

ical data is the worst for the winter season (r = 0.87). This can be explained by the

fact that ESMA does not include Economy 7 consumers (representing 16% of total

residential consumers), who benefit from a lower night tariff and in 2015 (BEIS,

2017a).

Looking at the hourly demand profiles confirms this hypothesis (Figure 5.2).

From the figure it can be seen that in the winter historical demand is slightly higher

at night which agrees with the behaviour of Economy 7 consumers who tend to

operate storage at night. On the whole, the demand curve modelled by ESMA shows

an acceptable level of agreement with historical data with an average correlations

coefficient of 0.92 for 8760 hourly demand data points.

Figure 5.2: Examples of system demand curves for winter and summer weekdays and
weekends in 2015. Source: ESMA and (BEIS, 2017a)
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5.1.2 Electricity generation

Figure 5.3 compares historical and modelled generation mix for four seasons in

2015. According to the figure, the use of nuclear, imports, renewables and pumped

storage by ESMA is in good agreement with historical data. However, the model

underestimates the use of gas, whilst overestimating the use of coal for summer and

spring days in particular. This is because in ESMA the price for primary fuels is

fixed across the year, whereas in reality it fluctuates throughout the day. By taking

an average low price for coal in 2015, ESMA prioritises the use of coal-fuelled to

gas-fuelled generation. In fact in 2015, the price for natural gas in the UK fell 26%

during the year, which explains why according to historical data gas was used more

in generating electricity (especially towards the second half of the year) (Ofgem,

2016b). It is also possible to note that compared to historical data, ESMA generates

slightly more electricity in each season. This is because ESMA runs off the FES

dataset, which assumes a slightly higher level of consumption (likely due to a higher

level of losses experience in the real system).

Figure 5.3: Comparison of simulated and historical generation mix by season in 2015.
Source: ESMA and (National Grid, 2015c).
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Figures 5.4 and 5.5 demonstrate how ESMA dispatches different types of gen-

erators in the summer and winter days.

Figure 5.4: Comparison of hourly simulated and historical generation profiles for summer
days in 2015. Source: ESMA and (National Grid, 2015c).

In the summer, it is visible how the model underutilises gas power plants whilst

compensating by coal and pumped storage (Figure 5.4). In addition to the issue of

static fuel prices, the shape of the modelled demand curve could explain the dif-

ference in historical generation mix and that modelled by ESMA. A slightly lower

demand at night and a slightly higher peak during the day, mean that it is cheaper

for ESMA to run coal and switch on the gas only for a few hours during the day in

combination with pumped storage.

Similar observations can be made in the winter days, where the model does not

run gas overnight (Figure 5.5). ESMA also seems to allow a sharper ramping of the

gas generators, e.g. 2nd February. Finally, historical imports fluctuate throughout

the day, whereas in ESMA imports are assumed to be constant throughout the year

(see Section 3.4.5.3).

These observations highlight the limitation of ESMA, which models each tech-

nology as one large power plant generating electricity at short run unavoidable cost,
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Figure 5.5: Comparison of hourly simulated and historical generation profiles for winter
days in 2015. Source: ESMA and (National Grid, 2015c).

rather than many small heterogeneous generators. In addition to this, many op-

erational details such as (ramping time, part load, spinning reserve, etc.) are not

modelled. However, on the whole the shape of the generation curve and the priority

of the technologies chosen by ESMA appear to resemble historical data within ac-

ceptable limits. An improvement to the model could be feeding more dynamic fuel

prices and modelling multiple generators.

5.1.3 Electricity prices

In the last part of historical data assessment, ESMA is tested in terms of recreating

historical wholesale electricity prices taken from the exchange (APX Group, 2015).

Similarly to system demand validation, analysis of hourly prices is performed for

different seasons (Figure 5.6). It is noted that the noise in the exchange price data

has been removed in order to obtain a cleaner demand-price relationship by fitting

a polynomial to historical data (see Appendix E.1). This is justified by the fact

that short term pricing includes many activities which do not relate to the pure

cost of generating electricity, such as trading for arbitrage and hedging. The high
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correlation coefficients suggest a good agreement between simulated and historical

prices.

Figure 5.6: Comparison of hourly simulated and historical electricity prices in 2015.
Sources: ESMA and (APX Group, 2015).

In Figure 5.7, four exemplary days are assessed in terms of the shape of the

price curves for historical and generated data. Overall, warmer days show a much

smoother profile compared to the colder days. As a consequence of not modelling

Economy 7 consumers, the observed prices are lower at night (i.e. between 00:00

and 06:00), which is especially noticeable in the winter on the 2nd February.
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Figure 5.7: Comparison of hourly simulated and historical electricity prices for winter and
summer days in 2015. Sources: ESMA and (APX Group, 2015).

5.2 Future Energy Scenarios
Similarly to validation against historical data, ESMA is assessed against FES data

in terms of system demand, generation and prices. Here two boundary scenarios are

considered (Steady state and Two Degrees+) as formulated in Section 4.

5.2.1 System demand

Although FES dataset does not offer an hourly demand curve, it does provide an

annual demand peak which is compared to the modelled data in Figure 5.8. On the

whole the two datasets are in good agreement with a discrepancy within a few GW.

In Figures 5.9 and 5.10, the consumption data is checked against FES data

which is used by ESMA as an input. Having perfect agreement between ESMA and

FES data output acts as a check that ESMA functions as expected.
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Figure 5.8: Comparison of system demand peaks modelled by ESMA against FES for
Steady State and Two Degrees+ scenarios in 2015-2050. Sources: ESMA and
(National Grid, 2017a)

Figure 5.9: Comparison of electricity consumption modelled by ESMA and FES for Steady
State and Two Degrees+ scenarios in 2030. Sources: ESMA and (National
Grid, 2017a)
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Figure 5.10: Comparison of electricity consumption between ESMA and FES for Steady
State and Two Degrees+ scenarios in 2050. Sources: ESMA and (National
Grid, 2017a)

5.2.2 Electricity generation

In Figures 5.11 and 5.12, the sources of generation utilised by ESMA are com-

pared against the FES data for Steady State and Two Degrees+ scenario. For the

Steady State scenario it can be seen that FES assumes a higher use of biomass and

CHP. This is likely due to a high biomass price assumed in ESMA, as a result of

which coal is prioritised over biomass generation. This highlights a limitation of

the model which considers only one average price of biofuel. In reality, there are

different types available in the market with a wide range of prices. Especially when

modelling in the far future, it is difficult to predict the evolution of biomass prices,

so the value has been fixed in the modelling environment. For the years 2030-2050,

the generation mix seems to be in good agreement between ESMA and FES.

For Two Degrees+ scenario, FES dataset also contain a higher share of gen-

eration from biomass and a slightly lower share from gas. The rest of generation

sources seem to be in good agreement. The discrepancies between the types of

technologies used to generate electricity in FES and ESMA can be explained by

different assumptions made for generator cost characteristics1.

1This information regarding generation technology characteristics is not disclosed by the Na-
tional Grid and so it is not possible to compare it to the assumptions made in this assumptions
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Figure 5.11: Comparison of electricity generated by source from ESMA and FES un-
der Steady State scenario, 2020-2050. Sources: ESMA and (National Grid,
2017a)

Figure 5.12: Comparison of electricity generated by source from the model and FES data
under Two Degrees+ scenario, 2020-2050. Sources: ESMA and (National
Grid, 2017a)
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In Figures 5.13 and 5.14, the generation values from embedded solar are

checked against FES data for different sectors. Perfect agreement between FES

and ESMA datasets ensures that the model works as it should.

Figure 5.13: Comparison of electricity generation from embedded solar between modelled
and FES data for Steady State and Two Degrees+ scenarios in 2030.

Figure 5.14: Comparison of electricity generation from embedded solar between modelled
and FES data for Steady State and Two Degrees+ scenarios in 2050.

In Table 5.1 we summarise the differences between ESMA and FES modelling

frameworks, which lead to the above discussed differences in observations.
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Table 5.1: Comparison of assumptions made in ESMA versus FES model.

Assumption
component

FES ESMA

Gas supply and
demand

Imports are available when required Gas network not modelled

Renewables
support mecha-
nism

Renewable obligations until 2017 and
Contracts-for-Difference after

Not considered

Capacity Mar-
ket

All scenarios include the results from auc-
tions completed before, and including, the
T-1 Auction held in February 2017

Not considered

Exchange rates Fixed profile across all scenarios for ex-
change rates with US dollar and the euro.

Fixed at 2017 level

Oil, gas and
coal price

A single price forecast across all scenarios
and fixed across the year

Same as in FES

Biomass and
nuclear price

[Information not available] Calculated based on (DECC,
2012; BEIS, 2016) (see Ap-
pendix C.1)

EU emissions
trading scheme

Base prices for the EU ETS are used in all
of the scenarios and fixed annually

Same as in FES

Population A fixed profile is applied across all scenar-
ios - reaching approximately 75 million by
2050

Growth rate same as in FES

Generation ca-
pacities

All scenarios are in line with the Gov-
ernment’s policy to remove all unabated
coal from the electricity generation mix by
2025

Same as in FES

Renewable
generation
profiles

[Information not available] Average profiles obtained
from (Pfenninger and
Staffell, 2016)

Distributed en-
ergy resources

Depends on the level of prosperity as-
sumed in the scenario

Same as FES

Electricity de-
mand profiles

[Information not available] Taken from (Elexon, 2017a)

Heating pro-
files for non-
domestic
consumers

[Information not available] Calculated based on sea-
sonal differentials in de-
mand

Heating pro-
files for domes-
tic consumers

[Information not available] Taken from (Cambridge En-
ergy, 2017)
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5.3 Sensitivity analysis
Figure 5.15 demonstrates the results of the sensitivity analysis performed in 2017

(Steady State). Each parameter in the left column is varied from the default value by

+/- 25% and the impact is reported in terms system cost and greenhouse gas (GHG)

emissions as a percentage change relative to the default case.

Figure 5.15: Sensitivity analysis, 2017 (Steady State). Source: ESMA.

The model appears to be most sensitive to the level of non-deferrable demand,

experiencing over 40% change in system cost and GHG emissions as a result of

25% change in total non-deferrable demand. As expected, higher demand leads to

an increase in system cost and GHG emissions, whereas decreasing demand by the

same amount leads to the opposite effect. The effect is not symmetric.

The other two parameters which noticeably influence the model are coal and

wind capacity leading to 5-16% fluctuations in GHG emissions and a few percent-

age change in the value of system cost, as a result of 25% change in the parameter

value. As expected, the level of emissions increases as wind capacity goes down

and coal capacity goes up and vice versa. Changing capacity of resistance heating

(RH) by 25% leads to a 5% change in system cost and GHG emissions. This is
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explained by the fact that heating electrification leads to an increase in total demand

for electricity in the system. The rest of the parameters have a minor impact on the

system cost and GHG emission level.

Comments on validation: Although important to assess against a different model

output, the projections are done far in the future and so slight discrepancies between

FES and ESMA data are deemed acceptable. The validation process has been able

to show that ESMA is successful in recreating historical data as well as being in

good agreement with the National Grid model for future energy scenarios. Certain

limitations of ESMA have been discussed, however the reader is reminded that the

focus of this work is to investigate the issues of system control and cost allocation

to different types of consumers in the context of DSM, and so a slight deviation of

modelled output from historical and FES data is deemed acceptable.

One important difference between ESMA and the FES model is that the lat-

ter includes gas network modelling, whereas the former doesn’t. Considering that

around 40% of electricity demand in the UK is met by gas-fired power plants (often

the marginal source of generation), gas and electricity networks are closely inter-

connected for this market (DECC, 2015). Hence, gas demand profile can strongly

influence the dispatch of generation resources and the price of electricity for end-

users. An assessment, produced by the UK Energy Research Centre, concludes

that electricity and gas system reliability in the UK can be significantly improved

through investing in system flexibility (Watson et al., 2018). The report demon-

strates the importance of demand side response and natural gas storage on reducing

loss-of-load expectation (LOLE) and Expected Energy Unserved (EEU) (Figures

5.16 and 5.17. In fact, the introduction of a gas storage equivalent to the decommis-

sioned Rough facility led to as much as 50% reduction in EEU (from 219 mcm to

105 mcm) relative to the business-as-usual scenario in the Low Carbon scenario in

2050. The effect on LOLE is stronger in 2030 leading to a drop from 1̃3.5 hrs/year

to just over 5 hrs/year.

A number of researchers state the importance of modelling the electricity and

gas networks together (Chaudry et al., 2014). This leads to a more accurate rep-
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Figure 5.16: Gas system LOLE in 2030 and 2050. Source: (Watson et al., 2018).

Data labels show EEU in 2050 (mcm). Peak daily demand in 2016 is 370mcm

Figure 5.17: Impact of additional gas storage capacity on gas system LOLE. Source: (Wat-
son et al., 2018).

Data labels show EEU in 2050 (mcm). Peak daily demand in 2016 is 370mcm

resentation of flexibility services (especially when district heating it considered),

power price determination and scheduling of supply resources. However, it does

significantly complicate the modelling framework. Considering the aim of this re-

search and time availability to deliver it, the modelling of the gas network is left

outside of the scope of this work.



Chapter 6

Results and discussion

As per the scenarios constructed in chapter 4, the impact of DSM is analysed in

the context of the British electricity grid at three hierarchal levels for two national

scenarios for the period 2015-2050 (Figure 6.1).

Figure 6.1: Combination of simulation scenarios.

+ 

National scenario System coordination 

2015-2050 

To recap, two boundary scenarios for the evolution of the British electricity

system are considered: the least variable and flexible (identified as Steady State)

and the most variable and flexible (identified as Two Degrees+). For each of the
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national scenarios, the long-term impact on the electricity system is explored when

consumer demand is managed by stakeholders from one of the three hierarchal lay-

ers: consumer, aggregator and the System Operator (referred to as the DSM regime).

The impact of each DSM regime is measured by tracking the changes in elec-

tricity cost (for the system and consumers), demand and the level of greenhouse gas

(GHG) emissions relative to the case when all stakeholders are passive (referred to

as the base case) for snapshot years 2015,2030 and 2050. The analysis is split into

three parts based on the type of coordination taking place.

In part one, the simplest form of DSM is assumed by deploying algorithm

CON CM, whereby consumers pursue own selfish objective of minimising the cost

of electricity based on the real-time price (RTP)(see 3.5.1). We explore the extent

to which this approach is beneficial to the grid and the threshold point at which con-

sumer herding towards the same periods of low electricity prices can be harmful to

the system, leading to increased system cost and greenhouse gas (GHG) emissions.

In part two, the consequences of aggregator-led DSM are investigated,

whereby aggregators instruct consumers on how to schedule. Firstly, we consider

a model where aggregators serve the grid through deploying algorithm AGG DF

and demonstrate the benefits of a well-coordinated DSM to the system as well as

individual consumers. We then look at the case where aggregators become aggres-

sive and use demand scheduling to actively minimise the cost of purchased power

from the grid. Similarly to part one, we explore the threshold at which ‘herding’ of

aggregators towards low prices can lead to negative consequences for the system.

Part two is concluded by demonstrating how aggregator herding can be overcome

through centrally controlled DSM. For this algorithm SO CM is deployed, whereby

the System Operator communicates with the aggregators and the market during the

coordination process. The two algorithms AGG DF and SO CM are compared in

terms of financial savings to the grid and the amount of GHG emissions avoided

due to the deployment of each DSM regime.

In part three we explore the possibility of a decentralised consumer DSM by

developing algorithm CON CM into CON CM+ by means of introducing a damp-
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ing term α which controls the strength of consumer response to real time elec-

tricity prices. We explore a range of potential outcomes under CON CM+ regime

by varying α as well as consumer participation rate in DSM (conDR). Algorithm

CON CM+ is then further enhanced by allowing consumers to learn α based on

their daily bills, which renders a completely autonomous decentralised DSM regime

CON CM+(LEARN). The results chapter is concluded by comparing all DSM

regimes: CON CM+ (with and without learning), AGG DF and SO CM. The suc-

cess of each algorithm is assessed in terms of the benefits it brings to the system

as well as each individual consumer. The key point of discussion is the process of

fairly allocating the benefits from DSM to different types of consumers considering

that they have different resources and therefore level of influence on the wholesale

electricity prices.

6.1 Part I: How far can dynamic pricing take us?

Informing consumers of the true electricity generation cost via dynamic prices (e.g.

TOU or RTP) is often considered as a panacea to achieving more sustainable elec-

tricity consumption. A large pool of academic research reports on the benefits of

dynamic pricing in terms of lowering system cost, consumer bills and system emis-

sions (Zakariazadeh et al., 2014; Houwing and Ilic, 2008). ‘The Triad’ scheme

deployed in the UK is a perfect example of how information about real-time whole-

sale prices can help reduce system demand peaks and lower the cost of electricity

generation (National Grid, 2015d). However so far, the proportion of consumers

which participate in DSM has been relatively low, mainly limited to commercial

and industrial end-users which are controlled by aggregators, e.g. KiWi Power and

Enernoc (Power, 2018; Enernoc, 2018). In addition to this, studies assessing the

impact of DSM rarely perform the analysis for the future, and so the full impact of

DSM based on dynamic pricing has not been explored.

In order to engage domestic consumers, the UK government has set a target to

equip every household with a smart meter by 2020 with the aim of informing end-

users of their electricity usage and wholesale electricity prices in real time (Ofgem,
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2018a). Yet, with a higher proportion of ‘smart’ and flexible end-users it may be a

case that consumer response to RTP may lead to the creation of new demand peaks

and increased electricity prices as a result of the market herding towards the same

periods of low electricity prices. To elaborate, as consumers become informed of the

hours when generation from renewables is high (and prices are low), they will aim

to shift flexible demand to those periods in order to minimise the cost of electricity.

Yet, if enough consumers act in a similar manner, the shifted demand will create

new peaks in the system and as a consequence increase electricity prices. Such

proactiveness on the demand side, may also make it harder for the System Operator

to predict electricity demand and balance the grid.

Figures 6.2 and 6.3 demonstrate with a simulated data from 2030 under Two

Degrees+ scenario how simultaneous cost minimisation by consumers can lead to

more volatile system demand and electricity prices. Figure 6.2 demonstrates what

happens to the daily electricity demand curve as more consumers (represented by

conDR parameter) shift demand to period of low electricity prices (based on the day

ahead wholesale price information). Hence, as consumers receive the same whole-

sale price information the react in a similar manner, which creates new demand

peaks. A higher share of consumer adopting this simple strategy leads to a more

extreme effect.

Such behaviour can result in suboptimal utilisation of renewable resources and

consumer storage, increased demand peaks and ultimately lead to higher and more

volatile electricity prices for the system and consumers (Figure 6.3). It is impor-

tant to note that the effect of such consumer DSM strategy is exaggerated but it

does highlight the limitation of the simple RTP-style demand response, where all

consumer receive the same price information.

In order to investigate when herding might occur and what it might mean

for the system, three snapshot years are modelled (2015,2030,2050) whereby con-

sumers cost minimise by deploying algorithm CON CM (see Section 3.5.1). We

consider 0%, 50% and 100% consumer participation in DSM and track system cost,

demand peaks and GHG emissions to evaluate the impact of this DSM regime on
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Figure 6.2: Simulated system demand with different consumer participation in CON CM,
11-13 April 2030 (Steady State). Source: ESMA

Figure 6.3: Daily system prices curve with different consumer participation in CON CM,
11-13 April 2030 (Steady State). Source: ESMA

the system. The benefits of DSM are investigated for different types of consumers

across four economic sectors (domestic, commercial, industrial and transport) by

calculating how their electricity bills change relative to the base case (when con-

sumers are passive).
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6.1.1 System demand and costs

In order to assess the impact of the simplest form of DSM (i.e. CON CM when

consumers optimise independently based on the RTP), we calculate the difference

in the annual system costs relative to the base case (when consumers are passive),

which is referred to as system savings1 (Figure 6.4). The reader is reminded that in

the context of ESMA system cost reflects the short run avoidable cost of generating

electricity and the cost of utilising the transmission and distribution network but

does not include the capital costs of the grid infrastructure and balancing costs.

Figure 6.4: Annual system savings with CON CM relative to the base case. Source: ESMA

Note: system costs include short run electricity generation costs and the use of the network
but ignore capital costs of the grid infrastructure and the grid balancing costs.

The results (subject to the modelling assumptions) suggest that with 50% con-

sumer participation level the system experiences savings, whereas with 100% con-

sumer herding leads to system losses as early as 2020 in Two Degrees+ and 2030

in the Steady State scenario (as indicated by the negative values of savings on the

chart). We note that prior to 2040 the system sees higher losses in the Two Degrees+

scenario (£173 million versus £38 million in 2030), whereas by 2050 the losses are

higher in the Steady State scenario (£1.2 billion versus £1 billion). This can be

1Hence negative savings correspond to losses
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explained by the difference in the capacities of renewables and flexible consumer

technologies assumed in each scenario.

More consumer flexibility and a lower level of renewables (hence a steeper

price curve) exaggerates the effect of DSM on system costs. On the contrary, a

lower level of consumer flexibility and renewables in the grid (hence a shallower

price curve) dampen the effect of DSM, as consumers see less financial benefit from

shifting demand. However when there is a combination of low renewables and low

system flexibility (such as in Steady State scenario), or high renewables and high

system flexibility (such as in Two Degrees+ scenario) we see a combination of these

effects.

Figure 6.5 demonstrates how savings and losses are made under Steady State

(line A) and Two Degrees+ (line B) for an exemplary hour in 2050. Due to higher

system flexibility assumed in the Two Degrees+ scenario (line B), system demand

is able to deviate more from the base case when DSM is deployed. It is noted that

the difference in prices between the two scenarios is higher to the right side of the

base case line (i.e. in the case of losses) compared to the left side (i.e. in the case of

savings). When the system saves, higher flexibility in the Two Degrees+ scenario

overshadows the effect of marginally higher prices assumed for the Steady State

scenario leading to larger savings. On the contrary, when the market herds and the

system experiences losses the difference in the price level becomes more significant

and losses are higher under Steady State scenario.

