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Abstract

Electricity systems worldwide are transforming in-line with the global decarbonisation
goals. On the supply side, renewable energy resources are replacing fossil fuels which
introduces uncertainty in electricity generation. On the demand side, heating and transport
electrification coupled with continuous integration of small scale renewables and energy
storage are transforming the interactions between consumers and generators. These changes
are raising new challenges for system operators in terms of balancing electricity in the grid.

Demand-side management (DSM), whereby electricity consumption is coordinated
with variable supply from renewables, has been shown to offer a promising solution to the
above problem. However, the extent to which the future impact of DSM has been holisti-
cally assessed is arguable. Current model-based assessment of DSM primarily focuses on
its benefits, ignoring the potential challenges since the testing tends to be carried out in an
isolated and idealistic setting.

This work proposes a model for Electricity System Management using an Agent based
approach (or ESMA), which includes heterogeneous consumers, aggregators, the system
operator, and market. The main feature of the model is its capability to simulate different
regimes of DSM: decentralised (performed by consumers), semi-centralised (performed by
aggregators), and centralised (performed by the system operator). The impact of each DSM
regime is assessed in terms system costs, greenhouse gas emissions and consumer bills in
the context of the British electricity system for 2015-2050.

It is found that a trade-off exists between consumer autonomy and system optimality
with regards to DSM. It is argued that the level of information sharing between consumers
and the system can be minimised, as better learning and predicting algorithms are devel-
oped. The thesis is concluded with a discussion on the potential consumer tariff structure

which would reward consumer flexibility.
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Impact Statement

This research investigates the future impact of deploying demand side management
(DSM) in a decentralised electricity system. In order to do that, a bespoke Electric-
ity System Management Agent based model (ESMA) has been built, whereby elec-
tricity can be managed by one of three stakeholder types: consumers, aggregators,
and the system operator. The investigation is carried out in the case of the British

electricity system in two boundary scenarios: Steady State and Two Degrees+.

Firstly, the impact of this research is regulatory. It highlights the need for
better regulation of activity between electricity utilities and end-users, as well as
requirements for more flexible and tailor-made end-user electricity tariffs. This re-
search explicitly demonstrates how incentivising end-users to consumer electricity
more efficiently with a real time price can lead to system losses as the market herds
towards the same cheap electricity time periods. The work also explores the nega-
tive consequences of energy utilities using DSM in order to compete in the market
and how allowing consumers to switch aggregators can aggravate the situation. Al-
though the analysis has been carried out in the case of the British electricity system,
the findings are applicable to any electricity market undergoing decentralisation and
so extend internationally. The results are primarily aimed at the energy regulator and

system operator but are also relevant to electric utilities and end-users.

Secondly, the impact is methodological. A bespoke open-source agent-based
model has been developed capable of simulating the interactions of an electric-
ity market undergoing decentralisation. The model considers different regimes for
demand side management ranging from a decentralised (performed by consumer),

semi centralised (performed by the aggregator), and centralised (performed by the
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system operator). ESMA incorporates four economic demand sectors, with explicit
modelling of heat and transport electrification. Finally, a new method for decen-
tralised DSM has been developed, which enables consumers to optimise day-ahead
electricity consumption by learning from past behaviour. As a result, feeding real
time prices becomes an effective way of coordinating consumers without raising
end-user privacy concerns.

The ultimately impact of this research is a more sustainable consumption of
electricity. The long-term benefits include decreased greenhouse gas emissions and
lower electricity prices, and as a result improved quality of the environment and

quality of life.
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List of definitions

Aggregator - an entity which is able to pool consumers together. An aggregator
can represent an energy utility (in which case it retails wholesale electricity
to end-users), or a Balancing Service Provider in which case it instructs end-

users on how to shift demand.

Ancillary services - services and functions used by the system operator in order
to balance supply and demand in the grid (also referred to as Balancing
services). Examples include frequency response, reserve services, reactive

power services (Energy UK, 2017).

Balancing mechanism - a tool used by the National Grid for the purpose of remov-
ing imbalances between system demand and supply. Balancing mechanism
gets activated at gate closure (or 1 hour before physical delivery of power)
and runs like a market where the system operator procures services from the

balancing mechanism units (BMUs).

Baseload - the minimum level of electricity demand required by the system over a
period of 24 hours. It is needed to provide power to components that keep
running at all times (also referred as continuous load). Base load is typically

met by invariable generators like nuclear and coal!.

Black start - refers to the procedure when power in the grid is restored in the event

of a total or partial shutdown of the national electricity transmission system?.

"http://sinovoltaics.com/learning—center/basics/base-load-peak-
load/

https://www.nationalgrid.com/uk/electricity/balancing-services/
system—-security—-services/black-start
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Copper plate - an approximation made when modelling the electricity system,
which assumes that power can flow unconstrained from any generation site

to any demand site therefore ignoring physical constraints of the grid.

Dispatchable generation - electricity sources which can generate electricity on

demand, e.g. coal or gas power plants.

Distributed energy resources (DERSs) - electricity generating resources or flexi-
ble loads that are directly connected to a local distribution system or a host
facility within the local distribution system. These include solar panels, elec-
tricity storage, electric vehicles, heat pumps, small scale combined heat and

power generators (Ieso, 2018).

Dynamic pricing - type of time variable pricing, whereby electricity price changes
throughout the day to reflect the real time cost of electricity generation.
Examples of dynamic pricing include real time pricing (RTP), time-of-use

(TOU) and critical peak (CPP)3.
Electricity tariff - retail price of electricity.
Energy utility - company which supplies consumers with energy.

Flexible load - part of consumer demand which can be shifted in time, e.g. from

an electric vehicle, battery or air conditioning.

Gate closure - the cut-off time of wholesale electricity trading (1 hour before phys-

ical delivery), also referring to the start of the balancing market.

Hot standby - refers to the situation when a generation unit is held in the state of

readiness®.

Load factor - ratio between average to peak demand.

Shttps://cdn.eurelectric.org/media/2113/dynamic_pricing_in_electricity_supply-
2017-2520-0003-01-e-h-7FE49D01.pdf

“https://www.nationalgrid.com/uk/electricity/balancing-services/
reserve-services/bm-start.
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Merit order stack - whereby generation units are arranged in the ascending order
of price for electricity (which often reflects the short run marginal cost of

production).

Microgrid - collection of electricity generation resources and loads that can op-
erates connected to and synchronous with the national electricity grid, or

disconnect to ‘island mode’ and function autonomously.

National Grid - system operator of the British electricity grid.

Non-deferrable demand - corresponds to activities requiring energy which cannot
be shifted in time, e.g. watching TV, lighting (in the case of electrical energy)

and heating (in the case of thermal energy).

Non-thermal demand - weather independent energy demand, e.g. lighting, oper-

ation of machinery.

Over the counter trade - electricity deal whereby the terms are agreed in private.

Renewable generation - electricity sources which generate electricity from renew-

able energy, e.g. solar, wind, and hydro.

Smart meter - a device which is able to measure electricity consumption and the

cost of its generation in real time.

System frequency - a measure of the balance between electricity supply and de-

mand in the grid.

Thermal demand - weather dependent energy demand required for heating and

cooling, e.g. water and space heating.

Time variable pricing - whereby the price for electricity varies throughout the day
depending on the cost of generating electricity, e.g. time-of-use (TOU) pric-

ing.
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5ramp

g(t,d)
nj
Nboiler
NEs
Nip

max
Nup

C
Nru

C
Nres

(gd

Damping term which supresses consumer response to real time prices

Consumer specific damping term which supresses consumer response to real

time prices

Absolute change in power generation from time ¢ — 1 to ¢ of technology j

(MW]

Wholesale price uplift reflecting network and balancing costs [£/MWh]

Efficiency of generation technology j

Efficiency of boiler

Efficiency of electrical storage of consumer ¢

Efficiency of a heat pump of consumer c in converting electricity to heat

Carnot (or the theoretical maximum) efficiency of the heat pump of con-

sumer ¢

Efficiency of a resistance heater of consumer ¢ in converting electricity to

heat

Efficiency of an electrical store of consumer ¢

Set of all aggregators

Set of all consumers

Set of all consumers supplied by aggregator a

Set of generation technologies at the transmission level
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& ={dom,com,ind,trans} Set of consumer sectors (domestic, commercial, in-

dustrial and transportation)
7 ={HP,PV,ES,TES} Set of consumer technologies
n?(¢,d) Retail price offered by aggregator a in time ¢ of day d [£/MWh]
0.+  External air temperature [°C]
Ores Temperature of water in a thermal energy store [°C]
a Aggregator identifier index
aggDR € [0,1] Share of aggregators participating in DSM

brs,brrs Binary variable (0,1) which determines whether the energy storage is

charging or discharging
c Consumer identifier index
C%(d) Cost of power incurred by aggregator a in day d [£]
C%(y) Cost of power incurred by aggregator a in year y [£]

c’

dyn Dynamic cost of generation of technology j [£]

c}u Fuel cost required by generation technology j [£/MWh]

ch Variable operational and maintenance cost of generation technology j

[£/MWh]

CéRUC Short run unavoidable cost of generation of technology j [£]

clju Marginal cost of generation by technology j [£/MWh]

c{amp Ramping cost of generation technology j per unit of change in demand

[£/MWh]
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cap’ Capacity of generation technology j [MW]
conDR € [0, 1] Share of consumers participating in DSM

conExplore Proportion of the time consumer ¢ explores the new strategy when

learning o¢

conStep The deviation taken by consumer ¢ from the a during the o learning

algorithm

EEVimax pEV.min Maximum and minimum energy storage capacity of electric trans-

port consumer [MWh]

E}le"”,E ps " Minimum and maximum energy constraints of pumped storage [MWh]

Epd" Epd"* Maximum and minimum energy capacity constraints of electrical

storage of consumer ¢ [MWh]

max,c -min,c
E o B

rEs »Erps Maximum and minimum energy capacity constraints of thermal en-

ergy storage of consumer ¢ [MWh]
f(t,d,m) Traffic flow distribution
G Total number of generating technologies

g“(t) Coordination signal sent by the aggregator to consumers at time 7 in iteration

k
héoz Emissions factor of generation technology j [tonne CO2eq/MWh]
J Generation technology index
k Iteration counter used in the DSM scheduling algorithm
L(t,d) Electricity system demand outturn at time ¢ in day d [MWh]

L*(t,d) Total electricity demand of aggregator a at time ¢ in day d [MWh]
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I¢(t,d) Non-deferrable electricity demand of consumer c¢ at time 7 in day d [MWh]

I¢.,(t,d) Electricity exported by consumer c at time 7 in day d [MWh]

exp

I¢,,(t,d) Net or residual electricity demand of consumer c at time 7 in day d [MWh]

L% (t,d),L%(t,d) Charge and discharge profiles of transmission level pumped

storage at time ¢ in day d [MWh]

1EVsh(t . d),1EV4¢(¢t,d) Charge and discharge profiles of an electric transport con-

sumer at time ¢ in day d [MWh]

JEV:max [EV:min: Maximum and minimum power storage capacity of electric trans-

port consumer [MW]

[fleetch(y d),1/1eetde(t d) Charging and discharging profiles of an electric vehicle

fleet in time ¢ of day d

L%”,L;ﬁgx Minimum and maximum power constraints of pumped storage [MW]

sec j]sec jsec
I3, 15,1

tor 1€, Iy Total, non-thermal and thermal electricity demand profile by a real

life end-user from economic sector sec € . at time ¢ in day d [MWh]

Lggg(t,d) Electricity demand summed across all aggregators at time ¢ in day d

[MWHh]

1 (t,d), 195 (t,d) Electrical storage charge and discharge profiles of consumer ¢

at time ¢ in day d [MWh]

lpg ", Ix¢" Maximum and minimum power capacity constraints of electrical stor-

age of consumer ¢ [MW]
Lgen(t,d) Power output from all generation technologies in time ¢ of day d [MW]

If;p(t,d) Electricity demand profile by a heat pump of consumer c at time # in day

d [MWh]
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Iy e ¢ Maximum and minimum power constraints of a heat pump of con-

sumers ¢ [MW]
Limpor:(t,d) Imported electricity at the transmission level at time ¢ in day d [MWh]
Ly,s5(t,d) Losses experienced by the electricity system at time ¢ in day d [MWh]

Ig(t,d) Electricity demand profile by a resistance heater of consumer c at time ¢

in day d [MWh]

g lpy ¢ Maximum and minimum power constraints of a resistance heater of

consumers ¢ [MW]
M Total number of aggregators

sy, Consumer multiplier which corresponds to the actual number of end-users

each agent of sector sec and type type represents
N Number of consumers

NEV.(t,d),NEY (t,d),NEY (t,d) Number of stationary, moving and total electric

stat move

vehicles in time ¢ of day d
niype  Number of consumer agents of specific sector and type
p(t,d) Wholesale electricity price [£/MWHh]
pco2(y) Carbon price in year y [£/tonne CO2eq]
psr(t,d) Short run wholesale electricity price excluding uplift &(¢,d) [£/MWh]
g¢(t,d) Non-deferrable heat demand of consumer c¢ at time ¢ in day d [MWh]

q’ Power generated by technology j [£/MWh]

gdom . (t.d),q2m, ¢as(f,d) Heat and gas consumption by a domestic end-user

according to the Cambridge Housing Model in time ¢ of day d [MWh]
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g5 p(t,d) Heat output from a heat pump of consumer c at time ¢ in day d [MWh]

g%y (t,d) Heat output from a resistance heater of consumer ¢ at time ¢ in day d

[MWHh]

qCT}Eg(t, d), q%’g(t, d) Thermal energy storage charge and discharge profiles of con-

sumer c at time ¢ in day d [MWh]

max,c _min,c . .. . .
drgs »4rps Maximum and minimum power capacity constraints of thermal energy

storage of consumer ¢ [MW]
R(t,d) Transmission level renewable generation at time 7 in day d
r‘(t,d) Renewable generation profile of consume c at time 7 in day d [MWh]
Rysed(t,d),Reyr (t,d) Used and curtailed renewable generation at time 7 in day d
T,D,Y Maximum number of hours in a day, days in a year and years of simulation
t,d,y Hour, day and year indices

type; Consumer type which represents the type of resources the consumer has ac-

cess to, where i € [1,10]
w Weighing parameter between 0 and 1 for previous system demand outturn
z°(d) Cost incurred by consumer c in day d

* Indicates a predicted value



Chapter 1

Introduction

1.1 The balancing challenge

Climate change is recognised as one of the biggest challenges of the 21st century.
Following the 21st Conference of the Parties of the United Nations Framework Con-
vention on Climate Change (UNFCCC) held in Paris, 195 states pledged to reduce
their greenhouse gas (GHG) emissions in order to avoid irreversible effects of global
warming (UNFCCC, 2016). Electricity and heat production contribute a quarter of
the total GHG emissions globally (IPCC, 2014), for which reason countries world-

wide are working on making their electricity systems more sustainable.

On the supply side, fossil fuel power plants (such as coal and gas) are being
replaced by renewable generators like biomass, onshore and offshore wind, and so-
lar. However, much of the renewable energy supply is variable and uncontrollable
meaning that electricity cannot be generated on demand like in the case of dispatch-

able power plants.

On the demand side, the need to decarbonise is driving the electrification of
transportation and heat, the integration of renewable (e.g. solar and wind) and more
energy efficient (e.g. combined heat and power, CHP) generation technology and
storage. As a result, the demand side is witnessing the integration of a multitude of
distributed energy resources (or DERSs), such as electric vehicles, heat pumps, bat-
teries, rooftop solar, micro-CHP and small scale wind generators. Coupled with the

increasing accessibility of energy management and communication devices (such
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as smart meters and home control systems), DERs are changing the way electricity
is consumed making the demand side more proactive and unpredictable. Balancing
variable electricity supply with increasingly more unpredictable demand is present-
ing a major challenge for power system operators all over the world.

Demand-side management (DSM) refers to the modification of consumer de-
mand for electricity in order to optimise the dispatch of available generation re-
sources, and minimise the cost of maintaining a balanced flow of power in the grid.

DSM has been attracting a lot of attention from academia and industry as a
promising solution to the balancing challenge, by means of altering demand to bet-
ter accommodate for variable renewable supply (Ofgem, 2017a). Yet, as electricity
systems are transforming, the full scope of DSM impact has not yet been under-

stood.

1.2 The decentralisation of electricity system

management

The concept of electricity system management is not new. Since the creation of
power networks, electricity supply and demand had to be balanced in the grid in
real time, as it is notoriously expensive to store. Traditionally, the system operator
(SO) was responsible for ensuring a smooth flow of electricity in the grid, due to its
centralised design and the computational requirements for processing large amounts
of information.

Electricity balancing services on the supply side are typically provided by large
power plants which can be ramped up and down in order to increase and decrease
generation. In the UK, a condition for power generators to be connected to the trans-
mission network is to have the ability to perform ‘mandatory frequency response’
- a service which involves balancing the grid within seconds of an event occurring
(National Grid, 2017b).

Schemes to manage electricity consumption have been traditionally aimed at
influencing human behaviour through time variable pricing. In the UK off-peak

electric heating was introduced as early as 1960s with the intention to shift residen-
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tial consumer demand to times of low electricity prices at night (Carlsson-Hyslop
et al., 2013). ‘The Triad’ scheme, whereby utilities are penalised for consuming
electricity during the three most expensive half-hours during the year, is an exam-

ple of a DSM program aimed at non-domestic consumers (National Grid, 2015a).

Lowering costs for electricity storage, small scale generators and access to data
communication and processing technology have reignited political, industrial and
academic interest in demand side management. DSM schemes have been rapidly
emerging all over the world in the last few decades, especially in warmer regions
where synchronous operation of air conditioning can lead to the creation of large
demand peaks. For example in the United States, Southern California Edison of-
fers a discounted summer tariff in exchange for having consumer permission to
switch off air conditioning for a short period of time (SCE, 2017). Other exam-
ples include a scheme run by OhmConnect, whereby the utility sends end-users a
message to reduce consumption sometime in the near future in exchange for a fi-
nancial payment (OhmConnect, 2017). In the UK, aggregators like KiWi Power
contract non-domestic consumers to have the ability of controlling certain devices
like fridges and freezers in exchange for a financial incentive (KiWi Power, 2018).
In order to encourage the residential sector to consume electricity more sustainably,
the UK government plans to integrate each household with a smart meter by 2020,
which would inform end-users of the true cost of generating electricity in real time

(Smart Energy GB, 2016).

The utility business models are also changing in recognition of the benefits of
DSM. Tempus Energy is an energy utility which uses machine learning in order
to instruct end-users when to consume electricity. By doing so, Tempus aims to
reduce the projected cost of power purchased from the wholesale market and offer
a more competitive retail tariff to consumers (Tempus, 2018). In more recent years,
the emergence of blockchain technology has been an important driver for the ‘peer-
to-peer’ electricity trading model, whereby smaller consumers are able to buy and
sell electricity through an online platform without having to access the wholesale

market. Brooklyn microgrid (a pilot implemented by LO3 and Siemens), is one
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example of how this model can work in the real world (LO3 Energy, 2018)!.

In order to facilitate the decentralisation of the electricity system, the respon-
sibility for maintaining a balanced grid must shift away from the System Operator
towards distribution network operators (DNOs). This is especially relevant when
considering embedded renewable generation which is not registered at the trans-
mission level. For this reason the National Grid has been working on improving
the cooperation with DNOs, which are required to take a more active role is man-
aging generation and demand resources in the grid (National Grid, 2017¢). Some
responsibilities envisioned for future distribution system operators (DSOs) include

(Butcher, 2017):

1. actively facilitating local electricity market for DERs in order to balance the

distribution grid,
2. owning and/or operating electric vehicle charging infrastructure,
3. providing energy efficiency and environmental consultancy services,

4. owning and/or operator of power storage and CHP plant in order to meet

demand in case of system scarcity.

Initiatives undertaken by DNOs today include offering DSR services to the
grid, such as in the case of the Northern Powergrid. Facilitated by a contract with
an aggregator Kiwi Power, the DNO operates a 2.5MW battery in order to provide
frequency response services to the high-voltage transmission network. In fact, the
electricity market regulator Ofgem claims that across all DNOs electrical storage
adds up to around 12.6MW. The concern with regards to DNOs owning storage is
that it could interfere with the development of a competitive market for flexibility
services 2. For this reason Ofgem introduced regulations, which allow DNOs to
own but not operate storage. To conclude, DNOs will play an increasingly more
active role in managing the electricity grid in the future, but the way this transition

happens is critical to the competiveness and efficiency of the future smart grid.

See https://www.brooklyn.energy/ for more information
2See https://www.energy-storage.news/news/uk-regulator-sets-rules-on-dno-ownership-of-
energy-storage-as-one-puts-usSm
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1.3 Motivation for research

As different types of stakeholders, such as consumers and aggregators, gain the
technological capacity to manage electricity demand and supply at the local level,
electricity system management on the whole is becoming more decentralised. Al-
though these changes introduce many benefits and opportunities in making the elec-
tricity grid more sustainable (for example better utilisation of local renewable gener-
ation and storage), these do not come without a set of challenges. This is because a
decentralised electricity system constitutes an interconnected and complex network
of agents, central to which is the electricity market where prices are set depending
on the aggregate system demand. Consequently, actions taken by a single agent can

affect the whole market.

One of the main concerns with regards to the future implementation of DSM
is consumer herding — a situation when end-users shift demand to the same periods
of low electricity prices for the purpose of reducing the cost of electricity. When
a large enough number of consumers adopt the same strategy, it can result in in-
creased demand peaks, costs, and GHG emissions. Some studies already report that
consumer response to the same price signals can lead to the creation of new de-
mand peaks (Gottwalt et al., 2011; Ericson, 2009). Thinking further into the future
when consumer flexibility is projected to be much higher and consumer tariffs more

dynamic, herding is likely to become much more of an issue.

Aggregators can help alleviate the problem of consumer herding through coor-
dinated DSM, but only up to a point where they become greedy and start to exploit
their ability to shift demand in order to compete in the wholesale market. The first
point of concern is aggregator herding, the negative consequences of which are ex-
actly the same as consumer herding since aggregators merely instruct consumers to
shift demand. Another point of concern is strategic manipulation of flexible demand
by vertically integrated utilities, which has been shown to increase wholesale elec-
tricity prices (Priiggler et al., 2011). Since a vertically integrated utility profits from
selling electricity at high prices, it would be in the utility’s interest to strategically

increase system demand and therefore prices.
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Involving a central coordinator such as the System Operator can provide a
way of avoiding consumer and aggregator herding. However, this would involve
consumers sharing information on their consumption or flexibility (something that
might not seem appealing to some due to privacy concerns). An alternative to this
is decentralised coordination, whereby decisions are made locally rather than by a
central entity. However, the extent to which decentralised coordination has been
tested in the context of the whole system is limited.

Another major challenge of future DSM implementation is cost allocation to
different types of consumers. Whereas end-users with flexible resources (such as
electrical storage) act as price makers, inflexible consumers (which cannot alter
their demand) are price takers. Yet, the prices for electricity are set in the wholesale
market depending on the demand by the whole system. And so, it is important to
reward consumers for being flexible without penalising those who do not have the
resources to adjust demand. Appropriately structured electricity tariffs can address
this problem. Dynamic pricing has been shown to incentivise end-users to consume
electricity more efficiently, yet it can lead to chaotic system demand and electric-
ity prices. In contrast, flat tariffs do not account for time variability of consumer
demand and so do not incentivise load shifting. Hence the main challenge in struc-
turing the future electricity tariffs lies in encouraging flexibility and proactiveness,
whilst ensuring system security.

To summarise the above points, there are two major challenges with regards to

the future deployment of demand side management:

1. Control, or rather to whom and to what extent it can be given. Centralised
coordination can ensure that the grid is scheduled in an optimal manner, how-
ever stakeholders beyond the central coordinator lose (or partially lose) their
autonomy. In contrast, if multiple stakeholders are permitted to act freely, it

can harm the system as the market becomes chaotic.

2. Cost allocation once DSM has been implemented. Inappropriate electricity
tariff structure can discourage consumer participation in DSM and adoption

of DERs, whereas effective pricing of electricity can act as a strong driver for
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building a sustainable energy system.

Demand side management can prove to be an effective tool in ensuring a bal-
ance in the future electricity grid where renewable energy capacity and consumer
flexibility are high. However, this would not be possible without addressing the

above challenges, which is the main motivation for this research.

1.4 Research contributions and scope

In view with the revived interest in demand side management, a lot of focus by
the research community has been given to assessing the impact of DSM on the
electricity system (BoBmann and Eser, 2016; Yang et al., 2014). However, the extent
to which existing literature addresses the future challenges of DSM is arguable.

A large number of studies focus on the control aspect of implementing DSM,
yet they tend to test it in a stylised setting, e.g. where a set of homogeneous con-
sumers are being coordinated by a single aggregator (Voice et al., 2011; Gan et al.,
2013), by aggregating consumer agents to a single load curve (Chen et al., 1995), or
representing generation by a historical price function (Vytelingum et al., 2010). On
the other side of the spectrum are whole system models like (Strbac et al., 2012;
Fehrenbach et al., 2014), which pay a lot of attention to incorporating detailed
information on demand and generation but assume perfect consumer and market
behaviour in order to perform global optimisation. Consequently, dynamic inter-
actions between autonomous stakeholders are lost and issues of consumer herding
and aggregator competition are left unexplored. Others focus on the benefits of
specific technologies like electric vehicles (EVs) or heat pumps (HPs) but perform
analysis only for a single year (Lund and Kempton, 2008) or even a single day (Pa-
padaskalopoulos et al., 2013). The question of cost allocation to different type of
consumers is rarely explored. Moreover, simulations tend to be carried out with his-
torical data thus limiting the findings to past years. Finally, studies on DSM do not
consider all consumer sectors (often focusing on residential consumers only (Ram-
churn et al., 2011)), which ignores the issue of demand-side interconnectedness.

The electricity system constitutes a complex and interconnected network of
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agents, which are coupled via the wholesale market. In order to holistically assess
the impact of DSM, it is necessary to consider it in the context of the whole system.
Taking observations outside of the wider system context can lead to the omission of
vital system dynamics and the overlooking of potential challenges of DSM.

Up until now, the impact of DSM has not been addressed holistically meaning
that analysis has either been carried out on part of a system, or by ignoring certain
stakeholder interactions. The objective of this work is to explore the long-term
impact of DSM in the context of a decentralised electricity system, where different
stakeholders have their own agenda for deploying DSM.

This PhD explores not only the benefits but also the challenges of future de-
ployment of demand side management paying particular attention to extreme stake-

holder behaviour, such as competition for cheap power.

1.4.1 Research questions

The objective of this work is to answer the following research questions:

1. Up to which point is autonomous consumer cost minimisation based on the
real time price effective in reducing system costs and greenhouse gas emis-

sions?

2. How can aggregators facilitate effective demand side management and what

potential risks might they bring along?
3. What is the appropriate tariff structure for rewarding consumer flexibility?

4. Is it possible for consumers to schedule demand autonomously without com-

promising the stability and sustainability of the electricity system?

In order to address the above research questions a bespoke model for Electric-
ity System Management using an Agent based approach (or ESMA) is proposed.
The model integrates four economic sectors (domestic, commercial, industrial and
transport) represented by autonomous, competing consumers with varying flexible
resources (e.g. heat pumps, resistance heating, thermal storage, electrical storage,

and solar PV) and electricity demand profiles. Supplying consumers with power
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is the market composed of dispatchable and renewable energy resources which are
scheduled based on the short-run marginal cost of electricity generation. The retail
market consists of aggregators capable of coordinating consumers to shift electric-
ity demand. In turn, consumers are able to switch aggregators based on the daily
tariffs offered to them.

ESMA is built using a bottom-up approach allowing it to perform analysis into
the future. The main feature of the model is that it allows demand scheduling at
three hierarchal levels: consumer, aggregator and the system operator. ESMA is
applied in order to analyse the impact of DSM in the context of the British elec-
tricity grid for the period of 2015-2050. In particular, it is used to investigate the
consequences of consumer herding and aggregator competition, the value of a well-

coordinated DSM, and the issue of cost allocation to different types of consumer.

1.4.2 Research contributions

To summarise, the contributions of this PhD are as follows:

1. A holistic energy systems model is developed, which includes heterogeneous
consumers (representing four economic sectors), aggregators and the system
operator. The model explicitly considers electricity generation (including re-
newables and pumped storage), as well as different regimes of hierarchal
demand side management ranging from totally decentralised to totally cen-

tralised.

2. The issues of control and stakeholder autonomy are investigated by compar-
ing the benefits to the system and consumers under each demand side man-
agement regime. Situations are identified where a conflict of interest exists
between consumers, aggregators and the system in terms of financial benefits

to each side as a result of DSM deployment.

3. This work investigated the issue of cost allocation to different types of end-
users (i.e. with different resources and demand profiles) by comparing their

savings as a result of DSM deployment under dynamic and flat tariffs.
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4. An autonomous decentralised DSM algorithm is developed, whereby con-
sumers are able to learn the right response strategy to real time electricity

prices based on the outcome from the previous days.

5. The analysis is performed considering two extreme scenarios for the evolution
of the British electricity grid for the period of 2015-2050. These consist of the
Steady State scenario (where renewable capacity and consumer flexibility are
low) and Two Degrees+ (where renewable capacity and consumer flexibility

are high).

1.5 Thesis structure

Chapter 2 gives an overview of demand side management offering a formal defini-
tion, as well as its historical evolution. Relevant work in the domain of model-based
assessment of DSM is reviewed and research gaps are identified. The focus is given
to the thematic focus of studies as well as the chosen modelling approach. The
chapter is concluded by comparing the proposed model to existing approaches and
identifying how it can aid in addressing the research gaps.

Chapter 3 describes the process of building the modelling framework ESMA,
providing detailed information on the sources of data and the assumptions made in
representing the GB electricity system. Justification is given for the overarching
agent-based modelling approach, as well as the methods chosen for simulating the
electricity generation market and demand side scheduling regimes.

Chapter 4 introduces the simulation scenarios, for which two dimensions are
considered: the evolution of the GB electricity system and different DSM regimes.
The national scenarios are built based on the Future Energy Scenarios provided by
the National Grid, which are adapted in order to arrive with the most optimistic
(Two Degrees+) and the most pessimistic (Steady State) cases. Scenarios for DSM
regimes include the most decentralised control (implemented by the consumers),
semi-centralised control (implemented by the aggregators), and centralised hierar-
chal scheduling (implemented by the System Operator).

Chapter 5 describes the process of validating the model. ESMA is assessed
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in terms of recreating historical data and in terms of its agreement with the Future
Energy Scenarios developed by the (National Grid, 2017a). At the end of the chapter
sensitivity analysis of ESMA to different modelled parameters is performed in order
to check that the model functions as it should.

Chapter 6 addresses research question (1) and investigates the issue of con-
sumer herding when end-users schedule demand based on the real time price (RTP)
for electricity. This is largely motivated by the UK ‘smart meter’ integration plans,
as well as the widely adopted notion that dynamic pricing can encourage end-users
to consume electricity more sustainably.

Chapter 6.2 addresses research question (2) and demonstrates the benefits of
aggregator-led DSM, as well as the consequences of aggregators using DSM to
compete. The value of a centralised hierarchal DSM is demonstrated, whereby the
system operator informs the aggregators of the real cost of electricity generation,
which then coordinate consumers. The chapter is concluded by a discussion on how
the benefits from DSM might be allocated to consumers in the future. Dynamic and
flat electricity tariffs are compared, which addresses research question (3).

Chapter 6.3 addresses research question (4), where a totally distributed DSM
algorithm is developed. Different DSM regimes are compared in terms of bene-
fits to consumers and the system and the trade-off between system optimality and
consumer autonomy in discussed. All analysis in Chapters 6-6.3 is done for the
period of 2015-2050 in the Steady State and Two Degrees+. The impact of DSM is
assessed in terms system costs, GHG emissions and consumer bills.

Chapter 7 discusses the implications of the results and offers conclusions of
this work by evaluating the extent to which the research questions have been an-
swered. The chapter is concluded by addressing the main limitations of the model

and suggesting future areas for improvement.



Chapter 2

Literature review

Demand-side management (DSM) refers to the modification of consumer demand
for electricity in order to optimise the dispatch of available generation resources,

and minimise the cost of maintaining a balanced flow of power in the grid.

The broader definition of demand side management includes energy efficiency,
demand response and on-site generation and storage and can also refer to fuel
switching, e.g. using electrical heating as opposed to gas (Warren, 2018). Here,
DSM is considered primarily in the context of changing the load profile which is

can be categorised based on the objective of doing so (Figure 2.1).

Figure 2.1: Categorisation of Demand Side Management. Source: adapted from (Fleten
et al., 2002).
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The way in which load altering strategies can be achieved is referred to as a de-
mand response (DR) program. Traditionally, DR programs are split into two main
categories: price-based and incentive-based (Figure 2.2). Price-based DR programs
aim to influence consumer demand through dynamic pricing, such as time-of-use
(TOU), real-time pricing (RTP), and critical peak pricing (CPP). These constitute
voluntary consumer behaviour meaning that consumers are not obliged to partici-
pate. The Economy 7 scheme introduced in the UK in 1978 represents one example
of a price-based program. Residential consumers signed up under the scheme are
offered a cheaper rate for electricity during the night which constitutes time-of-use
(TOU) tariff structure (Ofgem, 2018b; Electricity Council, 1987). Outside the UK,
examples include critical peak pricing (CPP) scheme offered by Southern Califor-
nia Edison (SCE, 2017) and a TOU scheme proposed by the national energy utility
Eskom in the Western region of South Africa in 1990s (Eskom, 2009).