As a result of this interplay between system parameters, prior to 2040 more

system flexibility in the Two Degrees+ scenario overshadows the relative contri-

bution from renewables on keeping prices low and the observed losses are higher

compared to the Steady State scenario. Post 2040, consumer flexibility catches up

in the Steady State scenario and coupled with a steeper electricity price curve, re-

sults in higher system losses compared to the Two Degrees+ case. Using the same

logic it is possible to explain why savings are higher in the Two Degrees+ scenario

compared to the Steady State case, i.e. when 50% of consumers participated in

CON CM. Across the two national scenarios maximum system losses reach £173
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Figure 6.5: Demonstration of system losses and savings with CON CM calculated for an
exemplary hour, 2050. Source: ESMA

million per year in 2030 and £1 billion per year in 2050.

Figure 6.6 demonstrates the effect of consumer cost minimisation on the

wholesale electricity prices.

In 2015 the system benefits from a 0.2% drop in the average value and a 5%

drop in the volatility of the wholesale prices, which is in-line with the earlier obser-

vations regarding system savings. In 2030 it is possible to see a marginal reduction

in the volatility as well as the mean price in the Steady State scenario due to a limited

capacity of flexible consumer resources. For the remaining years, 100% consumer

participation in CON CM leads to higher and more volatile prices. In 2050 the an-

nual wholesale price volatility increases by almost 12%, whereas the mean goes up

by 3.4% in the Steady State scenario. For Two Degrees+ the negative consequences

of herding on the prices are lower, as a result of higher renewable capacity in the

system and lower prices as a whole.

Due to the limitations of the generation component in ESMA, looking only

at the wholesale prices does not provide the full picture of the impact of DSM

on the system. For this reason, the annual system demand peak is observed, as

it determines the network and reserve capacity requirements in the grid. Fig-

ure 6.7 demonstrates how the annual system demand peak changes as more con-

sumers cost minimise with CON CM. With 50% participation level system peak
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Figure 6.6: Wholesale price distributions with and without CON CM, 2015-2050. Source:
ESMA

decreases in the Two Degrees+ scenario, however with 100% consumer participa-

tion (conDR=100%) annual demand peak is increased immediately. The need for

extra network capacity and generation reserve as a result of herding amounts to

4.1GW and 4.9GW in 2030 increasing to 5.2GW and 9.2GW by 2050 in the Steady

State and Two Degrees+ scenarios respectively.
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Figure 6.7: Annual system demand peak with CON CM, 2015-2050. Source: ESMA

6.1.2 System GHG emissions

Not surprisingly herding has a negative effect on the level of greenhouse gases

(GHGs) emitted by the electricity system. Figure 6.8 shows the absolute change

in the annual level of GHGs relative to the base case as more consumers cost min-

imise. In fact, the system sees an increase in GHG emissions immediately even with

50% consumer participation level (when financial savings were observed to be posi-

tive). Only in the Two Degrees+ (2050) scenario with conDR=50% does the system

benefit from a reduction in the level of GHGs. These observations suggest that in

the Steady State and the earlier years of the Two Degrees+ scenario, reducing the

cost of electricity generation does not necessarily mean decreasing the amount of

GHGs emitted by the system. This happens for two reasons. Firstly, the system uses

more energy when utilising storage which is not 100% efficient. Secondly, the CO2

price is lower in earlier years (especially in the Steady State scenario), meaning that

the system chooses more flexible but polluting sources of generation.

Figure 6.9 shows the change in the generation mix relative to the base case in

2030 and 2050 for the two national scenarios, where a positive value indicates an in-

crease in the use of particular generation technology and a negative value a decrease.

As expected, increased consumer participation in CON CM leads to a higher level
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Figure 6.8: Change in the annual level of greenhouse gas emissions with CON CM relative
to the base case, 2015-2050. Source: ESMA

of generation in the system, met by consumer exports (solar and storage discharge2),

thermal generators (Steady State scenario), CCS and nuclear (Two Degrees+), and

pumped storage. This comes as a result of losses originating from the use of con-

sumer and system storage which is not 100% efficient. The amount of consumer

exports goes up with increased level of participation as more consumers aim to sell

electricity when the projected wholesale price for it is high. When conDR=50%,

CON CM has a net positive effect on the fuel mix in the Two Degrees+ scenario

leading to a decrease in the amount of energy generated from ‘other therm’ genera-

tors (mainly diesel and fuel oil) and pumped storage. However when conDR=100%,

the system utilises more thermal generation in order to accommodate for a demand

pattern with sharper peaks and troughs. Consumer herding also leads to the cur-

tailment of renewable energy as the system struggles to balances highly volatile

consumer demand which is not correlated with variable supply. This is especially

noticeable in 2050 Two Degrees+ scenario, where total curtailment of hydro, wind,

solar and other renewables amounts to over 11GWh when all consumers cost min-

imise.

2Partially fuelled by an increase in transmission level generation.
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Figure 6.9: Change in the electricity generation mix by source with CON CM relative to
the base case, 2030 and 2050. Source: ESMA

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP

In Figures 6.10 and 6.11,we look at the daily generation profiles in 2050 in

the winter and summer days in order to better understand how the generation pat-

tern changes as a result of herding. In the winter, sharper demand peaks lead to

a higher utilisation of flexible resources and pumped storage. It is possible to see

the difference between the two scenarios, i.e. in the Steady State the model utilised

mainly gas (red), whereas in the Two Degrees+ CCS, nuclear and renewables are

the primary sources of generation. The utilisation of other thermals and pumped

storage is similar in the two scenarios. One other difference is that in the Steady

State the system imports (on average 6GWh per hour) whereas in the Two Degrees+

the system exports (on average 1.1 GWh per hour) electricity.

In the summer, both scenarios benefit from an increased renewable generation.

As a result, in the Steady State scenario the system accommodated for a volatile



6.1. Part I: How far can dynamic pricing take us? 145

demand curve (in the case of herding) by deploying gas generators compared to

‘other them’ used in the winter. In the Two Degrees+, scenario increased level of

consumer exports leads to the curtailment of renewables as the system struggles to

absorb the excess renewable generation. In contrast to the Steady State scenario,

under Two Degrees+ the system utilises pumped storage (assumed to run at zero

cost) in order to accommodate for a more volatile demand curve. We also note that

the system starts to cycle nuclear generators in order prioritise the use of renewables

even though it is assumed to be the most expensive technology to cycle.
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Figure 6.10: Daily generation by source with and without CON CM (conDR=100%), 5-7
January 2050. Source: ESMA

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP
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Figure 6.11: Daily generation by source with and without CON CM (conDR=100%), 20-
22 June 2050. Source: ESMA

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP
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A note on generation model limitations. One of the limitations of the market

component in ESMA is that it does not penalise the generators for rescheduling on

the day. In reality, if a generator is scheduled to run for the day-ahead it incurs an

additional cost if it is required to change its schedule at short notice. In addition to

this there is no cost imposed on curtailing renewables like hydro, wind and solar. As

a result, the market is able to make use of these resources as it wishes. Hence, the

real cost of herding is likely to be higher than what has been shown here, especially

if the additional network and reserve requirements are considered. Nevertheless,

it is clear from our observations that herding due to consumer cost minimising be-

haviour can lead to some negative consequences for the system in the form of higher

system cost, GHG emissions and demand peaks.

6.1.3 Consumer costs

The impact of DSM on end-users is assessed by comparing their electricity bills

with and without CON CM. To remind the reader, consumer costs are calculated as

the sum of the product of their hourly residual demand (without renewable gener-

ation) and real time price for electricity during the year. The calculation does not

account for the retail uplift applied by utilities since the aim is to understand how

different types of consumers contribute to the total cost of generating electricity at

the system level.

Today most consumers buy electricity through a utility (or an aggregator in our

case), which has access to the wholesale market. Only some large end-users (e.g.

industry) can hold contracts directly with the generators. Therefore, it makes sense

to bill consumers at a flat tariff (based on average daily or monthly cost of power

purchased by the aggregator). However, seeing that consumers react to the RTP

and thinking of the future expectations from the ‘smart grid’ to operate on the real

time cost of generating electricity, the consequences of herding when consumers

are billed at RTP are investigated. Accounting consumer costs at RTP also exagger-

ates the issue of cost allocation to different types of consumers and highlights the

importance of appropriately structuring electricity tariffs in the context of DSM.



6.1. Part I: How far can dynamic pricing take us? 149

6.1.3.1 Analysis of different consumer sectors

We start by analysing the absolute change in the annual cost of power incurred by

each economic sector (Figure 6.38).

Figure 6.12: Absolute change in the annual consumer electricity bills with CON CM rela-
tive to the base case by sector, 2015-2050. Source: ESMA

In the Steady State scenario, it is the domestic sector which sees the highest

savings across all years (i.e. at 50% participation level, conDR=50%), but also the

highest losses in the case of herding (i.e. conDR=100%). In 2050 maximum sav-

ings by the domestic sector amount to £158 million per year, whereas maximum

losses reach £431 million per year. This happens for two reasons. Firstly, domes-

tic sector has the highest demand for electricity in the Steady State scenario. To

compare, residential end-users consume 136.7TWh of electricity in 2050 compared

to 101.2TWh by commercial, 72.7TWh by industrial and 15.5 TWh by transporta-

tion sectors (see Appendix F). Secondly, domestic sector is assumed to have more

thermal flexibility as a result of a higher number of electric heating (EH) units in-

stalled3. The combination of these two factors means that DSM has a larger impact
3The number of TES units is calculated as half the number of EH units)
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on the domestic consumer bills in the Steady State scenario, i.e. it leads to highest

absolute savings when prices are reduced and the highest losses when the prices are

high.

In the Two Degrees+ scenario, at 50% participation level (i.e. conDR=50%)

residential sector sees much higher savings in 2050 (£450 million per year) com-

pared to the Steady State scenario. When the market herds (i.e. conDR=100%)

domestic consumers experience minimal losses (£113 million per year), whereas

electric transportation pays an additional £362 million per year in 2050 (the highest

absolute increase across all sectors). This occurs because the residential sector is as-

sumed to have the highest share of solar capacity (25%) compared to non-domestic

sectors (12.5% each), and so becomes less exposed to the wholesale electricity mar-

ket in the Two Degrees+ scenario (especially in 2050 when renewable penetration

level is at its highest)(see Section B.1). On the other hand, electric transportation

witnesses higher demand for electricity in the Two Degrees+ (as a result of transport

electrification) compared to the Steady State (35 TWh versus 15.5 TWh) and as a

result experiences a significant increase in the annual bill.

Figure 6.13: Relative change in the annual consumer electricity bills with CON CM
(conDR=100%) relative to the base case by sector, 2015-2050.

In relative terms it is the transportation sector that ends up paying the price

for herding seeing an almost 17% increase in the annual electricity bill in 2050 in

both scenarios (Figure 6.40). The first reason for these observations is that electric

transportation constitutes the most flexible consumer since it essentially represents

one large electrical store. In addition to this, transportation does not experience a

change in the amount of energy consumed when DSM is deployed since electric

vehicles operate with the same level of losses in the base case (Figure 6.14).
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Figure 6.14: Absolute change in the annual consumer energy demand with CON CM rela-
tive to the base case by sector, 2015-2050.

In contrast, the residential sector experiences the highest increase in demand

for electricity (Figure 6.14), which explains how largest absolute losses in the

Steady State scenario are reduced in relative terms (calculated by dividing absolute

losses by the demand increase). The non-domestic sectors see relatively similar

impacts from DSM due to their likeness in the level and daily pattern of electricity

demand. In relative terms, out of all stationary consumers it is the industrial sector

which experiences the larger losses. In 2050, non-domestic bills go up by a few

percent in the Steady State and Two Degrees+ scenarios.

In Figures 6.15 and 6.39 we look closer at the impact of DSM on consumer

demand profiles in the case of the market herding (conDR=100%). In the Steady

State scenario it is possible to see that the domestic demand for electricity is higher

and more correlated with the price curve when compared to the other sectors, which

leads to higher level of losses experienced by the sector (Figure 6.15). For the

Two Degrees+ case, although the domestic sector contributes to the price peaks,

its residual load curve (calculated as the difference between demand and renewable
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generation) dips during the day due to more solar generation, leading to a reduction

in the exposure of the sector to the electricity market risk (Figure 6.39). Electric

transportation (being the most flexible sector) changes its demand curve from an

almost flat to a very variable profile that is highly correlated with the electricity

price curve, which leads to the highest relative losses in the case of herding for both

scenarios.

Figure 6.15: Consumer demand profiles with and without CON CM (conDR=100%) by
sector, 16 November 2050 (Steady State). Source: ESMA

Figure 6.16: Consumer demand profiles with and without CON CM (conDR=100%) by
sector, 16 November 2050 (Two Degrees+).

6.1.3.2 Analysis of different consumer types

It is of interest to look at how DSM impacts consumers of different types. We

consider 31 different consumer agents depending on the combination of resources

available to consumer (i.e. HP, RH, TES, PV, and ES) and his economic sector (i.e.
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domestic, commercial, industrial, and transport).

Since end-users of each type vary significantly in terms of size and resource

capacity, instead of looking at the absolute change in the annual electricity bill we

analyse the change in the average cost per unit of energy purchased over the year

(or the average price for electricity). Hence the impact of DSM is assessed by

comparing the price of electricity under CON CM to the base case (when consumers

are passive). The aim of this analysis is to investigate how DSM impacts inflexible

as well as flexible consumers, since the former are price takers whereas the latter

are price makers.

Figure 6.41 demonstrates how the price for electricity changes for consumers

without flexible resources in the case when all consumer cost minimise by deploy-

ing CON CM regime (conDR=100%).

Figure 6.17: Change in the annual electricity price for inflexible consumers with CON CM
(conDR=100%) relative to the base case by type, 2015-2050. Source: ESMA.
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It is evident that in the Two Degrees+ scenario consumers with PV benefit the

most from DSM with the domestic sector making the largest saving (-£4/MWh).

This happens because when the market herds, inflexible consumers with solar PV

are unable to shift demand or increase self-utilisation of solar power. Consequently,

these consumers end up selling the surplus generation at the higher price, whereas

the power they do purchase comes at a lower rate since after coordination demand

and price peaks shift to new time periods. The domestic consumers benefit the most

from this situation because their level of demand is less correlated with the solar

generation profile allowing them to export more during the day at high prices. Non-

domestic consumers with solar PV have a higher level of self-consumption during

the day and hence a lower level of export.

We note that this is not the situation in the Steady State scenario where con-

sumers with PV see an increase of around £1/MWh in 2030 and 2050. This is

because in the Steady State scenario electricity prices are on the whole higher (due

to a lower renewables capacity). Hence, the cost of purchased electricity is not cov-

ered by consumer profits from exporting renewable generation. With the exception

of domestic end-users, the remaining non-flexible consumers see a reduction in the

average price level up until 2030 and an increase in 2050 for both Two Degrees+

and Steady State scenarios. Domestic consumers with electric heating (i.e. with HP

and RH) do not see significant price increases in 2050 due to their demand profile

being less correlated with the price curve during herding.

In contrast to non-flexible consumers, flexible consumers see their average

electricity price increase as a result of the market herding (Figures 6.44 and 6.46).

Consumers of type 7 (with PV and ES) lose out the most paying at additional £60-

120 per MWh across the two national scenarios. In contrast to non-flexible con-

sumers with solar PV, those with PV and ES are able to herd towards periods of

high electricity prices. Consequently, they reduce self-utilisation in hope of mak-

ing a profit from the sale of electricity and end up purchasing power at the highest

rates whilst selling at the lowest. The biggest change is observed for domestic con-

sumers with ES and PV in the Two Degrees+ scenario. If in the base case they make
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Figure 6.18: Change in the annual electricity price for flexible consumers with CON CM
(conDR=100%) relative to the base case by type, 2015-2050. Source: ESMA.

£44/MWh in the case of herding they end up paying £76 per MWh in 2050.

From analysing the flexible consumer costs we observe that the negative im-

pact from herding is reduced as the level of non-deferrable load increases whilst

the flexibility level decreases. For this reason consumers with electric heating (HP

and RH) and storage (TES and ES) see smaller losses compared to consumers with

just electrical stores. When comparing consumers with the same stores but differ-

ent types of electric heating (i.e. RH with TES and HP with TES), we observe that

consumers with heat pumps (HP) experience higher losses compared to consumers

with resistance heating (RH). This is because the efficiency of a HP is higher com-

pared to RH meaning that the non-flexible load is lower whilst the storage capacity

is the same.

Finally, we note that consumers with just the electrical stores (including elec-
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Figure 6.19: Change in the annual electricity price for electric vehicles with CON CM
(conDR=100%) relative to the base case, 2015-2050. Source: ESMA.

tric vehicles Figure 6.46) see a reduction in the cost of electricity in the earlier years

which suggests that these consumers might adopt the cost minimisation strategy in

the nearby future. However, once total market flexibility becomes high enough,

herding harms these consumers the most. Compared to stationary consumers with

ES, electric vehicles see a lower increase in the price level (£10-12 per MWh) in the

case of herding. This comes as a result of limited charging capacity since EVs are

only allowed to shift the charging pattern and not to discharge into the grid.

Figure 6.20 shows only those consumers who make savings during coordina-

tion with CON CM with maximum participation rate (conDR=100%). We can see

that in 2015 almost all consumers profit from DSM, with the more flexible con-

sumers making the highest savings. However by 2030 only non-flexible consumers

benefit in the case of herding under CON CM. This is in line with one’s expectations

since non-flexible consumers are unable to shift demand and are therefore spared

of paying the high rates. In 2050 only inflexible consumers with PV benefit from

DSM. The fact that certain users benefits from herding when the system losses out,

highlights the potential for a conflict of interest between consumers and the system.

Moreover, if certain end-users benefit from a cost minimising strategy in the earlier
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years (e.g. those with ES), they are likely to continue with it in the future. Yet, at a

certain point consumer herding can be harmful to the system and flexible consumers

can end up suffering as a result of not adjusting to the new prices fast enough. In

the worst case, the market becomes chaotic and the System Operator will have to

interfere in balancing the grid, which can become expensive.

Figure 6.20: Annual consumer savings with CON CM (conDR=100%) by type, 2015-
2050. Source: ESMA.
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6.1.4 Sensitivity Analysis

It is noted that the behaviour described in this section is extreme and assumes the

presence of a smart home management device which will be able to perform the

scheduling. For one, it is likely that consumers (especially domestic) will not expect

the same rate for importing electricity as for exporting it, since the aggregator will

take a share of the profits in return for the access to the wholesale electricity market.

It is also a case that the System Operator is likely to make demand predictions taking

into account long-term (years and months) as well as short term demand patterns.

However, since the simulation is run with a gap of 15 years it was impossible to

simulate this behaviour.

In this subsection we explore how model parameters assumed for ESMA (in-

cluding export price, weight to past demand, and consumer storage capacity) affect

the system during DSM implementation and offer explanation and significance of

the observations.

6.1.4.1 Expected consumer export price

Figure 6.21 demonstrates system savings at different levels of the export price (cal-

culated as the percentage of the import price). It is possible to see that the herding

effect is reduced as the price for exporting electricity is lowered, as indicated by

the increasing level of savings. This happens because consumers see less benefit

in selling electricity and prioritise self-consumption. As a result, the system ex-

periences a smoother and more predictable demand pattern allowing it to utilise

renewable resources and storage more effectively. When the export price is zero,

in the Steady State the system starts to see losses post 2035, whereas in the Two

Degrees+ scenario the savings are positive reaching £1.2 billion per year in 2050.

Interestingly in the Steady State scenario savings are highest when the export

price is half the import price, but then go down when the export price drops to 33%

and 75% of the import price, indicating a non-linear relationship between the export

price and system cost. This happens because low export prices deters consumers

from exporting electricity, therefore limiting the amount of renewable energy avail-

able at the system level. Setting the export price too high leads to an elevated total



6.1. Part I: How far can dynamic pricing take us? 159

Figure 6.21: Annual system savings with CON CM (conDR=100%) with varying export
prices. Source: ESMA.

system demand as consumers operate more storage in order to export power in hope

of making a profit. The amount of consumer export then becomes too high and the

system fails to absorb it all, resulting in the curtailment of transmission level re-

newable generation. Hence, there is an optimal export price at which consumers are

willing to export electricity without causing chaotic demand.

In the Two Degrees+ scenario there is an abundance of renewable generation at

the transmission level, hence consumer exports are not needed for which reason the

case when the export price is set to zero achieves the highest savings. In contrast in

the Steady State scenario there are less transmission level renewables, therefore the

50% export to import price ratio works best by incentivising some consumer export

into the system.

6.1.4.2 Demand predictions

Another important parameter in the model is w, which determines the weight to

previous electricity demand in the system. The reader is reminded that the System

Operator uses w during the step of predicting day-ahead system demand L∗(t,d)

according to the following formula as described in Section 3.4.4:

L∗(t,d) = w ·Lagg(t,d)+(1−w) ·L(t,d−1), (6.1)
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where,

L(t,d−1) is the system demand outturn in the previous day,

Lagg is the system demand predicted by the aggregators, and

w ∈ [0,1] represents the weighing parameter to demand in the previous year.

When w = 0, the SO places no weight to past demand and only acts on the

current information received from the aggregators. In contrast when w = 1, the

SO is only guided by yesterday’s demand. In order to investigate the sensitivity

of the model to w, we observe the parameter for extreme settings, i.e. w = {0,1},

and observe total system cost when all consumers cost minimise in 2015, 2030 and

2050 in the Two Degrees+ and Steady State scenarios. The analysis is carried out

for 100% participation level only, since it was demonstrated to lead to the highest

level of herding.

Figure 6.22: Annual system cost with varying weight to past prices with and without
CON CM (conDR=100%), 2015-2050. Source: ESMA.

Figure 6.22 shows the variation in system cost with different settings for w.

From the figure, it is possible to see that the lowest system cost is achieved when

w = 0, corresponding to the case when the SO does not take past demand into

account at all. In fact, the system experiences savings even when all consumers

cost minimise (a case which lead to losses in the default scenario, i.e. w = 0.5).

The highest system cost is achieved when w = 1, corresponding to the case when
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the SO predicts day-ahead demand based only on yesterday’s demand information.

The middle case (w = 0.5) is the default setting and takes the average of past prices

and those predicted by the aggregators.