Figure 2.2: Categorisation of DSM programs in the wider context of the power system
operation. Source: (U.S. Department of Energy, 2006).
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Incentlve Based Demand Response

Participation in incentive-based DR programs obliges consumer to respond
in exchange for a financial incentive. These programs include direct load control
(DLC), interruptible/curtailable service (I/C), demand bidding, emergency demand
response, capacity market, and ancillary services (AS) (Falsafi et al., 2014). Under

DLC and I/C programs, consumer demand is directly controlled by a third party (an
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aggregator or a demand response service provider) which can reduce or interrupt
demand on short notice (subject to consumer agreement). Under a demand bidding
program, consumers bid their flexibility in the wholesale market and receive a pay-
ment from the system operator on delivery of the service at a pre-agreed rate. In
the case of emergency demand response, consumers receive a payment for reducing
load in an emergency event, the capacity market commits a share of the participant
demand flexibility to being used when the system so requires. Examples of interna-
tional incentive-based DR programs include the Base Interruptible Program offer by
The Pacific Gas and Electric Company in California, and the I/C scheme proposed
by the Australian Energy Market Operator together with the Australian Renewable
Energy Agency in 2017 (Daniel Silkstone, 2017). For a more in-depth discussion
the reader is referred to a paper by (Albadi and El-Saadany, 2008) which gives a

comprehensive overview.

A note on terminology. In the context of this work, the terms demand response
(DR) and demand side management (DSM) are used synonymously since both DSM
and DR achieve the same objective of altering demand. Moreover, the two terms
are often used interchangeably in the literature (although as pointed out earlier DR

is a subcategory of DSM).

2.1 The evolution of DSM

Demand side management has been receiving a lot of attention from academia and
industry in the last few decades as a promising solution to balancing the grid, es-
pecially as increasing capacities of variable wind and solar are introduced. Yet, the
concept of modifying consumption in order to optimise electricity flow in the grid
is not new. As a policy tool, it is believed that DSM (formerly referred to as load
management) emerged in 1978 under the US Public Utility Regulatory Policy Act
(PURPA) triggered by the energy crisis of the 1973 (Eto, 1996; Torriti, 2015). Fol-
lowing the Arab Oil Embargo of OAPEC in 1973-1974 and the Iranian Revolution
in 1978-1979, the US energy security was greatly affected. PURPA’s purpose was

to reduce the country’s dependency on imports, mainly through promoting energy
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conservation and domestic utilisation of renewable energy. However, going beyond

the electricity vector the notion of DSM has been around for much longer.

Recent developments in communication and data management tools (smart
meters, mobile internet, cloud computing), alongside lowering costs for renewables
and storage have reignited academic, industrial and political interest in demand side
management, especially in light with the increasing global awareness of climate
change issues. The main difference between the traditional and the ‘new’ DSM
schemes is that the latter are becoming more distributed, automated and faster in
their implementation as a result of technological progress. More recent work on
DSM often assumes the presence of an advanced meter enabling two-way com-
munication between the consumers and the utility, or a smart controller capable of
optimising consumer demand based on the information such as the real-time price
of electricity (RTP) or a signal from the aggregator. This allows for more elaborate
demand response algorithms implemented by the aggregator or consumers them-
selves - an area of research which has been receiving a lot of attention in the last few
decades. Increasing and more accurate data on consumption and generation from
renewables, the emergence of new directions for research (machine learning, Big
Data, blockchain), coupled with concerns of consumer information privacy, mean
that more and more attention is given to making DSM algorithms decentralised and
autonomous. That said, some of the earlier works involving local demand schedul-
ing date back to 1980s (Schweppe et al., 1980, 1989), where the authors proposed to
use alternating current as a vehicle for real-time pricing in order to signal consumers

on how to adjust their demand.

In view with the revived interest in demand side management, a lot of focus by
the research community has been given to assessing the impact of DSM on the elec-
tricity system. The volume of research in this domain is large, however the extent
to which it provides a holistic assessment is arguable. In the following chapter the
most relevant work in the domain of model-based assessment of DSM is reviewed
with the purpose of identifying state-of-the-art approached in modelling the impacts

of DSM and identifying research gaps.



2.2. Model-based assessment of DSM 36

2.2 Model-based assessment of DSM

The literature is classified based on the physical scope of the system considered by

the researchers and the objective of the study (Figure 2.3).

Figure 2.3: Classification of literature based on the scope of study.
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At the bottom level (consumer focus) the literature addresses the impact of
DSM on end-users from one or more economic sectors (domestic, commercial, in-
dustrial and electric transportation). The focus is primarily on how consumers re-
spond to different DR programs, or on how they should respond. These studies do
not explicitly model the system outside of the consumer environment (or do it in a
stylised manner) and wider system information such as prices is taken as an external
parameter.

The next category of research (aggregator control focus) is primarily con-
cerned with developing coordination strategies for distributed energy resources
(DERs) in the grid. These maybe individual technologies (e.g. a fleet of plug-
in electric vehicles (PEVs), distributed renewable resources (microCHP, solar and

small scale wind generators), or consumers which possess one of the earlier men-
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tioned technologies. These studies typically consider a single aggregator coordinat-
ing multiple DERs but can also extend to hierarchal coordination, whereby schedul-
ing happens at multiple levels of aggregation (e.g. consumers scheduling devices
and the aggregator scheduling consumers). This can be done directly (through phys-
ically controlling end-users resources like in the case of DLC) or indirectly through
signalling specific system information such as prices. If a study considers an ag-
gregator which is passive (i.e. one which does not make any explicit decisions but
acts as a medium for passing information), then it is classified under the ‘consumer

focus’ category since the control is not implemented by the aggregator.

Literature categorised under system focus evaluates the impact of DSM in the
context of a closed system, meaning that electricity generation (or price formation)
and demand are explicitly considered within the modelling framework. Hence, a
closed system can represent a small disconnected microgrid, a distribution network,
a stylised grid and a whole system representing a country or a region. Typically,
‘system focus’ assumes centralised coordination of consumer resources initiated
by the system operator, which can be done directly (when consumer resources are
physically controlled by the SO), or indirectly (when a control signal is sent to
consumers straight from the system or via aggregators). In the case when a study
tests a control strategy within a closed system, it is first discussed from the point
of the coordination approach in the ‘aggregator control’ category, following which
the results of its deployment at the system level are covered in the ‘system focus’
category. When classifying literature judgement is made based on the level of atten-
tion given to developing the control strategy versus representing an existing system.
To elaborate, if a study offers an innovative coordination strategy but the context
of its deployment is theoretical it is classified as ‘aggregator control focus’. On the
contrary, if a study pays a lot of attention to modelling an existing system then it is

categorised under ‘system focus’.

Considering the plethora of academic research carried out in the domain of
DSM, the overview of the relevant work is guided by three reviews which perform

very succinct classification of the global research on DSM (Yang et al., 2014; BoB-
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mann and Eser, 2016; Howell et al., 2017). Whereas (Bofmann and Eser, 2016)
provide a broad overview of modelled-based assessment in relation to different DR
programs, (Yang et al., 2014) focus specifically on the mathematical methods used
for optimally scheduling electrical vehicles (applicable to any flexible loads), and
(Howell et al., 2017) offer a more recent overview of existing work on DSM and

discuss new directions of research in the context of the Smart Grid.

2.2.1 Consumer focus

Literature which considers the impact of DSM on consumers, constitutes some of
the earliest research and date back to 1980s (Caves et al., 1984; Schweppe et al.,
1980). It is observed that earlier work considers consumers as passive entities,
whereas later studies model consumers that are proactive with a common objective
to cost minimise. This observation is in-line with increasing proliferation of flexi-
ble technologies (such as plug-in electric vehicles (PEVs) and heat pumps (HPs)),
as well as smart software considered by the authors throughout the research pe-
riod. These studies can be split into two main groups: those which assess consumer
demand response empirically from DSM pilots and those that model consumer be-

haviour explicitly.

2.2.1.1 Empirical assessment of consumer DSM potential

Empirical assessment of consumer DSM potential includes calculating end-user
price elasticities (demand reduction) and cross-elasticities (substitution of peak
power with off-peak power) empirically by means of econometric analysis of con-
sumption data obtained from pilot DSM programs.

A significant number of such pilots are performed in the US with the majority
focusing on TOU tariffs (Mountain and Lawson, 1995; Baladi et al., 1998; Schwarz
et al., 2002; Zarnikau et al., 2007; Woo et al., 2013) and less on RTP (Taylor et al.,
2005; Allcott, 2011) and other programs (Faruqui and Sergici, 2011; Wolak et al.,
2011; Woo et al., 2013). For example, in (Faruqui and Sergici, 2011) the authors
investigate residential consumer response to critical peak pricing (CPP) and peak

time rebate (PTR) tariffs under the Smart Energy Pricing (SEP) pilot carried out in
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Baltimore and later in Michigan (Faruqui et al., 2014). By using constant elasticity
of substitution (CES) approach they are able to estimate consumer price elastici-
ties and conclude that demand can be influenced through dynamic tariffs. From
the second study the authors conclude that small commercial and industrial sectors
are less price responsive than domestic end-users, which is surprising considering
the economies of scale of non-domestic consumers. Larger studies of this type are
described in (Filippini, 1995) and (Filippini, 2011), where the author analyses con-
sumer response to TOU tariffs first across 21 Swiss cities during 1987-1990 and
then across 22 Swiss cities during 2000-2006. By deploying a number of econo-
metric approaches, the authors demonstrate that peak and off-peak electricity are
substitutes, meaning that it is possible to encourage end-users to shift demand from
periods of high electricity prices to periods of low electricity prices. The main short-
coming of studies in this group, is that the findings are sample-specific, making it
difficult to extrapolate results to larger populations as have been noted by some re-
searchers (Allcott, 2011; Cosmo et al., 2014; Thorsnes et al., 2012). Consequently,
the research is limited to past data and to specific regions meaning that the future

impact of DSM is left unexplored.

2.2.1.2 Modelling consumer behaviour under a DR program

Some authors opt for simulating consumer behaviour under a DR program using
economic models. For example, (Aalami et al., 2010) utilise customer benefit func-
tion approach in order to assess the impact of interruption and curtailment (I/C)
and capacity market programs in the context of the Iranian Grid. In (Venkatesan
et al., 2012) researchers evaluate the benefit of RTP pricing in terms of reducing
grid losses during peak hours by deploying the concept of price elasticity matrices,
whilst (Matsukawa, 2001) investigates TOU tariffs as a tool to reduce consumer
load in Japan through formulating an electricity expenditure function. However,
such models tend to utilise historical data for system and consumer parameters in-
cluding end-user price elasticities and so the issue of sample- and region-specific

results is not resolved.

The final group of studies in the ‘consumer focus’ category, model consumer
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response to market signals using a bottom-up approach, which allows them to cap-
ture the technical characteristics of end-user technologies explicitly. These typi-
cally focus on scheduling flexible devices such as fridges (Zehir and Bagriyanik,
2012; Hovgaard et al., 2012), batteries (Schweppe et al., 1989), air conditioning
(Ashok and Banerjee, 2003), or a whole smart home (Di Giorgio and Pimpinella,
2012; Houwing and Bouwmans, 2006; Houwing et al., 2007; Han and Lim, 2010;
Mohsenian-Rad and Leon-Garcia, 2010) for the purpose of minimising consumer
cost of electricity based on the real time prices (RTP). Optimisation is a popular ap-
proach for achieving this objective, especially formulated as a linear problem (LP)
(Samadi et al., 2010; Roos and Lane, 1998; Conejo et al., 2010) or a mixed inte-
ger linear problem (MILP) (Ashok, 2006; Middelberg et al., 2009; Mohsenian-Rad
and Leon-Garcia, 2010; Mitra et al., 2012; Di Giorgio and Pimpinella, 2012; Hov-
gaard et al., 2012; Di Giorgio and Liberati, 2014; Mohsenian-Rad and Leon-Garcia,
2010). Less frequent is a non-linear formulation of the optimisation problem (NLP).
Examples includes (Ashok and Banerjee, 2003), where the authors consider opti-
mal operation of a commercial office with air conditioning and (Setlhaolo et al.,
2014) who examine the benefits of scheduling domestic appliances under a TOU
tariff. Other approaches for scheduling a smart home include evolutionary algo-
rithms such as particle swarm optimisation (Gudi et al., 2012; Yimin Zhou et al.,

2014) and genetic algorithms (Khomami and Javidi, 2013; Hsu et al., 2011).

A number of studies utilise agent-based simulation approach combined with
optimisation, which allows the authors to decompose consumer actions into their
fundamental components and interactions. For example, (Zheng et al., 2014) pro-
pose a stochastic agent-based model in order to simulate the electricity demand of
an average household and conclude that consumer annual bill reductions from ef-
ficient deployment of storage can reach up to 48% (taking into account the capital
cost of storage). ABM is a popular approach for modelling consumers with gener-
ation and demand resources as a virtual power plant (VPP) (van Dam et al., 2008;
Houwing and Bouwmans, 2006; Houwing et al., 2007). For example, in (van Dam

et al., 2008) the authors consider a least-cost optimisation scheduling for consumers
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with micro-CHP and demonstrate that effective coordination of domestic resources

can lead to a 2 to 28% reductions in end-user bills.

Comments on the research gaps in the ‘consumer focus’ category. The main
limitation of the models in the ‘consumer focus’ category is that they ignore the
potential impact of a large number of end-users adopting a similar DSM strategy.
The main reason is that the consumer system is considered in isolation, meaning
that their actions are not evaluated in terms of how they affect the market. As
a consequence, the benefits of DSM are typically evaluated from the view point
of a single cost minimising consumer, who benefits from shifting demand from
periods of expensive electricity to periods of cheap electricity. In reality, wholesale
electricity prices depend on the demand for power aggregated across all consumers
in the market. Hence, if a large enough number of end-users shift demand based
on the same price signal this could lead to the creation of new demand peaks. This
effect is known as herding or avalanche and constitutes one of the main risks of
autonomous response of consumers to centrally-determined market signals such as

real time prices.

Some studies already provide evidence that there might be issues with con-
sumers scheduling demand based on the same price signal. For example, in (Er-
icson, 2009) the authors investigate the impact of a DLC program tested on 475-
household system during a 180-day trial in Norway. The study found that although
demand is notably reduced during disconnection (on average 0.5 kWh/h decrease
per household), an hour following the event demand goes up indicating a potential
for consumers to herd. Another example is (Gottwalt et al., 2011), where the au-
thors report that scheduling domestic appliances based on time variable prices can

produce an avalanche effect and the creation of new demand peaks.

One way to solve the issue of consumer herding is through an aggregator-
controlled DSM. The next section discusses different approaches adopted by re-

searchers which achieve this objective.
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2.2.2 Aggregator control focus

Research in the ‘aggregator control focus’ category primarily investigates differ-
ent methodologies for effectively scheduling distributed energy resources (DERs).
A typical set-up of the system in these studies includes a single aggregator coor-
dinating a pool of DERs (such as electric vehicles (EVs), heat pumps, or smart
consumers), however it can extend to hierarchal control at multiple network lev-
els. System components such as the market or a System Operator tend to be more
stylised in their representation, since the focus is on devising new control method-
ologies rather than recreating an existing electricity system. The literature in this
category can be split depending on whether the demand scheduling approach con-

sidered is centralised or a decentralised.

Centralised versus decentralised coordination. In a conventional sense,
incentive-based programs (such as DLC and I/C) represent centralised coordination,
since the aggregator has physical control of consumer resources and price-based
programs (RTP,TOU) constitute indirect control. However in the context of the
literature review, the type of coordination is defined depending on how it is math-
ematically formulated. To elaborate, a study may not explicitly mention that the
consumers operate under an incentive-based program but the problem will be for-
mulated as a global optimisation problem for the aggregator (assuming that it has
access to all of consumer information). This would constitute centralised schedul-
ing since in the context of the model consumers have no choice but to respond
to aggregator signalling. Some coordination approaches do not consider an ag-
gregator at all and consumers schedule their resources completely autonomously
based on the information received from its peers of local information (e.g. system

frequency). As a result the following definitions are adopted:

Centralised coordination - on scheduling the aggregator (which could repre-
sent a utility a demand response service provider or a System Operator) has total
knowledge and control of consumer resources. This may be explicitly formulated
as an incentive-based program or implicitly assumed through mathematical formu-

lation of the problem, e.g. global optimisation.
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Decentralised coordination - consumers schedule own demand autonomously
depending on the signal (e.g. prices or system frequency) communicated by the
aggregator, the market, its peers (or neighbours), or received locally (e.g. system

frequency).

2.2.2.1 Centralised coordination

Centralised coordination is the historically common approach for optimally
scheduling DERs. Studies deploying centralised coordination typically look at
scheduling a fleet of flexible demand resources such as PEVs (Sundstrom and
Binding, 2010; Sortomme et al., 2011), heat pumps (Wang et al., 2012), thermo-
statically controlled loads (Callaway, 2009; Lu and Zhang, 2013; Kundu et al.,
2011), or a pool of smart consumers (Zugno et al., 2013; Feuerriegel and Neumann,
2014) for the purpose of offering balancing services to the grid in order to reduce
system cost of for the purpose of minimising the cost of purchased electricity by
the aggregator (often representing a utility) from the wholesale market .

A large number of studies deploying centralised coordination consider mathe-
matical optimisation for this purpose. For example, non-linear programming (NLP)
has been used to study the impact of DR programs on the distribution grid (Acha
et al., 2010; Clement-Nyns et al., 2010; Faria and Vale, 2011) or to improve load
following (Mets et al., 2012, 2010). Another example includes (Doostizadeh and
Ghasemi, 2012) where the authors come up with a novel RTP policy and demon-
strate that it can result in lower system losses, reduced system demand peak and
higher load factor (calculated as a ratio between average to peak demand). Lin-
ear programming (LP) is deployed by (Feuerriegel and Neumann, 2014) in order
to measure financial benefit of DR programs to the retailer and in (Sundstrom and
Binding, 2010, 2012) to analyse the potential of avoiding grid congestion and volt-
age problems by means of scheduling a fleet of electric vehicles.

Optimisation is a classic approach for scheduling DERs in a microgrid (Las-
seter, 2002) for the purpose of optimising local resources and minimising the cost of
operation (Geidl and Andersson, 2007; Lee and Kim, 2013; Kuznetsova et al., 2014;
Rivarolo et al., 2013; Quiggin et al., 2012; Stluka et al., 2011; Morais et al., 2010;
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Chen et al., 2014). For example, in (Rivarolo et al., 2013) the authors use optimi-
sation in order to make better use of multiple energy sources in a microgrid at the
University of Genoa. The paper demonstrates the importance of an appropriate stor-
age system when it comes to maximising the utilisation of renewable energy. Others
assess microgrid scheduling in terms of the technical characteristics. (Kuznetsova
et al., 2014) use agent-based modelling in combination with robust optimisation in
order to demonstrate the benefit of scheduling resources for the purpose of improv-

ing microgrid reliability and lowering the cost of its operation.

Limitations of centralised control. Centralised control is the best approach for
offering optimal or near optimal solution and constitutes a very good choice in
some cases, €.g2. a small microgrid. However, its main limitations is that it re-
quires consumers to give up control and information of their resources, which may
not be appreciated by some end-users, especially in the residential sector (Medina
et al., 2010; Rahimi and Ipakchi, 2010). Another shortcoming is scalability, since
centralised coordination requires communication of a large number of technical pa-
rameters from various DERs to the aggregator. Hence, as the number of flexible
consumer resources increases it becomes more computationally challenging for the

aggregator to arrive with the solution (Sonnenschein et al., 2014).

2.2.2.2 Decentralised coordination

Decentralised coordination typically assumes indirect control of smart load agents
using a signal like real time pricing or system frequency. However, communicating
the same signal to a sufficiently large population of agents may lead to consumers
‘herding’ as they adopt similar optimisation strategies. Hence, the challenge of
decentralised control lies in steering self-interested agents towards global optimum
without explicit control by a central entity.

A number of papers deploys iterative coordination, whereby an aggregator ne-
gotiates the demand profiles with a pool of consumers (or flexible demand units)
over a number of iterations until the system converges. Convergence is achieved
by either consumers or the aggregator adjusting (or learning) the strategy over the

course of the negotiations. For example, in (Vytelingum et al., 2010; Voice et al.,
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2011) the authors propose an algorithm in which consumers schedule demand based
on the real time price in order to cost minimise. In order to avoid large swings in
system demand, end-user response is supressed through a damping term which pe-
nalises them for shifting demand too much from the previous schedule. As a result
of this algorithm, consumers slowly adapt to the market and reach the point of
Nash equilibrium. In the context of the UK electricity market, the authors demon-
strate that the algorithm leads to a 17% reduction in the system peak and up to 6%
decrease in carbon emissions. In (Ramchurn et al., 2011) the same algorithm is
extended to include information of renewable generation in the system by means of
introducing carbon-based retail tariffs. In (Gan et al., 2013) the authors apply iter-
ative coordination for scheduling PEVs, but in contrast to (Ramchurn et al., 2011;
Voice et al., 2011) where each iteration represents a day, all negotiations between
EVs and the aggregator take place during the day-ahead scheduling. Using a simi-
lar approach, in (Li et al., 2011a; Guo et al., 2013) the researchers demonstrate that
theoretically dynamic pricing can be structured in a way as to ensure optimal result
for both the consumers and the utility. In contrast to the above studies, (Yousefi
et al., 2011) presents an approach whereby the aggregator learns the price signal to

send to consumers who then cost minimise.

Randomised control is an alternative approach for coordinating flexible loads
in a decentralised manner. Randomisation can be achieved in two ways: consumers
reacting differently to the same signal or reacting in the same way to different sig-
nals. The former case includes stochastic load response and is typically deployed for
the purposes of frequency control with a fleet of flexible resources such as electric
vehicles (Callaway and Hiskens, 2011; Meyn et al., 2015; Zhou and Cai, 2014) or
thermostatically controlled loads (Tindemans et al., 2015; Hao et al., 2014). How-
ever, this approach is tailored to managing a fleet of similar type of flexible re-
sources which can stochastically switch on and off or react very quickly, and so
becomes inapplicable to more complex demand scheduling. In the second case of
randomised control the aggregator calculates different signals for each consumer

which allows its application to coordinating a pool of smart consumers (Boait et al.,
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2007; Snape et al., 2013; Mohsenian-Rad and Leon-Garcia, 2010) or more generic
flexible loads (Papadaskalopoulos and Strbac, 2015). In (Ghasemi et al., 2016), the
authors use a two-point estimate method in order to model uncertainties associated
with renewable generation from wind and calculate optimal prices for cost minimis-
ing flexible end-users. However, the necessity of having a central entity which is
able to calculate different signals introduces the issue of scalability as the number

of consumers increases.

Market-based coordination allows consumption and generation agents to ne-
gotiate settlement in a decentralised manner through interactive bidding into the
market, which is overseen by a third party (an auctioneer) that determines equi-
librium prices and ensures network balance. For example, (Motto et al., 2002)
propose a decentralised electricity market whereby supply and consumer agents re-
spond to real-time prices and optimise their surpluses. (Ghijsen and D’hulst, 2011)
apply market-based approach to evaluate its effectiveness in the case of EV charging
and specifically look at the effect on peak voltage. The main limitation of having
consumers bid into the market is that it introduces uneven opportunities, since the
scheduling is based on the order in which end-users react. Therefore, those which
bid quicker get the cheapest power, which solves the problem of resource allocation
but not necessarily in the fairest manner with regards to consumers. It is possi-
ble to imagine that end-users with better technology would be able to make faster
and more accurate decisions. Yet, the access to technology is closely linked to the
wealth of a particular end-user, which implies that those with more financial free-

dom would be able to obtain cheaper electricity.

Extensive work on market-based coordination has been carried out at the En-
ergy research Centre of the Netherlands (ECN), where the researchers have de-
veloped a hierarchal framework for market-based coordination in the context of a
multi-agent system (MAS) (Kok et al., 2005, 2010). A multi-agent system (MAS)
is a software system implemented as a collection of interacting autonomous agents
(Newell, 1982). In the context of MAS, an agent corresponds to any self-contained

software program that is representative of something (e.g. washing machine, EV)
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or someone (e.g. prosumer, smart home) (Kok et al., 2010). These software agents
are equipped with some specific rules on how to react to system signals and the
response (bidding into the virtual market) happens automatically without human in-
tervention (but taking into account human preferences of usage). The framework
has been tested in a number of scenarios and the technology is now commercially
available!. MAS is also a popular approach for scheduling microgrids in a decen-
tralised manner (Wernstedt et al., 2007; Lagorse et al., 2010; Booij et al., 2013;
Gonzalez De Durana et al., 2014). For example, (Wernstedt et al., 2007) use it to
dynamically schedule District Heating Systems and demonstrate the positive effect
it can have on shaving demand peaks without affecting the quality of service for

consumers.

Other approaches for decentralised coordination include game theory. An
interesting finding is made in (Zugno et al., 2013), where the authors model
aggregator-consumer interaction using as a Stackelberg game (where players rep-
resent leaders and followers (Von Stackelberg, 2011)). The study finds that under
the dynamic pricing scheme, the financial benefits are not distributed fairly between
the retailer and consumer indicating a conflict of interest between the two types
of stakeholders. This is an important finding and one which is not mentioned by
many researchers, considering its importance with regards to fair allocation of ben-
efits from DSM. Stackelberg game approach is also used in (Dai et al., 2017; Han
et al., 2017), where the authors examine DSM in the context of a competing retail
energy market. In both studies researchers find that a well-designed RTP tariff struc-
ture can benefit energy retailers as well as consumers. Game theoretic approach is
used in (Amir-Hamed Mohsenian-Rad, Vincent W.S. Wong, Juri Jatskevich, Robert
Schober, 2010), where the authors come up with a smart billing strategy which
ensures that the system converges when consumers optimise on the price indepen-
dently. However, the authors assume that each consumer has demand information
of the rest of the market, which might be difficult to implement in the real world.

Moreover, the algorithm is tested with ten consumers over twenty-two iterations,

ISee http://flexible-energy.eu/powermatcher/ for more information.
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which questions its scalability to a system of millions of end-users.

Some researchers opt for heuristic methods of scheduling flexible resources.
Water-filling, whereby the surplus demand is shared across consumers in a similar
way to the water filling a vessel, is one such example. In (Mou et al., 2015) the
authors apply this approach in order to flatten aggregated demand from a fleet of
PEVs. As PEVs schedule autonomously, their aggregate demand is shared in the
network which leads to a valley-filling effect. Other examples include (Vandael
et al., 2011), where the grid imbalance is allocated to electric vehicles depending
on the time they leave and their earlier submitted intentions to charge. In (Changsun
Ahn et al., 2011) the authors discover that charging power is dependent on the state
of charge of the PEV battery and the availability of renewable energy. As a result of
these findings, the aggregator is required to signal consumers only once avoiding
the need for bi-directional flow of information. A similar method is offered in
(Zhang et al., 2014), where the researchers analytically deduce optimal dynamic
prices which lead to a valley-filling effect when PEVs cost minimise.

Finally, a group of studies develop decentralised coordination strategies which
do not require an aggregator at all. For example, in (Rahbari-Asr and Chow, 2014)
the authors propose a cooperative distributed algorithm for scheduling electric ve-
hicle charging. More recently research in decentralised DSM without the need for
an aggregator has been focusing on blockchain-enabled peer-to-peer trading be-
tween consumers (Li et al., 2017; Wu et al., 2017) and machine learning-inspired
algorithms enabling consumers to adjust to the market autonomously (Lopez et al.,
2018). However, these studies have been tested in a limited setting either for just
one type of technology (e.g. PEVs) or for a small pool of consumers. For one, an
autonomous system without a central coordinator would require a secure and reli-
able communication infrastructure between consumers. Hence, the extent to which

these methods can be applied in a realistic setting has not been fully evaluated.

2.2.2.3 Holonic coordination approach

More recently, researchers consider DSM in the context of a holonic energy system

(Ounnar et al., 2013; Vlad et al., 2014; Lubomir et al., 2014; Pahwa et al., 2015). A
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‘holon’ represents something that is a whole and a part, meaning that a holonic en-
ergy system is a system of systems. This representation means that coordination is
neither centralised not distributed (Figure 2.4). For example, in (Pahwa et al., 2015)
the authors combine a holonic representation of the energy system with MAS ap-
proach in order to provide a design for distribution system operation. They are able
to demonstrate that this approach offers an effective design to control reactive power
in a distribution grid with high PV penetration. Whilst holonic paradigm offers a
promising approach to link together the different methodologies explored at various

levels of hierarchy in the energy system, the research is still at the conceptual level.

Figure 2.4: Comparison of centralised, distributed and holonic system representation.
Source: (Howell et al., 2017).
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Comments on the research gaps in the ‘aggregator control focus’ category.

Literature in the ‘aggregator control focus’ category covers very innovative and
useful methods for coordinating consumer demand, especially when carried out in a
decentralised manner. However, much to do with the focus of research placed in this
category, its main limitation is that the testing tends to be carried out in an isolated
setting. Moreover, consumers are often modelled as homogenous which enables
the authors to formulate the coordination problem more elegantly. For the same
reason electricity generation and pricing are taken as exogenous parameters. As a
result, the impact of DSM is not evaluated in the context of the whole system. For
example, typical outcome reported by researchers includes financial benefits to the
aggregator or its consumers. In reality, aggregators (especially those representing

utilities) compete in the wholesale electricity market. Thus, it is possible to imagine
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that they will use DSM as a tool to purchase cheap electricity for themselves which
can lead to aggregator herding. In fact in (Priiggler et al., 2011), the authors find that
strategic manipulation of demand by vertically integrated utilities can result in the
long term price increases and higher electricity bills for customers. This suggests
that in the future stricter regulation of utility activities might be required to avoid

such problems.

Following the research gaps identified in this category, in the next section the
focus is given to those studies which evaluate the impact of DSM in the context of

a closed system.

2.2.3 System focus

As the name suggests, ‘system focus‘ category incorporates all studies which evalu-
ate the impact of DSM at the system level. A distinguishing feature of these studies
is that they consider a closed or self-sufficient system, meaning that electricity gen-

eration (or costs) are explicitly modelled.

2.2.3.1 DSM and generation

A popular focus of research in this category is assessing the impact of DSM on the
generation dispatch (Chen et al., 1995; Kirschen et al., 2000; Zhong et al., 2015;
Zakariazadeh et al., 2014; Malik, 2001), especially in the context of unpredictable
renewable generation (Sioshansi, 2010; Broeer et al., 2014). A common approach
adopted by researcher is to consider load scheduling as part of the unit commit-
ment model formulated as an optimisation problem. For example, in (Sioshansi,
2010) the authors demonstrate how including DSM in the day-ahead generation
scheduling can reduce redispatch costs and improve reliability of a grid with uncer-
tain generation from wind. Other reported benefits of DSM include avoided voltage
violations (Papaioannou et al., 2013) and reduced cycling costs of power plants
(Malik, 2001). The main limitation of these studies is that scheduling is formulated
as an optimisation problem which corresponds to central coordination. This means
that the demand side interactions are not captured. In addition to this, the demand

side is often modelled as a single load curve, thus limiting the extent to which these
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studies constitute whole system assessment of DSM.

Another popular direction of research in this group of studies is examining the
impact of DSM on the energy mix (De Jonghe et al., 2012; Keane et al., 2011; Finn
et al., 2011; Pakka et al., 2013). A common conclusion of this work is that DSM
can lead to improved balancing of intermittent generation energy and consequently
lead to a higher installed renewable capacity. However, in (De Jonghe et al., 2012)
the assessment is done for a single day, whereas (Broeer et al., 2014) focus on one
historical year. (Keane et al., 2011) and (Finn et al., 2011) perform analysis for the
future year of 2020 but system assessment is done using linear optimisation and

once again stakeholder dynamics are not captured.

2.2.3.2 Benefits of flexible technologies

Another focus of research in this group is on assessing the benefits of specific tech-
nologies such as dishwashers (Finn et al., 2013), EVs (Bach et al., 2010; Babrowski
et al., 2014; Lund and Kempton, 2008; Finn et al., 2012), heat pumps (Wang et al.,
2012), or a combination of these (Papadaskalopoulos et al., 2013; Fehrenbach et al.,
2014) on balancing the grid. For example, in (Papadaskalopoulos et al., 2013) ex-
amine the capacity in which electric vehicles and heat pumps can help balance the
grid in the UK and find that DSM can lead to significant reductions in electricity
generation costs. However, by considering only a few technologies these studies
do not capture the full scope of system flexibility and hence fail to evaluate DSM
potential fully. Moreover, these studies tend to represent consumer demand in an
aggregate manner (Fehrenbach et al., 2014), therefore losing critical end-user inter-

actions.

2.2.3.3 Real world implementation of DSM coordination strategies

A few papers report on the results of pilots which test a specific coordination mech-
anism in an existing electricity system. For example, (Morais et al., 2010) deploy an
MILP scheduling strategy in managing a real world microgrid located at Budapest
Tech. The authors conclude that effective scheduling of storage can maximise the
utilisation of renewable energy (wind and solar) which optimises the use of other

fuels in the microgrid. Another example includes (Roossien et al., 2008), where re-
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searchers demonstrate the effectiveness of the PowerMatcher concept in managing
a cluster of households with microCHP in the Netherlands. They conclude that the
algorithm can lead to a 30-50% reduction in peak load without affecting consumer
comfort. However, both of the above examples constitute very small systems and

so wider implications of these approaches are not evaluated.