Figure 6.23 demonstrate how the System Operator makes a prediction for the

day-ahead system demand. The left chart shows the demand information obtained

by the SO: that from the day before (dashed line) and that received from the ag-

gregator (solid line). Chart on the right side, shows the demand profile predicted

by the SO. When w = 0 (solid line) the SO bases the prediction on the information

provided by the aggregators only, which is identical to the profile in the left chart

identified by the solid line. When w = 1 the SO predicts day-ahead demand predic-

tions basing it only on yesterday’s demand outturn (dashed line). Naturally, when

w = 0.5 the predicted demand profile is calculated as the average between the two.

Figure 6.23: Demonstration of how the SO makes a prediction for day-ahead demand with
CON CM (conDR=100%), 2050 (Two Degrees+). Source: ESMA.

Figures 6.24 - 6.27 demonstrate how the prediction process impact the system

when performed during a few consecutive days. When w = 0, the demand and price

profiles predicted by the SO remain fairly smooth as the SO ignores past data (Fig-

ures 6.24 and Figure 6.25). On receiving the predicted prices, consumers schedule

their resources to periods of low electricity prices as indicated by the green solid line

in Figure 6.24. This leads to the creation of new demand peaks. However, the peaks

always happen around the same periods since the price information sent by the SO

always has the same pattern. Hence, herding is limited by the consumer’s capacity



6.1. Part I: How far can dynamic pricing take us? 162

in being able to fill the valleys of the system’s non-deferrable demand (00:00-6:00).

Figure 6.24: Predicted and on-the-day system demand outturn with CON CM
(conDR=100%, w=0), 2-4 January 2050 (Two Degrees+). Source:
ESMA.

Figure 6.25: Predicted and on-the-day wholesale electricity prices with CON CM
(conDR=100%, w=0), 2-4 January 2050 (Two Degrees+). Source: ESMA.

In the case when the SO bases day-ahead predictions solely on the past data

(i.e. when w = 1), the daily system demand pattern shifts from day to day, i.e.

peaks on the 2nd of January turn into valleys on the 3rd of January and so on (Fig-

ure 6.26). The daily prices shift together with the demand profile, which leads

to situations where consumers schedule flexible demand to already existing non-

deferrable demand peaks (Figure 6.27). Hence the daily demand and price profiles

end up being much more volatile compared to the case when w = 0. This leads to

increased system costs as a result of suboptimal utilisation of renewable generation

at the transmission level and increased ramping of dispatchable generators.
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Figure 6.26: Predicted and on-the-day system demand outturn with CON CM
(conDR=100%, w=1), 2-4 January 2050 (Two Degrees+). Source:
ESMA.

Figure 6.27: Predicted and on-the-day wholesale electricity prices with CON CM
(conDR=100%, w=1), 2-4 January 2050 (Two Degrees+). Source: ESMA.

6.1.4.3 Consumer storage capacity

Finally, we investigate the sensitivity of the system to consumer storage capacity

by changing this parameter by 25% around the default setting. The sensitivity is

measured by tracking annual system cost and greenhouse gas (GHG) emissions as

well as consumer bills in 2050 (Two Degrees+).We consider the case when 100%

of consumers deploy CON CM (i.e. cost minimising based on RTP) since it renders

the most extreme case of herding allowing us to observe the changes more clearly.

From Figure 6.28 we can see that increasing consumer storage capacity leads

to higher system cost and the level of GHG emissions, as consumers have more

capacity to shift demand and herd. As we have seen earlier this leads to higher

demand peaks and more volatile and elevated prices. It is noted that the system is

marginally more sensitive towards domestic rather than non-domestic storage. This
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happens because domestic storage is smaller in size compared to commercial and

industrial users. This comes as a result of a higher number of heat pumps (HP) and

thermal storage (TES) assumed in the domestic compared to non-domestic sectors,

which allows more domestic consumers to shift thermal demand. To elaborate, in

the Two Degrees+ (2050) scenario almost all domestic consumers have a HP and

half of them have a TES. This means that when the number of electrical stores is

added in the sector it is almost certain that it will be added to an end-user with a HP

or to a consumer with a HP and a TES. Consequently, domestic consumers utilise

ES in combination with HP (and TES) which allows them to shift thermal as well

as non-thermal demand. In the non-domestic sectors it is more likely that an ES

unit will be added to an end-user without any thermal resources and so the impact

is lower. The observations of the annual level of GHGs are very similar to those of

system cost.

Figure 6.28: Sensitivity of system costs and GHG emissions to installed consumer stor-
age capacity with CON CM (conDR=100%), 2050 (Two Degrees+). Source:
ESMA.

Figure 6.29 demonstrates how changing consumer storage capacity affects

consumer losses as a result of herding under CON CM. Losses are calculated by

taking the difference between consumer annual bill under CON CM and the base

case (when consumers are passive). Different colours indicate the parameter be-
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ing changed, whereas different charts indicate the sector under consideration. As

can be expected consumer losses increase as their storage capacity increases, which

is in-line with the earlier observations of system cost. In fact consumers across

all stationary sectors are most sensitive to the changes in their own storage capac-

ity, especially the domestic sector. This is because higher storage capacity enables

consumers to herd more towards expensive time periods compared to their peers.

Electric transportation is almost equally sensitive to the changes in electric storage

capacity across all stationary sectors.

Figure 6.29: Sensitivity analysis of annual losses incurred by different sectors to in-
stalled storage capacity with CON CM (conDR=100%), 2050 (Steady State).
Source: ESMA.
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6.1.5 Conclusion of part I

In the first section of the results chapter, we investigated the simplest form of de-

mand side management CON CM, whereby consumers scheduled demand based

solely on the predicted real-time price for electricity. We considered three snap-

shot years (2015, 2030, 2050) for two national scenarios (Steady State and Two

Degrees+), where the impact of demand side management was assessed in terms

of system costs, GHG emission levels and system demand peaks as well consumer

electricity bills at different consumer participation level.

It was demonstrated that cost minimisation by consumers based on RTP, can

be beneficial to the system in the short term when consumer flexibility or consumer

participation in DSM is low. However, as the proliferation of flexible consumer

resources increases so do the risks of herding and chaotic market behaviour as con-

sumers try to adjust to daily wholesale prices. According to the simulation, con-

sumers tend to benefit together with the system, however inflexible consumers are

able to save when the market herds. This is a point of concern since it is possible

to imagine that consumers will follow their own selfish objectives, which can result

in compromising on the system values. The simulation has shown that flexible con-

sumers end up being more vulnerable to market prices since they have the capacity

to herd towards expensive time periods. Such outcome may deter consumers from

investing into flexible technology, which is counterproductive to the government

goals on engaging consumers and increasing system flexibility.

From performing the sensitivity analysis it was possible to show how the price

of consumer exports can serve as a tool to control herding. However, it is also

a case that by limiting exports of renewable energy generated by consumers the

availability of renewable energy at the system level is reduced. Another tool for

controlling herding is stabilising the predicted electricity prices which are sent into

the market, as has been demonstrated during the sensitivity analysis of the system

to parameter w (the weight to past demand used by the SO).

Of course, the scenarios discussed in this section are exaggerated and it is

likely that the System Operator would intervene before extreme events would occur.
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However, such interventions could cost the system and consumers dearly, and so it

is important to consider ways to avoid such negative consequences on the system

before they occur.

In the next section we discuss the role of aggregators in managing consumer

coordination and the benefits and risks it might bring to the system.
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6.2 Part II: The benefits and risks of aggregator-led

demand DSM
In the second section of the results, we explore the role of the aggregators in bal-

ancing the future electricity system. The reader is reminded that in the context of

this model an aggregator agent represents any entity which can pool consumers

together and act as a middle man between end-users and the wholesale market.

Hence, an aggregator can represent a utility retailing electricity to consumers, or

an online platform which coordinates their demand and generation. The reason for

such representation is that the boundary between a traditional utility (whose sole

responsibility is to retail wholesale electricity to end-users) and a traditional aggre-

gator (whose responsibility is to perform demand side management) is becoming

blurred. For example, it is now possible to be an electric utility through an online

platform and pool smaller consumers together to access wholesale markets without

necessarily being a large company.

We begin by investigating the benefits aggregators can bring to the system by

means of deploying algorithm AGG DF, which has been adapted from (Gan et al.,

2013). In the algorithm, an aggregator uses total consumer residual demand as a

proxy for price and negotiates the demand with consumers over a number of itera-

tions until the system converges. The result of such coordination is a peak reducing

demand side response. The upside of AGG DF is its simplicity in overcoming con-

sumer herding since it does not use system prices. However, its downside is the fact

that it does not take into generation from renewables at the transmission level.

In the second part of this section, we investigate potential issues which may

arise as a result of aggregators utilising DSM for the purpose of competing in

the wholesale and retail markets. This is demonstrated by deploying algorithm

AGG CM (developed from AGG DF), which is used by an aggregator to actively

minimise the cost of purchased power. Conditions are identified where aggregator

participation in AGG CM becomes harmful to the system, as they instruct con-

sumers to shift demand towards the same periods of low electricity prices (similarly

to consumer herding described in Section 6). We then explore the implications of
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consumers being able to switch aggregators and demonstrate that retail competition

can aggravate the negative consequences of herding and lead to higher system costs.

Finally, algorithm SO CM (extended from AGG CM) is deployed as a tool

for overcoming aggregator and consumer herding. In SO CM, the System Opera-

tor communicates with the market and the aggregators, thereby monitoring system

cost during demand side coordination. The superiority of algorithm SO CM to

AGG DF is demonstrated highlighting the importance of considering the system as

a whole when deploying DSM. This section is concluded by analysing how retail

tariff structure and storage capacity can affect consumer savings from DSM.

6.2.1 The value of aggregators in balancing the grid

6.2.1.1 System cost, demand and GHG emissions

Figure 6.30 shows the range of system savings achievable with AGG DF as more

consumers participate in DSM in the Steady State and Two Degrees+ scenarios. It

is clear that the system benefits from having more consumers participate in DSM.

Maximum system savings are noticeably higher under Two Degree+ amounting to

£1.64 billion a year in 2050 due to a higher degree of consumer flexibility assumed

for this scenario. It is noted that inflation is not accounted for during the calculation

of wholesale prices.

These savings come as a result of lower and less volatile electricity prices (Fig-

ure 6.31). As can be seen from the figure and the table underneath, mean electricity

prices and their volatility consistently drop during the years as result of deploying

AGG DF. Across the two scenarios, the change is more notable for the Two De-

grees+ case, which can be explained by the higher capacity of variable renewables

and consumer flexibility. In 2050 the mean electricity price drops by as much as

9.2%, whereas annual price volatility decreases by 15% relative to the base case

(when all stakeholders are passive).

We note that that system savings level out between 2030 and 2035 which coin-

cides with increased renewable capacity in the Steady State scenario (Figure 6.32)

and a reduction in the number of resistance heaters (Figure 6.33). Both situations

lead to a decrease in the steepness of the wholesale electricity price curve and con-
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Figure 6.30: Annual system savings achieved with AGG DF relative to the base case, 2015-
2050. Source: ESMA

sequently a reduction in the marginal benefit of DSM.

In terms of reducing greenhouse gas (GHG) emissions, the system starts to

benefit by 2030 in the Two Degrees+ scenario and only marginally by 2050 in the

Steady State scenario (Figure 6.34). The reductions in the level of GHGs are rela-

tively small because when DSM is deployed the system utilises consumer storage

(which is not 100% efficient). This leads to loses and so the total electricity con-

sumption goes up relative to the base case. This observation also highlights the

limitations of ESMA, which assumes the same efficiency of generators throughout

their operational lifecycle. In reality, the efficiency of thermal generators changes

depending on their ramping rate, and so when they run smoother the efficiency is

higher meaning that less fuel is needed compared to the case when they have to con-

stantly cycle. In addition to this, ESMA does not penalise generators for reschedul-

ing, nor does it impose a cost on the curtailment of renewables. Nevertheless, it

is possible to see that environmental benefits are much more significant in the Two

Degrees+ scenario where the capacity of variable renewables is much larger.

Figure 6.35 shows the impact of deploying AGG DF on the annual system de-

mand peak in the Steady State and Two Degrees+ scenarios. For the Two Degrees+
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Figure 6.31: Wholesale electricity prices with and without AGG DF, 2015-2050. Source:
ESMA

case, the reductions are higher reaching 5.4GW and 7.5GW in 2030 and 2050 re-

spectively, which is in-line with higher consumer flexibility and the level of heating

and transport electrification assumed for this scenario. Higher consumer participa-

tion rate has a positive impact on the system resulting in a lower system demand

peak, which is in agreement with the earlier observations regarding system savings

achievable with AGG DF.

Figure 6.36 shows the change in the annual generation mix as a result of de-

ploying AGG DF relative to the base case in 2030 and 2050 for the two national sce-

narios. We note that the use of pumped storage and ‘other therm’ (mainly OCGT,

diesel and fuel oil) goes down in all four cases demonstrated in the chart, which is

offset by increased utilisation of gas (under Steady state) and dispatchable renew-
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Figure 6.32: Installed renewable capacity in the Steady State scenario, 2015-2050. Source:
National Grid (National Grid, 2017a)

Figure 6.33: Annual consumption by resistance heaters in the Two Degrees+, 2015-2050.
Source: National Grid (National Grid, 2017a)

ables or ‘other RES’ (under Two Degrees+). It is possible to observe a reduction

in the use of CHP (Steady State) and nuclear (Two Degrees+) and an increase in

the level of consumer exports (a mix of embedded solar and power purchased from

the grid) for both scenarios. This suggests that consumers reduce self-utilisation of

own renewables for the purpose of serving the grid. In terms of variable renewables

(wind and solar) we do not see a significant difference between the cases with and

without DSM, which is explained by the fact that the algorithm does not take into
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Figure 6.34: Change in GHG emissions achieved with AGG DF relative to the base case,
2015-2050. Source: ESMA

Figure 6.35: Change in the annual system demand peak with AGG DF relative to the base
case, 2015-2050. Source: ESMA

account generation from renewables at the system level. Overall the mix appears to

improve, however a higher demand by the system offsets the benefits of AGG DF

and GHG savings are not as high as one might expect.
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Figure 6.36: Change in the annual fuel mix under AGG DF relative to the base case by
source, 2030 and 2050. Source: ESMA.

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP

Figure 6.37 demonstrates how daily generation profiles for different technolo-

gies change as a result of AGG DF during summer and winter days in 2050 for the

two boundary scenarios. It is possible to observe how a flatter demand curve leads

to a smoother operation of dispatchable generators, i.e. CCS and ‘other therm’ (un-

der Two Degrees+) and gas (under Steady State). The use of pumped storage also

appears to marginally reduce (Two Degrees+), whereas the amount of consumer

exports increases (for both scenarios). Although the difference in the generation

profiles is subtle when observed for a few days, it clearly amounts to significant

benefits for the system when accounted over a few years.



6.2. Part II: The benefits and risks of aggregator-led demand DSM 175

Figure 6.37: Daily generation with and without AGG DF (conDR=100%) by source, win-
ter and summer days in 2050. Source: ESMA

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP
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6.2.2 Consumer costs

In contrast to our observations when consumers scheduled demand autonomously

(see Section 6), with AGG DF end-users benefit from savings relative to the base

case. This highlights the positive impact of a well-coordinated DSM regime. As

previously described, we look at consumer bills across different consumer sectors

as well as types.

6.2.2.1 Analysis of different consumer sectors

At the sector level, domestic consumers see the highest absolute savings in both

Steady State and Two Degrees+ scenarios, which amount to almost £0.7 billion and

£0.4 billion per year in 2050 for Two Degrees+ and Steady State scenarios respec-

tively (Figure 6.38). This happens because domestic consumers have the highest

absolute flexibility when aggregated at the sector level (due to a large number of

electric heating and thermal energy storage units).

Figure 6.38: Absolute change in the annual consumer bills with AGG DF relative to the
base case by sector, 2015-2050. Source: ESMA.

Figure 6.39 demonstrates how each sector makes savings as a result of deploy-
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ing DSM for an exemplary winter day. It is possible to see that hourly savings for

domestic consumers are largest during the periods of 8:00-11:00 and 15:00-17:00,

which correspond to the peak hours in the base case in terms of prices (right chart

in Figure 6.39). Higher flexibility of domestic consumers allows the sector to re-

duce demand during peak hours more compared to the other sectors leading to the

highest absolute savings.

Figure 6.39: Consumer demand profiles with and without AGG DF(conDR=100%) by sec-
tor, 24 December 2050 (Two Degrees+). Source: ESMA.

In relative terms, the domestic sector also saves the most in the Two Degrees+

case (-7%), however in the Steady State scenario it is the electric transportation

which sees the highest benefits (-3.62%) (Figure 6.40). This is because in the Steady

State scenario, domestic consumers experience a high demand increase due to the

operation of storage. Hence relative savings (calculated as absolute savings di-

vided by demand increase) are lower compared to the transportation sector (which

experiences the same level of loses with and without DSM). To summarise, the ex-

planation for absolute and relative savings with AGG DF across different sectors is

exactly analogous to the reasoning behind absolute and relative loses in the case of

herding (see Section 6).
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Figure 6.40: Relative change in annual consumer bills with AGG DF (conDR=100%) rel-
ative to the base case by sector, 2015-2050. Source: ESMA.

6.2.2.2 Analysis of different consumer types

Figure 6.41 demonstrates the benefits of AGG DF for non-flexible consumers in

terms of reducing the cost of an average unit of energy purchased during each year.

Apart from end-users with solar PV, all non-flexible consumers benefit from a price

reduction of a few £/MWh (which increases further into the future). This is espe-

cially noticeable in the Two Degrees+ scenario. Consumers with electrical heating

(EH) make larger savings compared to consumers without any resources, due to a

higher overall demand.

We notice that domestic consumers of type 2 (with a resistance heater, RH)

see larger savings in the cost of power per unit of demand compared to those of

type 1 (with a heat pump, HP), whereas for the industrial sector (and less so for

the commercial) the opposite is true. This has much to do with the difference in

the demand pattern for domestic and non-domestic consumers and its relation to the

electricity price curve before and after coordination (Figure 6.42).

In the base case the demand profile of domestic consumers with electric heat-

ing is more correlated with prices compared to non-domestic consumers of the same

type. Hence the absolute savings achieved under AGG DF by the domestic con-

sumers with a RH (i.e. those with a higher demand) are higher compared to those

with HP (higher efficiency and lower demand). Hence, per unit savings are also

higher for domestic consumers with RH relative to those with HP. Industrial con-

sumers with EH make a saving during the off-peak times and so having a higher

demand (i.e. with RH) reduces per MWh savings.

Consumers with solar PV experience an increase in the price of electricity
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Figure 6.41: Change in the average electricity price for inflexible consumers with
CON CM (conDR=100%) by type, 2015-2050.

Figure 6.42: Daily demand profiles of domestic and non-domestic consumers with electric
heating and electricity prices with and without AGG DF (conDR=100%), 1
January 2050 (Two Degrees+). Source: ESMA

across all years under Steady State scenario. However in the Two Degrees+ scenario

in 2050, non-domestic consumers with PV benefit from AGG DF and see their
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price for electricity drop. Non-flexible domestic consumers with PV see a slight

price improvement in 2050 relative to the previous years (Two Degrees+) but it is

still higher than in the base case. Looking at how the residual demand profiles for

domestic and non-domestic consumers stack up against electricity prices with and

without DSM offers an explanation for this (Figure 6.43).

Figure 6.43: Daily demand profiles of domestic consumers with solar PV and electricity
prices with and without AGG DF (conDR=100%), 18 June 2050 (Two De-
grees+). Source: ESMA.

From Figure 6.43 we can see that in the Steady State scenario the off-peak

hours occur during the night (00:00-06:00) and so the effect of DSM is to raise

prices during the night and decrease them during peak hours (i.e. 09:00-21:00).

Hence the power from solar PV sold by consumers during the day becomes cheaper

under DSM compared to the base case (assuming that sales are made at the real time

price). In the Two Degrees+ scenario off-peak hours occur during the day (06:00-

18:00) when generation from solar PV is abundant. The effect of DSM is to smooth

demand profile and therefore raise prices during the day. Consequently, consumer

exports become more profitable with DSM compared to the base case. The rea-

son why non-domestic consumers benefit more from this situation, is because solar

generation profile is more correlated with non-domestic electricity consumption.

This means that non-domestic consumers self-consume more of own generation

and therefore become less exposed to the import price unlike domestic consumers.

In 2050 (Two Degrees+) domestic consumers see a slight reduction in the price for

electricity due to the modelled energy efficiency improvements of non-deferrable
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demand (see D.1). As a result, their exports go up relative to the non-deferrable de-

mand allowing consumers to make more profit from selling power in the wholesale

market.

Figure 6.44 demonstrates the impact of AGG DF on the average costs of flex-

ible consumers. We can see that across all consumer types the impact of DSM is

positive - a complete opposite to the situation observed in the case of herding.

Figure 6.44: Change in the annual electricity price for flexible consumers with AGG DF
(conDR=100%) relative to the base case by type, 2015-2050.

Consumers of type 8 (with an electrical store, ES) benefit the most from DSM

and see £30-50/MWh reduction in the price for electricity per year in 2050 depend-

ing on scenario. Figure 6.45 looks at the demand profile of an industrial consumer

with an ES with and without DSM. We can see that with DSM the consumer is

instructed to export electricity during peak hours and increase consumption during

off-peak hours in order to smooth the total system load curve and consequently
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prices. However, since the peak prices are not totally reduced the consumer ends

up exporting during expensive time periods (17:00-21:00), which more than covers

the additional purchases at night at a lower rates (00:00-03:00). According to the

simulation, on the 1st of January 2050 in the Two Degrees+ scenario an industrial

consumer with an ES makes a profit of around £20, which translates into 9.4 p/kWh

(or 94 £/MWh) daily saving. Of course not all days during the year will lead to the

same profit but averaged over the year this explains the £30/MWh reduction in the

cost of power.

Figure 6.45: Daily demand profiles of industrial consumers with ES with and without
AGG DF (conDR=100%), 1 January 2050 (Two Degrees+). Source: ESMA.

Electric transportation sees marginal benefits from DSM since vehicle-to-grid

discharging is not allowed in the model (Figure 6.46). This substantially reduces

the flexibility of EVs compared to some larger consumers with electrical stores

like industrial end-users. Overall, we observe that higher ratio of consumer storage

capacity to demand lead to a larger reduction in the price. Consumers with PV are

an exception since, their profits from exports are affected during coordination as

described earlier.

6.2.3 When aggregators get greedy

In the previous section we observed the benefits of a well-coordinated DSM,

whereby an aggregator schedules consumer demand for the purpose of smoothing

system demand peaks. However, it is easy to imagine that aggregators (especially

those representing utilities) will exploit the ability to shift consumer demand for
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Figure 6.46: Change in the annual electricity price for electric vehicles with AGG DF
(conDR=100%) relative to the base case, 2015-2050. Source: ESMA.

the purpose of increasing profit by minimising the cost of power purchased from

the market. This effect is simulated by deploying algorithm AGG CM, whereby

the aggregators communicate to consumers the predicted real time prices for elec-

tricity rather than the average demand (see section 3.5). The aggressiveness of the

aggregators to cost minimise is controlled through parameter α , which penalises

consumers for shifting from the previous demand profile during the aggregator-

consumer negotiation process (see Section 3.5). To remind the reader, when α is

large consumers do not deviate much from their default demand, whereas when α

is small they are free to cost minimise as much as they want. In this sense, α acts

as a control parameter for how much flexibility end-users are allowed to use.

Figure 6.47 demonstrates how the projected cost of aggregator power is re-

duced during the coordination process with different α settings. It can be seen

that with a lower α , the aggregator is more efficient in reducing the projected cost.

When α = 0 consumers converge after only one iteration, which is not surprising

since this corresponds to the case when consumers are not penalised for shifting

demand at all and so they maximise the utilisation of storage.

Figure 6.48 shows how system savings from DSM are affected when aggre-
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Figure 6.47: Demonstration of the reduction in the projected cost of power purchased
by the aggregator with varying α settings for AGG CM (conDR=100%, ag-
gDR=100%), 1 Jan 2050 (Two Degrees+). Source: ESMA.

gators reduce the α parameter. We can see that higher α settings lead to positive

system savings (meaning a reduction in the total system cost), whereas lower α

values lead to negative savings (i.e. an increase in the system cost). Hence when

aggregators become more aggressive in minimising cost, they end up herding to-

wards the same periods of low electricity prices - similarly to the scenario when

consumers cost minimise autonomously with CON CM.

It is suspected that when the share of cost minimising aggregators is low, those

that do, will see an advantage over those which are passive. In order to demonstrate

this, four aggregators are modelled (each with an equal pool of consumers) and

only one of them is allowed to cost minimise. This scenario mimics the situation

when a quarter of the aggregator market adopt AGG CM for the purpose of cost

minimisation.

When observing the annual tariffs offered by aggregators, we can see that the

aggregator which cost minimises has an advantage over those which do not (Figure

6.49). Consumers are likely to pick an aggregator which offers a lower electricity

tariff and so it makes sense for the aggregators to adopt this strategy, which can lead

to the market herding ( as demonstrated Figure 6.48).
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Figure 6.48: Annual system cost as aggregators adopt AGG CM (conDR=100%, ag-
gDR=100%), 2015-2050. Source: ESMA.

Figure 6.49: Comparison of electricity tariffs between a cost minimising aggregator and a
passive aggregator (aggDR=25%), 2015-2050. Source: ESMA.

6.2.4 The impact of retail market competition under DSM on

the system

Consumers are notoriously passive when it comes to switching their energy

providers. However, a recent report by The Office of Gas and Electricity Markets
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(Ofgem) shows that in the UK electricity switching rate has gone up by 30% in 2017

relative to 2015 and reached a 6-year high (4.4 million consumers)(Ofgem, 2017c).

This spike has been largely driven by the emergence of new smaller and medium

size suppliers offering more flexible and transparent tariffs (e.g. (Energy, 2018)),

as well as companies providing switching services on behalf of the consumer, e.g

(Switchcraft, 2018). With the integration of smart metering services and increased

consumer awareness of climate change issues, it is expected that end-users will be-

come more engaged in choosing the right energy provider for them. As discussed

in the previous section, it is highly likely that aggregators will utilise DSM to win

over consumers. Hence, it is of relevance to investigate how consumer switching

rates will impact the electricity system.

In order to do that, we model two cost minimising aggregators competing for

consumers in 2050 (Two Degrees+) based on the average daily price of electricity.

Here we model an uneven number of consumers per aggregator to start off with in

order to introduce some competition (Figure 6.50).

Figure 6.50: List and number of consumers signed up with each aggregator on day one of
the simulation, 2050 (Two Degrees+). Source: ESMA.

Aggregator 1 is contracted to all consumers of type 1 (no resources), type 3

(with HP and TES), type 5 (with RH and TES), type 7 (with PV and ES), type 9
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(with HP, PV, TES and ES), and the whole fleet of electric vehicles. Aggregator 2

is contracted to consumers of type 2 (with HP), type 4 (with RH), type 6 (with PV),

type 8 (with ES), and type 10 (with RH, PV, TES and ES). As a result Aggrega-

tor 1 has access to more storage and Aggregator 2 has more solar capacity (hence

a lower demand). Consumers are then allowed to switch aggregators according to

four cases: no switching, quarterly, monthly and daily. 50% of consumers are al-

lowed to switch when the time comes - a value set arbitrarily for demonstration

purposes. The stylised nature of this experiment is acknowledged, however consid-

ering the difficulty in obtaining consumer information regarding their energy service

providers, it is deemed to be sufficient to demonstrate the potential issues that may

arise as a result of retail market competition in the context of DSM.

Figure 6.51 shows how consumers migrate between the two aggregators during

the experiment. The aggregators calculate the retail electricity tariff as a running

average of the break-even cost of purchasing electricity. Hence, monthly switching

corresponds to long-term decision making by consumers, whereas daily switching

corresponds to short-term decision-making.

With quarterly switching, aggregator 1 slowly loses consumers whilst aggre-

gator 2 gains them even though it starts with fewer. When consumers switch on a

monthly basis, aggregator 1 alternates between losing and gaining the market share.

However, when consumers switch daily, aggregator 1 wins the whole consumer

market in the first few days of the year. The competition dynamic between the two

aggregators comes as a result of each one having different flexibility resources and

demand constraints. Hence, a daily win can be critical to gaining the higher share

of the consumer market.

Such competition can carry negative consequences for the system. Figure 6.52

reports on the system cost increase relative to the base case (when all agents are

passive) for different experimental settings. All cases when aggregators cost min-

imise lead to an increase in the system cost. Interestingly, the case when consumers

switch daily leads to a slightly better outcome compared to the other cases. This not

surprising since during daily switching all consumers end up with one aggregator
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Figure 6.51: Demonstration of how consumer migrate between aggregators when they are
allowed to switch at different rates, 2050 (Two Degrees+).

Key: ‘None’ - consumers do not switch, ‘Daily’ - consumers switch every day, ‘Monthly’ -
consumers switch every 30 days, ‘Quarterly’ - consumers switch every 90 days

Figure 6.52: Annual system cost under different consumer switching strategies, 2050 (Two
Degrees+). Source: ESMA.
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rendering a more centralised DSM. The highest cost is reached when consumers

switch on a monthly basis, which is also the case where both aggregators remain in

the game. In fact, with monthly switching one aggregator ends up with the largest

share of consumers with solar PV, allowing it to export energy into the grid and

profit from the market. As a result of aggregator exports, the demand curve at the

system level become more volatile and prices increase as a result. The aggregator

without solar ends up demanding more from the wholesale market further contribut-

ing to the wholesale prices increase.

A note on vertically integrated utilities. In the above experiment it was possible

to demonstrate that competition between aggregators by means of shifting demand

can lead to increased system costs. In (Subkhankulova et al., 2017b,c,a) we ex-

tend this discussion to examine how vertically integrated utilities can benefit from

strategically manipulating consumer loads. We compare two types of utilities per-

forming DSM: a green one (in possession of a wind generator) and a traditional one

(in possession of a dispatchable generator). We find that conditions exist where the

traditional utility benefits from instructing consumers to increase demand, which

allows it to sell power at a higher rate. This ultimately leads to higher system de-

mand peaks, costs and prices for consumers. As a result of such competition, the

traditional utility is able to offer a more competitive tariff for electricity compared

to the green utility even though the tariffs in general are higher. Another paper

which investigates this issue is proposed by (Prüggler et al., 2011), where the au-

thors explore the consequences of vertically integrated utilities strategically operat-

ing storage. They find that in the long run electricity prices increase which suggests

potential risks of vertically integrated utilities shifting demand for the purpose of

competition.

6.2.5 The value of a central coordinator

One way to avoid aggregator herding is to involve a central entity like the System

Operator in the coordination process. Assuming the SO is able to communicate

with the market, the price information passed onto the aggregators (and further to

consumers) will reflect the true cost of generating electricity and stop them from
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overshooting when scheduling demand. To demonstrate the benefits of a centrally-

led DSM algorithm SO CM is deployed, which is developed from AGG DF by

introducing another layer of coordination between the SO and the aggregators (see

section 3.5.3).

Figure 6.53 shows additional savings achieved as a result of introducing a cen-

tral coordinator. We note that the system saves more in the Two Degrees+ scenario

which is due to a higher consumer flexibility assumed for this scenario. Looking at

Figure 6.54, we observe that the algorithm makes better use of system level renew-

ables, which leads to a reduction in the cost of generating power and the level of

GHGs emitted by the electricity grid (Figure 6.55).

Figure 6.53: Additional annual system savings with SO CM compared to AGG DF, 2015-
2050. Source: ESMA.

Similarly to AGG DF, with SO CM the system utilises less pumped storage

and polluting thermal generators (e.g. diesel, fuel oil and OCGT). The increase in

the demand from operating storage is met by gas as well as increased consumer

exports. Although regime SO CM shows superiority over AGG DF, appears to

be marginal highlighting the limitations of ESMA. The generation component in

ESMA functions on the day-ahead basis and so does not demonstrate the value of

short-term coordination between demand and supply which is deployed during the
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Figure 6.54: Change in the annual fuel mix with SO CM relative to the base case, 2015-
2050. Source: ESMA.

Note: ‘other therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP

balancing market. For this reason the savings reported in this work are lower when

compared to other papers, e.g. (Strbac et al., 2012) where the authors report £0.8-

14.9 billion/year savings from balancing technologies in 2050 depending on the

scenario.
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Figure 6.55: Avoided GHG emissions with SO CM compared to AGG DF, 2015-2050.
Source: ESMA.

6.2.6 Dynamic versus flat tariffs

So far we have only considered billing consumers at the real time price. It has been

observed that consumer demand pattern plays an important role in determining the

benefits from DSM. However, since the aggregators instruct end-users on how to

shift demand it might seem unfair to expose end-users to the wholesale market price

risk. In this section we explore how consumer benefits are impacted when they are

charged at fixed tariffs rather than dynamic electricity prices.

Figure 6.56 reports savings made by non-flexible consumers as a result of de-

ploying DSM calculated at different retail tariffs: fixed (daily), fixed (yearly) and

RTP (see Section 3.4.3.3 for calculations)4. We focus on 2050 (Two Degrees+)

since that is the year which saw the biggest impact of DSM on consumer bills.

It is possible to see that consumers with PV are the most vulnerable to the

tariff structure, especially in the domestic sector. If in the Steady State scenario

they benefit more from a fixed tariff (daily rather than yearly), in the Two Degrees+

RTP leads to higher savings. This is because consumers with PV export electricity

during the day, hence their cost of power is dependent on the price at which they

4We take regime AGG DF as an example since the results are very similar to SO CM
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Figure 6.56: Comparison of non-flexible consumer savings with AGG DF accounted at
different tariffs, 2050. Source: ESMA.

sell electricity. Domestic consumers with PV are more vulnerable to the electricity

tariff structure compared to non-domestic consumers of the same type, since their

demand profile is less correlated with the generation profile from solar and so they

rely on exporting electricity at the peak prices (such as in the case of RTP in the

Two Degrees+ case).

Figures 6.57 and 6.58 demonstrate how electricity tariffs change against resid-

ual demand profiles for domestic and non-domestic consumers with PV. The analy-

sis focuses on a summer day since it corresponds to the situation where the genera-

tion from solar PV is abundant.

In the case when tariffs are calculated at an average daily rate, DSM leads to

a reduction in the tariffs in the Steady State and an increase in the Two Degrees+

scenario (similarly to RTP) (Figure 6.57). Hence in the Two Degrees+ scenario,
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power exported by consumers with DSM will be more profitable with DSM rel-

ative to the base case. However, since a flat tariff ignores the correlation between

wholesale prices for electricity and the solar generation profile (i.e. only the amount

of energy exported matters), in the Two Degrees+ scenario consumers benefit less

when exporting at a flat daily rate rather than RTP. In the Steady State scenario con-

sumers see a drop in electricity prices due to the overall cost of purchased energy

going down. Domestic consumers with PV see almost no benefit from DSM in the

Two Degrees+ scenario when billed at the fixed daily rate. This is because resi-

dential consumers purchase more power compared to what they export and rely on

the correlation between the generation and price profile (as demonstrated in Figure

6.57).

Figure 6.57: Daily demand profiles of domestic and commercial consumers with PV
against fixed daily electricity tariffs with and without AGG DF (ag-
gDR=100%, conDR=100%), 2050. Source: ESMA

When consumer tariffs are calculated on an annual basis, we note that for both

Steady State and Two Degrees+ scenarios the average price level drops under DSM

(Figure 6.58). Hence, consumers with PV benefit less from exports and see an

increase in the cost of power. However, in the Steady State all consumers still

perform better with fixed pricing relative to RTP. In the Two Degrees+ scenario

domestic consumers with PV are most exposed when billed at the fixed annual

tariffs and see the price of electricity increase by £5/MWh. This is because in the

Two Degrees+ scenario average annual tariffs experience a large drop under DSM.
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Figure 6.58: Daily demand profiles of domestic and commercial consumers with PV
against fixed yearly electricity tariffs with and without AGG DF (ag-
gDR=100%, conDR=100%), 2050. Source: ESMA

Non-domestic consumers with electric heating appear to benefit more from

DSM when billed at the fixed daily price, which suggests that their demand profiles

are less correlated with the price curve in the base case. For the same reason in

the Two Degrees+ scenario, industrial end-users with no resources benefit the most

when billed at the fixed annual rate.

Across all scenarios, flexible consumers save more when billed at the real time

price, with consumers of types 7 (with PV and ES) and 8 (with ES) benefitting the

most (Figure 6.59). It appears that consumers with more flexibility and less demand

are impacted more compared to the more inflexible and less consuming end-users.

For this reason consumers with PV and ES see an increase in the price level for

fixed tariff cases relative to the base case.

Figure 6.60 analyses the demand profile of an industrial consumer with elec-

trical storage against fixed and dynamic electricity tariffs. As discussed before,

flexible consumers are instructed to decrease demand during peak hours for which

reason those with the highest flexibility end up exporting electricity. However, since

the wholesale price curve (at RTP) is not totally smooth they export electricity at

the peak price whilst buying at a lower rate (overnight). When the prices are flat

during the day consumers buy and sell at the same rate and so the profits are smaller,

whilst the cost of purchased electricity is higher leading to lower overall savings.



6.2. Part II: The benefits and risks of aggregator-led demand DSM 196

Figure 6.59: Comparison of flexible consumer savings with AGG DF (aggDR=100%,
conDR=100%) accounted at different tariffs, 2050. Source: ESMA

Consumer profits are lowest with fixed annual prices since the overall price shift is

smaller during the year reducing the arbitrage opportunity.

Figure 6.60: Daily demand profile of an industrial consumer with an electrical store (ES)
against fixed electricity tariffs and RTP with and without AGG DF (ag-
gDR=100%, conDR=100%). Source: ESMA
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Interestingly, electric vehicles benefit from a fixed tariff even though they also

represent consumers with an electrical store. On a closer look (Figure 6.62) we see

that under coordination the demand profile of an electric vehicle fleet goes from an

almost flat one to a very variable one. Hence, in the case of RTP the demand peaks

of electric transportation end up coinciding with the wholesale price peaks. When

the tariffs are flat electric vehicles are protected from the wholesale market risk.

Figure 6.61: Comparison of electric transportation savings with AGG DF (aggDR=100%,
conDR=100%) relative to the base case accounted at different tariffs, 2050.
Source: ESMA.

Figure 6.62: Daily demand profile of an electric vehicle fleet against fixed electricity tariffs
and RTP with and without AGG DF (aggDR=100%, conDR=100%). Source:
ESMA.
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6.2.7 Sensitivity analysis

As we have seen in the analysis, electrical storage (ES) capacity plays a critical

part in the level of benefits gained by consumers from the deployment of DSM.

The impact on the results is explored by varying the amount of electrical storage

assumed for different consumer sectors. The analysis is performed for 2050 in the

Two Degrees+ scenario when all consumers participate in DSM (conDR=100%)

since it constitutes the case when the system has the highest capacity of renewables

and consumer storage.

Figure 6.63 demonstrates how annual system cost and the level of GHG emis-

sions change with different values for consumer ES capacity. Not surprisingly sys-

tem cost decreases whilst emissions go down when storage capacities across differ-

ent sectors increase. This is because with more storage the system has more flexi-

bility to perform demand smoothing, which leads to better utilisation of renewables

and lower electricity prices. We note that system cost is more sensitive to domestic

rather than non-domestic storage5. This is because the number of heat pumps (and

consequently thermal energy stores) is assumed to be higher in the domestic sector

compared to non-domestic sectors. Therefore, increasing ES capacity allows do-

mestic consumers to shift thermal demand, whereas non-domestic consumers have

less capacity to do this.

From Figure 6.64 we see that increasing consumer storage has a positive im-

pact on consumer savings, which is in-line with our earlier observations of system

costs. We note that the level of savings for each stationary sector is most sensitive to

its own ES capacity followed by domestic. This is not surprising since it decreases

consumer exposure to the market prices. The transport sector experiences very

marginal sensitivity to the ES storage capacity across the stationary sectors seeing

the level of savings change by < 1% for a 25% change in the storage capacity across

the stationary sectors. Moreover, the sector appears to benefit from a reduction in

the domestic storage capacity. This is because the electric transportation constitutes

the most flexible consumer, and so under AGG DF its profile is almost flat. There-

5Commercial and industrial sectors have been grouped as the sensitivities were very similar
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Figure 6.63: Sensitivity of system cost and GHG emissions to consumer electrical stor-
age (ES) capacity with AGG DF (aggDR=100%, conDR=100%), 2050 (Two
Degrees+). Source: ESMA.

fore, slight fluctuation in the wholesale prices have a very marginal effect on the

level of savings made by the transport sector. Since during AGG DF, consumers

are negotiated with as a pool, it appears that higher storage capacity assumed in the

domestic sector changes the transport demand profile in a way that leads to slightly

lower savings relative to the base case.
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Figure 6.64: Sensitivity of consumer savings to consumer electrical storage (ES) and so-
lar PV capacity with AGG DF (aggDR=100%, conDR=100%), 2050 (Two
Degrees+). Source: ESMA.

6.2.8 Summary of section II

In this section we observed the benefits of aggregator-led coordination in overcom-

ing consumer herding by means of deploying algorithm AGG DF. In 2050 (Two

Degrees+) DSM lead to a £1.64 billion reduction in system cost, 0.85MtCO2eq

omitted GHG emissions and a 7.5 GW decrease in the annual demand peak. How-

ever, we also saw that when aggregators became aggressive in minimising costs,

they started to herd (much like consumers) which lead to negative consequences for

the grid. Allowing consumers to switch aggregators lead to a further increase in

system costs due to uneven distribution of consumer resources between the aggre-

gators. These results are not surprising, since aggregating consumers merely creates

larger consumers which compete in the wholesale market.
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The only certain solution to overcoming the problem of herding is to involve a

central entity, which is able to communicate with the market and inform the stake-

holders in the system of the true cost of generating electricity. This is demon-

strated by deploying algorithm SO CM and comparing it to AGG DF. As suspected,

SO CM lead to slightly higher system savings (especially for the Two Degrees+ sce-

nario in the later years), since the algorithm takes into account system level renew-

ables and communicates these to the market. However, the superiority of algorithm

SO CM over AGG DF was shown to be marginal revealing certain limitations of

the model.

We then explored the impact of billing consumers at fixed tariffs (daily and

yearly) rather than at the real time price (RTP). Consumers with solar PV (espe-

cially in the domestic sector) were found to be the most vulnerable to the electricity

tariff structure, as they rely on exporting electricity. Interestingly, the observations

were different for the two national scenarios; whereas in the Steady State consumer

with PV saved more with fixed tariffs, in the Two Degrees+ case real-time pric-

ing was more beneficial to these consumers. On the whole, non-flexible consumers

benefitted more from fixed tariffs, whereas flexible consumers from RTP. These

observations raise an important point regarding allocating the benefits from DSM

fairly across different types of consumers. In fact, neither RTP nor flat tariff struc-

ture appears to be consistently better across all consumer types and scenarios. This

suggests that end-users need to be considered on the individual basis when it comes

to allocating costs in the context of DSM.

Finally, through deploying algorithm SO CM it was revealed that consumer

response to the price signal is sensitive to the damping parameter α . When α was

set too high relative to the wholesale price level, consumers did not respond much

to the price signal, whereas when α was too low consumers overshot when cost

minimising. In the next section we discuss the significance of these observations in

developing a completely decentralised consumer optimisation regime.
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6.3 Part III: Autonomous decentralised consumer

DSM - CON CM+

In the previous section, the benefits of aggregator-led demand side response have

been demonstrated by means of deploying algorithm AGG DF. It was shown that

cost minimisation by aggregators can lead to herding (similar to the case when

consumers cost minimise autonomously) and how deploying a centrally coordinated

DSM regime could help to overcome this problem. Indeed, with algorithm SO CM

(involving the system operator communicating with all stakeholders in the system)

savings increased by over £70 million compared to AGG DF in 2050 Two Degrees+

scenario as a result of the market communicating the true cost of generating power.

However, deploying such a DSM regime would require a secure communication

infrastructure between consumers, aggregators and the system operator which could

be costly. In addition to this, some consumers may not wish to share information

about their demand due to privacy concerns.