2.2.3.4 DSM and market

A number of studies assess DSM in terms of its effect on electricity market charac-
teristics. For example, (Joung and Kim, 2013) examine the impact of load flexibil-
ity on strategic price formulation of generators, whereas (Su and Kirschen, 2009)
propose new market clearing mechanism and (Tanaka, 2006; Nikzad et al., 2012)
develop new pricing policies. However, they do not demonstrate the implication
of these findings on a system-wide level and therefore do not constitute a holistic
assessment of DSM. In (Dou and Liu, 2014) the authors deploy a market-based co-
ordination algorithm in order to demonstrate how DSM can improve the reliability
of the grid as well as lead to lower system costs and emission levels. (Moghaddam
etal., 2011) use the concepts of consumer benefit function and consumer price elas-
ticities for the purpose of evaluating how different demand response schemes (i.e.
TOU, CPP, RTP, I/C, DLC) affect the market from the perspective of consumers,
utilities and the system operator. Yet, the authors perform the analysis using histor-
ical load profile and prices from the Iranian electricity grid on an annual peak day.
The main shortcoming of the models placed in the ‘system focus’ group is that they
consider a stylised representation of the electricity system, either by aggregating
the demand or the supply sides. They also tend to consider a very short period of
simulation (e.g. a day). As a result, these studies hide stakeholder interactions and

tend to evaluate the impact of DSM in a theoretical manner.

2.2.3.5 Whole system assessment of DSM

A group of studies have been identified to carry out the most holistic assessment of
DSM. For example in (Fehrenbach et al., 2014), the authors use TIMES modelling
framework in order to assess the economic potential of load management performed

by VPPs (representing residential consumers with micro-cogeneration plants, heat
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pumps and thermal storage) until 2050. They conclude that effective load manage-
ment can contribute to a more sustainable energy mix (e.g. oil-fired generators are
phased out) as well as significant reduction in CO2 emissions. Similar studies are
performed for Portugal (Moura and de Almeida, 2010) and Portuguese Island of
Azores (Pina et al., 2012), UK (Strbac et al., 2012), Germany (Klobasa, 2010) and
the European Union (Papagiannis et al., 2008). However, all of the above studies
use system-wide optimisation based on objectives such as least cost or minimum

emissions and so stakeholder interactions are not explored.

Agent-based modelling (ABM) offers an alternative approach. For example,
in (Valenzuela et al., 2012) researchers use ABM to assess the impact of DSM
on market prices, peak demand, consumer energy costs, and producer revenues in
South Korea. However, the study utilises historical end-user price elasticities in
addition to the assessment being done for one year. (Ramchurn et al., 2011) and
(Vytelingum et al., 2010) use ABM to model the impact of DSM in the UK, but they
only consider residential consumers. Another UK study is performed in (Roscoe
and Ault, 2010), where the researchers deploy a combination of analytical methods
including a probabilistic approach for modelling flexible demand and modelling the
price curve as an exponential function. However, the assessment is performed for a
6-week period, considering only residential DR as well as using historical electricity

prices.

Comments on the research gaps in the ‘system focus’ category. The literature
in the ‘system focus‘ category constitutes very insightful and interesting research.
However, it is found that studies which focus on the methodological component
of DSM implementation fail to assess it in the context of the wider system scope,
whereas research focusing on the representation of an existing system does not ad-
dress the heterogeneity of different stakeholders and their interactions.

This is either because assessment is performed on a test system (Falsafi et al.,
2014; Wang et al., 2013), a small part of the network (Logenthiran et al., 2011;
Valenzuela et al., 2012; Zakariazadeh et al., 2014; Boait and Snape, 2014), at a very

coarse temporal resolution (Papagiannis et al., 2008), or statically without captur-
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ing the dynamics of stakeholder interactions (Shaw et al., 2009). A limited number
of studies assess the future impact of DSM considering a variety of different con-
sumers. However, few go beyond 2020 (Klobasa, 2010; Moura and de Almeida,
2010; Pina et al., 2012; Finn et al., 2012) and even fewer beyond 2030 (Strbac et al.,
2012; Fehrenbach et al., 2014). In addition to this, long term analysis tends to be
performed using system-wide optimisation which does not capture dynamic stake-
holder interactions. An alternative to this are ABM models, but these only consider
the residential sector and do not assess DSM impact in the future (Ramchurn et al.,

2011; Vytelingum et al., 2010).

2.2.4 A note on dealing with uncertainty

One important issue with modelling energy systems is uncertainty in predicting
supply from renewable resources (especially wind) and demand (which is becoming
more unpredictable). There are two main approaches adopted by research to address
this: stochastic programming and modelling close to real time.

In contrast to deterministic mathematical programming, stochastic program-
ming involves formulating an optimisation problem in terms of expected values and
probabilistic constraints (Boyd and Vandenberghe, 2010). Stochastic programming
is often applied when the authors consider renewable generation (Fleten et al., 2002;
Falsafi et al., 2014; Keane et al., 2011) or to accommodate unpredictable demand
(Zheng et al., 2014; Deilami et al., 2011). For example, in (Keane et al., 2011)
the approach is used to model unit commitment with RES and load forecasts un-
certainty, whereas in (Zheng et al., 2014) the authors develop a stochastic demand
model for a smart home management system.

In order to reduce uncertainty some researchers adopt real time (or near real
time) optimisation in order to minimise the time between performing scheduling
and the event taking place. For example, in the case of wind generation the supply
can be predicted fairly accurately up to 4 hours ahead (Milligan et al., 2009). Hence,
scheduling loads with wind predictions of 2 hours ahead will be a lot more accurate
than scheduling 24 hours ahead. Real-time scheduling is also intuitively appeal-

ing in the context of individual device management and hence a popular approach
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for scheduling randomly connecting electric vehicles. For example, (Deilami et al.,
2011) develop real-time smart load management control strategy for coordination
of PEV charging based on real-time (5 mins) minimisation of total cost of energy
generation by incorporating time varying market energy prices and PEV owner pre-
ferred charging time zones based on priority selection. Other examples of on-line
load scheduling include (Li et al., 2011b; Ma et al., 2015; Turitsyn et al., 2010).

In this work the second approach for dealing with uncertainty is chosen. As
described in Chapter 3, the market reschedules generators in real time following the
system operator obtaining the final information on system demand. In contrast to
stochastic programming, this approach is much quicker in its implementation since
it does not require a probabilistic formulation of the problem. This allows the pro-
gram to run faster (critical for long-term system modelling), whilst still preserving
the objective of the work - to evaluate the financial impact of demand side manage-

ment on the system in terms of the cost of generating electricity.

2.3 Conclusions of literature review

Following the literature review, the following research gaps are identified in the

domain of model-based assessment of DSM:

1. Studies which focus on demand scheduling mechanisms tend to test them
in an isolated or stylised setting, e.g. only considering a pool of consumers
being coordinated by a single aggregator. As a consequence the results are

taken outside of the wider system context.

2. Models which consider realistic simulation settings assume perfect consumer
behaviour formulated as a large optimisation problem. As a result different
stakeholder interactions are not considered and issues like consumer herding

or aggregator competition in the context of DSM are not explored.

3. A limited number of works focus on the future impacts of DSM. Those that
do often consider a limited number of flexible technologies or deploy system-

wide optimisation which ignores demand-side interactions.
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4. The majority of studies focus on the residential sector leaving the impact of
DSM on non-domestic consumers unexplored. Moreover, there is a lack of
literature which compares the impact of DSM on different consumers types,

i.e. with different resource accessibility.

In terms of the most relevant research in the domain of DSM assessment in the
context of the UK, a number of studies have been identified which are summarised
in Figure 2.5. Important contributions have been made by a team of researchers at
the De Montfort University, who consider a number of topics concerning the tran-
sition of the national electricity system towards a ‘Smart Grid’, such as integration
of distributed generation, electrification of transport and active consumer behaviour
(Snape et al., 2015; Boait and Snape, 2014; Pakka et al., 2013). However, the stud-
ies have so far focused on the residential sector only and have not explored issues
like consumer herding or aggregator competition. Researchers at the Southampton
University have provided valuable input in terms of coming up with decentralised
coordination approaches which help to overcome consumer herding (Voice et al.,
2011; Ramchurn et al., 2011). However, the authors only consider the residential
sector and test scenarios in a stylised setting using past data. A study prepared by a
team of researchers from Imperial College in collaboration with NERA Consulting
(Strbac et al., 2012), constitutes one of the most holistic assessment of DSM in the
context of the UK. However the authors perform system-wide optimisation and so
stakeholder interactions are ignored. Although the study provides some very valu-
able and interesting finding, some of the risks of DSM such as herding or aggregator
competition are not considered.

In order to address existing research gaps this work proposes an Energy Sys-
tem Management Agent-based model (or ESMA), which will fulfils the following

criteria (see last row of table in Figure 2.5):

1. Explicitly consider generation and costs from dispatchable and renewable en-

ergy resources;

2. Include heterogeneous consumers representing all economic sectors with dif-

ferent combination of flexible and inflexible resources;
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3. Explore future scenarios as far as 2050 for the British electricity system rang-

ing from the most pessimistic to the most optimistic one;

4. Model interactions between consumers and aggregators and explore the im-

pact on the system when they pursue selfish objectives;

5. Address the issue of electricity cost allocation.

2.3.1 Open source modelling platforms

A number of open source whole system energy models have been identified dur-
ing the literature review. For long-term analysis researchers tend to use model like
TIMES (bottom-up least cost optimization model)(ETSAP, 2018) or EnergyPLAN
(a simulation model which optimises the operation of a given system based on the
input parameters) (Sustainable Energy Planning Research Group at Aalborg Uni-
versity, 2018). However, these types of models do not capture dynamic stakeholder
interactions, for which reason they would be unsuitable in being used in the context
of an energy system where stakeholders are able to make decisions based on dy-
namic system parameters. Agent-based modelling has been identified as a suitable
approach for capturing such dynamic interactions. A number of open source ABMs
have been identified (Argonne National Laboratory., 2018; Grozev et al., 2018; De
Montfort University, 2018; Li and Tesfatsion, 2011). For example CASCADE (de-
veloped at the De Montford University) (De Montfort University, 2018) was created
especially to capture the complexity of the British electricity system. One of the
shortcomings of using a ready-made model is that the behaviour of agents amongst
each other and the system is predetermined by the original model developer. This
can make it difficult to introduce changes at the level of agent interactions. The ob-
jective of this research is to explore the sensitivities of the British electricity system
to different regimes of DSM. In order to fully realise this objective it has been de-
cided to create a new model, incorporating relevant ideas and methods discovered

during the literature review.
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Chapter 3

Methodology: building ESMA

Following the identification of research gaps in Chapter 2, a model for Electricity
System Management using an Agent based approach (or ESMA) is proposed, which
includes heterogeneous consumers (representing domestic, commercial, industrial
and transportation sectors), aggregators (representing entities which can pool con-
sumers and trade power in the wholesale market), the system operator (responsible
for overseeing the balance of electricity in the grid) and the market (representing a
pool of transmission level generators and pumped storage). The main feature of the
model is its capability to simulate different regimes of demand side management
(DSM) ranging from totally decentralised (performed by consumers) to totally cen-
tralised (performed by the system operator).

The following chapter covers the methodology for building ESMA focusing
on justifying model assumptions, selecting model actors and choosing methods to
simulate their interactions. The British electricity system is taken as a case study,
since it represents a good example of a power system undergoing decentralisation.

However, the model is not country specific and can run with other data.
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3.1 Overview of the British electricity system

The schematic of the British electricity system is portrayed in Figure 3.1. It consists
of supply and demand sides linked together by the transmission and distribution net-
work. The supply side contains sources of electricity generation, such as renewables
(e.g. wind and solar) and dispatchable power plants (e.g. coal and gas generators),
storage (such as pumped) and interconnectors to other countries. The demand side
represents consumers from four economic sectors (domestic, commercial, industrial
and transport) in possession of electricity generation technologies and storage. The
transmission and distribution networks, which operate at different voltage levels,

impose physical network constraints on the power flow through the system.

Figure 3.1: Graphical representation of the British electricity grid.
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3.1.1 Electricity wholesale market

In deregulated electricity markets, such as in the case of the UK!, electricity is
largely traded in the wholesale market, which allows large consumers (e.g. indus-
trial or large commercial) or energy utilities (companies which retail power to pools
of smaller consumers) to purchase power from electricity generators.

Wholesale electricity trading can be split into over-the-counter (OTC) and ex-
change markets. OTC trades tend to be for delivery further into the future (months
and even years ahead), whereas exchange trades are typically for short term delivery
(intraday and day-ahead). In the UK (like many European markets), the majority
of power is traded in the OTC market, where parties negotiate volumes and prices
for electricity in private (Elexon, 2017b). Trading is carried out on three main ex-
changes: APX Group?, Nord Pool (or N2EX)? and the Intercontinental Exchange
(or ICE) . In contrast to the OTC market, exchange trades come in standardised vol-
umes and the prices are made openly available. OTC prices are closely aligned with
exchange prices, since any arbitrage opportunity would be quickly exploited by the
market (Rademaekers et al., 2008). Both OTC and exchange markets include deals
which are executed by traders not for physical delivery but for realising an arbitrage

opportunity. In this work only the market for physical delivery is considered.

3.1.2 Balancing the grid

Unlike other commodities electricity in the grid must be balanced in real time,
meaning that whatever is being supplied into the grid must be taken out at the same
time, since power is still expensive to store. System balance is measured by its
frequency, which must stay within 1% of 50Hz (National Grid, 2016). Not enough
generation (or too much demand) will lead to the system frequency drop, and a big
drop in frequency can lead to a black-out. Too much generation (or not enough

demand), will increase system frequency and could result in the damage to the grid.

"Market arrangements are considered in the context of the United Kingdom, whereas the model
is built for the British electricity network only since Northern Ireland has a separate grid. Hence, the
data is taken to represent the British grid and excludes Northern Ireland.

2See https://www.apxgroup.com/

3See https://www.nordpoolgroup.com/

4See https://www.theice.com/index
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In Britain, the National Grid carries the responsibility for keeping the grid in
balance. The National Grid allows power to be traded in the wholesale market up
to one hour before physical delivery (known as gate closure) when it takes over to
remove any imbalances in the grid. This is done through the Balancing Mecha-
nism. The Balancing Mechanism runs like a market where the system operator can
procure balancing services from the balancing mechanism units (BMUs) — parties
capable of increasing or decreasing generation or consumption in the grid.

Balancing services can be mandatory and non-mandatory and act on different
time scales and for different purpose of maintaining the grid balance 3.2.

Figure 3.2: Categorisation of the balancing services offered by the National Grid. Source:
(National Grid, 2016)
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seconds of an event, whilst short term operating reserve (STOR) within minutes.
Mandatory services, like reactive power provision and frequency response, are a
prerequisite for large generators to be connected to the transmission grid (National
Grid, 2016). This means that the generator must automatically react to the system
frequency deviation in order to restore it. System management services, such as
black start and hot standby, are there for the purpose of keeping enough generat-
ing capacity ready. The system operator (SO) passes the cost of balancing the grid
on those parties which lead to system imbalance, whilst rewarding BMUs. Conse-

quently, the wholesale price of electricity includes the cost of balancing the grid.
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3.1.3 Electricity prices

Generally speaking, the closer to the time of physical delivery of power (i.e. the
shorter the notice to generate) the higher are the prices for electricity generation
and balancing services. For this reason, the majority of power (85%) is contracted
for delivery in the over-the-counter market to fulfil the bulk of the known demand
(or baseload) (Ofgem, 2016a). The remaining 15% of demand is traded on exchange
as shown in Figure 3.3. Since OTC deals are agreed in private, it is difficult to ob-
tain historical price information for the majority of electricity generated in the UK.
However, the OTC market is strongly influenced by exchange prices for electricity,

and so it is possible to use exchange prices as a proxy for OTC prices.

Figure 3.3: GB wholesale electricity trading volumes and churn, 2011 to 2016. Source:
ICIS, APX, Nord Pool Spot, ICE, BEIS Energy Trends (Ofgem, 2016b)
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‘Churn’ is the number of times one unit of electricity is traded.

Figure E.1 demonstrates the historical relationship between system demand
and the wholesale price for electricity.

It can be seen that as demand increases so does the price. This happens because
cheaper units of electricity (those with lower short run marginal cost of generation)
like renewables and nuclear get sold first leaving more flexible and expensive gen-
eration (like gas and oil) closer to the time of physical delivery. This results in

what is known as the ‘merit order stack‘, whereby generation units are arranged
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Figure 3.4: Historical system prices and demand, Jan-Mar 2015. Source: (APX Group,
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in the ascending order of price for electricity (which often reflects the short run
marginal cost of production). The short run marginal cost of generation depends
on the technical characteristic of the generation technology (its efficiency and vari-
able operational and maintenance cost), the cost of fuel and the cost of greenhouse
gases emitted from generating electricity. The rate at which a power generator can
increase and decrease generation (ramp rate) determines whether it will run contin-
uously or during peak times. For example, nuclear generators are expensive to cycle
and so they tend to run continuously, whereas gas generators can cycle quickly, and
are therefore used to meet peak demand. Hence, there can be situations when it is
cheaper for the generator to run and to offset the extra supply by increasing demand

rather than decreasing generation.

On the whole the process of electricity price formation is complicated as it
involves different long-term and short-term markets, which can be skewed by spec-
ulative trading activity. The physical characteristics of the grid, grid balancing costs,
prices for fuel carbon and external trading activity all affect the price for electric-
ity. With increasing renewable capacity, this process is likely to become even more

complicated. Since electricity generated from renewables comes at almost zero
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short run marginal cost it brings a structural change to the wholesale electricity

market, which traditionally accommodates dispatchable generators.

3.1.4 Consumer electricity prices

Whilst large consumers (large commercial and industrial) can purchase power di-
rectly from the wholesale market, smaller consumers (residential, small commer-
cial) can only obtain electricity from an energy utility in the retail market. Hence,

end-user prices for electricity differ depending on their size (Figure 3.5).

Figure 3.5: Historical annual consumer electricity prices by size, 2004-2015. Source:
(Ofgem, 2016a)
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Energy utilities purchase power on behalf of small consumers (like domestic
or small commercial) in the wholesale market, whilst large commercial and indus-
trial consumers can purchase electricity straight from the wholesale market. The
costs incurred by the utility in the long-term, short-term and balancing markets all
contribute to the wholesale price of electricity. The utility then uplifts the wholesale
price to include the cost of using the transmission and distribution lines, as well as
operational costs incurred by the company. Typically, the wholesale price of power
contributes around a third to the retail price of electricity, whilst the network and the
operational costs constitute 28% and 16.5% respectively (Figure 3.6). The remain-
ing part of the retail price consists of environmental costs incurred by the utility

(government programmes to save energy, reduce emissions and encourage take-up
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of renewable energy) and taxes (value added tax is paid on households’ energy bills)

(Ofgem, 2016a).
Figure 3.6: Breakdown of an electricity bill. Source: (Ofgem, 2017b)
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3.1.5 Electricity system decentralisation

Traditionally, the British electricity grid operated in a centralised manner, whereby
power generated by large generators was delivered to passive end-users. This set-up
worked well, since electricity generated from burning fossil fuels can be controlled
to match the electricity demanded by the system. However, in-line with the UK
decarbonisation goals more and more renewable energy is being integrated into the

grid (Figure 3.7).

Figure 3.7: UK fuel mix for generating electricity, 2000-2016. Source: (DECC, 2015)
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Although some renewables are dispatchable (biomass and hydro), solar and
wind generators suffer from unpredictability and variability of power generation.
Moreover, a significant proportion of renewable generators (like embedded wind
and solar) are smaller and geographically more dispersed. The demand side is also
witnessing an increasing capacity of renewable generation, especially rooftop solar.
This renders situations where end-users (especially in the residential sector) produce
more than they consume, which necessitates them to export the surplus electricity
back to the grid.

Heating and transportation electrification as well as lowering costs for storage
technologies, are making end-users more flexible in consuming power. In order to
engage end-users in utilising this flexibility, the UK government plans to equip ev-
ery household with a smart meter by 2020 which would communicate the cost of
electricity consumed in real time. This coupled with an increasing proliferation of
commercially available smart home management system offered by companies like
PassivSystems> and Nest® are making end-users more informed and more proac-
tive in the way they consume electricity. This offers new business opportunities
to energy utilities and aggregators. Companies like Tempus Energy, Ecotricity and
Good Energy are moving towards a more flexible approach rewarding consumers
who respond to dynamic tariffs therefore consuming more of renewable generation
(Ecotricity, 2018; Good Energy, 2018).

The resulting system renders the perfect case study for investigating the impact

of demand side management on the sustainability of the grid.

Shttps://www.passivsystems.com/
*Nest2017
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3.2 Assumptions

In order to build the model, the real system is simplified by making the following

assumptions:

* The electricity network is modelled as a ‘copper plate’ (also known as ‘single-
node model’), meaning that power can flow unconstrained from any gener-
ation site to any demand site - a popular approach in economic modelling

(Medjroubi et al., 2017).

* Modelled consumer agents correspond to pools of real-life consumers of the
same type rather than individual entities. For example, all residential house-
holds with solar PV technology are modelled as one consumer agent. This
assumption is deemed acceptable since consumers of the same type behave in

the same manner.

» Speculative trading of electricity is omitted from the model, since it skews the

real cost of generating electricity.

* Although the settlement in the UK is done on half-hourly basis, the tempo-
ral resolution of the model is set at 1 hour mainly due to the limitations in
the temporal resolution of certain datasets. This assumption also makes the
conversion between power and energy much simpler, whilst preserving the

dynamic behaviour of the model.

* Wholesale electricity market is approximated as a single day-ahead market.
This assumption is done in order to preserve the speed of the model, whilst

still capturing the main mechanism of price formation.

* The balancing mechanism is approximated to a single generator rescheduling
process done on the day which corresponds to real time electricity dispatch.
Similarly to wholesale market assumption, this enables to preserve the speed

of the model.

* Electricity import and exports are assumed to be constant throughout the
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year. This assumption spans from the fact electricity systems outside of Great

Britain lie outside of the scope of this work.

The cost of generating electricity is calculated based on the short-run costs
including the ramping cost and ignoring the cost of investment. This assump-
tion is justified by the fact that generation and storage capacities are taken as

external input parameters.

Uncertainty in predicting renewable supply is ignored. This is largely moti-
vated by the fact that already today day-ahead wind forecasting errors amount
to a few percent (depending on the country) and are even lower for solar. In
the future, more data and better forecasting models are likely to reduce this

error even further (Hodge et al., 2012).

Uncertainty in predicting non-deferrable demand is ignored. This is justified
by the fact that human activity like cooking, eating and working is unlikely to
change significantly in the future. Hence, uncertainty in electricity demand is
assumed to originate from operation of flexible resources like electric vehi-

cles, storage, and electric heating.

If the consumer has agreed to participate in demand response, he does not
deviate from the demand profile after scheduling. This is because the social

aspect of decision making by consumers lies outside of the scope of this work.

Technical characteristics of power generators are assumed to be the same for

the same type of power plants.
District heating is not considered.

Technical characteristics of power generators and consumer technologies
(apart from non-deferrable demand) do not change throughout the simulation

period.

Seasonal environmental parameters (like external temperature, wind speed

and solar irradiance) vary throughout the year but do not vary between years.
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* In this work, DSM services offered by consumers are assumed to be free.
This stems from the assumption that shifting flexible demand (from electric
vehicles and/or electric heating) does not interfere with the quality of services
offered to end-users. In addition to this, consumers are compensated either
through a lower electricity tariffs achieved from a more optimal system de-
mand profile (in the case of aggregator-led scheduling), or through expected
cost reductions (when consumers schedule demand autonomously, in which
case it is their own decision to alter demand). In reality, end-users can offer
flexibility from shifting business-as-usual demand (e.g. cooking, watching
TV, etc.) which would require compensation from the aggregator which calls

for DSM services.

3.3 Agent-based modelling approach

The power sector represents a complex network of multiple stakeholders each with
varying objectives and ways of interacting amongst each other and the environment.
Traditional modelling approaches such as equilibrium modelling, optimisation and
game theoretic models suffer from certain shortcomings when it comes to modelling
real life socio-technical systems such as the power sector.

These include (Weidlich and Veit, 2008):

1. Modelling system actors as homogeneous agents, which is required to ele-

gantly formulate the model;
2. Ignore agent learning characteristics;
3. Often assume perfect information available to all agents;
4. Assume continuous supply and demand functions.

The key feature of the proposed model is its capability to represent heteroge-
neous system stakeholders, which are able to adapt to the environment and learn the
most favourable behaviour to them. Limitations discussed above make traditional

methods inappropriate in recreating such behaviour.
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Agent-based modelling (ABM) offers a way to decompose stakeholder inter-
actions into simpler rules and presents practically and intuitively an effective way
to model the proposed system. ABM uses autonomous decision-making entities
called agents. In contrast with aggregated modelling, ABMs are guided by agent
behaviour on the micro scale, which results in the emergence of system behaviour
on the macro scale (Bonabeau, 2002). This is particularly important for modelling
electricity system management, as the dynamics of demand and supply coordina-
tion very much depend on the behaviour of consumers which isn’t linear. ABMs
are flexible enabling to change the level of complexity of the model by adding or
removing agents, rules and methods.

There isn’t one set definition of what an agent is within the ABM community.
Rather, an agent is defined as an entity that possesses the following characteristics:

Table 3.1: Agent characteristics. Source: (Wooldridge and Jennings, 1995)

Agents function independently and have control over

A . .

utonomy their actions.

Social ability Agents interact with other agents (or humans).
Reactivity Agents are able to respond to the changes in their sur-

rounding environment.

Agents’ behaviour is guided by the rules and objec-

Pro-activeness . .
tives assigned to them.

Agents can be equipped with learning algorithms

Learning which allows them to adjust their strategy.

Thus, depending on the domain of where the ABM is applied an agent may
be an organism, human, business, institution, and any other entity that satisfies the

above characteristics (Railsback and Grimm, 2011).

3.4 ESMA overview

In-line with the definition presented in Table 3.1, four types of agents are identified
representing different actors in the British power system: consumers, aggregators,
the system operator and the market (modelled as an agent in possession of different

generation technologies) (Table 3.2). Agents have the capability to make decisions
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based on their observations of the environment, interact between each other and

learn the best strategy.

Table 3.2: Agents considered in the simulation.

Agent Description Objective

End-users from residential, com-
mercial, industrial and transport | Fulfil own electricity de-
sectors that purchase electricity | mand at lowest cost.

from aggregators.

Consumer

Represents an entity which is able | Fulfil consumer -electric-
Aggregator | to pool consumers and buy electric- | ity demand and maximise

ity from a wholesale market. profit.
?)yset;:il:or Represents the system operator in | Balance electricity supply
(SI())) Great Britain, i.e. National Grid. with electricity demand.
Represents the pool of electricity | Schedule generators and
Market generators selling energy in the | calculate the wholesale

wholesale market electricity prices.

Figure 3.8 shows how the agents interact in the model in terms of the type of
information they exchange. Consumers update aggregators with demand and gen-
eration profiles, who in exchange offer information on electricity prices and instruct
consumers on how to shift demand during coordination. Aggregators update the
system operator with consumer demand and generation profiles and receive infor-
mation on the wholesale electricity prices. The SO communicates to the market
system demand and generation data, based on which the market calculates genera-
tion volumes and electricity prices.

The following subsection explains the model in more detail going through each

step of ESMA modelling.

3.4.1 ESMA algorithm

The proposed model runs on hourly basis with day-ahead planning horizon. Hence
hourly and daily indices are introduced t = 1,...,7T and d = 1,...,D, s.t. T =24,
D = 365. The model is capable of performing long-term analysis which is achieved

through updating model parameters like installed generation capacities, fuel prices
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Figure 3.8: Graphical representation of model agent interaction in ESMA
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and consumer technology numbers annually. The simulation year is tracked by
index y=1,....Y, where Y is the maximum number of simulated years. In our case

Y =35, however this value is constrained purely by data availability.

Figure 3.9 shows the overall model algorithm, whereby each block indicates
different actions taken by agents throughout the simulation. For example, algo-
rithm step RO refers to the run initialisation, whilst C1 refers to consumers pre-
dicting renewable generation and daily residual demand profiles. The starred vari-
ables, e.g. L*(,d),1°*(t,d) correspond to predicted values and can therefore change
throughout a simulation day, whereas non-starred variables, e.g. R(t,d),r(t,d)),
cannot. Hence, renewable generation and non-deferrable electricity consumption is
assumed to be deterministic in this model. The main source of uncertainty comes
from consumers scheduling flexible demand resources, i.e. electric vehicles, heat

pumps, and storage.
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3.4.1.1 Model initialisation

Each simulation run starts with the model initialising in step RO (shown in the purple
box in Figure 3.9), which includes creating model agents and setting the scenario
according to which the system will evolve (see Chapter 4). This step is performed
only once during the simulation run. In the default setting (unless stated otherwise)
the model creates 31 consumer agents (across all types and sectors as described in
section 3.4.2.1), one aggregator, one system operator and one market agent.

At the beginning of each year all model agents reset their parameters accord-
ing to the chosen scenario (described in Chapter 4) and the year of simulation deter-
mined in step EQ. The market agent resets the annual fuel prices, installed capacities
and import levels, consumers update installed technology capacities (e.g. electric
storage, heat pumps, electric vehicle numbers) (see Appendices C and D.1), and the

system operator updates the grid losses (see Appendix C).

3.4.1.2 Daily actions

Daily actions surrounded by the grey box consist of three main blocks of activities:
agent initialisation, day-ahead scheduling and on the day actions. During initial-
isation consumers set renewable generation r“(¢,d) and residual demand [5},(z,d)
in step C1. Consumers then pass the demand information onto aggregators which
predict total consumer demand profiles L**(z,d) in step Al. The SO receives in-
formation on consumer demand from the aggregators and makes a prediction of the
system demand L*(¢,d) in step SO1. Meanwhile, the market pre-schedules gen-
erators based on the predicted system demand L*(¢,d) and renewables R(¢,d) to
calculate predicted day-ahead electricity prices p*(z,d).

Day-ahead scheduling involves agents reacting to the predictions made in the
initialisation stage by adjusting their demand. Different regimes for hierarchal DSM
are considered, depending on the hierarchal layer which is responsible for instruct-
ing consumer demand scheduling (see Section 3.5). Central to each DSM regime is
the demand response by consumers (CON_DSM) to aggregator signal, which cor-
responds to algorithm step C3 surrounded by the orange box. CON_DSM can be

implemented more than once as indicated by the iteration index k.
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Figure 3.9: Model algorithm.
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The simplest and the most decentralised demand side response DSM regime,
involves the consumers scheduling flexible demand based on the predicted real time
price for electricity, in which case g*(¢,d) = p*(t,d). The algorithm is referred to
as CON_CM, which corresponds to the consumer cost minimising behaviour. With

CON_CM consumers schedule demand only once.

The next level of complexity involves an aggregator coordinating a pool of
consumers (AGG_DSM in the green box), in which case the aggregator sends a
signal g¥(¢,d) to consumers (algorithm step A2), who autonomously implement
CON_DSM (algorithm step C3). Two types of AGG_DSM schemes are consid-
ered: demand flattening (AGG_DF) and cost minimising (AGG_CM). Whilst DF
algorithm serves the grid through shaving peaks, the regime AGG_CM represents
a more aggressive behaviour, whereby aggregators actively minimise the cost of
power. AGG_DSM can involve many iterations until the system converges. In each
iteration k consumers update aggregators with their demand profile /¥, whilst the

aggregators recalculate the signal g*(¢,d).

The most centralised hierarchal coordination regime (SO_DSM) surrounded
by the blue box), involves the system operator negotiating demand with the aggre-
gators, whilst constantly updating them with the new prices calculated by the mar-
ket in algorithm step M3. Under SO_DSM the aggregators negotiate the demand
profile with consumers in order to ensure convergence, and so blocks AGG_DSM
and CON_DSM are active. Since the SO’s objective is to reduce system cost only
the cost minimising scheduling regime SO_CM is considered. Under SO_CM de-
mand scheduling is performed during a number of iterations until convergence of
the whole system is reached. Hence, algorithm steps C3, A1/A2, SO1 and M2 are

implemented multiple times.

On the day activities include aggregators calculating the final consumer de-

(t,d),R%. (t,d) in algorithm step Al, followed

mand and generation profiles L¢ exp

net
by the SO aggregating final electricity demand and exports L(t,d),Rex,(t,d) from
utilities in algorithm step SO1. The market then reschedules electricity generators

in algorithm step M2 based on the final demand profile L(z,d) to calculate final
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wholesale prices p(z,d). Once the wholesale prices are received, the SO calculates
the cost of running the system in algorithm step SO2, aggregators calculate retail
electricity prices and costs ©%(¢,d),C%(d) in A3 and consumers calculate the costs
based on retail prices. In some scenarios consumers are also allowed to switch
aggregators based in the tariff 7¢(d) offered to them.

The following sections describe the actions of model agents in more detail with

references to the algorithm in Figure 3.9.

3.4.2 Consumers

A set of N consumer agents is modelled 4" = {c!,...,c"}, where each ¢ € ¥ rep-
resents a group of real life end-users of a specific type. Consumers’ objective is to

fulfil own electricity demand at minimum cost.

3.4.2.1 Creating consumers

Consumer type is determined by the combination of technologies available to
the consumer. Five different technologies are considered: heat pumps (HP),
resistance heating (RH), solar PV (PV), thermal energy storage (TES), and
electrical storage (ES). Collectively these represent a set of technologies 7 =
{HP,RH,PV,TES,ES }7, allowing to construct ten consumer types (Table 3.3).
Across the four economic sectors ESMA can build 31 different consumer
agents, since the transport agent only allows one consumer type (i.e. with ES) as
demonstrated in Table 3.4). In the default case, the model considers 31 consumer
agents. As will be seen later, only when aggregator competition is modelled does the
model build more than one consumer of each type. The numbers in each cell of Ta-
ble 3.4 are an input of the modeller and indicate how many consumer agents of each

type in each sector, n;y;,, are created when the model is initialised (Algorithm step

dom

RO, Figure 3.9). For example, if Nypel =

2 the model generates two agents, which
represent two identical pools of residential households without any resources. The
total number of consumer agents is calculated as N = ):}yopezl Ysece. Niype» Where

& = {dom,com,ind,trans} corresponds to a set of different consumer sectors.

"Electric vehicles (EVs) are represented as moving consumers with ES.
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Table 3.3: Allocation of resources to consumer types.

Consumer 1750 Technology | yp | Ry | pv | TES | ES
1 (no resources)
2 (with HP) v
3 (with HP and TES) v v
4 (with RH) v
5 (with RH and TES) v v
6 (with PV) v
7 (with PV and ES) v v
8 (with ES) v
9 (with HP,PV,TES,ES) v o/ |/
10 (with RH,PV,TES,ES) |/ v v

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

Table 3.4: Allocation of consumer agents to types.

Consumer typé Sector Domestic Commercial Industrial Transport

1 (no resources) nlom, Miypel e :
2 (with HP) ndor, N nied -
3 (with HP and TES) nions Miyped iy pes :
4 (with RH) ndom, e, M ped -
5 (with RH and TES) nlom neoms Miyes :
6 (with PV) nlom neoms At -
7 (with PV and ES) nfon, g Py oeT )

8 (with ES) ndorme nees Mioes Mgy
9 (with HPPV.TES.ES) | ndom, ncom, My :
10 (with RHPVTESES) | nlom  neom  nid o -

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

Whereas the number of consumer agents may change, the total number of ac-
tual end-users they represent (or consumer multipliers, 7, ) stays the same. Fig-

ure 3.10 shows the conceptual representation of the idea. If 24 million residential
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households are modelled using one consumer agent, then that agent corresponds
to the total number of residential households. However, if 24 million residential
households are represented by three consumer agents, then each agent will corre-
spond to 8 million residential households. This way of modelling preserves the total
number of consumer resources, whilst keeping the model fast and flexible. There
must be a minimum of one per each type enabling the analysis of the impact of
DSM on all kinds of end-users. Of course in ESMA there are 31 different consumer
groups depending on the type and consumer sector they represent. Therefore the al-
location of end-users to consumer agents is slightly more complicated as it involves

preserving the total number of technologies in the system.

Figure 3.10: An example of how real life end-users are represented by consumer agents.

1 agent per i 3 consumer agents
consumer type | per consumer type
— -— -— -—

Number of A i A A A
domestic
households per
agent I . -

24 million | 8 million 8 million 8 million
Number of i
commercial
businesses per - mm [l
agent } | jmm

2 million 2 million 2 million

Number of |
industrial
businesses per
agent !

900 thousand 300 thousand 300 thousand 300 thousand
Number of = ! e a
electrical " - é'f,xy“ ‘ M\B
vehicles per 62 Yy
agent

51 thousand 17 thousand 17 thousand 17 thousand

Once the numbers in Table 3.4 have been set by the modeller they do not

change during the simulation period. However, as the number of technologies

sec

change from year to year during the simulation period, consumer multipliers m,y,,

are adjusted to reflect this (see Appendix D.1). To give an example, if there is

one residential consumer agent of type 8 (ngz,”;g = 1) representing 5000 real-life

consumers (mfly‘;’zg = 5000) with 6kWh batteries each, the aggregate capacity of
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electrical store available to the consumer is calculated as:

OkW h x ml<™ = 6kW h x 5000 = 30MWh.

However, if there are two consumer agents of type 8 nflyop”gg = 2 representing

5000 residential consumers of type 8, then each domestic agent of type 8 will have

storage capacity calculated as:
KW h x mi\s 6kWh x 5000

2 2
Consumers update their resource capacities at the beginning of each year by

= 15SMWh.

multiplying individual technological capacities by the multipliers (algorithm step
CO, Figure 3.9). In the next section when consumer technologies are discussed,
technical characteristics refer to those of consumer agents rather than individual

end-users.

3.4.2.2 Consumer resources

At the point when ESMA creates a consumer agent, it activates the appropriate
technologies available to its type (Figure 3.11). Hence, a consumer of type 10 has
access to all resources, whilst consumer of type 1 only has a heat pump.

All consumer types have a non-deferrable daily electricity profile [(¢,d),
which represents electrical loads which cannot be shifted in time such as lighting
or watching TV. Consumers in possession of electric heating such as a heat pump
(HP) or a resistance heating (RH) also have a non-deferrable heat demand profile,
g¢(t,d). This is not to say that consumers with gas heating have no heat demand
component, rather it is not considered as it does not contribute to the demand of
electricity 8.

Consumers with access to ES and TES are able to shift demand, through charg-
ing and discharging electricity and heat. As will be seen in section 3.5, there are
a number of potential mechanisms for scheduling demand serving consumer inter-
ests either directly or indirectly. The simplest one assumes cost minimisation or
demand smoothing by consumers performed once, whilst more complicated algo-
rithms use smart signalling by the aggregator to negotiate the optimum consumer

demand curve over a number of iterations. Finally, consumers in possession of a

8See Appendix A.1 for an explanation of how non-deferrable demand profiles are obtained



3.4. ESMA overview 81

Figure 3.11: General modelling set-up of the consumer agent
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Note: consumer can have either a heat pump or a resistance heater and not both.

renewable generator (here represented by solar PV) can fulfil a proportion of their
daily demand from own generated electricity r¢(t,d)°.
Consumers calculate net electricity demand in step C1 (Figure 3.9) according

to the following equation:

Iy (t,d) = 1€(2,d) + IS5 (1,d) — 1855 (1,d) + 5 p(t,d) + Ly (t,d) — 1< (2,d), (3.1)
Where for consumer c¢ in hour # and day d,
I¢(t,d) - non-deferrable non-thermal electricity demand [MWh],
[9:(t,d) - electrical store charge [MWh],
lgg’c (t,d) - electrical store discharge [MWh],
4 p(t,d) - electricity demanded by a heat pump [MWh],

I (t,d) - electricity demanded by a resistance heater [MWh], and

9See Appendix B.1 for an explanation on how these profiles are generated
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re(t,d) - electricity generated by renewable resources [MWh].

It is noted that in relation to the grid, transport consumers do not have non-
deferrable demand [°(z,d), nor do they have any electric heating or renewable en-

ergy resources. Therefore for electric transportation, (3.1) is reduced to:

16, (t,d) = 2 (t,d), (3.2)

With respect to the vehicles themselves, transport consumers do have a non-
deferrable demand, which is expressed by the discharge profile lggd(t,d ) and rep-

resents consumer constraints for utilising the vehicles!©.

3.4.2.3 Buying and exporting electricity

The net consumer demand, 5, (,d), calculated in (3.1) and (3.2) is what consumers
obtain from the aggregator at retail price or tariff 7%(¢,d) calculated in Section
3.4.3.3. The total daily cost incurred by consumers (see Algorithm step C3, Figure

3.9) is calculated as follows:

T
F(d) =Y I, (t,d) - n(t,d), Veeb“. (3.3)
t=1

Later in the analysis the model considers the possibility of consumers switch-
ing aggregators based on the offered retail price 7%(z,d). In this case consumers
compare tariffs for electricity and choose one which is lowest.

In case the consumer generates more electricity than required, i.e. when

le: (1,d) <0,

that electricity is exported back into the grid. Consumer exports are calculated

as:

le (t’d) = _min(()?lzet(t?d))v (34)

exp

where the negative sign in (3.4) makes sure that the exports are positive from

the perspective of the grid. In the default scenario, consumers get reimbursed for

10See Appendix C.2 for remaining technological constraints of consumer resources.
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exported electricity at the wholesale price p(r,d). As will be seen later the price for

exported electricity affects how consumers schedule demand.

3.4.3 Aggregators

Aggregators represent stakeholders of the middle layer in the electricity system,
which are able to pool consumers and supply them with electricity from the whole-
sale market. Aggregators can be vertically integrated and have the capability to sell
power in the wholesale market or not, in which case they serve as coordinating enti-
ties for consumers. Regardless of the type, all aggregators have an objective to fulfil

the demand for electricity of consumers that are contracted to them at minimal cost.

3.4.3.1 Creating aggregators
At the point of run initialisation (Algorithm step RO, Figure 3.9), ESMA creates a
set of M aggregators, o7 = {a',...,a™}, where each aggregator represents a com-
pany which supplies a pool of consumer ¢’“ with electricity. As a default setting,
it is assumed that consumers of each type are equally split between aggregators.
Hence, the number of consumer agents must be divisible by the number of aggre-
gators as demonstrated in Figure 3.12. In the default setting only one aggregator is
built by the model. However, when aggregator competition is explored (in the case
of AGG_CM) and when consumers switch it is necessary to build more than one.
Aggregator daily activities include calculating total consumer demand and gen-
eration in algorithm step A1, scheduling consumers in step A2 and accounting at

the end of the day in step A3 (Figure 3.9).

3.4.3.2 Calculating consumer demand and generation
At the beginning of the day d € [1,D] each aggregator a € <7 calculates total con-
sumer demand L%(¢,d) by summing net demand across the pool of consumers it

serves ¢, i.e.

L(t,d)= Y Io,(t,d), ¥V aco te[l,T] (3.5)

cELY

Algorithm step Al calculated in (3.5) is actioned during daily initiation,

scheduling and on-the-day actions. As the aggregator sums up net consumer de-
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Figure 3.12: Example of consumer aggregation.
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mand any exported electricity by consumers is shared across the whole pool of

consumers served by aggregator a.

3.4.3.3 Aggregator accounting

At the end of the day, each aggregator a calculates the cost of power purchased

during the day C%(d) (step A3, Figure 3.9):

T
C(d) =Y Lt,d)- p(t,d). (3.6)
t=1

Finally, the aggregator calculates retail tariffs according to the following three

approaches:

(1) The real-time price (RTP) - calculated as the wholesale price for electricity,

n(t,d) = p(t,d), (3.7

(2) Static price where the cost of electricity is averaged over the day,
cY(d
7(t,d) = T# (3.8)
thl L (d)a
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(3) Static price where the cost of electricity is averaged over a year,

74t d) = ()

—_ 3.9
ZthlLa(y)a ( )

Where,

L%(y) =Y2_, L%(d) is the total electricity demand purchased by the aggregator
during the year y, and C*(y) = Y'2_, C%(d) is the total cost of electricity incurred by

the aggregator during the year y.

In reality retail prices are set somewhere in between dynamic and fixed tariffs.
However, it is not certain how retail prices might be formed in the future, and so the

three retail pricing regimes are left for exploration in this model.

As mentioned in Section 3.1.4, retail prices for electricity vary depending on
the size of the consumer and include an uplift on the wholesale prices. Here the up-
lift is omitted because the focus of the work is to evaluate the intrinsic contribution
of individual consumers to the cost of generating power at the transmission level,

1.e. including the uplifts would include the operational costs of the aggregators.

3.4.4 System operator

The system operator (SO) represents the National Grid and carries the responsi-
bility for balancing the system demand and supply. Hence, the SO tracks system
electricity demand and supply in order to ensure a smooth flow. The SO stores the
information of system demand daily, which allows it to make predictions for the
day-ahead consumption. The SO communicates predicted demand to the market

agent enabling it to schedule power generators (see Section 3.4.5).

At the beginning of the year when the SO initialises (Algorithm step SOO,
Figure 3.9), it sets daily system losses Lj,(f,d) and import values Linpor (t,d)
according to the scenario and the year of simulation as described in Appendix C. It
is assumed that the losses and imports are constant throughout the year and so the
hourly values are calculated by dividing the annual values obtained from (National

Grid, 2017a) by 8760 hours.

SO’s daily activities include predicting demand, calculating actual system de-

mand and accounting (steps SO1, SO2 and SO3, Figure 3.9).
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3.4.4.1 SO calculating system demand

Once the aggregators have made a prediction on the day-ahead consumer demand,
they pass this information to the system operator (SO), which aggregates it in algo-

rithm step SO1, Figure 3.9:

Logg(t,d) =Y L(t,d), Vre[1,T], (3.10)
acd

The SO then makes a prediction for the day-ahead demand by weighing up

predicted demand by the aggregators against yesterday’s demand outturn:

L*(t,d) = w- (Lagg(t,d) + (1 —w) - L(t,d — 1)), 3.11)

where L(t,d — 1) is the system demand outturn in the previous day,
Lage(t,d) is the total electricity demand as predicted by the aggregators, and

w € [0, 1] represents the weighing parameter to previous demand outturn.

The SO then send the predicted demand information to the market agent, which

schedules electricity supply resources (see Section 3.4.5).

3.4.5 The Market

The electricity prices in the UK are set in a centralised market and depend on the
system demand as well as the generation characteristics of the grid. A popular ap-
proach adopted by researchers to model the electricity market involves representing
the historical demand and price relationship as a supply curve (Ramchurn et al.,
2011; Zhang et al., 2014; Voice et al., 2011). However, this limits the model to
sample-specific data making it inappropriate for simulating future electricity prices.
Another state-of-the-art approach is to use economic dispatch modelling which
schedules power plants based on the minimum cost of dispatch in order to fulfil
system demand. However, detailed economic dispatch models such as (Walters and
Sheble, 1993; Gaing, 2003; Hetzer et al., 2008; Chen and Chang, 1995) can take
a very long time to solve and compromise the speed of the simulation. Instead, a

simplified economic dispatch model is used based on (Van Den Bergh and Delarue,
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2015), where power plants are aggregated by technology type and the start-up costs
are omitted. An uplift to the resulting prices is then introduced in order to reflect the
costs of using the network and balancing the grid using historical data taken from
(Elexon, 2017a). This allows us to perform analysis into the future, whilst capturing

stakeholder interactions on an hourly basis.

A note on model limitations. It is noted that technical characteristics (such as
efficiency, ramping costs, operation and maintenance costs) of generators are fixed
throughout the simulation period, meaning that if the efficiency of a generator was
60% in 2015 it will be the same in 2050. In addition to this, only the short term
market is considered and the capital costs of generators are ignored. The limitations
of the pricing model are acknowledged, however the reader is reminded that the
focus of this work is to address the challenges associated with system control and
cost allocation to consumers in the context of demand side management. Moreover,
since generation capacities are taken as part of the scenarios, including investment

costs is not necessary for reaching this objective.

3.4.5.1 Market resources

The market represents a pool of operational power generators in Great Britain
grouped by technology type as demonstrated in Table 3.5. The model considers a set
of thirteen technologies & = {j!,..., j9},s5.t.G = 13, which includes ten dispatch-
able types, alongside pumped storage (PS), solar and wind generators in accordance
with the Future Energy Scenarios (FES) provided by (National Grid, 2017a).

Each power generation technology j is characterised by the price of fuel re-
quired to generate electricity (cj;u), efficiency(n/), variable operation & mainte-
nance cost (cﬂp), ramping cost (cfamp), emissions factor (héoz) and capacity(capj ).
On creation of the market agent, ESMA generates a database which stores param-
eters of each technology type similarly to Table 3.5. Whereas technical generator
parameters (i.e. operation and maintenance cost cgp, efficiency 1/, ramping cost
ciamp and carbon intensity factor héoz are fixed for the whole simulation period,

fuel prices c}u and capacities cap’ are updated annually in algorithm step MO (Fig-

ure 3.9).



3.4. ESMA overview 88

Table 3.5: Technical specifications of generation technologies and fuel prices in 2015.
Sources: (UCL, 2016; Van Den Bergh and Delarue, 2015; IEA-ETSAP,
2010b,a,c; IAEA, 2014; Hawkes, 2010; Clark, 2013; Brander et al., 2011; ETI,

2016)
Technology | Index Capacity Fuel O&M  Ramping Efficiency Emission
type () (cap’)  cost cost cost m’) factor
MW (c}) () (Clamp) (o)
[£/MWh][£/MWh] [£/MWh] [t/MWh]
Biomass 1 2,229 28.6 2.3 1.3 0.34 0
Gas CCS 2 0.0 14.6 3.35 0.36 0.5 54
CHP 3 4,683 14.6 2.30 1.0 0.4 500
CCGT 4 24,059 14.6 2.30 0.36 0.6 360
Coal 5 15,210 5.2 2.09 1.3 0.45 910
Hydro 6 1,333 0 0.2 - 0.45 0
Marine 7 8.4 0 0.2 - 0.2 0
Nuclear 8 7,278  0.04 2.13 80 0.32 0
Other 9 1,270  23.7 0.88 1.3 0.45 610
therm
gther RES | 10 1,285 0O 2.3 0.6 1 0
Pumped 11 2,744 0 - 0 0.8 0
storage
Solar PV 12 0.0 0 0 - 1 0
Wind 77 13 13,049 0 0 - 1 0

1 ‘other therm’ diesel, open-cycle gas turbines (OCGT), fuel oil, and onsite generation

17 ‘other RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, waste CHP,
landfill gas, sewage, and biogas CHP

111 wind is considered both embedded and at the transmission level

The cost of generating electricity by technology j in the short run is referred
to as the short run marginal cost of generation (cl{,lc), which is calculated according

to the following formula:

. , ()
clic) = ehyl)+ 55

Where pcopisthecarbonprice|/ton).

+hé02(Y) -pcoa, Vji=j' ., jC, (3.12)

The short run marginal cost of generation is updated annually in-line with the
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fuel prices and does not change throughout the year hence the index y.

3.4.5.2 Predicting renewable generation

The market forecasts renewable generation (Algorithm step M1, Figure 3.9) by scal-
ing historical generation profiles in accordance with the installed capacity of system
level renewables '!'. Figure 3.13 demonstrate how the scaling for 2030 works for

solar and wind on the 14th April.

Figure 3.13: Demonstration of wind and solar generation scaling from 2015 to 2030 on the
14th April. Source:(National Grid, 2017a).
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If the total wind capacity increases from 13,049 MW in 2015 to 29,293 in 2030,

then the generation output from wind in 2015 is multiplied by the relative capacity

increase ratio, i.e. %g%?;g = 2.24. Similarly, if solar capacity increases from 9,161

MW in 2015 to 15,417 MW 1n 2030, electricity output from transmission level

solar in 2015 is multiplied by 1.68, calculated as 195 ’146117 = 1.68. The profiles from

wind and solar are then added together to represent transmission level renewable

generation, R(z,d).

3.4.5.3 Scheduling power generators

In order to model the electricity market a simplified least-cost dispatch model pro-

posed by (Van Den Bergh and Delarue, 2015) is deployed. The market schedules

!see appendix C.1 for projected generation capacities.
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generators twice throughout the day: during the ‘day-ahead actions’ based on the
predicted system demand L*(¢,d) calculated in (6.1) and during ‘on the day actions’
based on the actual demand outturn L(¢,d) calculated according to (3.10) (algorithm
step M2, Figure 3.9). Here, the scheduling process is described using L(z,d) to rep-
resents system demand but it is noted that the process is the same for pre-scheduling
based on L*(z,d).

In order to validate the model against Future Energy Scenarios (FES) data pro-
vided by National Grid (2017a), system imports Ly por (t,d) 12 and losses L;y(t,d)
are included in the model. Since only the annual values for these variables are avail-
able (see Appendix C.1), a constant level of hourly imports and losses are assumed
across the year by dividing the annual values by 8760 hours. Hence, transmission

level generation and imports must cover consumer demand and losses, i.e.

Lgen(tvd) +Limport (tad) = L(t,d) +Lloss(tad)a (313)

Where Ly, (t,d) = ):?Zlqj (t,d) is the total electricity generated across all
technologies and ¢/(¢,d) electricity generated by technology j in time ¢ of day d.
The market schedules dispatchable generators in order to satisfy the balance

equation (3.13) at least cost:

r G .
min Y Y (Cipac(t,d) +Cp, (1,d))  Vj€Y. (3.14)
¢/ (t:d) ;=1 j=1

Equation (3.14) consists of two cost component: the short run unavoidable
cost (Cgen(t,d)) and the dynamic cost (Cfamp(t,d)) of generating electricity from
technology j at time ¢ in day d.

Term Cgen(t, d) corresponds to the cost of running a generation technology ; at
short run marginal cost (or maximum efficiency) calculated as:

Cloact,d) = clie-q’(1,d), Vi e[1,T],j€[1,10], (3.15)
where C1J;4c is the short run marginal cost of generation by technology j calcu-

lated according to (3.12) and ¢/(¢,d) is the electricity output from technology j at

12Negative imports correspond to exports.
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time ¢ in day d.
The dynamic part Céyn(t,d) corresponds to the cost of cycling a power plant
and hence includes the change in the generation level from one period to the next,
i.e.

c’

S (6:d) = Clampy Sy V1 € [1,T],j € [1,10], (3.16)

where clam p» has been set in market initiation step MO and 5/;,mp = (¢’ (t,d) —
¢’/(t —1,d))| is the absolute change in power generation from time ¢ — 1 to ¢ of
technology ;.

Mathematically (3.14) is solved for ¢/(¢,d) (power generated by dispatch-
able technologies), LSk (t,d), L (¢, d) (charging and discharging profiles of pumped
storage) and R, (t,d) (curtailed renewable profile) subject to the following opera-
tional constraints:

DC1: Total amount of generation from all resources must be equal to system

demand L(t,d) including losses:
10

Y ¢/ (t,d) + LI (t,d) + Ryseq (t,d) = L(t,d) + L% (t,d) — Limports(t,d) + Liogs (£, d),
! (3.17)
where R,.4(t,d) is the amount of utilised renewable energy.
DC2: Pumped storage charge and discharge profiles are constrained by maxi-
mum and minimum power constraints:
0 < LS(r,d) < LB 0 < L%(r,d) < L&, (3.18)
DC3. The net amount of energy going into pumped storage is bound by its

efficiency:

Elggtgad) =MNprs ~L§>’g(l‘,d> —ng(t,d),

DC4. Total available energy stored by pumped storage Epg(f,d) is the sum
of the available energy in the previous time period ¢t — 1 and the net charge in the
current period ¢:

Eps(t,d) = Eps(t — 1,d) +Eg§t(l,d),

DCS. The amount of discharge le,g(t, d) is limited by the available energy in
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the store:

ngv(l‘,d) < Eps(t,d),

DC6. Total available energy stored by pumped storage Eggs(f,d) must be

within the capacity constraints:
Ein < Eps(t.d) < EJS,

DC7. At the end of the day the amount of energy stored by pumped storage

must be the same as at the beginning:
Eps(0,d) = Eps(T,d),

DCS8. : Total used R,(t,d) and curtailed renewable generation R, (t,d)

must add up to projected renewable generation R(,d) at the system level:

Ryseq(t,d) 4+ Reyre (t,d) = R(t,d) t€[1,T]. (3.19)

3.4.5.4 Calculating wholesale prices for electricity

The wholesale prices in the short run are calculated at the average cost per unit of

energy demanded from the market, i.e.

Y (Clen(t,d) + Clamp(t,d))
L(t,d) ’

pse(t,d) = (3.20)

where CéRAC(t, d) and Céyn (t,d) are the predicted costs calculated according to
(3.15) and (3.16).

However, it is noted that pgr(f,d) is an underestimation of the real price of
electricity as it does not include capital costs of the generators and the cost for the
transmission and distribution network. In order to reflect the real cost of electricity,
a demand dependent uplift €(L(¢,d)) is introduced, which takes into account ad-
ditional costs of electricity generation such as the use of the network and the grid

balancing costs (see Appendix E.1 for the methodology of modelling the uplift).

The final wholesale electricity price is calculated as follows:

p(t,d) = psr(t,d) +€(L(t,d)). (3.21)

Figure 3.14 shows an example of implementing the scheduling methodology.
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Figure 3.14 (A) shows day-ahead generation, whilst Figure 3.14 (B) shows resched-
uled generation after the consumers responded to the signals from the aggregators

under the AGG_DF DSM regime.

Figure 3.14: Example of market rescheduling under demand flattening coordination with
100 % participation in 2030 under AGG_DF algorithm (Two Degrees+).
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3.5 Demand side scheduling

Three hierarchal layers of demand side coordination are considered: consumer, ag-
gregator and the system operator (Figure 6.1), where the rational objective for per-
forming demand side response by each of the stakeholder is to minimise the cost of

power.

Figure 3.15: Agent hierarchy.
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At the bottom level the model considers consumer-led demand response
(CON_CM) with the aim of minimising individual consumer cost of power based
on the projected real-time prices (RTP) received from the aggregator. Considering
regime CON_CM is largely inspired by the popularity of using RTP as an incentive
for end-users to consume electricity in a more efficient way. However this approach
can lead to consumers herding towards the same periods of low prices leading to

some unwanted consequences for the grid like increased demand peaks.
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Aggregator-led coordination can overcome this problem, for which reason the
model considers DSM regime AGG_DF based on the algorithm developed by (Gan
et al.,, 2013). The algorithm receives it name due to the demand flattening (DF)
effect it achieves. Yet, it is possible to imagine that aggregators may wish to make
use of consumer flexibility in order to minimise the cost of power purchased from
the wholesale market. In order to simulate such behaviour algorithm AGG_DF is
slightly adapted into AGG_CM by allowing aggregators to communicate wholesale
prices to consumers.

Finally, to simulate the most centralised yet hierarchal DSM regime algorithm
SO_CM is developed, which is coordinated by the system operator whose objective
is to minimise the total system cost. The algorithm works on a similar principle
as AGG_DF but involves all stakeholders in the negotiation process of consumer

demand profiles. Table 3.6 summarises all DSM regimes.

Table 3.6: Summary of demand side management (DSM) regimes.

Agent performing DSM Purpose DSM name
System operator Cost minimisation SO_.CM
Aggregator Cost minimisation | AGG_CM
Aggregator Demand flattening | AGG_DF
Consumer Cost minimisation | CON_CM

The following sections describe the algorithms for demand side coordination

in relation to each of the stakeholders.

A note on the choice of decentralised coordination algorithm. After reviewing
the literature on the different approaches for decentralised control it has been de-
cided to opt for the iterative approach proposed by (Gan et al., 2013), whereby
the aggregator slowly negotiates the demand profile with consumers over a number
of iterations. This method constitutes a very flexible method for communicating
the price information to consumers who have an equal chance to react. Other ap-
proaches include randomisation (Papadaskalopoulos and Strbac, 2016) and market-

based coordination (Motto et al., 2002), however both of these methods introduce
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uneven opportunities for consumers to respond which makes the process of cost al-
location more difficult. Finally heuristic methods (Vandael et al., 2011) and game
theoretic approaches (Zugno et al., 2013) are not able to accommodate a more com-

plex model of consumer behaviour with multiple flexible resources.

3.5.1 Consumer demand coordination algorithm (CON_CM)

The simplest and the most decentralised DSM regime constitutes a case when con-
sumers cost minimise the projected cost of power based on the real time price
received from the aggregator (p*(f,d)). The algorithm is formulated as a mixed
integer linear cost minimisation problem subject to constraints of consumer tech-

nologies (see Algorithm 1).

Algorithm 1: CON_CM: Consumer cost minimisation DSM algorithm.
Input : Aggregator a knows the predicted day-ahead prices for
electricity p*(z,d). Consumers know day-ahead non-deferrable
demand profiles, [°(¢,d),q¢(t,d), renewable generation profile
r°(t,d) and technical constraints of own resources.
Output: Consumer demand profiles:

Lo (t,d) Yee €Vt el,T]
1 Aggregator a sends consumers the predicted wholesale electricity prices:
p(t,d), Vte[l,T].

2 Each consumer ¢ € €“ solves the following optimisation problem:

T
min Y I%,(t,d)- p*(t,d),Vt € [1,T],

net
lgez (lvd) =1

subject to consumer technical constraints specified in Section 3.4.2.
3 Each consumer ¢ € ™ finalises net demand:
et (1,d) = 1(0,d) + Ifyp(1,d) + Ly (1,d) + 19 (1,d) = 19%(1,d),

Vi € [1,T].




3.5. Demand side scheduling 97

Figures 3.16-3.17 demonstrate how a pool of domestic consumers of type 9
(with HP,PV,TES and ES) utilise electrical and thermal storage with CON_CM in
order to shift demand to periods of low electricity prices on a winter and a summer

day.

Figure 3.16: Example of a daily demand profile by component for a pool of domestic con-
sumers on a summer and winter day before coordination, Steady State (2030).
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Figure 3.16 demonstrates consumer demand profiles on a winter and summer
days in the business-as-usual (BAU) case before coordination. It is visible that in
the winter consumers require a lot more heating (chart A), whereas in the summer
solar generation profile is significantly higher (chart B). This translates into different
flexibility and demand constraints for consumers.

Figure 3.17 demonstrates how consumer demand profiles change after schedul-

ing with CON_CM. In both winter (chart A) and summer days (chart B), consumers
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charge their stores during the cheapest periods for electricity (00:00-03:00) and dis-
charge them during the most expensive (09:00-12:00) and (15:00-18:00). In fact,
consumer demand becomes negative during the most expensive time periods, which
corresponds to end-users intending to export electricity. However, stricter con-
straints on heating demand and lack of solar generation energy means that in the
winter the export peak is lower (300 MW) compared to summer (600 MW) when
solar energy is abundant. On the other hand, demand peak is higher in the winter
(550 MW) compared to the demand peak in the summer (400 MW). This is because
in the summer consumers prioritise utilising storage for the purpose of absorbing

solar generation, whereas in the winter storage is used to shift demand.
Figure 3.17: Example of a demand profile by component for a pool of domestic consumers
on a summer and winter day after coordination with CON_CM with 100%

participation, Steady State (2030).
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Figures 3.18 and 3.19 show how consumer utilises storage to discharge energy
during the most expensive periods on a winter day. Whilst non-deferrable heat and
electricity demands stay the same, the overall electricity demand profile changes
significantly. It is possible to see that thermal storage discharges during the morning

and evening peaks, i.e. (09:00-12:00) and (15:00-18:00).
Figure 3.18: Electricity demand profile from electric heating for a pool of domestic con-
sumers on a winter day before and after coordination with CON_CM with

100% participation, Steady State (2030).
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Figure 3.19: State of charge of TES and ES during coordination with CON_CM on a winter
day with 100% DR participation, Steady State (2030).
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3.5.2 Aggregator demand coordination algorithms

When it comes to aggregator-led coordination, a major concern is consumer pri-
vacy. Algorithm put forward by (Gan et al., 2013) allows the aggregator to indi-
rectly schedule consumer demand over a number of iterations. The algorithm was
initially developed for load smoothing with electric vehicles, however it has been
adapted for scheduling consumers with any flexible load and renewable resources
and named AGG_DF since it leads to aggregate demand flattening (see Algorithm
2). The algorithm works by supressing consumer cost minimising response to the
aggregator signal through a parameter « (step 5 in Algorithm 2). As a result con-
sumers are penalised for deviating from the previous demand profile which leads to
a slow convergence of the whole pool of consumers to an equilibrium profile.

Algorithm convergence is measured in terms of the daily system cost since the
objective of the algorithm is to reduce system cost. The convergence tolerance level
has been set taking into account the speed and the accuracy of the algorithm (see
Appendix E.2.1). In fact with a tolerance level of 0.005% the algorithm converges in
15 iteration the same as has been shown by the authors in the original work '3(Gan
et al., 2013). Hence the maximum number of iterations are capped at 20 and the
tolerance level is set at 0.005%.,i.e. K = 20,& = 0.005%.

In order to model a more aggressive behaviour of a cost minimising aggrega-
tor, algorithm AGG_CM is developed by slightly changing AGG_DF (see Algorithm
3). In AGG_CM consumers receive the predicted prices for electricity rather than
the average demand profile as in 2. Since the first term in consumer optimisation
function now involves prices it was necessary to adjust the damping term o (origi-
nally set at 0.5 in algorithm AGG_DF). In fact it has been found that with the same
tolerance level (¢ = 0.00005) the algorithm performed best when o was set to 0
(see E.2.1), which rendered the same optimisation function for consumers as in
CON_CM (Algorithm 1).

Figure 3.20 demonstrates how the two algorithms compare when it comes to

scheduling consumer demand. In Algorithm AGG_CM the aggregator clearly tries

3Where the authors measure convergence as the difference between the optimal demand profile
and the demand profile achieves after the final iteration
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Algorithm 2: AGG_DF: Aggregator demand flattening DSM algorithm.

Input : Aggregator knows the number of consumers N, it serves,
predicted electricity prices p*(¢,d) and aggregate consumer
demand profile L*(¢,d). Consumers know own day-ahead
non-deferrable demand profiles, [°(¢,d),q(,d), renewable
generation profiles 7“(¢,d) and technical constraints of own
resources.

Output: Consumer demand profiles: [5,,(¢,d) V¢ € €%Vt € [1,T]

1 Aggregator calculates initial cost of consumer power as:

cd) = ZT:L“(t,d) -p*(t,d).

Aggregator a sets k <— 0 and L%0(t,d) < L%(t,d)

while k < K do

4 Aggregator a calculates scheduling signal as the average of the
projected demand profile across all consumers:

w N

1
§1) = o LM, d), Vi€ [L,T)
5 Each consumer ¢ € ¢’ solves the following optimisation problem:
min Z k(1) g4(0) + o (IS, d) — 1547 (1. d))? Wee 1T,

ln (1,d) 1=

6 Aggregator a recalculates consumer demand

L*(t,d)= Y I5(t,d), Veel[l,T].
cEE

7 Aggregator a calculates new cost:

}:L“krd “(t.d),

if .
C*(d)
— 7 1|<e

then
8 | | STOP.
9 else
10 ‘ Setk<+ k—+1;
11 end

12 end

subject to consumer technical constraints specified in Appendix C.2.
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Algorithm 3: AGG_CM: Aggregator cost minimising DSM algorithm.

ot

(5]

- W

10
11
12

Input : Aggregator knows predicted wholesale prices, p*(t,d),
aggregate consumer demand profile L(¢,d), the total number of
consumers it serves N,, and the maximum number of iterations
K. Consumers know day-ahead non-deferrable demand profiles,
I°(t,d),q (t,d), renewable generation profiles r“(¢,d) and
technical constraints of own resources.