On the other hand, allowing consumers to cost minimise autonomously can

lead to the market herding and as a result compromise on the security of electricity

grid (demonstrated in Section 6). Following the observations of how aggregator-led

DSM algorithms overcome the issue of consumer herding, in this section algorithm

CON CM (the simplest consumer-led DSM regime) is improved. The new algo-

rithm is then deployed in order to explore the possibility of complete consumer

autonomy when performing DSM without compromising the security of the grid.

6.3.1 Developing algorithm CON CM+

When studying algorithm AGG DF, it has been observed that it works by suppress-

ing consumer response to the signal received from the aggregator through a damp-

ing parameter α , which penalises consumers for deviating from a demand profile in

the previous iteration (see step 5 Algorithm 2)). Mathematically, the optimisation

function for a consumer c in day d looks like this:



6.3. Part III: Autonomous decentralised consumer DSM - CON CM+ 203

min
lc
net(t,d)

T

∑
t=1

lc
net(t,d) ·gk(t,d)+α · (lc

net(t,d)− lc,k−1
net (t,d))2.

subject to consumer technology constraints specified in Section 3.4.2,

(6.2)

Where, gk(t,d) is the signal received from the aggregator at time t,

lc,k−1
net (t,d) is the net consumer demand from the previous iteration k− 1 at time t,

and

lc,k
net(t,d) is the optimal consumer net demand profile obtained in iteration k at time

t.

If α is large, the second term in (6.2) becomes more expensive and the con-

sumer does not deviate from the previous net demand profile lc,k−1
net (t,d). In contrast

if α = 0, the consumer ignores the penalty and (6.2) is simplified to:

min
T

∑
t=1

lc
net(t,d) ·gk(t,d), (6.3)

which is the same as the optimisation function in algorithm CON CM with the

signal defined as the predicted real time price for electricity, i.e. gk(t,d) = p∗(t,d).

The default setting for the damping term in algorithm AGG DF is 0.5 (i.e.

α = 0.5). Indeed, with a tolerance level of 0.005% the algorithm converges within

15 iterations as expected according to the authors (Gan et al., 2013). However, in

algorithm SO CM (which operates based on the real time price for electricity gen-

eration), it has been noticed that the optimal α and the number of iterations required

for convergence vary depending on the day. Moreover, with certain values of α al-

gorithm SO CM achieved significant system cost reductions in just a few iterations.

Hence, an optimal value of α must exist where the system would achieve the least

cost in just one iteration. This would correspond to a situation when consumers

receive a signal from the aggregator, schedule own demand but then do not share

new demand information with the system thus preserving their privacy.

Another observation made during the previous analysis was that as a conse-

quence of convergence of algorithm AGG DF, system demand became smoothed

during the course of negotiations between the aggregator and consumers. Yet, de-
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mand smoothing is one of the simplest approaches to overcome herding and even

now commercially available technologies like Tesla PowerWall are able to do that

without the need for an aggregator.

Guided by the above observation, algorithm CON CM is upgraded into

CON CM+ by introducing a second term into the optimisation function (as demon-

strated in Algorithm 5). However, in the proposed algorithm the consumer is pe-

nalised for deviating from a flat demand profile rather than the default one (see step

1 in Algorithm 5). This offers a way to combine two coordination strategies for

consumer: demand smoothing and cost minimising and to explore the dynamics

between them. Moreover, having a flat demand as one of the extremes offers a

protective wall from consumers overshooting with cost minimisation.

Algorithm 5: CON CM+: Autonomous consumer cost minimisation al-
gorithm.

Input : Aggregator a knows predicted day-ahead prices for electricity
p∗(t,d). Consumer c knows day-ahead non-deferrable thermal
and non-thermal demand profiles lc(t,d),qc(t,d), renewable
generation rc(t,d) and technical constraints of own resources.

Output: Consumer net demand profile:

lc
net(t,d) ∀t ∈ [1,T ].

1 Consumer calculates the average net electricity demand in day d as:

< lc
net(d)>=

1
T

T

∑
t=1

lc
net(t,d),

2 Consumer receives predicted electricity prices p∗(t,d) from the
aggregator a and solves the following optimisation problem:

min
lc
net(t,d)

T

∑
t=1

lc
net(t,d) · p∗(t,d)+α · (lc

net(t,d)−< lc
net(d)>)2,

subject to consumer technical constraints specified in Appendix C.2.
3 Consumer calculates the final net demand in day d:

lc(t,d)+ lch,c
ES (t,d)− ldc,c

ES (t,d)+ lc
HP(t,d)+ lc

RH(t,d)− rc(t,d),

∀t ∈ [1,T ].
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Figure 6.65: Example of the impact of the damping term α on CON CM (conDR=100%)
coordination for domestic consumer agent of type 3 (with HP, TES), 1st Jan-
uary 2030 (Two Degree scenario). Source: ESMA.

Figure 6.65 shows the impact of α on the net demand profile of consumer.

With small values of alpha (i.e. 0, 0.001, 0.005) the demand shifts significantly,

whilst for higher values (0.01,0.05) it remains closer to the average flat demand.

Hence setting alpha to zero mimics cost minimising behaviour of consumers whilst

setting alpha very high (i.e. α = 300) mimics a less aggressive consumer strategy

of demand smoothing.

It is now of interest to explore how the damping term (α) affects the perfor-

mance of the system and to find those values which lead to the lowest system cost.

As for previous DSM regimes, we vary consumer participation level from 0% to

100% and track system cost for the period 2015-2050 in the Two Degrees+ and

Steady State scenarios (Figure 6.66). From the figure we can see that like SO CM

the success of the algorithm in achieving the lowest system cost is sensitive to the

choice of the damping parameter α and the consumer participation rate conDR.

The left side of the cost matrices corresponds to pure cost minimising be-

haviour by consumers. We can see that from 2030 onwards, as consumer par-

ticipation rate increases to 100% (conDR=100%) the system starts to suffer from

herding as indicated by the bright red squares. This is in-line with the observations

discussed in Section 6.1 when consumers scheduled based on RTP autonomously

(regime CON CM). However, for certain values of α the system achieves lower

system cost compared to the base case (as indicated by the bright blue squares).

Moreover, the optimal setting for alpha and conDR varies throughout the year as



6.3. Part III: Autonomous decentralised consumer DSM - CON CM+ 206

observed for algorithm SO CM (Figure 6.67). And so like for SO CM, the theoret-

ical optimal performance of regime CON CM+ is evaluated by we selecting those

days for which α leads to the least system cost.

6.3.2 Consumer learning algorithm

Thinking of the real world implementation of algorithm CON CM, it could be a

possibility that the central entity informs consumers of the parameter α for day-

ahead scheduling. Such a scenario would render a semi-autonomous DSM regime,

whereby consumers receive a one way signal from the aggregator but do not send

any information back. In order to simulate total consumer autonomy during co-

ordination we explore the possibility of consumers (or rather the software on the

demand side) learning the parameter α , in which case it become consumer- and

day-specific αc(d).

To do this, a simple reinforcement learning algorithm is deployed, whereby

consumer c adjusts αc(d) depending on the daily cost of electricity zc(d). Each

day consumer compares zc(d) to the cost of electricity incurred the day before, i.e.

zc(d− 1). If the cost of power on the day is higher than in the previous day, i.e.

zc(d) > zc(d− 1), consumer returns αc to the previous setting, i.e. αc(d + 1) =

αc(d−1). However, if the cost on the day is lower or equal to that on the previous

day, i.e. zc(d) <= zc(d− 1), consumer c does one of two things: explores new

strategy by randomly increasing or decreasing αc by step conStep or keeps αc at the

current setting, i.e. αc(d +1) = αc(d). The amount of the time consumer explores

new strategies is defined by a parameter conExplore, which together with conStep

is set at the system level. At the end of the day consumer c updates the previous

values for daily cost and the damping parameter, i.e. zc(d−1) = zc(d) and αc(d−

1) = αc(d).
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Figure 6.66: Annual system costs with CON CM (varying α and conDR settings), 2015-
2050. Source: ESMA.
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Figure 6.67: Alpha setting (α) selected on the basis of least daily system cost with
CON CM+ (conDR=100%), 2015-2050. Source: ESMA.

Figure E.15 demonstrates the learning algorithm under different sets of pa-

rameters in 2050 Two Degrees+. It is possible to see that with a larger step size

(conStep) and exploration parameter (conExplore) consumer damping term αc fluc-

tuates much more than when conExplore and conStep are small. Needless to say the

choice of parameters conExplore and conStep will also affect the system cost, and

so sensitivity analysis is performed in order to find the combination of parameters

which leads to the best consumer learning strategy (see Appendix E.3).

Following the calibration procedure (where conExplore and conStep have been

set to 0.5 and 0.005 respectively), the simulation is re-run with CON CM+ with

consumer learning, i.e. CON CM+(LEARN), and compare all DSM regimes in the

next section.
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Figure 6.68: Demonstration of the α learning algorithm for consumers of type 9 (with
HP,PV,TES and ES) and electric vehicles, 2050 (Two Degrees+). Source:
ESMA.

6.3.3 Comparison of all DSM regimes

Figures 6.69-6.71 demonstrate how the four DSM regimes considered in this

work compare in terms of total system cost, GHG emissions and demand peaks.

In terms of total system savings, regime SO CM achieves the best performance

(£1.71 billion) followed by AGG DF (£1.64 billion), CON CM+ (£1.4 billion), and

CON CM+(LEARN)(£1.24 billion) in 2050 (Two Degrees+). We note that regime

CON CM+ achieves higher system savings compared to CON CM+(LEARN),

which is expected since in CON CM+ α is set centrally.

Looking at Figure 6.70, we can see that prior to 2030 lowest system cost does

not necessarily translate into lowest GHG emissions. Hence in 2015, CON CM+

performs better than SO CM and AGG DF.
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Figure 6.69: Annual system savings with CON CM+(LEARN), CON CM+, AGG DF and
SO CM relative to the base case, 2015-2050. Source: ESMA.

Figure 6.70: Avoided GHG emissions with CON CM+(LEARN), CON CM+, AGG DF
and SO CM, 2015-2050. Source: ESMA.

This is because prior to 2030 carbon prices are relatively low and so the system

chooses to run the more polluting cheaper generators. Post 2030, regime SO CM

consistently achieves the highest level of avoided GHG emissions suggesting a bet-

ter alignment between the cost and sustainability of the electricity grid. However,
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the improvements are marginal compared to algorithm AGG DF which does not

take account of system level renewables. It is suspected that this is because the

model does not include the cost of curtailing renewables, nor does it take into ac-

count how the efficiency of dispatchable generators is affected by their ramping rate.

Hence, the cost of cycling generators is underestimated leading to an overestimation

of the use of renewables.

For 2030-2050 across both national scenarios, regimes AGG DF and

SO CM achieve the lowest system demand peaks. Apart from 2015, regime

CON CM+(LEARN) consistently leads to the highest level of system demand peaks

across all years and scenarios. This happens because with CON CM+(LEARN)

consumers are continuously adjusting the damping term αc - a parameter towards

which the system is very sensitive. As consumers explore the parameter αc, situa-

tions exist where they overshoot and demonstrate the symptoms of herding which

leads to increased demand peaks.

Figure 6.71: Annual system demand peaks with CON CM+(LEARN), CON CM+,
AGG DF and SO CM, 2015-2050. Source: ESMA.

Analysis of consumer savings across all DSM regimes shows that on the whole

end-users save more under centralised approached (i.e. SO CM and AGG DF),

suggesting that consumers benefit together with the system (Figure 6.72). However,
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we observe that for non-flexible consumers with PV decentralised approaches (i.e.

CON CM+ and CON CM+(LEARN)) outperform centralised DSM, especially in

the Steady State scenario (Figure 6.73).

Figure 6.72: Change in the price of electricity for consumers with a heat pump (HP) and
thermal energy storage (TES) with different DSM regimes calculated at RTP
in 2050. Source: ESMA

Figure 6.73: Change in the price of electricity for consumers with solar PV under different
DSM regimes calculated at RTP. Source: ESMA
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In the Two Degrees+ scenario domestic consumers with solar PV save more

when the market is completely autonomous under CON CM+(LEARN). On the

contrary, regime AGG DF performs the worst for these consumers in both Steady

State and Two Degrees+ scenarios. This is because consumers with solar PV rely

on exporting electricity at the higher prices and demand smoothing under AGG DF

reduces the arbitrage opportunity for them. Of course how much different con-

sumers pay depends very much on the structure of the tariff (as we have seen when

considering fixed prices). However, by comparing different regimes it was possi-

ble to identify (once again) that conflict of interest exists between certain types of

consumers and the system.

6.3.4 How should consumer flexibility be rewarded?

Thinking of the service consumers provide to the grid when shifting demand, it

would seem fair that their reward is based on the amount of flexibility they offer to

the grid. In order to assess whether that is the case, consumer flexibility is calcu-

lated as the absolute change in the residual demand profile before and after DSM

(averaged per day) and plotted against annual savings per unit of energy consumed

(£/MWh) calculated at RTP (Figure 6.74).

From the figure we can see that consumer savings depend very much on the

type of resources they possess. Firstly, we notice that electric vehicles and con-

sumers with resistance heaters and thermal energy storage (i.e. with RH and TES)

see the lowest savings relative to the amount of flexibility they offer, in particular in

the Steady State scenario. On the other hand consumers with electrical storage see

the highest savings relative to the amount of offered flexibility to the grid. This is

because consumers with electrical heating and TES are constrained by the thermal

demand pattern they have to fulfil. This allows consumers without electric heating

to be more effective when shifting demand, which leads to larger savings. These

observations suggest that demand pattern plays as much of a role in determining

consumer benefits from DSM as the amount of flexibility one can offer.

Finally, non-flexible consumers are also impacted by DSM albeit not being

able to shift demand at all (Figure 6.75). Out of those, consumers with electric
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Figure 6.74: Change in the price of electricity for flexible consumers with different re-
sources under SO CM (conDR=100%, aggDR=100%) in 2050. Source:
ESMA

heating end up benefitting the most whereby those with solar PV lose out for rea-

sons discussed earlier sections. However, at under £1/kWh the impact is marginal

compared to that of flexible consumers. Nevertheless, whether they want it or not

some inflexible consumers save whilst others loose out making it an important point

to consider when thinking of the future tariff structure for retail electricity.
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Figure 6.75: Change in the price of electricity for non-flexible consumers with different
resources across all DSM regimes calculated at RTP in 2050. Source: ESMA

6.3.5 Summary of part III

In part three of the results chapter, we explored the possibility of autonomous

consumer coordination by developing algorithm CON CM+, which combined con-

sumer strategies for demand smoothing and cost minimisation based on RTP. The

algorithm works by penalising consumers for deviating from a smooth demand pro-

file by a damping term α thereby supressing consumer herding. It has been demon-

strated that like algorithm SO CM, CON CM+ is sensitive to the choice of α and

in order to make it truly autonomous a simple learning algorithm was introduced

which allowed consumers to adjust the parameter themselves.

In terms of system benefits, it is concluded that algorithm SO CM achieves

the best performance, followed closely by AGG DF. In terms of consumer sav-

ings, for most types centralised coordination was observed to be more beneficial,

i.e. regimes SO CM and AGG DF. However, it was demonstrated that for non-

flexible consumers with solar PV decentralised DSM regimes (i.e. CON CM+ and

CON CM (LEARN)) lead to higher savings.

To summarise, we observed a trade-off between stakeholder autonomy and sys-

tem optimality, i.e. the system performed best with SO CM however that involved
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consumers giving up information about their flexibility. It is argued that consumer

control can be minimised through an algorithm such as CON CM+, whereby the

information flow between consumers and the system is limited. It is noted that

the algorithm for consumer adjusting αc described here is very simplistic and with

its improvement autonomous coordination could be a lot more successful. More

importantly, it was demonstrated that in the context of the simulation framework,

consumers (or rather the software which controls their demand) is able to learn the

behaviour by slowly reacting to the market. Of course, this does not go without

some trial and error as the end-users adapt their behaviour which can end-up cost-

ing the system as has been demonstrated in this section.

We finished the chapter by demonstrating consumer benefits relative to the

flexibility they can offer to the fgrid. Although more flexibility leads to more sav-

ings, the relationship isn’t linear and consumer demand pattern plays an important

role in determining how much each individual consumer profits from DSM. It is

noted that consumers with ES get the highest benefits relative to the amount of flex-

ibility they provide to the grid in contrast to those with electric heating and thermal

storage. This has much to do with the efficiency of the storage and consumer de-

mand constraints. Finally, it has been shown that non-flexible consumers (which

have no impact of system level demand) experience different benefits from DSM,

especially those with solar PV which are very vulnerable to the export price of elec-

tricity. These results demonstrated that the retail electricity tariff structure is critical

to ensuring a fair allocation of costs and benefits to consumers in the context of

DSM.

A note on centrally setting α . Figure 6.76 shows a plot of optimal values of α ver-

sus the average level of predicted prices used by consumers in algorithm CON CM+

across all years and scenarios. It is possible to see that α is influenced by the mean

as well as the volatility of the daily wholesale electricity prices as demonstrated by

the changing shade of the data points in the chart - higher volatility means higher

α . Now, this result is not surprising since in the original optimisation formula (6.2)

the damping term is counter acting the predicted price p∗(t,d) and as the price level
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increases then so must the damping parameter. Otherwise, the first term in (6.2)

outweighs α and consumers start to herd when cost minimising. This observation

suggests that the system would be able to learn the optimal α to choose to send to

consumers and can act as a tool for improving algorithms SO CM and CON CM+.

Even in the case when consumers learn, i.e. CON CM+(LEARN) the system could

still send a suggested initial α to set a boundary for consumer α range.

Figure 6.76: Average daily price plotted against optimal alpha setting for CON CM+
(conDR=100%) in the Steady State and Two Degrees+ scenarios, 2015-2050.



Chapter 7

Conclusions

In light with increasing penetration of renewable energy sources, demand side man-

agement (DSM) has been receiving a lot of attention from industry and academia

as a promising solution to balancing electricity in the grid. Yet, the implications of

DSM being deployed by multiple stakeholders each with their varying objectives,

have not been fully understood. For example, one of the most popular and simplest

approached to DSM is to inform consumers of the real time price (RTP) for electric-

ity, allowing them to shift demand to off-peak hours. However, with high enough

end-user flexibility such behaviour can lead to consumers herding towards the same

periods of low electricity prices. This can result in more volatile system demand

and higher costs, as a result of the market adjusting to chaotic consumer behaviour.

Aggregators can help alleviate the problem of consumer herding by coordinat-

ing the demand of a group of end-users. However, aggregators can themselves herd

as they compete in the wholesale market for cheap electricity and larger consumer

market share. Moreover, consumer switching between aggregators can aggravate

this issue, as end-user resources migrate between different aggregators. The only

sure way to optimise system demand is through a centrally controlled DSM, which

would keep track of the real time cost for generating electricity. However, this

would require consumers to share some information on their electricity demand

patterns or flexibility - something that might not be appreciated by some due to pri-

vacy concerns. Finally, it is uncertain how different types of consumers (i.e. those

with and without flexible resources) might be affected by the deployment of DSM.
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The objective set out for this work was to evaluate the potential opportunities

and challenges when demand side management (DSM) is used as a tool for balanc-

ing electricity supply and demand by different stakeholders in the grid. In order to

do this holistically and address the gaps identified in existing research, a bespoke

model for electricity system management using an agent based approach (ESMA)

has been built taking Great Britain as a case study. Three types of stakeholders

have been identified in the grid which are able to perform DSM: consumers, aggre-

gators and the system operator (SO). The model considers ten types of consumers

(depending on the combination of resources they possess) within four economic

sectors (domestic, commercial, industrial and transportation). The aggregator layer

represents entities which are able to pool consumers together and instruct them

on how to shift demand. At the top layer, the SO oversees the whole system and

communicates electricity demand to the market agent, which dispatches electricity

generation units and calculates the prices for electricity. Guided by the scenarios

provided by the National Grid, two cases for the evolution of the British electric-

ity system have been considered for the period of 2015-2050: Steady State (least

flexible and renewable system) and Two Degrees+ (the most flexible and renewable

system). For each of the national scenarios the long term impact of the different

DSM regimes has been assessed, by monitoring system costs, greenhouse gas emis-

sions, and consumer bills.

Through building ESMA and exploring different national scenarios and DSM

regimes, the aim was to come up with market rules which would minimise the risks

and maximise the benefits of DSM. In order to achieve this, the following research

questions have been posed at the beginning of this work:

1. Up to which point is autonomous consumer cost minimisation based on the

real time price effective in reducing system costs and greenhouse gas emis-

sions?

2. How can aggregators facilitate effective demand side management and what

potential risks might they bring along?
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3. What is the appropriate tariff structure for rewarding consumer flexibility?

4. Is it possible for consumers to schedule demand autonomously without com-

promising the stability and sustainability of the electricity system?

7.1 Recap of key results
In part one of the results, we addressed the first research question by investigating

the limits of the simplest form of DSM, whereby consumers autonomously cost

minimise based on the real time price of electricity. The simulation results demon-

strated that in the early scenario years (when consumer flexibility and renewable

capacity were low), communicating RTP to consumers led to system savings as re-

newable resources were better utilised. In the base year 2015, total system savings

amounted to £2.3 million when 50% of end-users cost minimised and £1.1 million

at 100% end-user participation in DSM. However, with high consumer flexibility

in the later years (especially in the Two Degrees+ scenario), the system started to

suffer from herding. When all consumers cost minimised based on RTP, the system

experienced losses from 2020 onwards in both Steady State and Two Degrees+ sce-

narios. In 2050 (Steady State) system cost increased by £1.2 billion, whilst GHG

emissions went up by 1,266 MtCO2eq per year relative to the base case (without

DSM). As a result of the elevated wholesale prices for electricity, flexible consumers

saw their bills go up (especially those with solar PV and electrical storage). Yet, in-

flexible consumer (not being able to shift demand) profited in these conditions as

they bought electricity at the lowest prices when the rest of the market herded. These

observations highlight a potential conflict of interest between inflexible consumers

and the system. From performing the sensitivity analysis, it was found that herding

can be controlled through consumer export prices for electricity. The simulation

results demonstrated that the system losses can be minimised when the export price

was reduced relative to the import price of electricity. This happened because con-

sumers favoured self-consumption and did not over-export electricity to the grid,

which reduced the curtailment of system level renewables. It was also observed

that when the SO predicted the future electricity demand, putting more weight to
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past data lead to the prices becoming more chaotic as consumer shifted day-to-day

consumption in order to cost minimise. Hence, controlling wholesale price from

becoming too volatile can act as another tool for stabilising system demand and

prices during DSM.