Output: Consumer demand profiles:  [,,(¢t,d) Vce€ €%Vt e [1,T]

Aggregator sets k <— 0 and consumers initialise demand as

19(t,d) = 1°(t,d) — r(t,d) ¥t € [1,T], Yae€

Aggregator a initialises the cost of electricity as:

~

cO(r,d) =Y p*(t.d)-L(t,d).

t=1

Aggregator a sends consumers projected electricity prices gk (¢) = p*(t,d).
while £k < K do
Each consumer ¢ € ¢ solves the following optimisation problem:

lm(n;)Zl;e’: (t,d) - g5(0) + o (IS5 (1r,d) — 154" (1,d))* Ve € [1,T),
netl

subject to consumer technical constraints specified in Appendix C.2.
Aggregator a calculates new consumer demand as:

L e,d) =Y Iny(e,d), ¥ € [1,T].

cEL

Aggregator a recalculates the predicted cost of power:

T

C**(t,d) = }: d)-L(t,d).

if .
C*(d)
-1 <e

then
| STOP.
else
‘ Setk+ k-+1;
end

end
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to maximise consumption at times of low electricity prices whilst in AGG_DF the
result is a smoother demand curve.

Figure 3.20: Demonstration of algorithms AGG_DF and AGG_CM for 2050 in the Steady
State scenario.
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3.5.3 System operator demand coordination algorithm

Demand side scheduling by the system operator constitutes the most centralised
demand side management regime where all the parties negotiate the day-ahead de-
mand during a number of iterations (block SO_DSM in Figure 3.9). However, it
still assumes indirect coordination since stakeholders send each other signals with-
out directly controlling the devices. The objective of the algorithm is to minimise
the system cost, hence it has been named SO_CM. In each iteration the SO acquires
predicted price information from the market and communicates these to the ag-
gregators, which in turn scheduling consumers. The consumers update aggregators
with their new demand profiles and the aggregators pass this information back to the
SO. The SO updates the market with the new predicted system demand and in re-
turn receives prices from the SO after the market has scheduled generators (Section
3.4.5.3). The SO calculates projected day-ahead costs and the process continues
until the total cost has been minimised (based on the convergence tolerance set at
0.00005) (see Algorithm 4).

During the calibration procedure it has been found that the algorithm is sen-
sitive to the damping parameter o¢ which comes as a result of the changing level
of the predicted electricity prices which counter balance the damping term in the
consumer optimisation function. Therefore, it has been found that o needs to be
adjusted daily depending on the average level of wholesale prices (see Appendix
E.2.2). Similarly to Algorithm AGG_CM, algorithm SO_CM is calibrated for pa-
rameter @ to ensure convergence.

Figure 3.21 shows SO_CM algorithm in action, whereby the projected system
cost is reduced over a number of iterations (right). In fact the SO stops instructing

aggregators to schedule after iteration 9 where the convergence tolerance is reached.



3.5. Demand side scheduling 105

Algorithm 4: SO_CM: System operator cost minimising algorithm.

Input : The SO knows the predicted day-ahead system demand L*(¢,d),
prices p*(t,d), and the maximum number of iterations K. Each
aggregator a € .o/ knows the set of consumers it serves

={d',...,a"*}. Consumers know day-ahead non-deferrable
demand profiles, [°(¢,d),q“(t,d), renewable generation profiles
r°(t,d) and technical constraints of own resources.

Output: Consumer net demand profiles [, (t,d), Vi€ [l1,T], Vce¥.

1 SO sets k <— 0 and p* < p*(t,d) and calculates initial system cost

T
Z p(t,d)-L*(t,d);
=1
while k < K do
2 The SO sends aggregators prices p*(t,d), Vt€[1,T];
3 Each aggregator a € <7 signals its consumer set ¢ the predicted

wholesale prices
gt =p'(t.d), Vie[LT];
4 Each consumer ¢ € %“ solves the following optimisation problem:
min Z aa (1,) - (6) e (I (e, d) = L™ (1,d))* Ve € [1,7),
o (1,d) 1=

subject to consumer technical constraints specified in Appendix C.2.
5 Each aggregator a € </ calculates new consumer demand profile

Lis(t,d) =Y Ih(t,d), Vie[1,T)

ceEE?

and sends this information to the SO;
6 SO calculates new system demand profile

t,d) =Y Lyy(t,d), Vte[l,T]
ace/

and sends this information to the market;

7 The market calculates prices pX(¢,d) according to (3.14);
8 The SO recalculates system cost as

T
Z d)-L¥(t,d), Vrel[l,T].
f\cc,g;’lti)—1]<:£then
9 | | STOP;
10 else
1 ‘ Setk+—k+1;
12 end

13 end
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Figure 3.21: Example of SO_CM coordination algorithm performed for 2030 under Steady
State scenario.
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Chapter 4

Scenarios

The key feature of ESMA is its ability to model long-term impact of demand side
management in the context of the British electricity grid. However, the model does
not make decisions in terms of the generation mix, carbon prices, or the type of
demand side management assumed in the system. Hence, when selecting simulation
scenarios these parameters were considered as an external input in terms of two

dimensions:

1. National electricity system - describing the physical evolution of the British
electricity grid, i.e. consumer technologies, generation mix, fuel prices, num-

ber of consumers; and

2. Demand side coordination regime - describing stakeholder behaviour in co-
ordinating the system demand, i.e. decentralised (coordinated by the con-

sumer) or centralised (e.g. coordinated by the system operator).

The national scenarios are based on the Future Energy Scenarios (FES) pro-
vided by the (National Grid, 2017a), whereas demand side management regimes
were constructed independently based on DSM regimes proposed in Section 3.5.
This chapter is split accordingly and describes the process of selecting scenarios for

each part.
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4.1 National Scenarios

Figure 4.1: The British energy system scenario matrix. Source: (National Grid, 2017a).
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The National Grid considers four cases for the evolution of the electricity sys-
tem in Great Britain (GB): Steady State, Slow Progression, Two Degrees, and Con-
sumer Power. Scenarios are classified according to two dimensions: prosperity and
green ambition (Figure 4.1). The National Grid defines ‘prosperity’ as the amount
of finances available in the economy, which could be directed towards government
expenditure, investments in the private sector, and to consumers. ‘Green ambition’
reflects the level at which society and policies are prepared to direct finances to-
wards increasing environmental sustainability.

Steady State and Consumer Power scenarios assume the lowest level of green
ambition and see the least amount of renewable generation installed over the years.
This is in contrast to Two Degrees and Slow Progression scenarios, which project
the highest renewable capacity installed in the system in-line with the aspirations
for a sustainable grid (Figure 4.2).

In terms of prosperity, Consumer Power and Two Degrees scenarios assume

the highest level of wealth. Under the Two Degrees, finances are largely aimed
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towards reaching the green target, for which reason the system benefits from the
highest capacity of transmission level renewables and storage. Under the Consumer
Power, wealth is concentrated on the side of the consumers allowing them to acquire
distributed renewables and storage (Figure 4.3). Both scenarios see a large number
of electric vehicles (EVs). In contrast, Steady State and Slow Progression scenarios,
assume a low level of prosperity and hence the proliferation of distributed consumer
resources (such as electric vehicles, heat pumps and electric storage) is low (Figure

4.4).

Figure 4.2: Installed generation capacity by type. Source: (National Grid, 2017a).
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Figure 4.3: Installed electric storage capacity. Source: (National Grid, 2017a).
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Figure 4.4: Number of electric vehicles on the road. Source: (National Grid, 2017a).
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In order to narrow down the scenario scope, it has been decided to focus on
the boundary, or extreme cases with respect to balancing the grid. These extremes
originate from two sources: variability of electricity supply due to increased renew-
able generation capacity and unpredictability of demand due to the integration of
consumer technologies such as distributed power generators and flexible storage.
Extreme scenarios are considered with the objective of capturing the full spectrum

for the future evolution of the British electricity grid.

The Future Energy Scenarios (FES) are redefined with respect to system flexi-
bility and variability by considering the evolution of supply and demand sides sep-
arately (Figure 4.5). The y-axis characterises the system in terms of renewable
generation capacity, whereas the x-axis specifies the amount of flexible demand
resources (such as EVs and storage) assumed in the grid. This renders four bound-
ary scenarios as demonstrated in the figure. For this reason, the case where the
demand-side evolves according to Steady State and the supply-side according to the
Two Degrees+ FES scenario appears in the top left corner, as it corresponds to an

inflexible and variable system.

From the resulting four scenarios, the two most extreme cases are selected
which correspond to the least variable and least flexible system (Steady State) and

the most variable and most flexible system (Two Degrees+). Steady State scenario
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Figure 4.5: Flexibility-variability matrix for scenario chose.
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assumes a system, where demand is fulfilled mostly by fossil fuel, whilst nuclear
generation and storage capacity is low. In contrast, the Two Degrees+ scenario de-
scribes a system with a high renewable generation capacity (Two Degrees+ supply
scenario) and a high level of demand flexibility (Consumer Power demand sce-
nario). Together, Steady state and Two Degrees+ scenarios map out the full scope
for the future evolution of the British electricity system. Consequently, the data be-
ing fed into the model is based on the values related to each scenario for supply and

demand sides (see Appendix A).

In order to conserve time when running the simulations three snapshot years
are considered: 2015, 2030 and 2050. Year 2015 represents the base year against
which the model is calibrated, 2050 as the year furthest into the future which ESMA
can model (based on data availability), and 2030 as a midway point between the two,

allowing to check the validity of the results and extrapolate the data in-between'.

"Modelling every single year for the period 2015-2050 is possible with ESMA but, considering
the time it takes to run each single year and the level of uncertainty regarding the future evolution of
the system, the benefit of doing so is not justified.
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4.2 Demand side response regimes

For demand side coordination, three hierarchal levels have been identified with the
respect to the stakeholder which is responsible for scheduling. These range from
totally distributed (performed by consumers), through semi-centralised (performed
by the aggregators), to totally centralised when the System Operator oversees the

whole process (see Figure 6.1).

Figure 4.6: Graphical representation of stakeholder levels and their interaction.
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A note on terminology. It is important to mention that throughout the whole sim-
ulation, it is assumed that consumer resources are scheduled automatically via a

smart demand controller system (subject to consumer participation in DSM).
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To model different levels of DSM uptake, variables conDR and aggDR are in-
troduced which determine the share of consumers and aggregators which participate
in DSM. Both parameters lie between the values of 0% (no participation) and 100%
(all participate). The impact of each DSM regime is measured under Steady State
and Two Degrees+ scenarios in terms of system and consumer costs, greenhouse

gas emissions (GHGs), and system demand peak.

4.2.1 Consumer DSM scenarios

At the consumer level three types of demand side management regimes are con-
sidered: CON_CM, CON_CM+, and CON_CM+(LEARN). Algorithm CON_CM
represents the behaviour of a savvy consumer, who schedules demand in order to
minimise the day-ahead cost of power based on the predicted real time price for
electricity (see Section 3.5). Algorithm CON_CM+ evolves during the course of this
PhD and represents an enhanced version of CON_CM, where consumer response is
controlled via a centrally-set damping term ¢ in order to avoid herding (see Section
6.3.1). In algorithm CON_CM+(LEARN) consumers can adapt to the market by

learning consumer-specific damping term ¢ themselves (see Section 6.3.2).

Regime CON_CM is considered in order to identify the conditions when con-
sumer herding might become harmful to the system and regime CON_CM+ to
demonstrate how controlling consumer response can help alleviate this problem.
With CON_CM+(LEARN) we investigate whether complete consumer autonomy
in demand scheduling is possible without compromising the security and stability
of the grid. For each consumer DSM regime, the simulation is run for three snap-
shot years (2015,2030, and 2050) and two national scenarios: Steady State and
Two Degrees+ (Table 4.1). For regime CON_CM, we investigate how consumer
participation in DSM affects the system by considering three conDR settings (0%,
50% and 100%). Each DSM regimes is evaluated against the base case (when all
stakeholders are passive) in terms of system and consumer costs, greenhouse gas
emissions and system demand peak. Table 4.1 summarises the parameters for con-

sumer DSM scenarios.
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Table 4.1: Simulation scenarios for consumer DSM regimes.

DSM regime National scenario Year conDR
Base case Steady State,Two Degrees+ | 2015,2030,2050 0%
CON_CM Steady State, Two Degrees+ | 2015,2030,2050 | 50,100%

CON_CM+ Steady State,Two Degrees+ | 2015,2030,2050 100%
CON_CM+(LEARN) | Steady State,Two Degrees+ | 2015,2030,2050 100%

Note: For regimes CON_CM+ and CON_CM+ 50% consumer participation level was not
considered since comparison to other DSM regimes was done when conDR = 100% which
corresponds to the most flexible scenario.

4.2.2 Aggregator DSM scenarios
At the aggregator level, two DSM regimes are considered: AGG_DF and AGG_CM

(see Section 3.5 for details). In algorithm AGG_DF, the aggregator serves the grid
by negotiating consumer demand for the purpose of smoothing system load. Hence
by deploying AGG_DF, we explore the benefits of aggregator-led DSM. In algo-
rithm AGG_CM, the aggregator actively minimises the cost of purchased power in
the wholesale market, allowing to investigate the issues which may arise as a result
of aggregators competing in the wholesale market.

In order to mimic the impact of DSM uptake by consumers and demon-
strate the benefits of regime AGG_DF, parameter conDR is varied between 0%-
100%. Similarly to consumer DSM scenarios, the simulation is carried out for the
two national scenarios (Steady State and Two Degrees+) and three snapshot years
(2015,2030,2050). The benefits of AGG_DF are evaluated against the base case
(when all stakeholders are passive) in terms of system and consumer costs, GHG

emissions and system demand peak (Table 4.2).

Table 4.2: Simulation scenarios under AGG_DF coordination regime.

DSM regime National scenario Year conDR

Base case Steady state,Two Degrees+ | 2015,2030,2050 0%
AGG_DF Steady state,Two Degrees+ | 2015,2030,2050 | 50%,100%

It is demonstrated that aggregator herding is possible by deploying algorithm
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AGG_CM. The damping parameter ¢ (used in the algorithm to control consumer
response to signalling) is varied in order to simulate different levels of aggregator
cost minimising behaviour. When « is small, the aggregator instructs consumers to
use more of their flexibility, whereas when ¢ is high the aggregator penalises con-
sumers for deviating too much from the previous schedule. The simulation is run for
the period 2015-2050 in the Two Degrees+ scenario assuming that all aggregators

cost minimise (Table 4.3).

Table 4.3: Simulation scenarios under AGG_CM (aggDR=100%).

DSM regime | National scenario Year Alpha setting (o)
AGG_CM Two Degrees+ | 2015, 2030, 2050 | 0,0.005,0.05,0.5

For the last part, consumers are allowed to switch aggregators depending on the
offered retail tariff. The rate of switching is varied from daily to quarterly in order
to investigate how it might affect system prices and consumer costs. The analysis is
performed when two aggregators with different resources compete for consumers in
2050 Two Degrees+ scenario (the most variable and flexible system) and compared

to the base case (when all stakeholders are passive).

Table 4.4: Simulation scenarios under AGG_CM coordination regime with consumer
switching.

DSM regime | National scenario | Year Consumer switching rate conDR

Base case Two Degrees+ | 2050 none 0%

AGG_CM Two Degrees+ | 2050 | none,daily,monthly,quarterly | 100%
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4.2.3 System Operator coordination scenarios

The benefits of a centrally coordinated DSM are investigated by deploying algo-
rithm SO_CM, which involves the System Operator communicating the cost of gen-
erating electricity directly from the market to the aggregators in real time (see sec-
tion 3.5.3 for mathematical formulation). Similarly to the previous scenarios, the
simulation is run for three snapshot years (2015,2030 and 2050) and two national
scenarios (Steady State and Two Degrees+) assuming that all consumers and aggre-
gators participate. The benefits SO_CM are evaluated against the base case (when
all stakeholders are passive) in terms of system and consumer costs, GHG emissions

and system demand peak (Table 4.5).

Table 4.5: Simulation scenarios under SO_CM coordination regime.

DSM regime National scenario Years conDR | aggDR

Base case Steady state,Two Degrees+ | 2015,2030,2050 0% 0%
SO_-CM Steady state,Two Degrees+ | 2015,2030,2050 | 100% | 100%




Chapter 5

Model validation

The following chapter describes the process of validating ESMA. The purpose of
doing so is two-fold: (1) to assess how good the model is at reproducing historical
data and (2) to compare the output from ESMA against the Future Energy Scenarios

developed by (National Grid, 2017a). The chapter is split accordingly.

In part one, output from ESMA for wholesale prices, demand and generation
volumes is compared to historical data in 2015 (which is referred to as the base
year). In part two, ESMA output is compared to the FES dataset for the period
2020-2050. The simulation is run for two key scenarios Steady State and Two De-
grees+ and assessed in terms of reproducing prices, annual demand and generation
volumes. Since FES data is used as an input to ESMA, comparing the two models

serves as a check that the programmed interactions within ESMA are valid.

Validation is performed for the base case, without demand side management
(DSM) for two boundary scenarios: Two Degrees+ and Steady State. This is be-
cause DSM is modelled explicitly in ESMA, therefore it is important to validate
the case when all stakeholders are passive. Moreover, DSM can be implemented
according to a multitude of scenarios and therefore it would be unreasonable to
validate ESMA against only one or a few of them. It is noted here that both his-
torical and FES datasets include a level of DSM, but it is not possible to detangle
the system from the impact of DSM and so the data is taken assuming no DSM.
Considering the level of uncertainty in modelling future consumer flexibility, it is

deemed appropriate to make this assumption.
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5.1 Historical data

ESMA is validated against the base year (2015) by comparing generated system

demand, prices and generation volumes to historical data.

A note on model assumptions. It is assumed that in the base year consumers do
not participate in demand side management, however the system can utilise pumped
storage in order to meet demand. This assumption allows us to obtain a reference

point with regards to which consumers are considered as passive.

5.1.1 System demand

Figure 5.1 shows an hourly plot of historical and modelled system demand values
split by season. The high correlation coefficient suggests that ESMA is effective at
recreating the historical demand curve.

Figure 5.1: Comparison of hourly simulated and historical demand data by season in 2015.
Source: ESMA and (National Grid, 2015c).
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However, it is possible to see that the agreement between modelled and histor-
ical data is the worst for the winter season (» = 0.87). This can be explained by the
fact that ESMA does not include Economy 7 consumers (representing 16% of total
residential consumers), who benefit from a lower night tariff and in 2015 (BEIS,

2017a).

Looking at the hourly demand profiles confirms this hypothesis (Figure 5.2).
From the figure it can be seen that in the winter historical demand is slightly higher
at night which agrees with the behaviour of Economy 7 consumers who tend to
operate storage at night. On the whole, the demand curve modelled by ESMA shows
an acceptable level of agreement with historical data with an average correlations

coefficient of 0.92 for 8760 hourly demand data points.

Figure 5.2: Examples of system demand curves for winter and summer weekdays and
weekends in 2015. Source: ESMA and (BEIS, 2017a)
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5.1.2 Electricity generation

Figure 5.3 compares historical and modelled generation mix for four seasons in
2015. According to the figure, the use of nuclear, imports, renewables and pumped
storage by ESMA is in good agreement with historical data. However, the model
underestimates the use of gas, whilst overestimating the use of coal for summer and
spring days in particular. This is because in ESMA the price for primary fuels is
fixed across the year, whereas in reality it fluctuates throughout the day. By taking
an average low price for coal in 2015, ESMA prioritises the use of coal-fuelled to
gas-fuelled generation. In fact in 2015, the price for natural gas in the UK fell 26%
during the year, which explains why according to historical data gas was used more
in generating electricity (especially towards the second half of the year) (Ofgem,
2016b). It is also possible to note that compared to historical data, ESMA generates
slightly more electricity in each season. This is because ESMA runs off the FES
dataset, which assumes a slightly higher level of consumption (likely due to a higher

level of losses experience in the real system).

Figure 5.3: Comparison of simulated and historical generation mix by season in 2015.
Source: ESMA and (National Grid, 2015¢).
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Figures 5.4 and 5.5 demonstrate how ESMA dispatches different types of gen-

erators in the summer and winter days.

Figure 5.4: Comparison of hourly simulated and historical generation profiles for summer
days in 2015. Source: ESMA and (National Grid, 2015¢).
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In the summer, it is visible how the model underutilises gas power plants whilst
compensating by coal and pumped storage (Figure 5.4). In addition to the issue of
static fuel prices, the shape of the modelled demand curve could explain the dif-
ference in historical generation mix and that modelled by ESMA. A slightly lower
demand at night and a slightly higher peak during the day, mean that it is cheaper
for ESMA to run coal and switch on the gas only for a few hours during the day in
combination with pumped storage.

Similar observations can be made in the winter days, where the model does not
run gas overnight (Figure 5.5). ESMA also seems to allow a sharper ramping of the
gas generators, e.g. 2nd February. Finally, historical imports fluctuate throughout
the day, whereas in ESMA imports are assumed to be constant throughout the year
(see Section 3.4.5.3).

These observations highlight the limitation of ESMA, which models each tech-

nology as one large power plant generating electricity at short run unavoidable cost,
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Figure 5.5: Comparison of hourly simulated and historical generation profiles for winter
days in 2015. Source: ESMA and (National Grid, 2015¢).
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rather than many small heterogeneous generators. In addition to this, many op-
erational details such as (ramping time, part load, spinning reserve, etc.) are not
modelled. However, on the whole the shape of the generation curve and the priority
of the technologies chosen by ESMA appear to resemble historical data within ac-
ceptable limits. An improvement to the model could be feeding more dynamic fuel

prices and modelling multiple generators.

5.1.3 Electricity prices

In the last part of historical data assessment, ESMA is tested in terms of recreating
historical wholesale electricity prices taken from the exchange (APX Group, 2015).
Similarly to system demand validation, analysis of hourly prices is performed for
different seasons (Figure 5.6). It is noted that the noise in the exchange price data
has been removed in order to obtain a cleaner demand-price relationship by fitting
a polynomial to historical data (see Appendix E.1). This is justified by the fact
that short term pricing includes many activities which do not relate to the pure

cost of generating electricity, such as trading for arbitrage and hedging. The high
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correlation coefficients suggest a good agreement between simulated and historical

prices.

Figure 5.6: Comparison of hourly simulated and historical electricity prices in 2015.
Sources: ESMA and (APX Group, 2015).
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In Figure 5.7, four exemplary days are assessed in terms of the shape of the
price curves for historical and generated data. Overall, warmer days show a much
smoother profile compared to the colder days. As a consequence of not modelling
Economy 7 consumers, the observed prices are lower at night (i.e. between 00:00

and 06:00), which is especially noticeable in the winter on the 2nd February.
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Figure 5.7: Comparison of hourly simulated and historical electricity prices for winter and
summer days in 2015. Sources: ESMA and (APX Group, 2015).
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5.2 Future Energy Scenarios

Similarly to validation against historical data, ESMA 1is assessed against FES data
in terms of system demand, generation and prices. Here two boundary scenarios are

considered (Steady state and Two Degrees+) as formulated in Section 4.

5.2.1 System demand

Although FES dataset does not offer an hourly demand curve, it does provide an
annual demand peak which is compared to the modelled data in Figure 5.8. On the
whole the two datasets are in good agreement with a discrepancy within a few GW.

In Figures 5.9 and 5.10, the consumption data is checked against FES data
which is used by ESMA as an input. Having perfect agreement between ESMA and

FES data output acts as a check that ESMA functions as expected.
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Figure 5.8: Comparison of system demand peaks modelled by ESMA against FES for
Steady State and Two Degrees+ scenarios in 2015-2050. Sources: ESMA and
(National Grid, 2017a)
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Figure 5.9: Comparison of electricity consumption modelled by ESMA and FES for Steady
State and Two Degrees+ scenarios in 2030. Sources: ESMA and (National
Grid, 2017a)
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Figure 5.10: Comparison of electricity consumption between ESMA and FES for Steady
State and Two Degrees+ scenarios in 2050. Sources: ESMA and (National
Grid, 2017a)
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5.2.2 Electricity generation

In Figures 5.11 and 5.12, the sources of generation utilised by ESMA are com-
pared against the FES data for Steady State and Two Degrees+ scenario. For the
Steady State scenario it can be seen that FES assumes a higher use of biomass and
CHP. This is likely due to a high biomass price assumed in ESMA, as a result of
which coal is prioritised over biomass generation. This highlights a limitation of
the model which considers only one average price of biofuel. In reality, there are
different types available in the market with a wide range of prices. Especially when
modelling in the far future, it is difficult to predict the evolution of biomass prices,
so the value has been fixed in the modelling environment. For the years 2030-2050,
the generation mix seems to be in good agreement between ESMA and FES.

For Two Degrees+ scenario, FES dataset also contain a higher share of gen-
eration from biomass and a slightly lower share from gas. The rest of generation
sources seem to be in good agreement. The discrepancies between the types of
technologies used to generate electricity in FES and ESMA can be explained by

different assumptions made for generator cost characteristics!.

IThis information regarding generation technology characteristics is not disclosed by the Na-
tional Grid and so it is not possible to compare it to the assumptions made in this assumptions
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Figure 5.11: Comparison of electricity generated by source from ESMA and FES un-
der Steady State scenario, 2020-2050. Sources: ESMA and (National Grid,
2017a)
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Figure 5.12: Comparison of electricity generated by source from the model and FES data
under Two Degrees+ scenario, 2020-2050. Sources: ESMA and (National
Grid, 2017a)
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In Figures 5.13 and 5.14, the generation values from embedded solar are
checked against FES data for different sectors. Perfect agreement between FES

and ESMA datasets ensures that the model works as it should.

Figure 5.13: Comparison of electricity generation from embedded solar between modelled
and FES data for Steady State and Two Degrees+ scenarios in 2030.
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Figure 5.14: Comparison of electricity generation from embedded solar between modelled
and FES data for Steady State and Two Degrees+ scenarios in 2050.
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In Table 5.1 we summarise the differences between ESMA and FES modelling

frameworks, which lead to the above discussed differences in observations.
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Table 5.1: Comparison of assumptions made in ESMA versus FES model.

Assumption FES ESMA
component

Renewables Renewable obligations until 2017 and Not considered
support mecha- | Contracts-for-Difference after
nism

Exchange rates | Fixed profile across all scenarios for ex- Fixed at 2017 level
change rates with US dollar and the euro.

Biomass and | [Information not available] Calculated based on (DECC,
nuclear price 2012; BEIS, 2016) (see Ap-
pendix C.1)

Population

A fixed profile is applied across all scenar- ~Growth rate same as in FES
ios - reaching approximately 75 million by
2050

Renewable [Information not available] Average profiles obtained
generation from  (Pfenninger and
profiles Staffell, 2016)

Electricity de- | [Information not available] Taken from (Elexon, 2017a)
mand profiles

Heating  pro- | [Information not available] Taken from (Cambridge En-
files for domes- ergy, 2017)
tic consumers
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5.3 Sensitivity analysis

Figure 5.15 demonstrates the results of the sensitivity analysis performed in 2017
(Steady State). Each parameter in the left column is varied from the default value by
+/- 25% and the impact is reported in terms system cost and greenhouse gas (GHG)

emissions as a percentage change relative to the default case.

Figure 5.15: Sensitivity analysis, 2017 (Steady State). Source: ESMA.

Base case (no coordination)
25% increase 25% decrease
System cost | GHG emissions| System cost| GHG emissions
Non-deferrable demand 43.19% 21.07/% -30.97% -25.35%
Gas price 3.00% 0.0002% -3.00% -0.0021%
Gas capacity 2.47% -0.002% -2.47% 0.001%
Ceoal price -0.001% -0.002% 0.13% 0.25%
Coal capacity -2.52% 8.50% 3.08% -10.35%
Wind capacity -1.45% -3.52% 1.48% 341%
Solar capacity 0.22% -0.34% 0.22% 0.34%
EV capacity 0.01% 0.01% -0.01% 0.01%
HP capacity 0.24% 0.14% -0.24% -0.14%
RH capacity 9.88% 5.25% -8.72% -5.41%
Pump storage capacity 0.13% 0.71% 0.13% 0.74%
Carbon price 0.01% 0.000005% -0.01% 0.0001%

The model appears to be most sensitive to the level of non-deferrable demand,
experiencing over 40% change in system cost and GHG emissions as a result of
25% change in total non-deferrable demand. As expected, higher demand leads to
an increase in system cost and GHG emissions, whereas decreasing demand by the
same amount leads to the opposite effect. The effect is not symmetric.

The other two parameters which noticeably influence the model are coal and
wind capacity leading to 5-16% fluctuations in GHG emissions and a few percent-
age change in the value of system cost, as a result of 25% change in the parameter
value. As expected, the level of emissions increases as wind capacity goes down
and coal capacity goes up and vice versa. Changing capacity of resistance heating

(RH) by 25% leads to a 5% change in system cost and GHG emissions. This is
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explained by the fact that heating electrification leads to an increase in total demand
for electricity in the system. The rest of the parameters have a minor impact on the

system cost and GHG emission level.

Comments on validation: Although important to assess against a different model
output, the projections are done far in the future and so slight discrepancies between
FES and ESMA data are deemed acceptable. The validation process has been able
to show that ESMA is successful in recreating historical data as well as being in
good agreement with the National Grid model for future energy scenarios. Certain
limitations of ESMA have been discussed, however the reader is reminded that the
focus of this work is to investigate the issues of system control and cost allocation
to different types of consumers in the context of DSM, and so a slight deviation of

modelled output from historical and FES data is deemed acceptable.

One important difference between ESMA and the FES model is that the lat-
ter includes gas network modelling, whereas the former doesn’t. Considering that
around 40% of electricity demand in the UK is met by gas-fired power plants (often
the marginal source of generation), gas and electricity networks are closely inter-
connected for this market (DECC, 2015). Hence, gas demand profile can strongly
influence the dispatch of generation resources and the price of electricity for end-
users. An assessment, produced by the UK Energy Research Centre, concludes
that electricity and gas system reliability in the UK can be significantly improved
through investing in system flexibility (Watson et al., 2018). The report demon-
strates the importance of demand side response and natural gas storage on reducing
loss-of-load expectation (LOLE) and Expected Energy Unserved (EEU) (Figures
5.16 and 5.17. In fact, the introduction of a gas storage equivalent to the decommis-
sioned Rough facility led to as much as 50% reduction in EEU (from 219 mcm to
105 mcm) relative to the business-as-usual scenario in the Low Carbon scenario in
2050. The effect on LOLE is stronger in 2030 leading to a drop from 13.5 hrs/year

to just over 5 hrs/year.

A number of researchers state the importance of modelling the electricity and

gas networks together (Chaudry et al., 2014). This leads to a more accurate rep-
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Figure 5.16: Gas system LOLE in 2030 and 2050. Source: (Watson et al., 2018).
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Figure 5.17: Impact of additional gas storage capacity on gas system LOLE. Source: (Wat-
son et al., 2018).
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resentation of flexibility services (especially when district heating it considered),
power price determination and scheduling of supply resources. However, it does
significantly complicate the modelling framework. Considering the aim of this re-
search and time availability to deliver it, the modelling of the gas network is left

outside of the scope of this work.




Chapter 6

Results and discussion

As per the scenarios constructed in chapter 4, the impact of DSM is analysed in
the context of the British electricity grid at three hierarchal levels for two national

scenarios for the period 2015-2050 (Figure 6.1).

Figure 6.1: Combination of simulation scenarios.
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To recap, two boundary scenarios for the evolution of the British electricity
system are considered: the least variable and flexible (identified as Steady State)

and the most variable and flexible (identified as Two Degrees+). For each of the
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national scenarios, the long-term impact on the electricity system is explored when
consumer demand is managed by stakeholders from one of the three hierarchal lay-

ers: consumer, aggregator and the System Operator (referred to as the DSM regime).

The impact of each DSM regime is measured by tracking the changes in elec-
tricity cost (for the system and consumers), demand and the level of greenhouse gas
(GHG) emissions relative to the case when all stakeholders are passive (referred to
as the base case) for snapshot years 2015,2030 and 2050. The analysis is split into

three parts based on the type of coordination taking place.

In part one, the simplest form of DSM is assumed by deploying algorithm
CON_CM, whereby consumers pursue own selfish objective of minimising the cost
of electricity based on the real-time price (RTP)(see 3.5.1). We explore the extent
to which this approach is beneficial to the grid and the threshold point at which con-
sumer herding towards the same periods of low electricity prices can be harmful to

the system, leading to increased system cost and greenhouse gas (GHG) emissions.

In part two, the consequences of aggregator-led DSM are investigated,
whereby aggregators instruct consumers on how to schedule. Firstly, we consider
a model where aggregators serve the grid through deploying algorithm AGG_DF
and demonstrate the benefits of a well-coordinated DSM to the system as well as
individual consumers. We then look at the case where aggregators become aggres-
sive and use demand scheduling to actively minimise the cost of purchased power
from the grid. Similarly to part one, we explore the threshold at which ‘herding’ of
aggregators towards low prices can lead to negative consequences for the system.
Part two is concluded by demonstrating how aggregator herding can be overcome
through centrally controlled DSM. For this algorithm SO_CM is deployed, whereby
the System Operator communicates with the aggregators and the market during the
coordination process. The two algorithms AGG_DF and SO_CM are compared in
terms of financial savings to the grid and the amount of GHG emissions avoided

due to the deployment of each DSM regime.

In part three we explore the possibility of a decentralised consumer DSM by

developing algorithm CON_CM into CON_CM+ by means of introducing a damp-
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ing term o which controls the strength of consumer response to real time elec-
tricity prices. We explore a range of potential outcomes under CON_CM+ regime
by varying o as well as consumer participation rate in DSM (conDR). Algorithm
CON_CM+ is then further enhanced by allowing consumers to learn & based on
their daily bills, which renders a completely autonomous decentralised DSM regime
CON_CM+(LEARN). The results chapter is concluded by comparing all DSM
regimes: CON_CM+ (with and without learning), AGG_DF and SO_CM. The suc-
cess of each algorithm is assessed in terms of the benefits it brings to the system
as well as each individual consumer. The key point of discussion is the process of
fairly allocating the benefits from DSM to different types of consumers considering
that they have different resources and therefore level of influence on the wholesale

electricity prices.