In part two of the results, we addressed the second research question by demon-

strating the benefits of a well-coordinated aggregator-led DSM. In contrast to part

one, it was observed that flexible consumers benefitted much more from the de-

ployment of DSM compared to inflexible consumers. We then explored billing

end-users at fixed daily and yearly tariffs and compared the reductions in consumer

bills to the case with RTP. It was found that inflexible consumers with solar PV

were most vulnerable to the tariff structure and that neither RTP nor fixed tariffs

were better across all scenarios and years in terms of allocating the benefits from

DSM across different consumer types. Overall, results demonstrated that fixed tar-

iffs lead to more modest savings for flexible consumers compared to non-flexible

consumers, since the shape of the demand curve played less of a role in this case.

This analysis suggested that different types of end-users need to be addressed on

the individual basis when determining the benefits from DSM.

It was then demonstrated that aggregator herding is possible when aggregators

became more aggressive in their objective to cost minimise. Moreover, consumer

switching between aggregators made the situation worse as end-user resources were

shared unevenly between the aggregators leading to a more chaotic electricity mar-

ket. Finally, the superiority of a centrally coordinated DSM was demonstrated

which addressed research question three. Total system saving reached £1.7 bil-

lion in 2050 (Two Degrees+) - £70 million more than in the case when the SO was

not involved. These observations suggest that the true value of aggregators is in

communicating the information between the system and the consumers. However,

this scenario removes the natural competition between the aggregators in addition

to raising the question regarding the allocation of benefits to different stakeholders

involved.

In part three of the results, we investigated the topic of consumer autonomy
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in the context of DSM through developing a new algorithm for consumer demand

scheduling. The algorithm evolved as a product of the observation made during the

first two sections of the analysis. When comparing all DSM regimes considered in

this work, it was found that the most centralised approach lead to the highest system

and consumer savings and lowest GHG emissions, suggesting a trade-off between

system optimality and consumer autonomy. This result echoes the concept referred

to by economists as the price of anarchy, whereby the efficiency of the system

degrades when the players start to behave selfishly (Koutsoupias and Srinivasan,

2009). That said, for certain types of end-users (i.e. those with solar PV) a more

decentralised DSM approach lead to higher savings highlighting a source of conflict

of interest between certain consumers and the system.

The results chapter was concluded by a discussion on the mechanism for re-

warding consumers for their flexibility. It was demonstrated that consumers with

different resources benefitted from a varying degree of savings when offering the

same amount of flexibility to the grid. For example, those with electric heating and

electrical storage saw much lower marginal savings from DSM compared to those

with electrical storage only. Hence, end-user demand pattern played as much of a

role in determining consumer benefits from DSM as their flexibility.

7.2 Main messages
Going back to the research questions posed at the beginning of this work, the an-

swers are summarised as follows:

1. In the earlier years of the simulation (or when system flexibility and renew-

able capacity are low), communicating the real-time price of electricity to

end-users can be an effective solution to managing electricity consumption

and optimising the use of renewable generation in the grid. However, go-

ing past 2020 and further into the future it is possible that consumer herding

could harm the grid leading to increased system costs and greenhouse gas

emissions. Moreover, it is flexible consumers who end up paying for herd-

ing whereas those without any resources save. This might deter certain con-
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sumers from purchasing storage and participating in DSM, which is counter-

productive to the government goals of engaging the end-user and promoting

system flexibility.

2. Aggregator-led coordination can help overcome the issue of consumer herd-

ing but only when they are communicated the information on the true cost of

generating electricity. Otherwise, aggregators can herd much like consumers

leading to increased system costs and GHG emissions. Hence, the true value

of aggregators is in communicating system level information to consumers

and assisting a central entity (such as the System Operator) in balancing the

grid.

3. Autonomous consumer DSM is possible, however it is likely to emerge from

a more centralised regime giving consumers (and their gadgets) the opportu-

nity to learn the right signals when adjusting to the market. In the context

of the real world implementation of such a regime, this translates into the

consumer demand scheduling software acquiring starter learning information

from previous market observations. This would ensure a safe transition to

purely decentralised DSM. It is argued that the amount of information re-

quired from consumers in the initial stages of such transition can be limited

to one-way signalling from the grid to end-users thus alleviating consumer

privacy concerns.

4. In order to extract maximum benefit from consumer flexibility, the future

tariffs for electricity need to reflect the services provided by end-users in the

context of DSM. According to the simulation, consumer tariffs based purely

on RTP or fixed price for electricity are inappropriate for fairly rewarding

end-user services. This is especially applicable to consumers with renewable

generation resources who rely on exporting power into the grid. Hence, a

more tailor-made approach is required when coming up with tariff structures

for different types of consumers.
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7.3 Model limitations and further work
When creating the modelling framework ESMA and obtaining data for the simu-

lation scenarios, a number of assumptions have been made. Some of the model

limitations have been discussed throughout the document. This chapter covers the

most significant limitations and offers ways to improve the model.

1. Electricity generation. In modelling the electricity generation market, cap-

ital costs of different generation technologies are ignored since the purpose

of this work is to explore DSM dynamics and control using short run avoid-

able costs. In addition to this, generators are grouped based on their technol-

ogy, i.e. 9 real world coal power plants with an average capacity of 1.6GW

are represented by one coal generator of capacity 15GW. As a consequence,

the technical characteristics are assumed to be the same for all generators of

the same type. Moreover, technical characteristics of generators stay fixed

throughout the simulation period. Hence, if in 2015 the variable O&M cost

has been assumed at £2.09/MWh and efficiency at 50% then the same is true

in 2050. This significantly simplifies the market dynamics, since in reality

power generators of the same technology vary in their characteristic depend-

ing on the year they were built, the type of fuel they use, their size, and their

operation schedule (especially significant for efficiency). As a result of these

simplifications, the model underestimates the cost of electricity, since instead

of dispatching nine different generators it dispatches one nine times the size.

In order to improve the model, it would be necessary to reflect individual gen-

erator characteristics such as capital and operational costs, efficiency, carbon

emission factor, and generator outages.

2. Wholesale electricity market. The wholesale electricity market is approxi-

mated as a one-shot day-ahead market followed by a rescheduling in the bal-

ancing market. In reality, contracts for physical delivery of electricity range

from years to seconds ahead depending on the type of product being sold.

As a consequence of this approximation, the model underestimates the value

of DSM, which is especially valuable in the balancing market. Although a
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limitation, it is argued that the day-ahead market captures sufficient market

dynamics to effectively model the relationship between electricity demand

and prices. Including a more representative balancing market would better

reflect the value of demand side management.

3. Network constraints. Network constraints are not modelled, which means

that electricity can flow freely between the points of generation and consump-

tion. This underestimates the cost of electricity since the price of electricity

also includes the cost of utilising the grid. Another consequence of omit-

ting the network constraints is that the impact of DSM at the local level is

not evaluated. To elaborate, when consumers are coordinated centrally at the

transmission level the demand is optimised, however at lower voltages the

constraints might be breached. This is an important point not being addressed

in the research - conflict of interest when managing demand at the transmis-

sion and distribution levels. However, by removing the network constraints

it is possible to assess the maximum impact of DSM, both positive and neg-

ative. Including network constraints would reflect the value of DSM more

accurately.

4. Model uncertainty. Apart from the case when consumers are randomly se-

lected to switch aggregators, the model is deterministic. On the supply side, it

is assumed that there is no error in predicting renewable supply and operation

of dispatchable generation. This assumption is justified by the continuous

improvements in renewable generation forecasting models. On the demand

side, it is assumed that there is no error in predicting non-deferrable consumer

demand. This comes from an assumption that human behaviour is unlikely

to significantly change in the future. Hence, from the system’s point of view

the only source of uncertainty on the demand side comes from the consumers

reacting to the aggregator DSM signals. These assumptions lead to an un-

derestimation of system costs and therefore impact of DSM. Integrating un-

certainty in predicting renewable supply, as well as non-deferrable consumer

demand would reflect the impact of DSM more accurately.
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5. Fuel prices. The wholesale prices for primary fuels (gas, coal, oil, nuclear,

biomass) are modelled on an annual basis, meaning that there are no daily and

hourly fluctuations. This leads to more static costs for generating electricity

by different types of generators. As has been demonstrated in the chapter on

validation, this can lead to the system incorrectly picking generation technolo-

gies when solving the dispatch optimisation model. However, considering the

level of uncertainty in predicting the future it is argued that considering two

boundary scenarios which span a range of potential cases for the evolution

of the national grid (including prices) is sufficient to answering our research

questions. An improvement to the model would be to include more dynamic

fuel prices, which would better reflect the true cost of generating electricity.

6. Consumer demand profiles. Although the uptake of consumer technolo-

gies is explicitly considered in the model, it is assumed that the shape of

non-deferrable consumer demand will stay the same throughout the simula-

tion period. In the case of domestic consumers this might be the case (i.e.

watching TV and cooking), however for non-domestic consumers (especially

industrial) it is difficult to predict how the demand will change over the years.

The main consequence of this assumption is on the shape of the system de-

mand curve and system prices. An improvement to the model would be to

consider a social angle on how end-users might utilise energy in the future.

However, it is an ambitious improvement which would significantly compli-

cate the model. Moreover, the objective of this work to evaluate the potential

impact of DSM on the system and consumers, can be achieved without such

detailed focus on how the shape of the consumer demand curve will change

in the future.

7. District heating. District heating is not considered in the model, however

it constitutes an important part of the British electricity system. Moreover,

district heating can act as a good source of energy storage and as an aggre-

gator unit for end-users. By not including the district heating network all

of the power to schedule demand falls onto consumers themselves, which is
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likely to overestimate to potential for consumer herding. However, this way

of modelling the system offers a way to consider the extremes for the future

evolution of the grid. Including district heating would provide a more holistic

representation of the electricity grid and potential for DSM.

7.4 Addressing model limitations in ESMA
In order to address the limitations which impact the correct calculations of sys-

tem cost, an uplift was introduced which allowed to calibrate the electricity prices

against historical and (to an extent) future values. However, the data against which

the prices were calibrated was limited. In the case of historical data, this was be-

cause for over-the-counter market (which represents the majority of electricity con-

tracts for physical delivery) this data was not available. In the case of future prices,

only average annual values were available and so it was necessary to make do with

calibrating against average annual electricity prices offered by the National Grid.

The major consequence of the limitations described above is that that in terms of

system costs and GHG emissions the impact of DSM is underestimated.

The second tool used for addressing limitations was sensitivity analysis. For

example, consumer solar PV and storage capacity was varied in order to address

how these parameters affect the impact of DSM on different types of consumers as

well as the system. For the same reason the weight to past prices used when the

System Operator predicts day-ahead demand was varied around the default value.

Modelling two boundary scenarios (Two Degrees+ and Steady State) was the main

solution to addressing limitations concerning the data in the model. With regarding

to the future electricity tariffs, dynamic and static prices were explored.



Appendix A

Data preparation

The following chapter describes the methods involved in data preparation and model

calibration as well, as going over certain methods which are not mentioned in the

main body of the thesis.

A.1 Consumer electricity demand profiles
For each consumer c, electricity demand profiles can split into two components:

weather independent consumption, lc(t,d) (due to cooking and watching TV) and

weather dependent component (water and space heating), which is achieved through

operating the heat pump or a resistance heating, lc
HP(t,d) and lc

RH(t,d). Weather

dependent demand is defined as ‘thermal’ and weather independent demand as ‘non-

thermal’ and will refer to them accordingly from now on.

In the following section we describe the process of obtaining consumer de-

mand profiles making a distinction between stationary sectors (domestic, commer-

cial, industrial) and transport, since preparing data for transportation sector requires

a slightly different procedure.

A.1.1 Stationary sectors (domestic, commercial, industrial)

The main datasets used to obtain hourly electricity demand profiles for stationary

sectors are the standard half-hourly demand profiles offered by Elexon (Elexon,

2017a). Elexon provides demand data for 8 consumer classes defined as follows:

1. Profile Class 1 – Domestic Unrestricted Customers
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2. Profile Class 2 – Domestic Economy 7 Customers

3. Profile Class 3 – Non-Domestic Unrestricted Customers

4. Profile Class 4 – Non-Domestic Economy 7 Customers

5. Profile Class 5 – Non-Domestic Maximum Demand Customers with a Peak

Load Factor of less than 20%

6. Profile Class 6 – Non-Domestic Maximum Demand Customers with a Peak

Load Factor between 20% and 30%

7. Profile Class 7 – Non-Domestic Maximum Demand Customers with a Peak

Load Factor between 30% and 40%

8. Profile Class 8 – Non-Domestic Maximum Demand Customers with a Peak

Load Factor over 40%

For each of the 8 consumer types, Elexon provides demand profiles for five

different seasons (Winter, Spring, Summer, High Summer and Autumn) and three

day types (weekday, Saturday and Sunday), which enables us to compile an annual

half-hourly demand profile for eight types of consumers. Figure A.1 shows half-

hourly electricity consumption by domestic and non-domestic consumers during an

average autumn weekday, highlighting the difference in their pattern and magnitude.

On the left side, it is possible to see two domestic profiles: one with off-peak electric

heating (in red) and one without (in blue). Since thermal consumption is modelled

explicitly, profiles of class 2 are not considered.

For non-domestic sectors, profiles across the relevant consumer classes

are averaged, i.e. class 3 and 4 for commercial and classes 5, 6, 7 and 8

for industrial sectors. This renders three types of non-deferrable electricity

demand profiles representing domestic, commercial and industrial consumers,

ldom(t,d), lcom(t,d), lind(t,d) where t stands for the hour and d for the day of

the simulation.
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A note on notation. When the superscript includes the economic sector (i.e.

ldom(t,d)), the variable represents individual real life consumer, whereas when the

superscript includes the consumer index (i.e. lc(t,d)) the variable corresponds to a

modelled consumer agent, which represents a pool of individual consumers of the

same type (see section 3.4.2.1 on agent representation).

Figure A.1: Half-hourly electricity demand profiles for non-domestic consumers for an av-
erage autumn weekday.

A.1.1.1 Non-thermal consumer demand profiles

In order to obtain non-thermal consumer demand, the total consumer demand pro-

files, ldom
tot (t,d), lcom

tot (t,d), lind
tot (t,d), are stripped off the thermal component. In order

to do that the following assumptions are made:

1) The warmest days in the year have no thermal demand component.

2) Any seasonal change in electricity demand profile corresponds to thermal

electricity demand.

The warmest days correspond to High Summer Weekday (Hsr Wd), High Sum-

mer Saturday (Hsr Sat) and High Summer Sunday (Hsr Sun) for the three stationary

sectors as shown in Figure A.2 1.
1High Summer is defined as between 6th Saturday before 4 Aug and Sunday after 4 Aug
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Figure A.2: Electricity demand profiles with the lowest energy demand for the domestic
consumer (Elexon, 2017a).

This means that for a domestic consumer non-thermal demand on an Autumn

weekday is the same as on High Summer Weekday (Figure A.3). Compiling these

profiles according to the type of day allows us to obtain half-hourly non-thermal

demand profile for the whole year. This procedure is performed for the base year

2015, following which the resolution is reduced to hourly to better align with other

data.

Figure A.3: Extraction of non-thermal demand profile for domestic consumer from the total
demand for an Autumn Weekday.

A.1.1.2 Thermal consumer demand profiles

For domestic consumers it was possible to obtain a dataset of natural gas consump-

tion by a gas boiler, qdom
CHM,gas(t,d), with hourly resolution and monthly variations
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from the Cambridge Housing Model (CHM)(BEIS, 2015). This demand data is con-

verted into heat demand qdom
CHM,heat(t,d) by applying an average gas boiler efficiency

ηboiler assumed at a conservative value of 75% (BEIS, 2017d),i.e.

qdom
CHM,heat(t,d) = qdom

CHM,gas(t,d) ·0.75, ∀t ∈ [1,T ],d ∈ [1,D].

Profile qdom
CHM,heat(t,d) is what we take as the electricity demand by a domestic

resistance heater (RH) since it has 100% efficiency when converting power demand

into heat, i.e. qdom
CHM,heat(t,d) = qdom

RH (t,d), ∀t ∈ [1,T ],d ∈ [1,D]..

RH demand profile is converted to that of a heat pump (HP) by dividing it by

the coefficient of performance (COP) of the heat pump (see Appendix B.3 for COP

calculations), i.e.

qdom
HP (t,d) =

qdom
RH (t,d)
COP(d)

.

Figure A.4 shows an example of how energy consumption by a gas boiler is

converted into resistance heating and heat pump electricity demand profiles for a

domestic consumer.

Figure A.4: Thermal demand for a domestic gas boiler converted into demand for resis-
tance heater, and a heat pump on the 1-2 January 2010/11 (Cambridge Energy,
2017).

For non-domestic sectors it was not possible to find data for thermal demand,
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Figure A.5: Standard electricity demand profiles for commercial consumer, 1 Jan 2015.
Source: (Elexon, 2017a).

Figure A.6: Example of scaling the HP demand profile for an industrial consumer on the
1-2 December 2015.

hence for commercial and industrial consumers it is assumed that the thermal de-

mand pattern by taking the difference between the total demand and the non-thermal

demand profiles obtained in Section A.1.1.1, i.e. lsec
tot (t,d)− lsec(t,d), ∀sec ∈

{com, ind} (Figure A.5).

Now the profile shown on the right side of Figure A.5 gives the pattern but

not the right magnitude of the electricity demand by a non-domestic heat pump.
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This is evident because maximum electricity input capacity for a commercial heat

pump averages at around 10kW(Panasonic, 2017), whereas according to the chart it

is 1.4kW. Hence, for commercial and industrial sectors thermal demand profiles are

scaled in accordance with the power rating capacities for commercially available

models. These average at 10kw and 40kW for commercial and industrial sectors

respectively (Panasonic, 2017)(The Renewable Energy Hub UK, 2017).

Figure A.6 demonstrates the scaling procedure for thermal demand of an in-

dustrial consumer on the 1st and 2nd of December when thermal demand peaks.

It can be seen that the peak is increased from 9kW to 40kW. A similar procedure

is performed for the commercial sector where individual thermal demand peak is

increased from 1.4 to 10kW as per previous discussion.

A.1.2 Transportation sector

The electric transportation sector is modelled as consumer agents of type 8, i.e. in

possession of an electric store. From the perspective of the grid, the transport agent

represents a purely flexible load due to charging, i.e. lEV,ch(t,d). From the perspec-

tive of the electric vehicles (EVs), transport consumers also have a non-deferrable

profile, which corresponds to the vehicles discharging during moving, lEV,dc(t,d).

Together, energy capacity (EEV ), power capacity (lEV,max), and the discharge profile

(lEV,dc(t,d)) define the operational constraints of the transport agent. In this section

we show how these are obtained.

Since the number of EVs in the UK is still very low we use the traffic flow data

for conventional vehicles and assume it is the same as for EVs. Figure A.7 shows

the daily and monthly traffic flow distribution, f1(t,d) and f2(m). We calculate the

annual traffic flow distribution f (t,d,m) for each hour t, day d and month m in a

reference year by multiplying and normalising the two distribution together, i.e.

f (t,d,m) =
f1(t,d) · f2(m)

100
.

The resulting distribution offers data on the flow of traffic relative to the aver-

age day in the year. We convert this distribution into an annual energy consumption
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Figure A.7: Traffic distribution by time of day on all roads in Great Britain, 2015

Source: Vehicle Licensing Statistics (DfT, 2016)

profile by multiplying it by the average hourly energy consumption value, which

for 2015 comes to 9.9 MWh for the whole fleet of electric vehicles (taking into

account 80% throughput efficiency), i.e. 108,000MWh · 0.8/8760 (National Grid,

2017a). The resulting demand profile corresponds to the discharge profile of a fleet

of electric vehicles (Figure A.8, left).

Considering that an average driver covers 10,701 km in 368h per year (De-

partment for Transport (DfT), 2016) and a 0.1 kWh/km average efficiency of an

EV(Energuide, 2017), the average energy consumption by a single vehicle is cal-

culated at 2.9kWh per hour. By dividing the discharge profile of a total fleet by

2.9kWh it is possible to calculate how many electric vehicles are on the move (Fig-

ure A.8, right). Our calculations show that on average vehicles are moving 5% of

the time meaning that the rest of the time they are stationary.

Next, we calculate the number of stationary vehicles (NEV
stat(t,d)) by subtracting

the number of moving vehicles NEV
move(t,d) from the total number of EVs in the

system in 2015 NEV
tot = 51,085 according to (National Grid, 2017a), i.e.

NEV
stat(t,d) = NEV

tot (t,d)−NEV
move(t,d), ∀t ∈ [1,T ],d ∈ [1,D].
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Figure A.8: Modelled energy consumption and numbers of moving electric vehicles, 2015.

Assumptions regarding EV operation.

1. If an electric vehicle is stationery it is charging;
2. State of charge of the battery at the beginning of the day is the same as at the

end of the day.

Using the above assumption information, we calculate the charging profile

of the EV fleet, l f leet,ch(t,d), l f leet,dc(t,d) by distributing the daily energy de-

manded by the moving fleet of EVs proportionally to the number of vehicles

that are stationary (Figure A.9). We calculate individual transport consumer

agent charging and discharging profiles (each representing 1000 EVs) by divid-

ing l f leet,ch(t,d), l f leet,dc(t,d) by the number of EVs assumed in the system, i.e.

NEV = 51thousand in 2015 according to (National Grid, 2017a). Finally, we calcu-

late the energy and charging capacities by taking the maximum of the cumulative

energy and charging profiles over the whole year. Figure A.10 (left) demonstrates

how the level of energy stored by a fleet of 1000 vehicles changes over the day. It is

possible to see that the maximum state of charge is reached at around 06:00 when

most vehicles are stationary. As EV fleet continues to move throughout the day, the

battery discharges reaching the minimum at around 21:00. The maximum value of

the energy level in the fleet battery determines the storage capacity of the transport

consumer, Emax,trans.



A.1. Consumer electricity demand profiles 237

The right chart in Figure A.10 shows how much charging occurs in each hour

for a fleet of 1000 vehicles (representing 1 transport consumer). The most energy

is charged during the period 15:00-18:00 when electric vehicles become stationary.

The maximum value determines the power at which the transport consumer is able

to draw power from the grid, lmax,trans.

Figure A.9: Modelled energy consumption and numbers of stationary electric vehicles,
2015.

Figure A.10: Cumulative energy and charging profiles for 1000 electric vehicles, Friday,
10 July 2015. Source: own modelling.

The storage capacity of a transport consumer (EEV,max) corresponds to the
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battery capacity of a thousand electric vehicles available for shifting rather than

the maximum battery capacity. This is equivalent to approximately 9% of the

total available EV battery storage capacity (based on the average 20kWh battery

size) suggesting that without vehicle-to-grid services a minor portion of energy de-

manded by electric vehicles is available for shifting. This is because consumers do

not discharge more than 40% of the vehicles as well as moving throughout the day.

The power capacity (lEV,max) corresponds to the average charging power capabil-

ity of the fleet throughout the day. Hence, a thousand electric vehicles operating

in a default manner are equivalent to a 1.78MWh electrical storage with a power

capacity of 0.45MW.
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Modelling consumer technologies

B.1 Solar PV
Although the National Grid provides data on the total solar capacity up to 2050 at

distribution and transmission levels, it does not state how much of it might belong

to end-users and how much to the system (Figure B.1). Hence, the challenge in

modelling solar generation was in splitting the total capacity between different end-

user sectors and the system.

Figure B.1: Projected installed solar capacity in Great Britain at transmission level. Source:
(National Grid, 2017a).

In order to allocate total solar capacity the each individual sector, we turn to

the dataset offered by the Department for Business, Energy & Industrial Strategy,

which specifies which solar installations under Feed-In-Tariff scheme (FiT) belong
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to each of the three economic sectors (BEIS, 2017b). Table B.1 summarises the

data for total capacities and number of installations within each sector for the period

2015-2017. Whereas, the dataset is exhaustive in terms of domestic installations, it

does not include all commercial and industrial solar capacity. Other installations,

such as those under the renewable obligation scheme, do not specify which sector

they belong to. Hence, two assumptions are made in order to allocate total solar

capacity.

Table B.1: Solar deployment under FiTs in each economic sector, 2015-2017 (BEIS,
2017b)

2015 2016 2017

Domestic

Capacity (MW) 2069 2558 2676

Number of installations 603,421 746,199 780,484

Commercial

Capacity (MW) 723 1059 1459

Number of installations 16,834 24,664 33,988

Industrial

Capacity (MW) 87 148 252

Number of installations 1088 1847 3159

Assumptions regarding solar PV installations.

1. All domestic installations are deployed under the FiT scheme.

2. The ratio of non-thermal demand peak to solar generation capacity per con-

sumer is the same across all sectors.

3. The share of total solar capacity allocated to each consumer sector and the

system remains constant across the whole simulation period 2015-2050.

4. 50% of solar capacity belongs to end-users and 50% to the system (DECC,

2014).
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5. Non-domestic solar capacity is equally split between commercial and indus-

trial sectors.

Based on assumption 1, and information in Table B.1 it is possible to say that

25% of total installed solar capacity belongs to domestic sector which sees an av-

erage installation of 3.5kW. Hence for domestic consumer the non-thermal peak

to solar capacity amounts to 0.166. Utilising assumption 2, we calculate the aver-

age installation size for commercial and industrial consumers at 18kW and 80kW

(based on non-thermal demand peaks of 3.1kW and 13.7kW). Finally, by using as-

sumptions 4 and 5 and by knowing the average size for non-domestic installations,

we calculate the number of installations for commercial and industrial sectors. Ta-

ble B.2 summarises this information.

Table B.2: Number of solar installations and average size of installation per individual con-
sumer assumed for 2015-2017.

Type of installation 2015 2016 2017

Domestic

Share of total capacity 25% 25% 25%

Average installation size (kW) 3.5 3.5 3.5

Number of installations 603,421 746,199 780,484

Commercial

Share of total capacity 12.5% 12.5% 12.5%

Average installation size (kW) 18.5 18.5 18.5

Number of installations 55,386 76,942 83,362

Industrial

Share of total capacity 12.5% 12.5% 12.5%

Average installation size (kW) 80.8 80.8 80.8

Number of installations 12,695 17,636 19,107

System level

Share of total capacity 50% 50% 50%

Installation capacity (MW) 363,296 431,452 898,979

Total installed capacity (MW) 726,591 862,903 898,979
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We then use historical solar generation profile taken from (National Grid,

2015b) and the information compiled in Table B.2 in order to calculate individual

solar generation profiles per individual consumers across the three economic sectors

(Figure B.2). To model future adoption of solar, we scale individual generation pro-

files by the projected capacity increase as demonstrated in Figure B.1(see Appendix

C.2). The reader is reminded that each modelled consumer agent represents 1,000

real life end-users, and so in the modelling framework the standard generation pro-

files shown in Figure B.2 are multiplied by 1000 to represent the solar generation

profile for each consumer agent.

Figure B.2: Standard solar generation profiles for individual end-users in different sector,
1-4 Jan, 2014. Source: (National Grid, 2015b).

B.2 Electrical storage (ES)
Electrical storage is recognised as a promising solution to balancing renewable en-

ergy in the system. Rapid development of electric vehicles is resulting in lower-

ing costs for lithium based batteries making them accessible not only to large con-

sumers within industrial and commercial sectors but also to residential and smaller

commercial end-users. In fact, the National Grid projects non-transmission level

storage capacity to reach 2.4 GW in the Steady State scenario and almost 6GW

in the Two Degrees scenario by 2040 (National Grid, 2017a). Batteries are often

considered together with rooftop solar, such as in the case of TeslaPower wall as a
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way of balancing renewable energy supply. Hence, the demand for renewables also

drives the rate of storage deployment.

There are different types of electrical storage, however in this work we consider

a lithium battery similar to a Tesla PowerWall due to its commercial availability.

Batteries are characterised by a minimum and maximum energy capacity constraints

Emin,c
ES and Emax,c

ES , minimum and maximum power constraints lmin,c
ES and lmax,c

ES , and

energy efficiency ηc
ES.

B.2.1 Technical constraints of the ES (Karoline et al., 2016)

Electric storage must obey the following technical constraints:

ESC1. The charge lch,c(t,d) and discharge ldc,c(t,d) of ES must lie within the power

constraints of the battery at all times throughout the day:

lmin,c
ES ≤ lch,c

ES (t,d) ·bES(t,d)≤ lmax,sec
ES ,

lmin,c
ES ≤ ldc,c

ES (t,d) · (1−bES(t,d))≤ lmax,c
ES ,

Where bES(t,d) is a binary variable to prevent simultaneous charge and dis-

charge of the battery.

ESC2. The net amount of energy going into the ES is bound by the store efficiency:

Enet,c
ES (t,d) = η

c
ES · l

ch,c
ES (t,d)− ldc,c

ES (t,d).

ESC3. Total available energy in the battery Ec
ES(t,d) is the sum of the available en-

ergy in the previous time period and the net charge going into the ES:

Ec
ES(t,d) = Ec

ES(t−1,d)+Enet,c
ES (t,d).

ESC4. The amount of discharge ldc,c(t,d) is limited by the available energy in the

store:

ldc,c
ES (t,d)≤ Ec

ES(t,d).

ESC5. Total available energy in the battery Ec
ES(t,d) must be within the minimum

and maximum ES capacity constraints:

Emin,c
ES ≤ Ec

ES(t,d)≤ Emax,c
ES .
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ESC6. At the end of the day the amount of charge is the same as at the beginning:

Ec
ES(0,d) = Ec

ES(T,d).

The above constraints are true ∀c ∈ C , t ∈ [1,T ],d ∈ [1,D] .

Whilst the discharge profile, lc,dc
ES (t,d) is a decision parameter for the stationary

consumers, it is an input for the transportation sector as calculated in A.1.2 and

constitutes a constraint for operating the storage.

B.2.2 Estimating ES parameters

For the residential household the maximum energy capacity per individual con-

sumer is assumed as 10kWh and maximum power as 5kW based on the power spec-

ifications of a 13.5kWh Tesla PowerWall battery assuming that some consumers

might have smaller batteries (Tesla, 2017). For commercial and industrial end-

users the stores are scaled based on the total energy consumption in comparison to

the domestic consumer. Hence, if the annual consumption by a domestic household

is 22 MWh and 35 MWh by commercial business, the ES capacity is calculated

as 34.6
21.9 · 10 = 16MWh. Similarly for an industrial end-user, which has an annual

demand of 238kWh, ES capacity results in 238.5
21.9 · 10 = 109kWh energy capacities.

The power constraints are calculated as half the capacity value again based on the

domestic ES power-to-capacity ratio which is approximately 1:2.

For the transportation sector, the available capacity per vehicle is calculated as

Emax,trans
ES =2.9kWh and the maximum power as half the value, i.e. lmax,ind

ES =1.45kW

(calculated considering the whole fleet of EVs in Britain as one vehicle). The effi-

ciency for all electrical stores is assumed to be 0.8 and the minimum energy capacity

and power to be 0, i.e. ηsec
ES = 0.8,Emin,sec

ES = 0 = lmin,sec
ES ∀sec∈ {dom,com, ind}1.

B.3 Electric heating (EH)(Dejvises, 2012)
Heating electrification contributes a major part to the UK 2050 decarbonisation

goals. In this model two types of electric heating are considered: heat pumps (HP)

and resistance heating (RH). Resistance heating contributes around a quarter of an-

1This is based on Tesla PowerWall batteries claiming available capacity rather than total battery
capacity which includes the discharge limitation
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nual electricity consumption in the domestic sector today, whilst it is projected that

by 2030 around 160 TWh electricity demand will come from 6.8 million heat pumps

installed across all economic sectors (CCC, 2013). The mathematical formulation

of the two technologies is very similar with the only difference being the coefficient

of performance (COP).

A heat pump is a reversible heating, ventilation, and air conditioning unit,

which transfers thermal energy from a source of heat to a ‘heat sink‘. Heat pumps

operate on the principle of a ‘refrigeration-type cycle‘ (same as air conditioners and

fridges) and utilise external power in order to move thermal energy in the opposite

direction of spontaneous heat transfer (i.e. from warm to cold) (Bundschuh et al.,

2014). In this work we consider air-source heat pumps (which draw heat from

outside air and upgrade it to a higher temperature to be emitted in the house) due to

wider adoption in the UK (CCC, 2013). Heat pumps are characterised by the max-

imum input electrical power capacity lmax,c and efficiency ηHP, which determines

the coefficient of performance (COP) of the HP.

The COP of the air-to-water heat pump for consumer c, depends on the Carnot

efficiency of the HP ηmax
HP taken as 0.4 (Dejvises, 2012) and the relative temperature

difference between external air, θext , and the heat sink, θT ES, i.e.

COPc
HP(t,d) = η

max
HP ·

θT ES(t,d)
(θT ES(t,d)−θext(t,d))

, (B.1)

We take the temperature of the heat sink (the temperature of the heater water)

as 323.15K (equivalent to 50°C) and calculate the COP of the heat pump using the

average monthly external air temperatures in the UK taken from the Met Office(Met

Office, 2017) according to (B.1). Since the temperature fluctuations throughout the

year are taken as historical, the COP values also do not change from year to year.

In reality of course external air temperatures vary from year to year (especially

considering the impact of climate change) and so the value of COP will change.

However, this is left as limitation of the model since we do not consider climate

change in our simulation.

Similarly, resistance heaters (RH) are characterised by the maximum power
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constraints (lmin,c
RH , lmax,c

RH ( and efficiency ηc
RH . However, since all since all of the

power used by RH goes into meeting thermal energy demand in (B.1), COPRH = 1.

B.3.1 Technical constraints of electric heating resources

EHC1. The power demanded by an electric heater (EH) lc
EH(t,d) must be within the

minimum and maximum power constraints of the heat pump, lmin,c
EH = 0 and

lmax,c
EH :

lmin,c
EH ≤ lc

EH(t,d)≤ lmax,c
EH , EH = {HP,RH},∀t ∈ [1,T ].

EHC2. The power required by an electric heater lc
HP(t,d) to fulfil heat demand

qc
HP(t,d) is calculated as:

lc
HP(t,d) =

qc
HP(t,d)

COPc
HP(t,d)

∀c ∈ C , t ∈ [1,T ].

B.3.2 Estimating parameters of EH

Electric heating is characterised by the maximum input power rating, i.e.

lsec,max
HP , lsec,max

RH . In order to obtain these values for individual consumer across

domestic and non-domestic sectors, we take the maximum value from the annual

consumer thermal demand pattern obtained in Section A.1 (Figure B.3).

Figure B.3: Example of estimation of heat pump and resistance heating capacity for a
generic consumer.
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B.4 Thermal energy storage
Thermal energy storage (TES) is a mature technology for storing heat and is widely

used in the UK. Moreover, thermal storage can help smooth demand peaks resulting

from the deployment of electric heating such as heat pumps. For this reason, the

dynamics of the HP and RH are considered together with a TES.

A thermal store is characterised by minimum and maximum storage capacity

Emin,c
T ES ,Emax,c

T ES , minimum and maximum power flow rate lmin,c
T ES , lmax,c

T ES and efficiency

ηc
T ES for each individual consumer c.

Consumers may utilise TES to shift the electricity demanded by the electric

heater (HP or RH) by means of charging and discharging the store. Hence, if

qc
EH(t,d) is the heat generated by an electric heater, qch,c

T ES(t,d),q
dc,c
T ES(t,d) are the

charge and discharge profiles of TES, the total heat generated by the system is cal-

culated as:

qc
EH(t,d)−qch,c

T ES(t,d)+qdc,c
T ES(t,d) (B.2)

This must be done in agreement with the following technical characteristics of

the HP-TES:

B.4.1 Technical constraints of the TES system

TESC1. heat going in and out of the TES must be balanced. Hence, the heat generated

directly by an electric heater (qc
EH(t,d)) and the heat discharged from the

TES (qdc,c
T ES(t,d)) must fulfil the charging requirements of TES (qch,c

T ES) and the

non-deferrable heat demand profile by of consumer c (qc(t,d)):

qc
EH(t,d)+qdc,c

T ES(t,d) = qc(t,d)+qch,c
T ES, EH = HP,RH,∀t ∈ [1,T ].

TESC2. The net amount of energy going into the TES is the difference between ther-

mal charge qch,c
T ES and discharge qdc,c

T ES
2:

Enet,c
T ES (t,d) = qch,c

T ES(t,d)−qdc,c
T ES(t,d).

TESC3. TES charge qch,c
T ES(t,d) and discharge qch,c

T ES(t,d) are bound by the TES energy

2Here the heat loss in the pipes is ignored.



B.4. Thermal energy storage 248

flow constraints:

qmin,c
T ES ≤ qch,c

T ES(t,d) ·bT ES(t,d)≤ qmax,c
T ES ,

qmin,c
T ES ≤ qdc,c

T ES(t,d) · (1−bT ES(t,d))≤ qmax,c
T ES ,

where bT ES(t,d) is a binary variable to prevent the storage charging and dis-

charging at the same time.

TESC4. Total available energy in the TES is the sum of the available energy in the

previous time period Ec
T ES(t−1,d) adjusted by the store efficiency ηc

T ES plus

the net charge going into the store:

Ec
T ES(t,d) = η

c
T ES ·Ec

T ES(t−1,d)+Enet,c
T ES (t,d).

TESC5. Total available energy in the TES( Ec
T ES(t,d)) must be within the TES capac-

ity constraints:

Emin,c
T ES ≤ Ec

T ES(t,d)≤ Emax,c
T ES .

TESC6. At the end of the day the amount of thermal energy in the TES must be the

same as at the beginning:

Ec
T ES(0,d) = Ec

T ES(T,d).

The above constraints are true ∀c ∈ C , t ∈ [1,T ],d ∈ [1,D].

B.4.2 Estimating technical parameters of thermal energy stor-

age

Based on the rate at which thermal power can be extracted from a domestic hot

water tank in (Dejvises, 2012), we assume that the thermal output capacity lmax,sec
T ES

for a TES is approximately half of its total energy capacity Emax,sec
T ES , i.e. lmax

T ES =

0.5 ·Emax,sec
T ES .

It is assumed that the efficiency of TES ηT ES = 0.98 (which corresponds to the

heat loss during operation) and the minimum energy stored and power at zero for

all sectors, i.e. Emin,sec
T ES = 0kWh, lmin,sec

HP = 0 sec = {dom,com, ind}.

Figure B.4 summarises the information on the technical specifications of con-

sumer technologies.
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Figure B.4: Technical parameters assumed for consumer technologies.



Appendix C

Future Energy Scenarios (FES)

We consult the future energy scenarios (FES) provided by the (National Grid,

2017a) in order to model the future evolution of the British electricity system. The

National Grid dataset provides most but not all of the data required, and this chapter

described how datasets were selected. As discussed in chapter 4, we focus on the

two main cases of national grid evolution: Steady State (the least flexible system

with a low penetration of renewables) and Two Degrees+ (the most flexible system

with a high penetration of renewables).

C.1 Transmission level resources
For the transmission level generation capacities (including pumped storage) we se-

lect the Steady State and Two Degrees scenarios to represent the most pessimistic

and the most optimistic cases as shown in Figures C.1 and C.2. Since FES offers

only the power capacities for pumped storage, we model energy capacity by scal-

ing the current energy capacity value of 27.6GWh (Taylor et al., 2012) in-line with

the future projections for pumped storage installations as predicted by the National

Grid.

In terms of the price for primary fuels used by the generators, the FES dataset

offers information on natural gas, coal and oil (National Grid, 2017a), but not for

nuclear and biomass fuels for which reason we consult the data provided by the De-

partment for Business, Energy and Industrial Strategy (DECC, 2012; BEIS, 2016).

However, the fuel prices are reported per unit of generated electricity (£/MWhe)
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Figure C.1: Projected installed generation capacity in Great Britain at transmission level
under Steady State and Two Degrees scenarios. Source: (National Grid,
2017a).

Note: Capacities of renewable resources are adjusted by their load factor.

Figure C.2: Projected installed pumped storage capacity in Great Britain at transmission
level under Steady State and Two Degrees scenarios. Source: (National Grid,
2017a).

rather than primary fuel (£/MWhf). We assume a 32% nuclear power plant effi-

ciency in order to convert £5/MWhe to £1.6/MWhf of raw nuclear fuel, and a 36%

efficiency in order to convert £60/MWhe to £21.6/MWhf for raw biomass for the

base year of 2015 (BEIS, 2016). The report from BEIS suggests an increase in the

price of biomass fuel to 72 £/MWhe, which is equivalent to 25.1 £/MWhf. We in-
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troduce this increase between 2015 and 2020 and keep the price constant past 2020.

On the whole it is difficult to estimate the future price for raw biomass, since the

price largely depends on its source and the international markets. Whereas bioen-

ergy (sewage, paper, wood waste etc.) might be free, bio crops (forest, crops, etc.)

have a price which is likely to rise, as obtaining this fuel is in direct competition

for land with agriculture. Carbon prices, imports and losses are assumed to evolve

in-line with the FES scenarios. Figures C.3 and C.4 summarise the information

regarding the future evolution of primary fuel and carbon prices.

Figure C.3: Projected prices for primary fuels used in electricity generation under Steady
State and Two Degrees scenarios. Source: (National Grid, 2017a).

C.2 Consumer resources
The following section covers the scenarios for the future evolution of consumer

technologies.

C.2.1 Electrical storage

A note on assumptions regarding consumer storage. Whilst the National Grid

offers data on the future capacity of distribution level storage, it does not say which

specific sectors it might be installed and so we make an assumption that capacity

is equally split between domestic, commercial, and industrial consumers. However

we acknowledge that due to economies of scale larger consumers are likely to take
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Figure C.4: Projected system losses and imports under Steady State and Two Degrees sce-
narios. Source: (National Grid, 2017a).

a higher fraction of the total storage capacity and we explore this issue as part of

the sensitivity analysis performed as part of our results.

Figure C.5 demonstrates the most pessimistic (lowest flexibility) and the most

optimistic (highest flexibility) cases for the evolution of consumer electric storage

capacity, which correspond to the Steady State and Consumer Power storage evolu-

tion scenarios provided by (National Grid, 2017a).

To work out the number of stores per sector, we divide the total capacity per

sector by an individual storage capacity as calculated in Appendix B.2. From Fig-

ure C.6 it can be seen that the number of stores is significantly larger under the

Consumer Power scenario compared to Steady State contributing to a higher level

of consumer flexibility.

C.2.2 Solar PV

For consumer solar, National Grid provides capacities for all installations at the dis-

tribution level under Steady Sate and Consumer Power scenarios (Figure C.7). We

model future solar capacity within each sector by multiplying the current number

of solar PV installations calculated in Appendix B.1 by the capacity scaling factor

calculated relative to the base year 2015 (Figure C.7). From Figure C.8 we can see
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Figure C.5: Projected capacity of electrical storage installed at the distribution level across
different sectors in Great Britain under Steady State and Consumer Power sce-
narios. Source: (National Grid, 2017a).

Figure C.6: Projected number of electrical storage installed at the distribution level across
different sectors in Great Britain under Steady State and Consumer Power sce-
narios. Source: (National Grid, 2017a).

that even though the capacity of solar PV has been assumed to be the same across

the three consumer sectors, the number of domestic installations is much larger due

to a lower individual capacity.
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Figure C.7: Projected installed solar capacity in Great Britain at distribution level under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a).

Figure C.8: Projected number of solar PB installations in Great Britain at distribution level
under Steady State and Consumer Power scenarios. Source: (National Grid,
2017a).