6.1 Part I: How far can dynamic pricing take us?

Informing consumers of the true electricity generation cost via dynamic prices (e.g.
TOU or RTP) is often considered as a panacea to achieving more sustainable elec-
tricity consumption. A large pool of academic research reports on the benefits of
dynamic pricing in terms of lowering system cost, consumer bills and system emis-
sions (Zakariazadeh et al., 2014; Houwing and Ilic, 2008). ‘The Triad’ scheme
deployed in the UK is a perfect example of how information about real-time whole-
sale prices can help reduce system demand peaks and lower the cost of electricity
generation (National Grid, 2015d). However so far, the proportion of consumers
which participate in DSM has been relatively low, mainly limited to commercial
and industrial end-users which are controlled by aggregators, e.g. KiWi Power and
Enernoc (Power, 2018; Enernoc, 2018). In addition to this, studies assessing the
impact of DSM rarely perform the analysis for the future, and so the full impact of

DSM based on dynamic pricing has not been explored.

In order to engage domestic consumers, the UK government has set a target to
equip every household with a smart meter by 2020 with the aim of informing end-

users of their electricity usage and wholesale electricity prices in real time (Ofgem,
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2018a). Yet, with a higher proportion of ‘smart’ and flexible end-users it may be a
case that consumer response to RTP may lead to the creation of new demand peaks
and increased electricity prices as a result of the market herding towards the same
periods of low electricity prices. To elaborate, as consumers become informed of the
hours when generation from renewables is high (and prices are low), they will aim
to shift flexible demand to those periods in order to minimise the cost of electricity.
Yet, if enough consumers act in a similar manner, the shifted demand will create
new peaks in the system and as a consequence increase electricity prices. Such
proactiveness on the demand side, may also make it harder for the System Operator

to predict electricity demand and balance the grid.

Figures 6.2 and 6.3 demonstrate with a simulated data from 2030 under Two
Degrees+ scenario how simultaneous cost minimisation by consumers can lead to
more volatile system demand and electricity prices. Figure 6.2 demonstrates what
happens to the daily electricity demand curve as more consumers (represented by
conDR parameter) shift demand to period of low electricity prices (based on the day
ahead wholesale price information). Hence, as consumers receive the same whole-
sale price information the react in a similar manner, which creates new demand
peaks. A higher share of consumer adopting this simple strategy leads to a more

extreme effect.

Such behaviour can result in suboptimal utilisation of renewable resources and
consumer storage, increased demand peaks and ultimately lead to higher and more
volatile electricity prices for the system and consumers (Figure 6.3). It is impor-
tant to note that the effect of such consumer DSM strategy is exaggerated but it
does highlight the limitation of the simple RTP-style demand response, where all

consumer receive the same price information.

In order to investigate when herding might occur and what it might mean
for the system, three snapshot years are modelled (2015,2030,2050) whereby con-
sumers cost minimise by deploying algorithm CON_CM (see Section 3.5.1). We
consider 0%, 50% and 100% consumer participation in DSM and track system cost,

demand peaks and GHG emissions to evaluate the impact of this DSM regime on
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Figure 6.2: Simulated system demand with different consumer participation in CON_CM,
11-13 April 2030 (Steady State). Source: ESMA
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Figure 6.3: Daily system prices curve with different consumer participation in CON_CM,
11-13 April 2030 (Steady State). Source: ESMA
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the system. The benefits of DSM are investigated for different types of consumers
across four economic sectors (domestic, commercial, industrial and transport) by

calculating how their electricity bills change relative to the base case (when con-

sumers are passive).
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6.1.1 System demand and costs

In order to assess the impact of the simplest form of DSM (i.e. CON_CM when
consumers optimise independently based on the RTP), we calculate the difference
in the annual system costs relative to the base case (when consumers are passive),
which is referred to as system savings' (Figure 6.4). The reader is reminded that in
the context of ESMA system cost reflects the short run avoidable cost of generating
electricity and the cost of utilising the transmission and distribution network but

does not include the capital costs of the grid infrastructure and balancing costs.

Figure 6.4: Annual system savings with CON_CM relative to the base case. Source: ESMA

Steady State Two Degrees+

0.54

=

0.0 1

-0.54

System savings relative to base case (£ billions)

, , : . . . : .
2020 2030 2040 2050 2020 2030 2040 2050
year

conDR=0% === conDR=50% conDR=100%

Note: system costs include short run electricity generation costs and the use of the network
but ignore capital costs of the grid infrastructure and the grid balancing costs.

The results (subject to the modelling assumptions) suggest that with 50% con-
sumer participation level the system experiences savings, whereas with 100% con-
sumer herding leads to system losses as early as 2020 in Two Degrees+ and 2030
in the Steady State scenario (as indicated by the negative values of savings on the
chart). We note that prior to 2040 the system sees higher losses in the Two Degrees+
scenario (£173 million versus £38 million in 2030), whereas by 2050 the losses are

higher in the Steady State scenario (£1.2 billion versus £1 billion). This can be

"Hence negative savings correspond to losses
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explained by the difference in the capacities of renewables and flexible consumer

technologies assumed in each scenario.

More consumer flexibility and a lower level of renewables (hence a steeper
price curve) exaggerates the effect of DSM on system costs. On the contrary, a
lower level of consumer flexibility and renewables in the grid (hence a shallower
price curve) dampen the effect of DSM, as consumers see less financial benefit from
shifting demand. However when there is a combination of low renewables and low
system flexibility (such as in Steady State scenario), or high renewables and high
system flexibility (such as in Two Degrees+ scenario) we see a combination of these

effects.

Figure 6.5 demonstrates how savings and losses are made under Steady State
(line A) and Two Degrees+ (line B) for an exemplary hour in 2050. Due to higher
system flexibility assumed in the Two Degrees+ scenario (line B), system demand
is able to deviate more from the base case when DSM is deployed. It is noted that
the difference in prices between the two scenarios is higher to the right side of the
base case line (i.e. in the case of losses) compared to the left side (i.e. in the case of
savings). When the system saves, higher flexibility in the Two Degrees+ scenario
overshadows the effect of marginally higher prices assumed for the Steady State
scenario leading to larger savings. On the contrary, when the market herds and the
system experiences losses the difference in the price level becomes more significant

and losses are higher under Steady State scenario.

As a result of this interplay between system parameters, prior to 2040 more
system flexibility in the Two Degrees+ scenario overshadows the relative contri-
bution from renewables on keeping prices low and the observed losses are higher
compared to the Steady State scenario. Post 2040, consumer flexibility catches up
in the Steady State scenario and coupled with a steeper electricity price curve, re-
sults in higher system losses compared to the Two Degrees+ case. Using the same
logic it is possible to explain why savings are higher in the Two Degrees+ scenario
compared to the Steady State case, i.e. when 50% of consumers participated in

CON_CM. Across the two national scenarios maximum system losses reach £173
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Figure 6.5: Demonstration of system losses and savings with CON_CM calculated for an
exemplary hour, 2050. Source: ESMA
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million per year in 2030 and £1 billion per year in 2050.

Figure 6.6 demonstrates the effect of consumer cost minimisation on the
wholesale electricity prices.

In 2015 the system benefits from a 0.2% drop in the average value and a 5%
drop in the volatility of the wholesale prices, which is in-line with the earlier obser-
vations regarding system savings. In 2030 it is possible to see a marginal reduction
in the volatility as well as the mean price in the Steady State scenario due to a limited
capacity of flexible consumer resources. For the remaining years, 100% consumer
participation in CON_CM leads to higher and more volatile prices. In 2050 the an-
nual wholesale price volatility increases by almost 12%, whereas the mean goes up
by 3.4% in the Steady State scenario. For Two Degrees+ the negative consequences
of herding on the prices are lower, as a result of higher renewable capacity in the
system and lower prices as a whole.

Due to the limitations of the generation component in ESMA, looking only
at the wholesale prices does not provide the full picture of the impact of DSM
on the system. For this reason, the annual system demand peak is observed, as
it determines the network and reserve capacity requirements in the grid. Fig-
ure 6.7 demonstrates how the annual system demand peak changes as more con-

sumers cost minimise with CON_CM. With 50% participation level system peak
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Figure 6.6: Wholesale price distributions with and without CON_CM, 2015-2050. Source:
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decreases in the Two Degrees+ scenario, however with 100% consumer participa-
tion (conDR=100%) annual demand peak is increased immediately. The need for
extra network capacity and generation reserve as a result of herding amounts to
4.1GW and 4.9GW in 2030 increasing to 5.2GW and 9.2GW by 2050 in the Steady

State and Two Degrees+ scenarios respectively.
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Figure 6.7: Annual system demand peak with CON_CM, 2015-2050. Source: ESMA
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6.1.2 System GHG emissions

Not surprisingly herding has a negative effect on the level of greenhouse gases
(GHGs) emitted by the electricity system. Figure 6.8 shows the absolute change
in the annual level of GHGs relative to the base case as more consumers cost min-
imise. In fact, the system sees an increase in GHG emissions immediately even with
50% consumer participation level (when financial savings were observed to be posi-
tive). Only in the Two Degrees+ (2050) scenario with conDR=50% does the system
benefit from a reduction in the level of GHGs. These observations suggest that in
the Steady State and the earlier years of the Two Degrees+ scenario, reducing the
cost of electricity generation does not necessarily mean decreasing the amount of
GHGs emitted by the system. This happens for two reasons. Firstly, the system uses
more energy when utilising storage which is not 100% efficient. Secondly, the CO2
price is lower in earlier years (especially in the Steady State scenario), meaning that
the system chooses more flexible but polluting sources of generation.

Figure 6.9 shows the change in the generation mix relative to the base case in
2030 and 2050 for the two national scenarios, where a positive value indicates an in-
crease in the use of particular generation technology and a negative value a decrease.

As expected, increased consumer participation in CON_CM leads to a higher level
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Figure 6.8: Change in the annual level of greenhouse gas emissions with CON_CM relative
to the base case, 2015-2050. Source: ESMA
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of generation in the system, met by consumer exports (solar and storage discharge?),
thermal generators (Steady State scenario), CCS and nuclear (Two Degrees+), and
pumped storage. This comes as a result of losses originating from the use of con-
sumer and system storage which is not 100% efficient. The amount of consumer
exports goes up with increased level of participation as more consumers aim to sell
electricity when the projected wholesale price for it is high. When conDR=50%,
CON_CM has a net positive effect on the fuel mix in the Two Degrees+ scenario
leading to a decrease in the amount of energy generated from ‘other_therm’ genera-
tors (mainly diesel and fuel oil) and pumped storage. However when conDR=100%,
the system utilises more thermal generation in order to accommodate for a demand
pattern with sharper peaks and troughs. Consumer herding also leads to the cur-
tailment of renewable energy as the system struggles to balances highly volatile
consumer demand which is not correlated with variable supply. This is especially
noticeable in 2050 Two Degrees+ scenario, where total curtailment of hydro, wind,

solar and other renewables amounts to over 11GWh when all consumers cost min-

imise.

ZPartially fuelled by an increase in transmission level generation.
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Figure 6.9: Change in the electricity generation mix by source with CON_CM relative to
the base case, 2030 and 2050. Source: ESMA
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In Figures 6.10 and 6.11,we look at the daily generation profiles in 2050 in
the winter and summer days in order to better understand how the generation pat-
tern changes as a result of herding. In the winter, sharper demand peaks lead to
a higher utilisation of flexible resources and pumped storage. It is possible to see
the difference between the two scenarios, i.e. in the Steady State the model utilised
mainly gas (red), whereas in the Two Degrees+ CCS, nuclear and renewables are
the primary sources of generation. The utilisation of other thermals and pumped
storage is similar in the two scenarios. One other difference is that in the Steady
State the system imports (on average 6GWh per hour) whereas in the Two Degrees+

the system exports (on average 1.1 GWh per hour) electricity.

In the summer, both scenarios benefit from an increased renewable generation.

As a result, in the Steady State scenario the system accommodated for a volatile
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demand curve (in the case of herding) by deploying gas generators compared to
‘other them’ used in the winter. In the Two Degrees+, scenario increased level of
consumer exports leads to the curtailment of renewables as the system struggles to
absorb the excess renewable generation. In contrast to the Steady State scenario,
under Two Degrees+ the system utilises pumped storage (assumed to run at zero
cost) in order to accommodate for a more volatile demand curve. We also note that
the system starts to cycle nuclear generators in order prioritise the use of renewables

even though it is assumed to be the most expensive technology to cycle.
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Figure 6.10: Daily generation by source with and without CON_CM (conDR=100%), 5-7
January 2050. Source: ESMA
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Figure 6.11: Daily generation by source with and without CON_CM (conDR=100%), 20-
22 June 2050. Source: ESMA
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A note on generation model limitations. One of the limitations of the market
component in ESMA is that it does not penalise the generators for rescheduling on
the day. In reality, if a generator is scheduled to run for the day-ahead it incurs an
additional cost if it is required to change its schedule at short notice. In addition to
this there is no cost imposed on curtailing renewables like hydro, wind and solar. As
a result, the market is able to make use of these resources as it wishes. Hence, the
real cost of herding is likely to be higher than what has been shown here, especially
if the additional network and reserve requirements are considered. Nevertheless,
it is clear from our observations that herding due to consumer cost minimising be-
haviour can lead to some negative consequences for the system in the form of higher

system cost, GHG emissions and demand peaks.

6.1.3 Consumer costs

The impact of DSM on end-users is assessed by comparing their electricity bills
with and without CON_CM. To remind the reader, consumer costs are calculated as
the sum of the product of their hourly residual demand (without renewable gener-
ation) and real time price for electricity during the year. The calculation does not
account for the retail uplift applied by utilities since the aim is to understand how
different types of consumers contribute to the total cost of generating electricity at
the system level.

Today most consumers buy electricity through a utility (or an aggregator in our
case), which has access to the wholesale market. Only some large end-users (e.g.
industry) can hold contracts directly with the generators. Therefore, it makes sense
to bill consumers at a flat tariff (based on average daily or monthly cost of power
purchased by the aggregator). However, seeing that consumers react to the RTP
and thinking of the future expectations from the ‘smart grid’ to operate on the real
time cost of generating electricity, the consequences of herding when consumers
are billed at RTP are investigated. Accounting consumer costs at RTP also exagger-
ates the issue of cost allocation to different types of consumers and highlights the

importance of appropriately structuring electricity tariffs in the context of DSM.
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6.1.3.1 Analysis of different consumer sectors
We start by analysing the absolute change in the annual cost of power incurred by
each economic sector (Figure 6.38).

Figure 6.12: Absolute change in the annual consumer electricity bills with CON_CM rela-
tive to the base case by sector, 2015-2050. Source: ESMA
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In the Steady State scenario, it is the domestic sector which sees the highest
savings across all years (i.e. at 50% participation level, conDR=50%), but also the
highest losses in the case of herding (i.e. conDR=100%). In 2050 maximum sav-
ings by the domestic sector amount to £158 million per year, whereas maximum
losses reach £431 million per year. This happens for two reasons. Firstly, domes-
tic sector has the highest demand for electricity in the Steady State scenario. To
compare, residential end-users consume 136.7TWh of electricity in 2050 compared
to 101.2TWh by commercial, 72.7TWh by industrial and 15.5 TWh by transporta-
tion sectors (see Appendix F). Secondly, domestic sector is assumed to have more
thermal flexibility as a result of a higher number of electric heating (EH) units in-

stalled. The combination of these two factors means that DSM has a larger impact

3The number of TES units is calculated as half the number of EH units)
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on the domestic consumer bills in the Steady State scenario, i.e. it leads to highest
absolute savings when prices are reduced and the highest losses when the prices are
high.

In the Two Degrees+ scenario, at 50% participation level (i.e. conDR=50%)
residential sector sees much higher savings in 2050 (£450 million per year) com-
pared to the Steady State scenario. When the market herds (i.e. conDR=100%)
domestic consumers experience minimal losses (£113 million per year), whereas
electric transportation pays an additional £362 million per year in 2050 (the highest
absolute increase across all sectors). This occurs because the residential sector is as-
sumed to have the highest share of solar capacity (25%) compared to non-domestic
sectors (12.5% each), and so becomes less exposed to the wholesale electricity mar-
ket in the Two Degrees+ scenario (especially in 2050 when renewable penetration
level is at its highest)(see Section B.1). On the other hand, electric transportation
witnesses higher demand for electricity in the Two Degrees+ (as a result of transport
electrification) compared to the Steady State (35 TWh versus 15.5 TWh) and as a

result experiences a significant increase in the annual bill.

Figure 6.13: Relative change in the annual consumer electricity bills with CON_CM
(conDR=100%) relative to the base case by sector, 2015-2050.

Scenario | Year Domestic Commercial Industrial Transport
Base year 2015 0.0% -0.2% 0.1% 0.7%
2030 0.3% -0.3% 0.2% 4.8%
Steady State
2050 3.6% 2.8% 4.7% 16.6%
Two 2030 0.0% 0.2% 0.9% 8.7%
Degrees+ 2050 1.2% 3.4% 3.6% 16.5%

In relative terms it is the transportation sector that ends up paying the price
for herding seeing an almost 17% increase in the annual electricity bill in 2050 in
both scenarios (Figure 6.40). The first reason for these observations is that electric
transportation constitutes the most flexible consumer since it essentially represents
one large electrical store. In addition to this, transportation does not experience a
change in the amount of energy consumed when DSM is deployed since electric

vehicles operate with the same level of losses in the base case (Figure 6.14).
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Figure 6.14: Absolute change in the annual consumer energy demand with CON_CM rela-
tive to the base case by sector, 2015-2050.
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In contrast, the residential sector experiences the highest increase in demand
for electricity (Figure 6.14), which explains how largest absolute losses in the
Steady State scenario are reduced in relative terms (calculated by dividing absolute
losses by the demand increase). The non-domestic sectors see relatively similar
impacts from DSM due to their likeness in the level and daily pattern of electricity
demand. In relative terms, out of all stationary consumers it is the industrial sector
which experiences the larger losses. In 2050, non-domestic bills go up by a few
percent in the Steady State and Two Degrees+ scenarios.

In Figures 6.15 and 6.39 we look closer at the impact of DSM on consumer
demand profiles in the case of the market herding (conDR=100%). In the Steady
State scenario it is possible to see that the domestic demand for electricity is higher
and more correlated with the price curve when compared to the other sectors, which
leads to higher level of losses experienced by the sector (Figure 6.15). For the
Two Degrees+ case, although the domestic sector contributes to the price peaks,

its residual load curve (calculated as the difference between demand and renewable
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generation) dips during the day due to more solar generation, leading to a reduction
in the exposure of the sector to the electricity market risk (Figure 6.39). Electric
transportation (being the most flexible sector) changes its demand curve from an
almost flat to a very variable profile that is highly correlated with the electricity
price curve, which leads to the highest relative losses in the case of herding for both

scenarios.

Figure 6.15: Consumer demand profiles with and without CON_CM (conDR=100%) by
sector, 16 November 2050 (Steady State). Source: ESMA
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Figure 6.16: Consumer demand profiles with and without CON_CM (conDR=100%) by
sector, 16 November 2050 (Two Degrees+).
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6.1.3.2 Analysis of different consumer types
It is of interest to look at how DSM impacts consumers of different types. We
consider 31 different consumer agents depending on the combination of resources

available to consumer (i.e. HP, RH, TES, PV, and ES) and his economic sector (i.e.
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domestic, commercial, industrial, and transport).

Since end-users of each type vary significantly in terms of size and resource
capacity, instead of looking at the absolute change in the annual electricity bill we
analyse the change in the average cost per unit of energy purchased over the year
(or the average price for electricity). Hence the impact of DSM is assessed by
comparing the price of electricity under CON_CM to the base case (when consumers
are passive). The aim of this analysis is to investigate how DSM impacts inflexible
as well as flexible consumers, since the former are price takers whereas the latter

are price makers.

Figure 6.41 demonstrates how the price for electricity changes for consumers
without flexible resources in the case when all consumer cost minimise by deploy-

ing CON_CM regime (conDR=100%).

Figure 6.17: Change in the annual electricity price for inflexible consumers with CON_CM
(conDR=100%) relative to the base case by type, 2015-2050. Source: ESMA.
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It is evident that in the Two Degrees+ scenario consumers with PV benefit the
most from DSM with the domestic sector making the largest saving (-£4/MWh).
This happens because when the market herds, inflexible consumers with solar PV
are unable to shift demand or increase self-utilisation of solar power. Consequently,
these consumers end up selling the surplus generation at the higher price, whereas
the power they do purchase comes at a lower rate since after coordination demand
and price peaks shift to new time periods. The domestic consumers benefit the most
from this situation because their level of demand is less correlated with the solar
generation profile allowing them to export more during the day at high prices. Non-
domestic consumers with solar PV have a higher level of self-consumption during

the day and hence a lower level of export.

We note that this is not the situation in the Steady State scenario where con-
sumers with PV see an increase of around £1/MWh in 2030 and 2050. This is
because in the Steady State scenario electricity prices are on the whole higher (due
to a lower renewables capacity). Hence, the cost of purchased electricity is not cov-
ered by consumer profits from exporting renewable generation. With the exception
of domestic end-users, the remaining non-flexible consumers see a reduction in the
average price level up until 2030 and an increase in 2050 for both Two Degrees+
and Steady State scenarios. Domestic consumers with electric heating (i.e. with HP
and RH) do not see significant price increases in 2050 due to their demand profile

being less correlated with the price curve during herding.

In contrast to non-flexible consumers, flexible consumers see their average
electricity price increase as a result of the market herding (Figures 6.44 and 6.46).
Consumers of type 7 (with PV and ES) lose out the most paying at additional £60-
120 per MWh across the two national scenarios. In contrast to non-flexible con-
sumers with solar PV, those with PV and ES are able to herd towards periods of
high electricity prices. Consequently, they reduce self-utilisation in hope of mak-
ing a profit from the sale of electricity and end up purchasing power at the highest
rates whilst selling at the lowest. The biggest change is observed for domestic con-

sumers with ES and PV in the Two Degrees+ scenario. If in the base case they make
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Figure 6.18: Change in the annual electricity price for flexible consumers with CON_CM
(conDR=100%) relative to the base case by type, 2015-2050. Source: ESMA.
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£44/MWh in the case of herding they end up paying £76 per MWh in 2050.

From analysing the flexible consumer costs we observe that the negative im-
pact from herding is reduced as the level of non-deferrable load increases whilst
the flexibility level decreases. For this reason consumers with electric heating (HP
and RH) and storage (TES and ES) see smaller losses compared to consumers with
just electrical stores. When comparing consumers with the same stores but differ-
ent types of electric heating (i.e. RH with TES and HP with TES), we observe that
consumers with heat pumps (HP) experience higher losses compared to consumers
with resistance heating (RH). This is because the efficiency of a HP is higher com-
pared to RH meaning that the non-flexible load is lower whilst the storage capacity

is the same.

Finally, we note that consumers with just the electrical stores (including elec-
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Figure 6.19: Change in the annual electricity price for electric vehicles with CON_CM
(conDR=100%) relative to the base case, 2015-2050. Source: ESMA.
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tric vehicles Figure 6.46) see a reduction in the cost of electricity in the earlier years
which suggests that these consumers might adopt the cost minimisation strategy in
the nearby future. However, once total market flexibility becomes high enough,
herding harms these consumers the most. Compared to stationary consumers with
ES, electric vehicles see a lower increase in the price level (£10-12 per MWh) in the
case of herding. This comes as a result of limited charging capacity since EVs are

only allowed to shift the charging pattern and not to discharge into the grid.

Figure 6.20 shows only those consumers who make savings during coordina-
tion with CON_CM with maximum participation rate (conDR=100%). We can see
that in 2015 almost all consumers profit from DSM, with the more flexible con-
sumers making the highest savings. However by 2030 only non-flexible consumers
benefit in the case of herding under CON_CM. This is in line with one’s expectations
since non-flexible consumers are unable to shift demand and are therefore spared
of paying the high rates. In 2050 only inflexible consumers with PV benefit from
DSM. The fact that certain users benefits from herding when the system losses out,
highlights the potential for a conflict of interest between consumers and the system.

Moreover, if certain end-users benefit from a cost minimising strategy in the earlier
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years (e.g. those with ES), they are likely to continue with it in the future. Yet, at a
certain point consumer herding can be harmful to the system and flexible consumers
can end up suffering as a result of not adjusting to the new prices fast enough. In
the worst case, the market becomes chaotic and the System Operator will have to

interfere in balancing the grid, which can become expensive.

Figure 6.20: Annual consumer savings with CON_CM (conDR=100%) by type, 2015-
2050. Source: ESMA.
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6.1.4 Sensitivity Analysis

It 1s noted that the behaviour described in this section is extreme and assumes the
presence of a smart home management device which will be able to perform the
scheduling. For one, it is likely that consumers (especially domestic) will not expect
the same rate for importing electricity as for exporting it, since the aggregator will
take a share of the profits in return for the access to the wholesale electricity market.
Itis also a case that the System Operator is likely to make demand predictions taking
into account long-term (years and months) as well as short term demand patterns.
However, since the simulation is run with a gap of 15 years it was impossible to
simulate this behaviour.

In this subsection we explore how model parameters assumed for ESMA (in-
cluding export price, weight to past demand, and consumer storage capacity) affect
the system during DSM implementation and offer explanation and significance of

the observations.

6.1.4.1 Expected consumer export price

Figure 6.21 demonstrates system savings at different levels of the export price (cal-
culated as the percentage of the import price). It is possible to see that the herding
effect is reduced as the price for exporting electricity is lowered, as indicated by
the increasing level of savings. This happens because consumers see less benefit
in selling electricity and prioritise self-consumption. As a result, the system ex-
periences a smoother and more predictable demand pattern allowing it to utilise
renewable resources and storage more effectively. When the export price is zero,
in the Steady State the system starts to see losses post 2035, whereas in the Two
Degrees+ scenario the savings are positive reaching £1.2 billion per year in 2050.
Interestingly in the Steady State scenario savings are highest when the export
price is half the import price, but then go down when the export price drops to 33%
and 75% of the import price, indicating a non-linear relationship between the export
price and system cost. This happens because low export prices deters consumers
from exporting electricity, therefore limiting the amount of renewable energy avail-

able at the system level. Setting the export price too high leads to an elevated total



6.1. Part I: How far can dynamic pricing take us? 159

Figure 6.21: Annual system savings with CON_CM (conDR=100%) with varying export
prices. Source: ESMA.
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system demand as consumers operate more storage in order to export power in hope
of making a profit. The amount of consumer export then becomes too high and the
system fails to absorb it all, resulting in the curtailment of transmission level re-
newable generation. Hence, there is an optimal export price at which consumers are
willing to export electricity without causing chaotic demand.

In the Two Degrees+ scenario there is an abundance of renewable generation at
the transmission level, hence consumer exports are not needed for which reason the
case when the export price is set to zero achieves the highest savings. In contrast in
the Steady State scenario there are less transmission level renewables, therefore the
50% export to import price ratio works best by incentivising some consumer export

into the system.

6.1.4.2 Demand predictions

Another important parameter in the model is w, which determines the weight to
previous electricity demand in the system. The reader is reminded that the System
Operator uses w during the step of predicting day-ahead system demand L*(z,d)

according to the following formula as described in Section 3.4.4:

L*(t,d) = w- Lagg(t,d)+ (1 —w) - L(t,d — 1), 6.1)
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where,
L(t,d — 1) is the system demand outturn in the previous day,
Lggg is the system demand predicted by the aggregators, and

w € [0, 1] represents the weighing parameter to demand in the previous year.

When w = 0, the SO places no weight to past demand and only acts on the
current information received from the aggregators. In contrast when w = 1, the
SO is only guided by yesterday’s demand. In order to investigate the sensitivity
of the model to w, we observe the parameter for extreme settings, i.e. w = {0, 1},
and observe total system cost when all consumers cost minimise in 2015, 2030 and
2050 in the Two Degrees+ and Steady State scenarios. The analysis is carried out
for 100% participation level only, since it was demonstrated to lead to the highest
level of herding.

Figure 6.22: Annual system cost with varying weight to past prices with and without
CON_CM (conDR=100%), 2015-2050. Source: ESMA.
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Figure 6.22 shows the variation in system cost with different settings for w.
From the figure, it is possible to see that the lowest system cost is achieved when
w = 0, corresponding to the case when the SO does not take past demand into
account at all. In fact, the system experiences savings even when all consumers
cost minimise (a case which lead to losses in the default scenario, i.e. w = 0.5).

The highest system cost is achieved when w = 1, corresponding to the case when
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the SO predicts day-ahead demand based only on yesterday’s demand information.
The middle case (w = 0.5) is the default setting and takes the average of past prices
and those predicted by the aggregators.

Figure 6.23 demonstrate how the System Operator makes a prediction for the
day-ahead system demand. The left chart shows the demand information obtained
by the SO: that from the day before (dashed line) and that received from the ag-
gregator (solid line). Chart on the right side, shows the demand profile predicted
by the SO. When w = 0 (solid line) the SO bases the prediction on the information
provided by the aggregators only, which is identical to the profile in the left chart
identified by the solid line. When w = 1 the SO predicts day-ahead demand predic-
tions basing it only on yesterday’s demand outturn (dashed line). Naturally, when

w = 0.5 the predicted demand profile is calculated as the average between the two.

Figure 6.23: Demonstration of how the SO makes a prediction for day-ahead demand with
CON_CM (conDR=100%), 2050 (Two Degrees+). Source: ESMA.
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Figures 6.24 - 6.27 demonstrate how the prediction process impact the system
when performed during a few consecutive days. When w = 0, the demand and price
profiles predicted by the SO remain fairly smooth as the SO ignores past data (Fig-
ures 6.24 and Figure 6.25). On receiving the predicted prices, consumers schedule
their resources to periods of low electricity prices as indicated by the green solid line
in Figure 6.24. This leads to the creation of new demand peaks. However, the peaks
always happen around the same periods since the price information sent by the SO

always has the same pattern. Hence, herding is limited by the consumer’s capacity
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in being able to fill the valleys of the system’s non-deferrable demand (00:00-6:00).

Figure 6.24: Predicted and on-the-day system demand outturn with CON_CM
(conDR=100%, w=0), 2-4 January 2050 (Two Degrees+). Source:

ESMA.
2 Jan 2050 3 Jan 2050 4 Jan 2050
= 80
3
g 70 A
< -~
E 40 by e gl . .
T 50 "‘ N\ P SR -7 ‘\.. ,—'—"-‘
E .” \\ \\ o it - ‘\
# 40 - \ Y
& g !
30 TH-b Femsd o bl _LLs
20
10 4
0 +—r+—r—rrrrrrrr—rrrrrrrrrrm e
0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00

time

--- predicted by SO tumout on the day

Figure 6.25: Predicted and on-the-day wholesale electricity prices with CON_CM
(conDR=100%, w=0), 2-4 January 2050 (Two Degrees+). Source: ESMA.
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In the case when the SO bases day-ahead predictions solely on the past data
(i.e. when w = 1), the daily system demand pattern shifts from day to day, i.e.
peaks on the 2nd of January turn into valleys on the 3rd of January and so on (Fig-
ure 6.26). The daily prices shift together with the demand profile, which leads
to situations where consumers schedule flexible demand to already existing non-
deferrable demand peaks (Figure 6.27). Hence the daily demand and price profiles
end up being much more volatile compared to the case when w = 0. This leads to
increased system costs as a result of suboptimal utilisation of renewable generation

at the transmission level and increased ramping of dispatchable generators.
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Figure 6.26: Predicted and on-the-day system demand outturn with CON_CM
(conDR=100%, w=1), 2-4 January 2050 (Two Degrees+). Source:
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Figure 6.27: Predicted and on-the-day wholesale electricity prices with CON_CM
(conDR=100%, w=1), 2-4 January 2050 (Two Degrees+). Source: ESMA.
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6.1.4.3 Consumer storage capacity

Finally, we investigate the sensitivity of the system to consumer storage capacity
by changing this parameter by 25% around the default setting. The sensitivity is
measured by tracking annual system cost and greenhouse gas (GHG) emissions as
well as consumer bills in 2050 (Two Degrees+).We consider the case when 100%
of consumers deploy CON_CM (i.e. cost minimising based on RTP) since it renders
the most extreme case of herding allowing us to observe the changes more clearly.
From Figure 6.28 we can see that increasing consumer storage capacity leads
to higher system cost and the level of GHG emissions, as consumers have more
capacity to shift demand and herd. As we have seen earlier this leads to higher
demand peaks and more volatile and elevated prices. It is noted that the system is

marginally more sensitive towards domestic rather than non-domestic storage. This
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happens because domestic storage is smaller in size compared to commercial and
industrial users. This comes as a result of a higher number of heat pumps (HP) and
thermal storage (TES) assumed in the domestic compared to non-domestic sectors,
which allows more domestic consumers to shift thermal demand. To elaborate, in
the Two Degrees+ (2050) scenario almost all domestic consumers have a HP and
half of them have a TES. This means that when the number of electrical stores is
added in the sector it is almost certain that it will be added to an end-user with a HP
or to a consumer with a HP and a TES. Consequently, domestic consumers utilise
ES in combination with HP (and TES) which allows them to shift thermal as well
as non-thermal demand. In the non-domestic sectors it is more likely that an ES
unit will be added to an end-user without any thermal resources and so the impact
is lower. The observations of the annual level of GHGs are very similar to those of
system cost.