C.2.3 Electric heating

We calculate the number of heat pumps in the system by dividing the annual en-

ergy consumed by HPs aggregator across each sector by the annual energy demand

of a single HP calculated in Section B.3 (Figure C.9). Whilst the FES provides

data for the domestic sector, for non-domestic consumers we consult the report on

future HP adoption provided by the Committee on Climate Change (CCC, 2013).
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The report provides the predicted values for annual electricity consumption by non-

domestic heat pumps under Default and Critical pathways, which is aligned with

the Steady State and Two Degrees FES scenarios. We then make an assumption

that all non-domestic heat pumps are split equally between commercial and indus-

trial consumers in terms of the total input capacity. Figure C.10 shows the calculated

number of installed heat pump within each stationary sector.

Figure C.9: Projected annual consumption by heat pumps in domestic and non-domestic
sectors in Great Britain under Steady State and Consumer Power scenarios.
Source: (National Grid, 2017a; CCC, 2013).

Similarly to the data on heat pumps, for resistance heaters the FES dataset

offers information only for domestic consumers. In order to calculate the annual

contribution of resistance heating sources in the non-domestic sectors, we subtract

the already calculated annual energy demand by the heat pumps (Figure C.9) from

thermal demand of non-domestic consumers (represented by cooling and ventila-

tion, low temperature processes, refrigeration, space and heating) (Figure C.11). In

order to obtain the numbers of non-domestic RH installations, we divide the annual

energy demand values for each sector by the individual RH consumption values in

the reference year 2015. To model the future evolution of non-domestic RHs we

apply the growth factors of domestic RHs (Figure C.13).
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Figure C.10: Projected heat pumps installations across all sectors in Great Britain under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a;
CCC, 2013).

Figure C.11: Projected annual demand by resistance heaters across all sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c).

Assumptions regarding thermal energy storage (TES). For thermal energy

stores it is assumed that for all sectors 50% of consumers with any source of electric

heating have a thermal store, which allows us to calculate the number of TESs in

the system by dividing the total number of HPs and RHs by two.
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Figure C.12: Projected annual demand by resistance heaters across all sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c).

Figure C.13: Projected resistance heating installations across all sectors in Great Britain
under Steady State and Consumer Power scenarios. Source: (National Grid,
2017a; BEIS, 2017c).

C.2.4 Non-thermal consumers

We calculate the level of non-thermal consumption by subtracting thermal energy

demand (see Appendix C.2.3) from the total energy demand in each sector. We then

calculate the number of non-thermal consumers by dividing annual non-thermal

consumption by individual non-thermal energy demand for a single non-thermal
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consumer. Hence, if the commercial sector uses 96.96 TWh/year towards non-

thermal resources and an individual commercial consumer uses 16,556 MWh/year,

then there are 96.96
0.016556 = 5,856 non-thermal consumers within the commercial sec-

tor.

Figure C.14: Projected electricity demand by thermal and non-thermal resources across
stationary sectors in Great Britain under Steady State and Consumer Power
scenarios. Source: (National Grid, 2017a; BEIS, 2017c).

For the transportation sector the number of non-thermal consumers corre-

sponds to the number of electric vehicles in the system. We use the FES data

on Steady State and Two Degrees scenarios as shown in Figure C.16 in order to

calculate the total number of electric vehicles in the system represented by plug-in

electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs).
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Figure C.15: Projected number of non-thermal consumers in different sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c).

Figure C.16: Projected number of electric vehicles on the road in Great Britain under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a;
BEIS, 2017c)



Appendix D

Creating consumer agents

D.1 Allocating consumer numbers to consumer

agents
When the model run is initialised in step R0 of the algorithm shown in Fig-

ure 3.9, the environment creates consumer agents, i.e. nsec
type, ∀sec ∈ S , type ∈

{type1, ..., type10}. This step is performed only once during the run. The alloca-

tion of consumers is done at the beginning of each of the run, as this is when the

global parameters for technology capacities change.

The information of how many real consumers each agent represents is con-

veyed by the consumer multiplier numbers shown in Table D.1. In addition to this

the model is operated in megawatts rather than kilowatts and so we make it simpler

by making the smallest unit of consumer multiplier 1000 consumers which auto-

matically convert all kilowatt values into MW.

The number of consumers of each type within each sector as shown in Table

3.3 changes depending on the scenario and the year of simulation. For example, the

National Grid projects the number of domestic consumers with electrical storage of

capacity 3kW (average) to reach 710,000 by 2050 in their Future Energy Scenar-

ios (FES) under high penetration case (assuming an equal split of storage between

residential, commercial and industrial sectors). Some of those consumers will be of

type 8 and not have any other resources, however a proportion will be of types 7,

9 and 10. Now, the number of consumers of type 7 is constrained by the number
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Table D.1: Allocation of consumer multipliers.
``````````````̀Consumer type

Sector
Domestic Commercial Industrial Transport

1 (no resources) mdom
type1 mcom

type1 mind
type1 -

2 (with HP) mdom
type2 mcom

type2 mind
type2 -

3 (with HP and TES) mdom
type3 mcom

type3 mind
type3 -

4 (with RH) mdom
type4 mcom

type4 mind
type4 -

5 (with RH and TES) mdom
type5 mcom

type5 mind
type5 -

6 (with PV) mdom
type6 mcom

type6 mind
type6 -

7 (with PV and ES) mdom
type7 mcom

type7 mind
type7 -

8 (with ES) mdom
type8 mcom

type8 mind
type8 mtrans

type8

9 (with HP,PV,TES,ES) mdom
type9 mcom

type9 mind
type9 -

10 (with RH,PV,TES,ES) mdom
type10 mcom

type10 mind
type10 -

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

domestic consumers with solar PV in the system projected to reach 3.2 million by

2050 in accordance with the FES, whilst the number of consumers of types 9 and 10

are also constrained by the availability of heat pumps (1.2 million), thermal storage

(8.2 million) and resistance heating (2.7 million) in the system. The total number

of domestic consumers of all types must equal to 36.5 million (calculated based on

total non-thermal electricity consumption in 2050) making the process of allocating

consumer numbers non-trivial. Coupled with an additional constraint of there being

at least 1 agent of each type (required to assess the impact of system dynamics on all

consumer types) makes the process of allocating consumers to each type becomes

non-trivial.

The model allocates consumers at the beginning of each run by minimising the

difference between the number of actual projected technologies (Nsec,tech
act ) (taken

from FES or other available sources) and the technology number modelled in ESMA

(Nsec,tech
mod )1

1The reason, we do not look for exact numbers is because at times the problem is not solvable
taking into account all technology value constraints. A correction factor introduced slightly later
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min ∑
sec∈S

∑
tech∈T

(Nsec,tech
mod −Nsec,tech

act )2, (D.1)

where T = {ES,TES,HP,RH,PV, tot} is a set of all technology types and

S = {dom,com, ind, trans} is a set of all consumer sectors.

The above problem is constrained by the availability of technology within each

sector and across all type of consumers. Hence, the total domestic electrical storage

will be spread across domestic consumers of types 7, 8, 9 and 10. So, ndom,ES
mod =

mdom
type7 +mdom

type8 +mdom
type9 +mdom

type10.

The constraints are summarised as follows:

nsec,ES
mod = msec

type7 +msec
type8 +msec

type9 +msec
type10,

nsec,T ES
mod = msec

type3 +nsec
type5 +nsec

type9 +nsec
type10,

nsec,HP
mod = nsec

type2 +nsec
type3 +nsec

type9,

nsec,RH
mod = nsec

type4 +nsec
type5 +nsec

type10,

nsec,PV
mod = nsec

type6 +nsec
type7 +nsec

type9 +nsec
type10,and

nsec,tot
mod = nsec

type1 +nsec
type2 +nsec

type3 +nsec
type4 +nsec

type5+

nsec
type6 +nsec

type7 +nsec
type8 +nsec

type9 +nsec
type10 ∀sec ∈S .

The model solves the above minimisation problem for nsec
type, ∀sec ∈

S ,∀ type ∈ {type1, ..., type10}. We refer to the consumer number for each type

nsec
type as consumer multiplier.

For domestic consumers in the Two Degrees+ scenario we introduce a linear

efficiency improvement for domestic appliances as per National Grid’s scenarios

which assume a 30% improvement by 2030.

corrects for the slight deviation.
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D.1.1 Consumer numbers

The following charts demonstrate how the consumer allocation method described

in D.1 works in calculating the number of consumers for each type and sector. We

compare the two scenarios considered in this work Steady State and the Two De-

grees+ .

It can be seen how the share of consumers with no resources reduces over time

for the Two Degrees+ scenario, whilst under Steady scenario the share of differ-

ent consumers stays fairly consistent. This is expected as consumer are obtaining

more distributed energy resources such as solar PV, storage and electric heating.

The change is more pronounced for the domestic consumers compared to commer-

cial and industrial sectors, where by 2040 the model project no consumers without

resources (Figure D.1).

Figure D.1: Demonstration of consumer allocation for domestic sector.

For commercial sector there is still a considering number of consumers with

no resources under Two Degrees+ scenario with the number dropping to around

4.4 million by 2035. Again we can see how the share of consumers with electric

heating and storage increases over time. This is especially true for consumer with

heat pumps and thermal storage (in green) and for consumers with electric storage

(in orange) (Figure D.2).

For industrial sector we note that under Steady state scenario the number of
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Figure D.2: Demonstration of consumer allocation for commercial sector.

consumers drops, whilst under Two Degrees+ it stays fairly consistent (Figure D.3).

Figure D.3: Demonstration of consumer allocation for industrial sector.

Transportation sees a significantly larger number of electric vehicles under Two

Degrees+ scenario (Figure D.4).

Once the environment has set the day and the year of the simulation consumer

adjust capacities for all their resources based on the consumer allocation number

calculated in step E0.

Although the number of consumers varies throughout the length of the run,
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Figure D.4: Demonstration of consumer allocation for transport sector.

the number of agents does not change from what has been set in step R0. Hence,

there might be 50,000 consumers of type 3 (in possession of HP and TES) but the

model will only have 1 modelled agent representing all of them. Hence, when the

consumer sets technological capacities at the beginning of the run, it multiplies in-

dividual technology capacity by the consumer multiplier number since it represents

the number of technological units belonging to this agent type. For example, if

there are 50,000 domestic consumers of type 3, then the HP capacity for one do-

mestic consumer agent of type 3 is calculated as the individual HP capacity 2 kW

multiplied by the consumer multiplier 50,000 resulting in the aggregate capacity of

100 MW.

Applying consumer multipliers allows to keep the number of modelled tech-

nologies in-line with FES scenario. For example, during daily initialisation step

C1 (Figure 3.9) consumers predict renewable generation by selecting the relevant

daily generation profile from the annual generation data. They then scale the daily

profile by the consumer multiplier set in C0. Hence, if a consumer agent repre-

senting 41,487 commercial consumers with solar is prediction generation for the

2nd January 2015 it will select the daily generation profile for the 2nd of January

and multiply it by 41,487 as shown in Figure D.5. We assume no uncertainty in

consumer agents predicting renewable generation.
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Figure D.5: Projected installed solar capacity in Great Britain at distribution level. Source:
(National Grid, 2017a).



Appendix E

Model calibration

E.1 Wholesale prices calibration
As discussed in section 3.4.5.3, in the context of ESMA electricity generators sched-

ule based on the simplified least-cost dispatch model. However, this underestimates

the true level of wholesale electricity prices. Here, a method of uplifting the elec-

tricity prices to a more representative level is introduced. The modelled uplift ε(t,d)

represents any additional costs incurred in generating and delivering electricity to

end-users such as the costs for utilising the transmission and distribution network

as well as balancing.

Hence, the final wholesale price in time t and day d consist of a short run

component pSR(t,d) and a demand dependent uplift ε(t,d) is not modelled:

p(t,d) = pSR(t,d)+ ε(t,d), ∀t ∈ [1,T ]. (E.1)

In order to calculate the uplift we use historical data for wholesale prices taken

from the exchange (Figure E.1). As can be seen from the figure the data is very

noisy. It is expected, since exchange trades include deals for short term delivery

some of which are not for physical delivery but rather speculative. In order to

reduce the noise we fit a polynomial to obtain the historical relationship between

demand and wholesale price level as shown on the chart.

We then use the relationship between historical demand and prices in order

to calculate the residual prices, i.e. the difference between historical and prices
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Figure E.1: Historical electricity prices vs system demand, Jan-Dec (APX Group, 2015)

modelled in ESMA. In the final step we fit a polynomial to the residual prices,

which determines the uplift calculations.

The left chart in Figure E.2 shows the prices output from the model as well as

the prices according to the historical relationship. The chart on the right shows the

residual prices as well as the equation for calculating the uplift, i.e.

ε(t,d) =−51.3+0.00601 ·L(t,d)−1.51 ·10−7L2(t,d)+1.51 ·10−12L3(t,d),

(E.2)

where L(t,d) is the system demand in time t and day d.

Adding the uplift to the modelled prices according to (E.1) renders the final

wholesale prices in ESMA. Figure E.3 shows how the modelled prices compare to

historical values for the base year 2015. We note that historical relationship is only

available for demand higher than 21GW and so for demand below this value we

model the uplift as a linear function guided by the assumption that at zero demand

the cost of utilising the grid is zero.

We acknowledge that the equation for the uplift is calibrated against a historical

2015 year and that it will likely change in the future. In order to adjust the uplift to

future years we consult the Future Energy Scenarios (FES) provided by (National



E.1. Wholesale prices calibration 270

Figure E.2: Modelled electricity prices.

Figure E.3: Modelled electricity prices.

Grid, 2017a), which offer an average electricity price level for baseload generation.

Figure E.4 demonstrates how baseload electricity prices are projected to change

under different national scenarios.

We use this information about prices to adjust the uplift relationship on system

demand determined earlier. For Two Degrees+ we select the medium case, since it

is a combination of the Two Degrees and Consumer Power scenarios. In addition

this we expect that as the level of renewable generation increases a high proportion

of the price will come from the capital costs, which are not modelled in ESMA. We
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Figure E.4: Projected electricity prices. Source: (National Grid, 2017a)

compensate for this by choosing the higher uplift scenario from the medium and

low cases. Figure E.5 demonstrates how the uplifts change throughout the years

and Figure E.6 shows the final wholesale prices modelled in ESMA.

Figure E.5: Projected wholesale price uplift curves. Source: own modelling.
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Figure E.6: Projected wholesale electricity prices in the base case (no coordination).
Source: ESMA.

E.2 Demand side response algorithms
Since the demand side algorithm used in this work have been adapted from the

original it was important to set the right tolerance level ε for their convergence and

the damping term α . The primary concern when setting these parameters was to

balance speed and accuracy of the simulation. The following section describes the

reasoning behind setting these parameters.

E.2.1 Aggregator DSM algorithm: AGG DF and AGG CM

Algorithm AGG DF has been taken almost directly from the original one proposed

by (Gan et al., 2013). So for this algorithm it was important to set the tolerance

level ε at which it was decided that the algorithm converges. Figure E.7 shows

how the cost at each iteration changes when we set a different tolerance level. For

the purpose of the demonstration we run the simulation for one winter day in 2050

(Steady State). It is possible to see that when the level of tolerance level ε is higher

the algorithm converges quicker but the total system cost is higher.

We select the appropriate tolerance level by looking at the time it takes for the

algorithm to run daily as well as the accuracy at each value (Figure E.8). Looking at

the time it takes for the simulation to complete one day and the marginal benefit of

decreasing the tolerance level brings to reducing the system cost, we select tolerance
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Figure E.7: Demonstration of the convergence of algorithm AGG DF, 1 Jan 2050 (Steady
State). Source: ESMA.

of 0.005%. We justify this choice by the fact that running the simulation for more

than 45 minutes per year would take too long to complete at least two scenarios

and three years of simulation, especially considering that the marginal benefit of

reducing cost is 0.004%.

Figure E.8: Analysis of convergence time and accuracy of algorithm AGG DF with differ-
ent level of tolerance, 1 Jan 2050 (Two Degrees+). Source: ESMA.

For AGG CM it has been found that the algorithm performs best when the

penalty term is set to 0 meaning that consumers are instructed to maximise shifting

demand towards periods of low electricity prices (Figure E.9). For all the other
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setting of α , the algorithm converged to a higher cost.

Figure E.9: Demonstration of the convergence of algorithm AGG DF, 1 Jan 2050 (Steady
State). Source: ESMA.

E.2.2 System Operator cost minimising algorithm (SO CM)

For SO CM the tolerance level has been kept at the same level as for AGG DF

to ensure fairness when comparing different regimes. However, we found that it

was necessary to adjust the damping term α . Figure E.10 demonstrates how the

algorithm reduces the system cost as α is varied between 0 and 1. Similarly to the

case of AGG DF α is selected based on the system cost and the convergence time of

the algorithm (Figure E.11). In fact only with α = 0.05 does the algorithm converge

in a reasonable time.

However it turns out that the algorithm is quite sensitive to this parameters as

can be seen in Figure E.12 where the algorithm is run across different years and

scenarios. On the whole the model is more sensitive to the lower values of alpha

(<0.02), however the sensitivity changes depending on the year of the simulation.

This happens because unlike algorithm AGG DF (where the signal is based on the

average aggregate consumer demand) in SO CM it is the price which itself depends

on the system demand and generation resources in the system. Hence it is of no

surprise that the optimal damping parameter setting has to be adjusted daily.
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Figure E.10: Demonstration of SO CM algorithm convergence under different values of α ,
1 Jan 2050 (Steady State).

Figure E.11: Analysis of convergence time and accuracy of algorithm SO CM with differ-
ent α setting, 1 Jan 2050 (Two Degrees+). Source: ESMA.

In order to consider the full potential of algorithm SO CM the simulation is

run for a range of α settings and select those days with the lowest system cost

as demonstrated in Figure E.13. It is noted that the value of alpha for which the

algorithm achieves the lowest cost varies depending on the day, which is of no

surprise since system prices and demand change throughout the year. In addition to

this, on certain days the system does better when consumers do not coordinate at all

(red points). This situation happens during the days when the price curve is steep



E.2. Demand side response algorithms 276

Figure E.12: Sensitivity of system cost to the α setting on the 1st January in 2015, 2030
and 2050 in the Steady State and Two Degrees+.

meaning that increasing demand from operating storage is not justified by making

savings from a reduction in price peaks. Looking at the pattern for consumer exports

(Figure E.14) it is possible to see that it appears to inversely mimic the pattern for

best α setting (with an exception of a few outliers). This suggests that the higher

the amount of renewables and the lower the prices, the lower is the optimal setting

for α . This relationship also confirms our explanation for why on certain days the

system does better without DSM, i.e. when renewable generation is high the price

curve is shallow and so DSM carries less value in comparison to the higher cost

which comes from operating storage.
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Figure E.13: Alpha settings which lead to the least system cost on the daily basis in 2015,
2030 and 2050 in the Steady State and Two Degrees+.

E.3 Consumer learning algorithm for α

When choosing settings for conStep and conExplore, we perform sensitivity anal-

ysis of the model to these two parameters and select the combination which leads

to the least system cost. We focus on the year 2050 in Two Degrees+ since it is the

year which saw the highest level of herding.

Figure E.15 shows the level of system cost achieved under different combina-

tion of step size and exploration rate of consumer, which can be identified by the

shade of the square. It is possible to see that the system achieves the lowest cost

when conExplore=0.5 and conStep=0.005 which corresponds to the situation when

the consumer explores 50%. Hence, these values are chosen as the default setting

for the learning algorithm in our model. When step size is too small, the consumer

fails to converge to the optimal value of αc in time, whereas when step size is too
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Algorithm 6: Consumer algorithm for learning α .
Input : Consumer c knows today’s electricity prices p(t,d), own net

demand lc
net(t,d) and own αc(d) and yesterday’s cost for

purchased electricity zc(d−1) and α(d−1).
Output: Damping term for day ahead αc(d +1)

1 . Consumer calculates the cost of purchase electricity in day d:

zc(d) =
T

∑
t=1

p(t,d) · lc
net(t,d)

if zc(d)> zc(d−1) then
2 αc(d +1) = αc(d−1);
3 end
4 else
5 if Random[0,1]< conExplore then
6 if Random[0,1]< 0.5 then
7 αc(d +1) = αc(d)+ conStep;
8 end
9 else

10 αc(d +1) = αc(d)− conStep;
11 end
12 end
13 else
14 do nothing;
15 end
16 end
17 Consumer updates yesterday’s α and cost:

zc(d−1) = zc(d),α(d−1) = α(d)
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Figure E.14: Daily consumer exports in 2015, 2030 and 2050 in the Steady State and Two
Degrees+.

large it is easy for consumer to overshoot. When the exploration rate is too small,

the consumer fails to progress with finding an optimal value of α , whereas when

the exploration rate is too large the consumer does not stick with αc which leads to

lower cost.

Figure E.15: Sensitivity of system cost to values of conExplore and conStep, 2050 (Two
Degrees+).
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Data tables



281

Fi
gu

re
F.

1:
A

nn
ua

lc
on

su
m

er
el

ec
tr

ic
ity

de
m

an
d

an
d

co
st

in
th

e
ba

se
ca

se
by

se
ct

or
,2

01
5-

20
50

.S
ou

rc
e:

E
SM

A



282

Fi
gu

re
F.

2:
A

nn
ua

lc
on

su
m

er
el

ec
tr

ic
ity

co
ns

um
pt

io
n

an
d

co
st

in
th

e
ba

se
ca

se
by

ty
pe

in
th

e
St

ea
dy

St
at

e
sc

en
ar

io
,2

01
5-

20
50

.S
ou

rc
e:

E
SM

A



283

Fi
gu

re
F.

3:
A

nn
ua

lc
on

su
m

er
el

ec
tr

ic
ity

co
ns

um
pt

io
n

an
d

co
st

in
th

e
ba

se
ca

se
by

ty
pe

in
th

e
Tw

o
D

eg
re

es
+

sc
en

ar
io

,2
01

5-
20

50
.S

ou
rc

e:
E

SM
A



Appendix G

Colophon

� This document was set in the Times New Roman typeface using LATEX and

BibTEX, composed with a text editor.

� The model was developed in Repast Simphony-2.3.1 using the JAVA pro-

gramming language.

� Linear programming was implemented using IBM’s ILOG CPLEX 12.6.

� Figures and tables were created Rstudio with R-3.4.3 and Microsoft Excel

2010.

� Graphical drawings were created using Microsoft Power Point 2010.
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