Figure 6.28: Sensitivity of system costs and GHG emissions to installed consumer stor-
age capacity with CON_CM (conDR=100%), 2050 (Two Degrees+). Source:
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Figure 6.29 demonstrates how changing consumer storage capacity affects
consumer losses as a result of herding under CON_CM. Losses are calculated by
taking the difference between consumer annual bill under CON_CM and the base

case (when consumers are passive). Different colours indicate the parameter be-
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ing changed, whereas different charts indicate the sector under consideration. As
can be expected consumer losses increase as their storage capacity increases, which
is in-line with the earlier observations of system cost. In fact consumers across
all stationary sectors are most sensitive to the changes in their own storage capac-
ity, especially the domestic sector. This is because higher storage capacity enables
consumers to herd more towards expensive time periods compared to their peers.
Electric transportation is almost equally sensitive to the changes in electric storage

capacity across all stationary sectors.

Figure 6.29: Sensitivity analysis of annual losses incurred by different sectors to in-
stalled storage capacity with CON_CM (conDR=100%), 2050 (Steady State).
Source: ESMA.
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6.1.5 Conclusion of part I

In the first section of the results chapter, we investigated the simplest form of de-
mand side management CON_CM, whereby consumers scheduled demand based
solely on the predicted real-time price for electricity. We considered three snap-
shot years (2015, 2030, 2050) for two national scenarios (Steady State and Two
Degrees+), where the impact of demand side management was assessed in terms
of system costs, GHG emission levels and system demand peaks as well consumer

electricity bills at different consumer participation level.

It was demonstrated that cost minimisation by consumers based on RTP, can
be beneficial to the system in the short term when consumer flexibility or consumer
participation in DSM is low. However, as the proliferation of flexible consumer
resources increases so do the risks of herding and chaotic market behaviour as con-
sumers try to adjust to daily wholesale prices. According to the simulation, con-
sumers tend to benefit together with the system, however inflexible consumers are
able to save when the market herds. This is a point of concern since it is possible
to imagine that consumers will follow their own selfish objectives, which can result
in compromising on the system values. The simulation has shown that flexible con-
sumers end up being more vulnerable to market prices since they have the capacity
to herd towards expensive time periods. Such outcome may deter consumers from
investing into flexible technology, which is counterproductive to the government

goals on engaging consumers and increasing system flexibility.

From performing the sensitivity analysis it was possible to show how the price
of consumer exports can serve as a tool to control herding. However, it is also
a case that by limiting exports of renewable energy generated by consumers the
availability of renewable energy at the system level is reduced. Another tool for
controlling herding is stabilising the predicted electricity prices which are sent into
the market, as has been demonstrated during the sensitivity analysis of the system

to parameter w (the weight to past demand used by the SO).

Of course, the scenarios discussed in this section are exaggerated and it is

likely that the System Operator would intervene before extreme events would occur.
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However, such interventions could cost the system and consumers dearly, and so it
i1s important to consider ways to avoid such negative consequences on the system
before they occur.

In the next section we discuss the role of aggregators in managing consumer

coordination and the benefits and risks it might bring to the system.
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6.2 Part II: The benefits and risks of aggregator-led
demand DSM

In the second section of the results, we explore the role of the aggregators in bal-
ancing the future electricity system. The reader is reminded that in the context of
this model an aggregator agent represents any entity which can pool consumers
together and act as a middle man between end-users and the wholesale market.
Hence, an aggregator can represent a utility retailing electricity to consumers, or
an online platform which coordinates their demand and generation. The reason for
such representation is that the boundary between a traditional utility (whose sole
responsibility is to retail wholesale electricity to end-users) and a traditional aggre-
gator (whose responsibility is to perform demand side management) is becoming
blurred. For example, it is now possible to be an electric utility through an online
platform and pool smaller consumers together to access wholesale markets without
necessarily being a large company.

We begin by investigating the benefits aggregators can bring to the system by
means of deploying algorithm AGG_DF, which has been adapted from (Gan et al.,
2013). In the algorithm, an aggregator uses total consumer residual demand as a
proxy for price and negotiates the demand with consumers over a number of itera-
tions until the system converges. The result of such coordination is a peak reducing
demand side response. The upside of AGG_DF is its simplicity in overcoming con-
sumer herding since it does not use system prices. However, its downside is the fact
that it does not take into generation from renewables at the transmission level.

In the second part of this section, we investigate potential issues which may
arise as a result of aggregators utilising DSM for the purpose of competing in
the wholesale and retail markets. This is demonstrated by deploying algorithm
AGG_CM (developed from AGG_DF), which is used by an aggregator to actively
minimise the cost of purchased power. Conditions are identified where aggregator
participation in AGG_CM becomes harmful to the system, as they instruct con-
sumers to shift demand towards the same periods of low electricity prices (similarly

to consumer herding described in Section 6). We then explore the implications of
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consumers being able to switch aggregators and demonstrate that retail competition
can aggravate the negative consequences of herding and lead to higher system costs.

Finally, algorithm SO_CM (extended from AGG_CM) is deployed as a tool
for overcoming aggregator and consumer herding. In SO_CM, the System Opera-
tor communicates with the market and the aggregators, thereby monitoring system
cost during demand side coordination. The superiority of algorithm SO_CM to
AGG_DF is demonstrated highlighting the importance of considering the system as
a whole when deploying DSM. This section is concluded by analysing how retail

tariff structure and storage capacity can affect consumer savings from DSM.
6.2.1 The value of aggregators in balancing the grid

6.2.1.1 System cost, demand and GHG emissions

Figure 6.30 shows the range of system savings achievable with AGG_DF as more
consumers participate in DSM in the Steady State and Two Degrees+ scenarios. It
is clear that the system benefits from having more consumers participate in DSM.
Maximum system savings are noticeably higher under Two Degree+ amounting to
£1.64 billion a year in 2050 due to a higher degree of consumer flexibility assumed
for this scenario. It is noted that inflation is not accounted for during the calculation
of wholesale prices.

These savings come as a result of lower and less volatile electricity prices (Fig-
ure 6.31). As can be seen from the figure and the table underneath, mean electricity
prices and their volatility consistently drop during the years as result of deploying
AGG_DF. Across the two scenarios, the change is more notable for the Two De-
grees+ case, which can be explained by the higher capacity of variable renewables
and consumer flexibility. In 2050 the mean electricity price drops by as much as
9.2%, whereas annual price volatility decreases by 15% relative to the base case
(when all stakeholders are passive).

We note that that system savings level out between 2030 and 2035 which coin-
cides with increased renewable capacity in the Steady State scenario (Figure 6.32)
and a reduction in the number of resistance heaters (Figure 6.33). Both situations

lead to a decrease in the steepness of the wholesale electricity price curve and con-
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Figure 6.30: Annual system savings achieved with AGG_DF relative to the base case, 2015-
2050. Source: ESMA
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sequently a reduction in the marginal benefit of DSM.

In terms of reducing greenhouse gas (GHG) emissions, the system starts to
benefit by 2030 in the Two Degrees+ scenario and only marginally by 2050 in the
Steady State scenario (Figure 6.34). The reductions in the level of GHGs are rela-
tively small because when DSM is deployed the system utilises consumer storage
(which is not 100% efficient). This leads to loses and so the total electricity con-
sumption goes up relative to the base case. This observation also highlights the
limitations of ESMA, which assumes the same efficiency of generators throughout
their operational lifecycle. In reality, the efficiency of thermal generators changes
depending on their ramping rate, and so when they run smoother the efficiency is
higher meaning that less fuel is needed compared to the case when they have to con-
stantly cycle. In addition to this, ESMA does not penalise generators for reschedul-
ing, nor does it impose a cost on the curtailment of renewables. Nevertheless, it
is possible to see that environmental benefits are much more significant in the Two

Degrees+ scenario where the capacity of variable renewables is much larger.

Figure 6.35 shows the impact of deploying AGG_DF on the annual system de-

mand peak in the Steady State and Two Degrees+ scenarios. For the Two Degrees+
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Figure 6.31: Wholesale electricity prices with and without AGG_DF, 2015-2050. Source:
ESMA
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case, the reductions are higher reaching 5.4GW and 7.5GW in 2030 and 2050 re-
spectively, which is in-line with higher consumer flexibility and the level of heating
and transport electrification assumed for this scenario. Higher consumer participa-
tion rate has a positive impact on the system resulting in a lower system demand
peak, which is in agreement with the earlier observations regarding system savings
achievable with AGG_DF.

Figure 6.36 shows the change in the annual generation mix as a result of de-
ploying AGG_DF relative to the base case in 2030 and 2050 for the two national sce-
narios. We note that the use of pumped storage and ‘other_therm’ (mainly OCGT,
diesel and fuel oil) goes down in all four cases demonstrated in the chart, which is

offset by increased utilisation of gas (under Steady state) and dispatchable renew-
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Figure 6.32: Installed renewable capacity in the Steady State scenario, 2015-2050. Source:
National Grid (National Grid, 2017a)
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Figure 6.33: Annual consumption by resistance heaters in the Two Degrees+, 2015-2050.
Source: National Grid (National Grid, 2017a)
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ables or ‘other RES’ (under Two Degrees+). It is possible to observe a reduction
in the use of CHP (Steady State) and nuclear (Two Degrees+) and an increase in
the level of consumer exports (a mix of embedded solar and power purchased from
the grid) for both scenarios. This suggests that consumers reduce self-utilisation of
own renewables for the purpose of serving the grid. In terms of variable renewables
(wind and solar) we do not see a significant difference between the cases with and

without DSM, which is explained by the fact that the algorithm does not take into
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Figure 6.34: Change in GHG emissions achieved with AGG_DF relative to the base case,
2015-2050. Source: ESMA
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Figure 6.35: Change in the annual system demand peak with AGG_DF relative to the base
case, 2015-2050. Source: ESMA
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account generation from renewables at the system level. Overall the mix appears to
improve, however a higher demand by the system offsets the benefits of AGG_DF

and GHG savings are not as high as one might expect.
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Figure 6.36: Change in the annual fuel mix under AGG_DF relative to the base case by
source, 2030 and 2050. Source: ESMA.
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Figure 6.37 demonstrates how daily generation profiles for different technolo-
gies change as a result of AGG_DF during summer and winter days in 2050 for the
two boundary scenarios. It is possible to observe how a flatter demand curve leads
to a smoother operation of dispatchable generators, 1.e. CCS and ‘other therm’ (un-
der Two Degrees+) and gas (under Steady State). The use of pumped storage also
appears to marginally reduce (Two Degrees+), whereas the amount of consumer
exports increases (for both scenarios). Although the difference in the generation
profiles is subtle when observed for a few days, it clearly amounts to significant

benefits for the system when accounted over a few years.
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Figure 6.37: Daily generation with and without AGG_DF (conDR=100%) by source, win-

ter and summer days in 2050. Source: ESMA
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6.2.2 Consumer costs

In contrast to our observations when consumers scheduled demand autonomously
(see Section 6), with AGG_DF end-users benefit from savings relative to the base
case. This highlights the positive impact of a well-coordinated DSM regime. As
previously described, we look at consumer bills across different consumer sectors

as well as types.

6.2.2.1 Analysis of different consumer sectors

At the sector level, domestic consumers see the highest absolute savings in both
Steady State and Two Degrees+ scenarios, which amount to almost £0.7 billion and
£0.4 billion per year in 2050 for Two Degrees+ and Steady State scenarios respec-
tively (Figure 6.38). This happens because domestic consumers have the highest
absolute flexibility when aggregated at the sector level (due to a large number of

electric heating and thermal energy storage units).

Figure 6.38: Absolute change in the annual consumer bills with AGG_DF relative to the
base case by sector, 2015-2050. Source: ESMA.
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Figure 6.39 demonstrates how each sector makes savings as a result of deploy-
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ing DSM for an exemplary winter day. It is possible to see that hourly savings for
domestic consumers are largest during the periods of 8:00-11:00 and 15:00-17:00,
which correspond to the peak hours in the base case in terms of prices (right chart
in Figure 6.39). Higher flexibility of domestic consumers allows the sector to re-
duce demand during peak hours more compared to the other sectors leading to the

highest absolute savings.

Figure 6.39: Consumer demand profiles with and without AGG_DF(conDR=100%) by sec-
tor, 24 December 2050 (Two Degrees+). Source: ESMA.
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In relative terms, the domestic sector also saves the most in the Two Degrees+
case (-7%), however in the Steady State scenario it is the electric transportation
which sees the highest benefits (-3.62%) (Figure 6.40). This is because in the Steady
State scenario, domestic consumers experience a high demand increase due to the
operation of storage. Hence relative savings (calculated as absolute savings di-
vided by demand increase) are lower compared to the transportation sector (which
experiences the same level of loses with and without DSM). To summarise, the ex-
planation for absolute and relative savings with AGG_DF across different sectors is
exactly analogous to the reasoning behind absolute and relative loses in the case of

herding (see Section 6).
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Figure 6.40: Relative change in annual consumer bills with AGG_DF (conDR=100%) rel-
ative to the base case by sector, 2015-2050. Source: ESMA.

Scenario | Year Domestic Commercial Industrial Transport
Base year | 2015 0.29% -0.43% 0.41% -1.76%
2030 -1.69% -2.07% -1.98% -2.99%
Steady State
2050 -3.06% -3.45% -3.49% -3.62%
Two 2030 -3.68% -3.25% -3.14% -2.80%
Degrees+ 2050 -7.02% -5.34% -5.20% -5.06%

6.2.2.2 Analysis of different consumer types

Figure 6.41 demonstrates the benefits of AGG_DF for non-flexible consumers in
terms of reducing the cost of an average unit of energy purchased during each year.
Apart from end-users with solar PV, all non-flexible consumers benefit from a price
reduction of a few £/ MWh (which increases further into the future). This is espe-
cially noticeable in the Two Degrees+ scenario. Consumers with electrical heating
(EH) make larger savings compared to consumers without any resources, due to a
higher overall demand.

We notice that domestic consumers of type 2 (with a resistance heater, RH)
see larger savings in the cost of power per unit of demand compared to those of
type 1 (with a heat pump, HP), whereas for the industrial sector (and less so for
the commercial) the opposite is true. This has much to do with the difference in
the demand pattern for domestic and non-domestic consumers and its relation to the

electricity price curve before and after coordination (Figure 6.42).

In the base case the demand profile of domestic consumers with electric heat-
ing is more correlated with prices compared to non-domestic consumers of the same
type. Hence the absolute savings achieved under AGG_DF by the domestic con-
sumers with a RH (i.e. those with a higher demand) are higher compared to those
with HP (higher efficiency and lower demand). Hence, per unit savings are also
higher for domestic consumers with RH relative to those with HP. Industrial con-
sumers with EH make a saving during the off-peak times and so having a higher

demand (i.e. with RH) reduces per MWh savings.

Consumers with solar PV experience an increase in the price of electricity
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Figure 6.41: Change in the average electricity price for inflexible consumers with

CON_CM (conDR=100%) by type, 2015-2050.
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Figure 6.42: Daily demand profiles of domestic and non-domestic consumers with electric
heating and electricity prices with and without AGG_DF (conDR=100%), 1

January 2050 (Two Degrees+). Source: ESMA
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across all years under Steady State scenario. However in the Two Degrees+ scenario

in 2050, non-domestic consumers with PV benefit from AGG_DF and see their
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price for electricity drop. Non-flexible domestic consumers with PV see a slight
price improvement in 2050 relative to the previous years (Two Degrees+) but it is
still higher than in the base case. Looking at how the residual demand profiles for
domestic and non-domestic consumers stack up against electricity prices with and

without DSM offers an explanation for this (Figure 6.43).

Figure 6.43: Daily demand profiles of domestic consumers with solar PV and electricity
prices with and without AGG_DF (conDR=100%), 18 June 2050 (Two De-
grees+). Source: ESMA.
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From Figure 6.43 we can see that in the Steady State scenario the off-peak
hours occur during the night (00:00-06:00) and so the effect of DSM is to raise
prices during the night and decrease them during peak hours (i.e. 09:00-21:00).
Hence the power from solar PV sold by consumers during the day becomes cheaper
under DSM compared to the base case (assuming that sales are made at the real time
price). In the Two Degrees+ scenario off-peak hours occur during the day (06:00-
18:00) when generation from solar PV is abundant. The effect of DSM is to smooth
demand profile and therefore raise prices during the day. Consequently, consumer
exports become more profitable with DSM compared to the base case. The rea-
son why non-domestic consumers benefit more from this situation, is because solar
generation profile is more correlated with non-domestic electricity consumption.
This means that non-domestic consumers self-consume more of own generation
and therefore become less exposed to the import price unlike domestic consumers.
In 2050 (Two Degrees+) domestic consumers see a slight reduction in the price for

electricity due to the modelled energy efficiency improvements of non-deferrable
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demand (see D.1). As a result, their exports go up relative to the non-deferrable de-
mand allowing consumers to make more profit from selling power in the wholesale
market.

Figure 6.44 demonstrates the impact of AGG_DF on the average costs of flex-
ible consumers. We can see that across all consumer types the impact of DSM is

positive - a complete opposite to the situation observed in the case of herding.

Figure 6.44: Change in the annual electricity price for flexible consumers with AGG_DF
(conDR=100%) relative to the base case by type, 2015-2050.
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Consumers of type 8 (with an electrical store, ES) benefit the most from DSM
and see £30-50/MWh reduction in the price for electricity per year in 2050 depend-
ing on scenario. Figure 6.45 looks at the demand profile of an industrial consumer
with an ES with and without DSM. We can see that with DSM the consumer is
instructed to export electricity during peak hours and increase consumption during

off-peak hours in order to smooth the total system load curve and consequently
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prices. However, since the peak prices are not totally reduced the consumer ends
up exporting during expensive time periods (17:00-21:00), which more than covers
the additional purchases at night at a lower rates (00:00-03:00). According to the
simulation, on the 1st of January 2050 in the Two Degrees+ scenario an industrial
consumer with an ES makes a profit of around £20, which translates into 9.4 p/kWh
(or 94 £/MWh) daily saving. Of course not all days during the year will lead to the
same profit but averaged over the year this explains the £30/MWh reduction in the

cost of power.

Figure 6.45: Daily demand profiles of industrial consumers with ES with and without
AGG_DF (conDR=100%), 1 January 2050 (Two Degrees+). Source: ESMA.
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Electric transportation sees marginal benefits from DSM since vehicle-to-grid
discharging is not allowed in the model (Figure 6.46). This substantially reduces
the flexibility of EVs compared to some larger consumers with electrical stores
like industrial end-users. Overall, we observe that higher ratio of consumer storage
capacity to demand lead to a larger reduction in the price. Consumers with PV are
an exception since, their profits from exports are affected during coordination as

described earlier.

6.2.3 When aggregators get greedy

In the previous section we observed the benefits of a well-coordinated DSM,
whereby an aggregator schedules consumer demand for the purpose of smoothing
system demand peaks. However, it is easy to imagine that aggregators (especially

those representing utilities) will exploit the ability to shift consumer demand for
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Figure 6.46: Change in the annual electricity price for electric vehicles with AGG_DF
(conDR=100%) relative to the base case, 2015-2050. Source: ESMA.
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the purpose of increasing profit by minimising the cost of power purchased from
the market. This effect is simulated by deploying algorithm AGG_CM, whereby
the aggregators communicate to consumers the predicted real time prices for elec-
tricity rather than the average demand (see section 3.5). The aggressiveness of the
aggregators to cost minimise is controlled through parameter ¢, which penalises
consumers for shifting from the previous demand profile during the aggregator-
consumer negotiation process (see Section 3.5). To remind the reader, when « is
large consumers do not deviate much from their default demand, whereas when o
is small they are free to cost minimise as much as they want. In this sense, ¢ acts

as a control parameter for how much flexibility end-users are allowed to use.

Figure 6.47 demonstrates how the projected cost of aggregator power is re-
duced during the coordination process with different o settings. It can be seen
that with a lower o, the aggregator is more efficient in reducing the projected cost.
When o = 0 consumers converge after only one iteration, which is not surprising
since this corresponds to the case when consumers are not penalised for shifting

demand at all and so they maximise the utilisation of storage.

Figure 6.48 shows how system savings from DSM are affected when aggre-
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Figure 6.47: Demonstration of the reduction in the projected cost of power purchased
by the aggregator with varying o settings for AGG_CM (conDR=100%, ag-
gDR=100%), 1 Jan 2050 (Two Degrees+). Source: ESMA.
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gators reduce the o parameter. We can see that higher o settings lead to positive
system savings (meaning a reduction in the total system cost), whereas lower o
values lead to negative savings (i.e. an increase in the system cost). Hence when
aggregators become more aggressive in minimising cost, they end up herding to-
wards the same periods of low electricity prices - similarly to the scenario when
consumers cost minimise autonomously with CON_CM.

It is suspected that when the share of cost minimising aggregators is low, those
that do, will see an advantage over those which are passive. In order to demonstrate
this, four aggregators are modelled (each with an equal pool of consumers) and
only one of them is allowed to cost minimise. This scenario mimics the situation
when a quarter of the aggregator market adopt AGG_CM for the purpose of cost
minimisation.

When observing the annual tariffs offered by aggregators, we can see that the
aggregator which cost minimises has an advantage over those which do not (Figure
6.49). Consumers are likely to pick an aggregator which offers a lower electricity
tariff and so it makes sense for the aggregators to adopt this strategy, which can lead

to the market herding ( as demonstrated Figure 6.48).
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Figure 6.48: Annual system cost as aggregators adopt AGG_.CM (conDR=100%, ag-
gDR=100%), 2015-2050. Source: ESMA.
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Figure 6.49: Comparison of electricity tariffs between a cost minimising aggregator and a
passive aggregator (aggDR=25%), 2015-2050. Source: ESMA.
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6.2.4 The impact of retail market competition under DSM on

the system

Consumers are notoriously passive when it comes to switching their energy

providers. However, a recent report by The Office of Gas and Electricity Markets
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(Ofgem) shows that in the UK electricity switching rate has gone up by 30% in 2017
relative to 2015 and reached a 6-year high (4.4 million consumers)(Ofgem, 2017c).
This spike has been largely driven by the emergence of new smaller and medium
size suppliers offering more flexible and transparent tariffs (e.g. (Energy, 2018)),
as well as companies providing switching services on behalf of the consumer, e.g
(Switchcraft, 2018). With the integration of smart metering services and increased
consumer awareness of climate change issues, it is expected that end-users will be-
come more engaged in choosing the right energy provider for them. As discussed
in the previous section, it is highly likely that aggregators will utilise DSM to win
over consumers. Hence, it is of relevance to investigate how consumer switching
rates will impact the electricity system.

In order to do that, we model two cost minimising aggregators competing for
consumers in 2050 (Two Degrees+) based on the average daily price of electricity.
Here we model an uneven number of consumers per aggregator to start off with in
order to introduce some competition (Figure 6.50).

Figure 6.50: List and number of consumers signed up with each aggregator on day one of
the simulation, 2050 (Two Degrees+). Source: ESMA.

Aggregator 1 Aggregator2

s 10,281,729 - domestic (no resources) » 11,074,781 - domestic [with HP)
s 1,410,574 - domestic (with HP and TES) o 550,347 - domestic (with RH)

¢ 303,845 - domestic (with RH and TES) s 1,930,275 - domestic (with PV}
s 173,722 - domestic {with PV and ES) o 6,092 - domestic [with ES)

185,614 - domestic [with HP, PV, TES and ES}
4,238,516 - commercial [no resources)
105,545 - commercial {with HP and TES)
100 - commercial [with RH and TES)

100 - commercial (with PV and E5)

100 - commercial [with HF, PV, TES and ES)
677,693 - industrial [no resources)

34,240 - industrial (with HP and TES)

100 - industrial [with RH and TES)

100 - industrial [with PV and ES}

100 - industrial [with HP, PV, TES and ES}
16,567,605 - transport

Aggregator 1 is contracted to all consumers of type 1 (no resources), type 3

60,706 - domestic (with RH, PV, TES and ES)
550,096 - commercial (with HF}

55,575 - commercial (with RH)

250,732 - commercial (with PV}

90,875 - commercial [with ES)

100 - commercial [with RH, PV, TES and ES)
86,807 - industrial [with HP)

21,249 - industrial [with RH)

57.238 - industrial [with PV

18,564 - industrial (with ES)

100 - industrial [with RH, PV, TES and ES)

(with HP and TES), type 5 (with RH and TES), type 7 (with PV and ES), type 9
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(with HP, PV, TES and ES), and the whole fleet of electric vehicles. Aggregator 2
is contracted to consumers of type 2 (with HP), type 4 (with RH), type 6 (with PV),
type 8 (with ES), and type 10 (with RH, PV, TES and ES). As a result Aggrega-
tor 1 has access to more storage and Aggregator 2 has more solar capacity (hence
a lower demand). Consumers are then allowed to switch aggregators according to
four cases: no switching, quarterly, monthly and daily. 50% of consumers are al-
lowed to switch when the time comes - a value set arbitrarily for demonstration
purposes. The stylised nature of this experiment is acknowledged, however consid-
ering the difficulty in obtaining consumer information regarding their energy service
providers, it is deemed to be sufficient to demonstrate the potential issues that may

arise as a result of retail market competition in the context of DSM.

Figure 6.51 shows how consumers migrate between the two aggregators during
the experiment. The aggregators calculate the retail electricity tariff as a running
average of the break-even cost of purchasing electricity. Hence, monthly switching
corresponds to long-term decision making by consumers, whereas daily switching

corresponds to short-term decision-making.

With quarterly switching, aggregator 1 slowly loses consumers whilst aggre-
gator 2 gains them even though it starts with fewer. When consumers switch on a
monthly basis, aggregator 1 alternates between losing and gaining the market share.
However, when consumers switch daily, aggregator 1 wins the whole consumer
market in the first few days of the year. The competition dynamic between the two
aggregators comes as a result of each one having different flexibility resources and
demand constraints. Hence, a daily win can be critical to gaining the higher share

of the consumer market.

Such competition can carry negative consequences for the system. Figure 6.52
reports on the system cost increase relative to the base case (when all agents are
passive) for different experimental settings. All cases when aggregators cost min-
imise lead to an increase in the system cost. Interestingly, the case when consumers
switch daily leads to a slightly better outcome compared to the other cases. This not

surprising since during daily switching all consumers end up with one aggregator
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Figure 6.51: Demonstration of how consumer migrate between aggregators when they are
allowed to switch at different rates, 2050 (Two Degrees+).

Aggregator2 — Aggregator1

504
40
301
204
101
O-
50
40 -
304
204
104
O-
50 4
40 -

3 O

50
40
30
20
10

0
01-Jan 20-Feb 11-Apr 31-May 20-Jul 08-Sep 28-Oct 17-Dec

suoN

Ausypenp

Alyauopy

Number of consumers contracted to aggregator (millions)
Areg

Key: ‘None’ - consumers do not switch, ‘Daily’ - consumers switch every day, ‘Monthly’ -
consumers switch every 30 days, ‘Quarterly’ - consumers switch every 90 days

Figure 6.52: Annual system cost under different consumer switching strategies, 2050 (Two
Degrees+). Source: ESMA.
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rendering a more centralised DSM. The highest cost is reached when consumers
switch on a monthly basis, which is also the case where both aggregators remain in
the game. In fact, with monthly switching one aggregator ends up with the largest
share of consumers with solar PV, allowing it to export energy into the grid and
profit from the market. As a result of aggregator exports, the demand curve at the
system level become more volatile and prices increase as a result. The aggregator
without solar ends up demanding more from the wholesale market further contribut-

ing to the wholesale prices increase.

A note on vertically integrated utilities. In the above experiment it was possible
to demonstrate that competition between aggregators by means of shifting demand
can lead to increased system costs. In (Subkhankulova et al., 2017b,c,a) we ex-
tend this discussion to examine how vertically integrated utilities can benefit from
strategically manipulating consumer loads. We compare two types of utilities per-
forming DSM: a green one (in possession of a wind generator) and a traditional one
(in possession of a dispatchable generator). We find that conditions exist where the
traditional utility benefits from instructing consumers to increase demand, which
allows it to sell power at a higher rate. This ultimately leads to higher system de-
mand peaks, costs and prices for consumers. As a result of such competition, the
traditional utility is able to offer a more competitive tariff for electricity compared
to the green utility even though the tariffs in general are higher. Another paper
which investigates this issue is proposed by (Priiggler et al., 2011), where the au-
thors explore the consequences of vertically integrated utilities strategically operat-
ing storage. They find that in the long run electricity prices increase which suggests
potential risks of vertically integrated utilities shifting demand for the purpose of

competition.

6.2.5 The value of a central coordinator

One way to avoid aggregator herding is to involve a central entity like the System
Operator in the coordination process. Assuming the SO is able to communicate
with the market, the price information passed onto the aggregators (and further to

consumers) will reflect the true cost of generating electricity and stop them from
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overshooting when scheduling demand. To demonstrate the benefits of a centrally-
led DSM algorithm SO_CM is deployed, which is developed from AGG_DF by
introducing another layer of coordination between the SO and the aggregators (see
section 3.5.3).

Figure 6.53 shows additional savings achieved as a result of introducing a cen-
tral coordinator. We note that the system saves more in the Two Degrees+ scenario
which is due to a higher consumer flexibility assumed for this scenario. Looking at
Figure 6.54, we observe that the algorithm makes better use of system level renew-
ables, which leads to a reduction in the cost of generating power and the level of
GHGs emitted by the electricity grid (Figure 6.55).

Figure 6.53: Additional annual system savings with SO_CM compared to AGG_DF, 2015-
2050. Source: ESMA.
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Similarly to AGG_DF, with SO_CM the system utilises less pumped storage
and polluting thermal generators (e.g. diesel, fuel oil and OCGT). The increase in
the demand from operating storage is met by gas as well as increased consumer
exports. Although regime SO_CM shows superiority over AGG_DF, appears to
be marginal highlighting the limitations of ESMA. The generation component in
ESMA functions on the day-ahead basis and so does not demonstrate the value of

short-term coordination between demand and supply which is deployed during the
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Figure 6.54: Change in the annual fuel mix with SO_CM relative to the base case, 2015-
2050. Source: ESMA.
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Note: ‘other_therm’ includes open cycle gas turbines (OCGT), diesel and gas reciprocating engines, and fuel oil
‘other_RES’ includes geothermal CHP, waste CHP, anaerobic digestion CHP, landfill gas, sewage, marine and biogas CHP

balancing market. For this reason the savings reported in this work are lower when
compared to other papers, e.g. (Strbac et al., 2012) where the authors report £0.8-
14.9 billion/year savings from balancing technologies in 2050 depending on the

scenario.
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Figure 6.55: Avoided GHG emissions with SO_CM compared to AGG_DF, 2015-2050.
Source: ESMA.
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6.2.6 Dynamic versus flat tariffs

So far we have only considered billing consumers at the real time price. It has been
observed that consumer demand pattern plays an important role in determining the
benefits from DSM. However, since the aggregators instruct end-users on how to
shift demand it might seem unfair to expose end-users to the wholesale market price
risk. In this section we explore how consumer benefits are impacted when they are
charged at fixed tariffs rather than dynamic electricity prices.

Figure 6.56 reports savings made by non-flexible consumers as a result of de-
ploying DSM calculated at different retail tariffs: fixed (daily), fixed (yearly) and
RTP (see Section 3.4.3.3 for calculations)*. We focus on 2050 (Two Degrees+)
since that is the year which saw the biggest impact of DSM on consumer bills.

It is possible to see that consumers with PV are the most vulnerable to the
tariff structure, especially in the domestic sector. If in the Steady State scenario
they benefit more from a fixed tariff (daily rather than yearly), in the Two Degrees+
RTP leads to higher savings. This is because consumers with PV export electricity

during the day, hence their cost of power is dependent on the price at which they

4We take regime AGG_DF as an example since the results are very similar to SO_CM
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Figure 6.56: Comparison of non-flexible consumer savings with AGG_DF accounted at
different tariffs, 2050. Source: ESMA.
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sell electricity. Domestic consumers with PV are more vulnerable to the electricity
tariff structure compared to non-domestic consumers of the same type, since their
demand profile is less correlated with the generation profile from solar and so they
rely on exporting electricity at the peak prices (such as in the case of RTP in the

Two Degrees+ case).

Figures 6.57 and 6.58 demonstrate how electricity tariffs change against resid-
ual demand profiles for domestic and non-domestic consumers with PV. The analy-
sis focuses on a summer day since it corresponds to the situation where the genera-

tion from solar PV is abundant.

In the case when tariffs are calculated at an average daily rate, DSM leads to
a reduction in the tariffs in the Steady State and an increase in the Two Degrees+

scenario (similarly to RTP) (Figure 6.57). Hence in the Two Degrees+ scenario,
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power exported by consumers with DSM will be more profitable with DSM rel-
ative to the base case. However, since a flat tariff ignores the correlation between
wholesale prices for electricity and the solar generation profile (i.e. only the amount
of energy exported matters), in the Two Degrees+ scenario consumers benefit less
when exporting at a flat daily rate rather than RTP. In the Steady State scenario con-
sumers see a drop in electricity prices due to the overall cost of purchased energy
going down. Domestic consumers with PV see almost no benefit from DSM in the
Two Degrees+ scenario when billed at the fixed daily rate. This is because resi-
dential consumers purchase more power compared to what they export and rely on
the correlation between the generation and price profile (as demonstrated in Figure
6.57).

Figure 6.57: Daily demand profiles of domestic and commercial consumers with PV

against fixed daily electricity tariffs with and without AGG_DF (ag-
gDR=100%, conDR=100%), 2050. Source: ESMA
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When consumer tariffs are calculated on an annual basis, we note that for both
Steady State and Two Degrees+ scenarios the average price level drops under DSM
(Figure 6.58). Hence, consumers with PV benefit less from exports and see an
increase in the cost of power. However, in the Steady State all consumers still
perform better with fixed pricing relative to RTP. In the Two Degrees+ scenario
domestic consumers with PV are most exposed when billed at the fixed annual
tariffs and see the price of electricity increase by £5/MWh. This is because in the

Two Degrees+ scenario average annual tariffs experience a large drop under DSM.
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Figure 6.58: Daily demand profiles of domestic and commercial consumers with PV
against fixed yearly electricity tariffs with and without AGG_DF (ag-
gDR=100%, conDR=100%), 2050. Source: ESMA
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Non-domestic consumers with electric heating appear to benefit more from
DSM when billed at the fixed daily price, which suggests that their demand profiles
are less correlated with the price curve in the base case. For the same reason in
the Two Degrees+ scenario, industrial end-users with no resources benefit the most

when billed at the fixed annual rate.

Across all scenarios, flexible consumers save more when billed at the real time
price, with consumers of types 7 (with PV and ES) and 8 (with ES) benefitting the
most (Figure 6.59). It appears that consumers with more flexibility and less demand
are impacted more compared to the more inflexible and less consuming end-users.
For this reason consumers with PV and ES see an increase in the price level for

fixed tariff cases relative to the base case.

Figure 6.60 analyses the demand profile of an industrial consumer with elec-
trical storage against fixed and dynamic electricity tariffs. As discussed before,
flexible consumers are instructed to decrease demand during peak hours for which
reason those with the highest flexibility end up exporting electricity. However, since
the wholesale price curve (at RTP) is not totally smooth they export electricity at
the peak price whilst buying at a lower rate (overnight). When the prices are flat
during the day consumers buy and sell at the same rate and so the profits are smaller,

whilst the cost of purchased electricity is higher leading to lower overall savings.
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Figure 6.59: Comparison of flexible consumer savings with AGG_DF (aggDR=100%,
conDR=100%) accounted at different tariffs, 2050. Source: ESMA
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Consumer profits are lowest with fixed annual prices since the overall price shift is
smaller during the year reducing the arbitrage opportunity.
Figure 6.60: Daily demand profile of an industrial consumer with an electrical store (ES)

against fixed electricity tariffs and RTP with and without AGG_DF (ag-
gDR=100%, conDR=100%). Source: ESMA
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Interestingly, electric vehicles benefit from a fixed tariff even though they also
represent consumers with an electrical store. On a closer look (Figure 6.62) we see
that under coordination the demand profile of an electric vehicle fleet goes from an
almost flat one to a very variable one. Hence, in the case of RTP the demand peaks
of electric transportation end up coinciding with the wholesale price peaks. When

the tariffs are flat electric vehicles are protected from the wholesale market risk.

Figure 6.61: Comparison of electric transportation savings with AGG_DF (aggDR=100%,
conDR=100%) relative to the base case accounted at different tariffs, 2050.
Source: ESMA.
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Figure 6.62: Daily demand profile of an electric vehicle fleet against fixed electricity tariffs
and RTP with and without AGG_DF (aggDR=100%, conDR=100%). Source:
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6.2.7 Sensitivity analysis

As we have seen in the analysis, electrical storage (ES) capacity plays a critical
part in the level of benefits gained by consumers from the deployment of DSM.
The impact on the results is explored by varying the amount of electrical storage
assumed for different consumer sectors. The analysis is performed for 2050 in the
Two Degrees+ scenario when all consumers participate in DSM (conDR=100%)
since it constitutes the case when the system has the highest capacity of renewables

and consumer storage.

Figure 6.63 demonstrates how annual system cost and the level of GHG emis-
sions change with different values for consumer ES capacity. Not surprisingly sys-
tem cost decreases whilst emissions go down when storage capacities across differ-
ent sectors increase. This is because with more storage the system has more flexi-
bility to perform demand smoothing, which leads to better utilisation of renewables
and lower electricity prices. We note that system cost is more sensitive to domestic
rather than non-domestic storage®. This is because the number of heat pumps (and
consequently thermal energy stores) is assumed to be higher in the domestic sector
compared to non-domestic sectors. Therefore, increasing ES capacity allows do-
mestic consumers to shift thermal demand, whereas non-domestic consumers have

less capacity to do this.

From Figure 6.64 we see that increasing consumer storage has a positive im-
pact on consumer savings, which is in-line with our earlier observations of system
costs. We note that the level of savings for each stationary sector is most sensitive to
its own ES capacity followed by domestic. This is not surprising since it decreases
consumer exposure to the market prices. The transport sector experiences very
marginal sensitivity to the ES storage capacity across the stationary sectors seeing
the level of savings change by < 1% for a 25% change in the storage capacity across
the stationary sectors. Moreover, the sector appears to benefit from a reduction in
the domestic storage capacity. This is because the electric transportation constitutes

the most flexible consumer, and so under AGG_DF its profile is almost flat. There-

>Commercial and industrial sectors have been grouped as the sensitivities were very similar
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Figure 6.63: Sensitivity of system cost and GHG emissions to consumer electrical stor-
age (ES) capacity with AGG_DF (aggDR=100%, conDR=100%), 2050 (Two
Degrees+). Source: ESMA.
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fore, slight fluctuation in the wholesale prices have a very marginal effect on the
level of savings made by the transport sector. Since during AGG_DF, consumers
are negotiated with as a pool, it appears that higher storage capacity assumed in the
domestic sector changes the transport demand profile in a way that leads to slightly

lower savings relative to the base case.
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Figure 6.64: Sensitivity of consumer savings to consumer electrical storage (ES) and so-
lar PV capacity with AGG_DF (aggDR=100%, conDR=100%), 2050 (Two
Degrees+). Source: ESMA.
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6.2.8 Summary of section II

In this section we observed the benefits of aggregator-led coordination in overcom-
ing consumer herding by means of deploying algorithm AGG_DF. In 2050 (Two
Degrees+) DSM lead to a £1.64 billion reduction in system cost, 0.85MtCO2eq
omitted GHG emissions and a 7.5 GW decrease in the annual demand peak. How-
ever, we also saw that when aggregators became aggressive in minimising costs,
they started to herd (much like consumers) which lead to negative consequences for
the grid. Allowing consumers to switch aggregators lead to a further increase in
system costs due to uneven distribution of consumer resources between the aggre-
gators. These results are not surprising, since aggregating consumers merely creates

larger consumers which compete in the wholesale market.
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The only certain solution to overcoming the problem of herding is to involve a
central entity, which is able to communicate with the market and inform the stake-
holders in the system of the true cost of generating electricity. This is demon-
strated by deploying algorithm SO_CM and comparing it to AGG_DF. As suspected,
SO_CM lead to slightly higher system savings (especially for the Two Degrees+ sce-
nario in the later years), since the algorithm takes into account system level renew-
ables and communicates these to the market. However, the superiority of algorithm
SO_CM over AGG_DF was shown to be marginal revealing certain limitations of
the model.

We then explored the impact of billing consumers at fixed tariffs (daily and
yearly) rather than at the real time price (RTP). Consumers with solar PV (espe-
cially in the domestic sector) were found to be the most vulnerable to the electricity
tariff structure, as they rely on exporting electricity. Interestingly, the observations
were different for the two national scenarios; whereas in the Steady State consumer
with PV saved more with fixed tariffs, in the Two Degrees+ case real-time pric-
ing was more beneficial to these consumers. On the whole, non-flexible consumers
benefitted more from fixed tariffs, whereas flexible consumers from RTP. These
observations raise an important point regarding allocating the benefits from DSM
fairly across different types of consumers. In fact, neither RTP nor flat tariff struc-
ture appears to be consistently better across all consumer types and scenarios. This
suggests that end-users need to be considered on the individual basis when it comes
to allocating costs in the context of DSM.

Finally, through deploying algorithm SO_CM it was revealed that consumer
response to the price signal is sensitive to the damping parameter &. When o was
set too high relative to the wholesale price level, consumers did not respond much
to the price signal, whereas when @ was too low consumers overshot when cost
minimising. In the next section we discuss the significance of these observations in

developing a completely decentralised consumer optimisation regime.
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6.3 Part III: Autonomous decentralised consumer

DSM - CON_CM+

In the previous section, the benefits of aggregator-led demand side response have
been demonstrated by means of deploying algorithm AGG_DF. It was shown that
cost minimisation by aggregators can lead to herding (similar to the case when
consumers cost minimise autonomously) and how deploying a centrally coordinated
DSM regime could help to overcome this problem. Indeed, with algorithm SO_CM
(involving the system operator communicating with all stakeholders in the system)
savings increased by over £70 million compared to AGG_DF in 2050 Two Degrees+
scenario as a result of the market communicating the true cost of generating power.
However, deploying such a DSM regime would require a secure communication
infrastructure between consumers, aggregators and the system operator which could
be costly. In addition to this, some consumers may not wish to share information

about their demand due to privacy concerns.

On the other hand, allowing consumers to cost minimise autonomously can
lead to the market herding and as a result compromise on the security of electricity
grid (demonstrated in Section 6). Following the observations of how aggregator-led
DSM algorithms overcome the issue of consumer herding, in this section algorithm
CON_CM (the simplest consumer-led DSM regime) is improved. The new algo-
rithm is then deployed in order to explore the possibility of complete consumer

autonomy when performing DSM without compromising the security of the grid.

6.3.1 Developing algorithm CON_CM+

When studying algorithm AGG_DF, it has been observed that it works by suppress-
ing consumer response to the signal received from the aggregator through a damp-
ing parameter &, which penalises consumers for deviating from a demand profile in
the previous iteration (see step 5 Algorithm 2)). Mathematically, the optimisation

function for a consumer c in day d looks like this:
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min Z C L (t,d) - g5 (1,d) + o (IS, (1r,d) — 10 (1,d)).
Lier (1,d) (6.2)

subject to consumer technology constraints specified in Section 3.4.2,
Where, gX(¢,d) is the signal received from the aggregator at time ¢,
l;;li_l (t,d) is the net consumer demand from the previous iteration k — 1 at time ¢,
and
l,i;];(t, d) is the optimal consumer net demand profile obtained in iteration k at time

t.

If « is large, the second term in (6.2) becomes more expensive and the con-
sumer does not deviate from the previous net demand profile lf,’elfl (t,d). In contrast

if a = 0, the consumer ignores the penalty and (6.2) is simplified to:

min Z lhet (2, kt,d), (6.3)

which is the same as the optimisation function in algorithm CON_CM with the

signal defined as the predicted real time price for electricity, i.e. g(¢,d) = p*(t,d).

The default setting for the damping term in algorithm AGG_DF is 0.5 (i.e.
a = 0.5). Indeed, with a tolerance level of 0.005% the algorithm converges within
15 iterations as expected according to the authors (Gan et al., 2013). However, in
algorithm SO_CM (which operates based on the real time price for electricity gen-
eration), it has been noticed that the optimal & and the number of iterations required
for convergence vary depending on the day. Moreover, with certain values of « al-
gorithm SO_CM achieved significant system cost reductions in just a few iterations.
Hence, an optimal value of o must exist where the system would achieve the least
cost in just one iteration. This would correspond to a situation when consumers
receive a signal from the aggregator, schedule own demand but then do not share

new demand information with the system thus preserving their privacy.

Another observation made during the previous analysis was that as a conse-
quence of convergence of algorithm AGG_DF, system demand became smoothed

during the course of negotiations between the aggregator and consumers. Yet, de-
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mand smoothing is one of the simplest approaches to overcome herding and even
now commercially available technologies like Tesla PowerWall are able to do that
without the need for an aggregator.

Guided by the above observation, algorithm CON_CM is upgraded into
CON_CM+ by introducing a second term into the optimisation function (as demon-
strated in Algorithm 5). However, in the proposed algorithm the consumer is pe-
nalised for deviating from a flat demand profile rather than the default one (see step
1 in Algorithm 5). This offers a way to combine two coordination strategies for
consumer: demand smoothing and cost minimising and to explore the dynamics
between them. Moreover, having a flat demand as one of the extremes offers a

protective wall from consumers overshooting with cost minimisation.

Algorithm 5: CON_CM+: Autonomous consumer cost minimisation al-
gorithm.

Input : Aggregator a knows predicted day-ahead prices for electricity
p*(t,d). Consumer ¢ knows day-ahead non-deferrable thermal
and non-thermal demand profiles [(¢,d),¢“(t,d), renewable
generation r°(¢,d) and technical constraints of own resources.

Output: Consumer net demand profile:

£, (0d) Vi€ [LT].

1 Consumer calculates the average net electricity demand in day d as:

< lzet Z lnet

2 Consumer receives predicted electricity prices p*(¢,d) from the
aggregator a and solves the following optimisation problem:

IM%Z%a P(1,d) + - (I (1,d) = < Loy (d) >)2
net t

subject to consumer technical constraints specified in Appendix C.2.
3 Consumer calculates the final net demand in day d:

1€(t,d) + 1595 (1,d) — 195 (t,d) + 5 p(t,d) + Ly (t,d) — r°(t,dD),

vt e [1,T].
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Figure 6.65: Example of the impact of the damping term & on CON_CM (conDR=100%)
coordination for domestic consumer agent of type 3 (with HP, TES), 1st Jan-
uary 2030 (Two Degree scenario). Source: ESMA.
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Figure 6.65 shows the impact of o on the net demand profile of consumer.
With small values of alpha (i.e. 0, 0.001, 0.005) the demand shifts significantly,
whilst for higher values (0.01,0.05) it remains closer to the average flat demand.
Hence setting alpha to zero mimics cost minimising behaviour of consumers whilst
setting alpha very high (i.e. & = 300) mimics a less aggressive consumer strategy
of demand smoothing.

It is now of interest to explore how the damping term () affects the perfor-
mance of the system and to find those values which lead to the lowest system cost.
As for previous DSM regimes, we vary consumer participation level from 0% to
100% and track system cost for the period 2015-2050 in the Two Degrees+ and
Steady State scenarios (Figure 6.66). From the figure we can see that like SO_CM
the success of the algorithm in achieving the lowest system cost is sensitive to the
choice of the damping parameter & and the consumer participation rate conDR.

The left side of the cost matrices corresponds to pure cost minimising be-
haviour by consumers. We can see that from 2030 onwards, as consumer par-
ticipation rate increases to 100% (conDR=100%) the system starts to suffer from
herding as indicated by the bright red squares. This is in-line with the observations
discussed in Section 6.1 when consumers scheduled based on RTP autonomously
(regime CON_CM). However, for certain values of a the system achieves lower
system cost compared to the base case (as indicated by the bright blue squares).

Moreover, the optimal setting for alpha and conDR varies throughout the year as
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observed for algorithm SO_CM (Figure 6.67). And so like for SO_CM, the theoret-
ical optimal performance of regime CON_CM+ is evaluated by we selecting those

days for which « leads to the least system cost.

6.3.2 Consumer learning algorithm

Thinking of the real world implementation of algorithm CON_CM, it could be a
possibility that the central entity informs consumers of the parameter & for day-
ahead scheduling. Such a scenario would render a semi-autonomous DSM regime,
whereby consumers receive a one way signal from the aggregator but do not send
any information back. In order to simulate total consumer autonomy during co-
ordination we explore the possibility of consumers (or rather the software on the
demand side) learning the parameter ¢, in which case it become consumer- and
day-specific a“(d).

To do this, a simple reinforcement learning algorithm is deployed, whereby
consumer c¢ adjusts a‘(d) depending on the daily cost of electricity z¢(d). Each
day consumer compares z°(d) to the cost of electricity incurred the day before, i.e.
z°(d —1). If the cost of power on the day is higher than in the previous day, i.e.
Z(d) > z°(d — 1), consumer returns a° to the previous setting, i.e. a‘(d+1) =
o(d — 1). However, if the cost on the day is lower or equal to that on the previous
day, i.e. z°(d) <= z°(d — 1), consumer ¢ does one of two things: explores new
strategy by randomly increasing or decreasing ¢ by step conStep or keeps ¢t¢ at the
current setting, i.e. o(d + 1) = a“(d). The amount of the time consumer explores
new strategies is defined by a parameter conExplore, which together with conStep
is set at the system level. At the end of the day consumer ¢ updates the previous
values for daily cost and the damping parameter, i.e. z°(d — 1) = z(d) and a“(d —

1) =a‘(d).
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Figure 6.66: Annual system costs with CON_CM (varying o and conDR settings), 2015-
2050. Source: ESMA.
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Figure 6.67: Alpha setting (&) selected on the basis of least daily system cost with
CON_CM+ (conDR=100%), 2015-2050. Source: ESMA.
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Figure E.15 demonstrates the learning algorithm under different sets of pa-

rameters in 2050 Two Degrees+. It is possible to see that with a larger step size

(conStep) and exploration parameter (conExplore) consumer damping term ¢ fluc-

tuates much more than when conExplore and conStep are small. Needless to say the

choice of parameters conExplore and conStep will also affect the system cost, and

so sensitivity analysis is performed in order to find the combination of parameters

which leads to the best consumer learning strategy (see Appendix E.3).

Following the calibration procedure (where conExplore and conStep have been

set to 0.5 and 0.005 respectively), the simulation is re-run with CON_CM+ with

consumer learning, i.e. CON_CM+(LEARN), and compare all DSM regimes in the

next section.
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Figure 6.68: Demonstration of the ¢ learning algorithm for consumers of type 9 (with

HPPV,TES and ES) and electric vehicles, 2050 (Two Degrees+). Source:
ESMA.
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6.3.3 Comparison of all DSM regimes

Figures 6.69-6.71 demonstrate how the four DSM regimes considered in this
work compare in terms of total system cost, GHG emissions and demand peaks.
In terms of total system savings, regime SO_CM achieves the best performance
(£1.71 billion) followed by AGG_DF (£1.64 billion), CON_CM+ (£1.4 billion), and
CON_CM+(LEARN)(£1.24 billion) in 2050 (Two Degrees+). We note that regime
CON_CM+ achieves higher system savings compared to CON_CM+(LEARN),

which is expected since in CON_CM+ « is set centrally.

Looking at Figure 6.70, we can see that prior to 2030 lowest system cost does
not necessarily translate into lowest GHG emissions. Hence in 2015, CON_CM+

performs better than SO_CM and AGG_DF.
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Figure 6.69: Annual system savings with CON_CM+(LEARN), CON_CM+, AGG_DF and
SO_CM relative to the base case, 2015-2050. Source: ESMA.
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Figure 6.70: Avoided GHG emissions with CON_CM+(LEARN), CON_CM+, AGG_DF
and SO_CM, 2015-2050. Source: ESMA.

Steady State Two Degrees+

0.5

0.0

-0.51

Avoided GHG emissions (MTCO2eq)

2020 2030 2040 2050 2020 2030 2040 2050
year

DSMregime = SO_CM == AGG_DF == CON_CM+ == CON_CM+(LEARN)

This is because prior to 2030 carbon prices are relatively low and so the system
chooses to run the more polluting cheaper generators. Post 2030, regime SO_CM
consistently achieves the highest level of avoided GHG emissions suggesting a bet-

ter alignment between the cost and sustainability of the electricity grid. However,
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the improvements are marginal compared to algorithm AGG_DF which does not
take account of system level renewables. It is suspected that this is because the
model does not include the cost of curtailing renewables, nor does it take into ac-
count how the efficiency of dispatchable generators is affected by their ramping rate.
Hence, the cost of cycling generators is underestimated leading to an overestimation
of the use of renewables.

For 2030-2050 across both national scenarios, regimes AGG_DF and
SO_CM achieve the lowest system demand peaks. Apart from 2015, regime
CON_CM+(LEARN) consistently leads to the highest level of system demand peaks
across all years and scenarios. This happens because with CON_CM+(LEARN)
consumers are continuously adjusting the damping term ¢ - a parameter towards
which the system is very sensitive. As consumers explore the parameter a¢, situa-
tions exist where they overshoot and demonstrate the symptoms of herding which
leads to increased demand peaks.

Figure 6.71: Annual system demand peaks with CON_CM+(LEARN), CON_CM+,
AGG_DF and SO_CM, 2015-2050. Source: ESMA.
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Analysis of consumer savings across all DSM regimes shows that on the whole
end-users save more under centralised approached (i.e. SO_CM and AGG_DF),

suggesting that consumers benefit together with the system (Figure 6.72). However,
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we observe that for non-flexible consumers with PV decentralised approaches (i.e.

CON_CM+ and CON_CM+(LEARN)) outperform centralised DSM, especially in

the Steady State scenario (Figure 6.73).

Figure 6.72: Change in the price of electricity for consumers with a heat pump (HP) and
thermal energy storage (TES) with different DSM regimes calculated at RTP
in 2050. Source: ESMA
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Figure 6.73: Change in the price of electricity for consumers with solar PV under different
DSM regimes calculated at RTP. Source: ESMA
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In the Two Degrees+ scenario domestic consumers with solar PV save more
when the market is completely autonomous under CON_CM+(LEARN). On the
contrary, regime AGG_DF performs the worst for these consumers in both Steady
State and Two Degrees+ scenarios. This is because consumers with solar PV rely
on exporting electricity at the higher prices and demand smoothing under AGG_DF
reduces the arbitrage opportunity for them. Of course how much different con-
sumers pay depends very much on the structure of the tariff (as we have seen when
considering fixed prices). However, by comparing different regimes it was possi-
ble to identify (once again) that conflict of interest exists between certain types of

consumers and the system.

6.3.4 How should consumer flexibility be rewarded?

Thinking of the service consumers provide to the grid when shifting demand, it
would seem fair that their reward is based on the amount of flexibility they offer to
the grid. In order to assess whether that is the case, consumer flexibility is calcu-
lated as the absolute change in the residual demand profile before and after DSM
(averaged per day) and plotted against annual savings per unit of energy consumed
(£/MWh) calculated at RTP (Figure 6.74).

From the figure we can see that consumer savings depend very much on the
type of resources they possess. Firstly, we notice that electric vehicles and con-
sumers with resistance heaters and thermal energy storage (i.e. with RH and TES)
see the lowest savings relative to the amount of flexibility they offer, in particular in
the Steady State scenario. On the other hand consumers with electrical storage see
the highest savings relative to the amount of offered flexibility to the grid. This is
because consumers with electrical heating and TES are constrained by the thermal
demand pattern they have to fulfil. This allows consumers without electric heating
to be more effective when shifting demand, which leads to larger savings. These
observations suggest that demand pattern plays as much of a role in determining
consumer benefits from DSM as the amount of flexibility one can offer.

Finally, non-flexible consumers are also impacted by DSM albeit not being

able to shift demand at all (Figure 6.75). Out of those, consumers with electric
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Figure 6.74: Change in the price of electricity for flexible consumers with different re-
sources under SO_CM (conDR=100%, aggDR=100%) in 2050. Source:
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heating end up benefitting the most whereby those with solar PV lose out for rea-
sons discussed earlier sections. However, at under £1/kWh the impact is marginal
compared to that of flexible consumers. Nevertheless, whether they want it or not
some inflexible consumers save whilst others loose out making it an important point

to consider when thinking of the future tariff structure for retail electricity.
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Figure 6.75: Change in the price of electricity for non-flexible consumers with different
resources across all DSM regimes calculated at RTP in 2050. Source: ESMA
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6.3.5 Summary of part I1I

In part three of the results chapter, we explored the possibility of autonomous
consumer coordination by developing algorithm CON_CM+, which combined con-
sumer strategies for demand smoothing and cost minimisation based on RTP. The
algorithm works by penalising consumers for deviating from a smooth demand pro-
file by a damping term o thereby supressing consumer herding. It has been demon-
strated that like algorithm SO_CM, CON_CM+ is sensitive to the choice of o and
in order to make it truly autonomous a simple learning algorithm was introduced

which allowed consumers to adjust the parameter themselves.

In terms of system benefits, it is concluded that algorithm SO_CM achieves
the best performance, followed closely by AGG_DEF. In terms of consumer sav-
ings, for most types centralised coordination was observed to be more beneficial,
i.e. regimes SO_CM and AGG_DF. However, it was demonstrated that for non-
flexible consumers with solar PV decentralised DSM regimes (i.e. CON_CM+ and
CON_CM (LEARN)) lead to higher savings.

To summarise, we observed a trade-off between stakeholder autonomy and sys-

tem optimality, i.e. the system performed best with SO_CM however that involved
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consumers giving up information about their flexibility. It is argued that consumer
control can be minimised through an algorithm such as CON_CM+, whereby the
information flow between consumers and the system is limited. It is noted that
the algorithm for consumer adjusting ¢ described here is very simplistic and with
its improvement autonomous coordination could be a lot more successful. More
importantly, it was demonstrated that in the context of the simulation framework,
consumers (or rather the software which controls their demand) is able to learn the
behaviour by slowly reacting to the market. Of course, this does not go without
some trial and error as the end-users adapt their behaviour which can end-up cost-

ing the system as has been demonstrated in this section.

We finished the chapter by demonstrating consumer benefits relative to the
flexibility they can offer to the fgrid. Although more flexibility leads to more sav-
ings, the relationship isn’t linear and consumer demand pattern plays an important
role in determining how much each individual consumer profits from DSM. It is
noted that consumers with ES get the highest benefits relative to the amount of flex-
ibility they provide to the grid in contrast to those with electric heating and thermal
storage. This has much to do with the efficiency of the storage and consumer de-
mand constraints. Finally, it has been shown that non-flexible consumers (which
have no impact of system level demand) experience different benefits from DSM,
especially those with solar PV which are very vulnerable to the export price of elec-
tricity. These results demonstrated that the retail electricity tariff structure is critical
to ensuring a fair allocation of costs and benefits to consumers in the context of

DSM.

A note on centrally setting o. Figure 6.76 shows a plot of optimal values of & ver-
sus the average level of predicted prices used by consumers in algorithm CON_CM+
across all years and scenarios. It is possible to see that « is influenced by the mean
as well as the volatility of the daily wholesale electricity prices as demonstrated by
the changing shade of the data points in the chart - higher volatility means higher
o. Now, this result is not surprising since in the original optimisation formula (6.2)

the damping term is counter acting the predicted price p*(¢,d) and as the price level



6.3. Part I1I: Autonomous decentralised consumer DSM - CON_CM+ 217

increases then so must the damping parameter. Otherwise, the first term in (6.2)
outweighs a and consumers start to herd when cost minimising. This observation
suggests that the system would be able to learn the optimal & to choose to send to
consumers and can act as a tool for improving algorithms SO_CM and CON_CM+.
Even in the case when consumers learn, i.e. CON_CM+(LEARN) the system could

still send a suggested initial ¢ to set a boundary for consumer o range.

Figure 6.76: Average daily price plotted against optimal alpha setting for CON_CM+
(conDR=100%) in the Steady State and Two Degrees+ scenarios, 2015-2050.
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Chapter 7

Conclusions

In light with increasing penetration of renewable energy sources, demand side man-
agement (DSM) has been receiving a lot of attention from industry and academia
as a promising solution to balancing electricity in the grid. Yet, the implications of
DSM being deployed by multiple stakeholders each with their varying objectives,
have not been fully understood. For example, one of the most popular and simplest
approached to DSM is to inform consumers of the real time price (RTP) for electric-
ity, allowing them to shift demand to off-peak hours. However, with high enough
end-user flexibility such behaviour can lead to consumers herding towards the same
periods of low electricity prices. This can result in more volatile system demand

and higher costs, as a result of the market adjusting to chaotic consumer behaviour.

Aggregators can help alleviate the problem of consumer herding by coordinat-
ing the demand of a group of end-users. However, aggregators can themselves herd
as they compete in the wholesale market for cheap electricity and larger consumer
market share. Moreover, consumer switching between aggregators can aggravate
this issue, as end-user resources migrate between different aggregators. The only
sure way to optimise system demand is through a centrally controlled DSM, which
would keep track of the real time cost for generating electricity. However, this
would require consumers to share some information on their electricity demand
patterns or flexibility - something that might not be appreciated by some due to pri-
vacy concerns. Finally, it is uncertain how different types of consumers (i.e. those

with and without flexible resources) might be affected by the deployment of DSM.
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The objective set out for this work was to evaluate the potential opportunities
and challenges when demand side management (DSM) is used as a tool for balanc-
ing electricity supply and demand by different stakeholders in the grid. In order to
do this holistically and address the gaps identified in existing research, a bespoke
model for electricity system management using an agent based approach (ESMA)
has been built taking Great Britain as a case study. Three types of stakeholders
have been identified in the grid which are able to perform DSM: consumers, aggre-
gators and the system operator (SO). The model considers ten types of consumers
(depending on the combination of resources they possess) within four economic
sectors (domestic, commercial, industrial and transportation). The aggregator layer
represents entities which are able to pool consumers together and instruct them
on how to shift demand. At the top layer, the SO oversees the whole system and
communicates electricity demand to the market agent, which dispatches electricity
generation units and calculates the prices for electricity. Guided by the scenarios
provided by the National Grid, two cases for the evolution of the British electric-
ity system have been considered for the period of 2015-2050: Steady State (least
flexible and renewable system) and Two Degrees+ (the most flexible and renewable
system). For each of the national scenarios the long term impact of the different
DSM regimes has been assessed, by monitoring system costs, greenhouse gas emis-
sions, and consumer bills.

Through building ESMA and exploring different national scenarios and DSM
regimes, the aim was to come up with market rules which would minimise the risks
and maximise the benefits of DSM. In order to achieve this, the following research

questions have been posed at the beginning of this work:

1. Up to which point is autonomous consumer cost minimisation based on the
real time price effective in reducing system costs and greenhouse gas emis-

sions?

2. How can aggregators facilitate effective demand side management and what

potential risks might they bring along?
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3. What is the appropriate tariff structure for rewarding consumer flexibility?

4. Is it possible for consumers to schedule demand autonomously without com-

promising the stability and sustainability of the electricity system?

7.1 Recap of key results

In part one of the results, we addressed the first research question by investigating
the limits of the simplest form of DSM, whereby consumers autonomously cost
minimise based on the real time price of electricity. The simulation results demon-
strated that in the early scenario years (when consumer flexibility and renewable
capacity were low), communicating RTP to consumers led to system savings as re-
newable resources were better utilised. In the base year 2015, total system savings
amounted to £2.3 million when 50% of end-users cost minimised and £1.1 million
at 100% end-user participation in DSM. However, with high consumer flexibility
in the later years (especially in the Two Degrees+ scenario), the system started to
suffer from herding. When all consumers cost minimised based on RTP, the system
experienced losses from 2020 onwards in both Steady State and Two Degrees+ sce-
narios. In 2050 (Steady State) system cost increased by £1.2 billion, whilst GHG
emissions went up by 1,266 MtCO2eq per year relative to the base case (without
DSM). As aresult of the elevated wholesale prices for electricity, flexible consumers
saw their bills go up (especially those with solar PV and electrical storage). Yet, in-
flexible consumer (not being able to shift demand) profited in these conditions as
they bought electricity at the lowest prices when the rest of the market herded. These
observations highlight a potential conflict of interest between inflexible consumers
and the system. From performing the sensitivity analysis, it was found that herding
can be controlled through consumer export prices for electricity. The simulation
results demonstrated that the system losses can be minimised when the export price
was reduced relative to the import price of electricity. This happened because con-
sumers favoured self-consumption and did not over-export electricity to the grid,
which reduced the curtailment of system level renewables. It was also observed

that when the SO predicted the future electricity demand, putting more weight to
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past data lead to the prices becoming more chaotic as consumer shifted day-to-day
consumption in order to cost minimise. Hence, controlling wholesale price from
becoming too volatile can act as another tool for stabilising system demand and

prices during DSM.

In part two of the results, we addressed the second research question by demon-
strating the benefits of a well-coordinated aggregator-led DSM. In contrast to part
one, it was observed that flexible consumers benefitted much more from the de-
ployment of DSM compared to inflexible consumers. We then explored billing
end-users at fixed daily and yearly tariffs and compared the reductions in consumer
bills to the case with RTP. It was found that inflexible consumers with solar PV
were most vulnerable to the tariff structure and that neither RTP nor fixed tariffs
were better across all scenarios and years in terms of allocating the benefits from
DSM across different consumer types. Overall, results demonstrated that fixed tar-
iffs lead to more modest savings for flexible consumers compared to non-flexible
consumers, since the shape of the demand curve played less of a role in this case.
This analysis suggested that different types of end-users need to be addressed on

the individual basis when determining the benefits from DSM.

It was then demonstrated that aggregator herding is possible when aggregators
became more aggressive in their objective to cost minimise. Moreover, consumer
switching between aggregators made the situation worse as end-user resources were
shared unevenly between the aggregators leading to a more chaotic electricity mar-
ket. Finally, the superiority of a centrally coordinated DSM was demonstrated
which addressed research question three. Total system saving reached £1.7 bil-
lion in 2050 (Two Degrees+) - £70 million more than in the case when the SO was
not involved. These observations suggest that the true value of aggregators is in
communicating the information between the system and the consumers. However,
this scenario removes the natural competition between the aggregators in addition
to raising the question regarding the allocation of benefits to different stakeholders

involved.

In part three of the results, we investigated the topic of consumer autonomy
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in the context of DSM through developing a new algorithm for consumer demand
scheduling. The algorithm evolved as a product of the observation made during the
first two sections of the analysis. When comparing all DSM regimes considered in
this work, it was found that the most centralised approach lead to the highest system
and consumer savings and lowest GHG emissions, suggesting a trade-off between
system optimality and consumer autonomy. This result echoes the concept referred
to by economists as the price of anarchy, whereby the efficiency of the system
degrades when the players start to behave selfishly (Koutsoupias and Srinivasan,
2009). That said, for certain types of end-users (i.e. those with solar PV) a more
decentralised DSM approach lead to higher savings highlighting a source of conflict
of interest between certain consumers and the system.

The results chapter was concluded by a discussion on the mechanism for re-
warding consumers for their flexibility. It was demonstrated that consumers with
different resources benefitted from a varying degree of savings when offering the
same amount of flexibility to the grid. For example, those with electric heating and
electrical storage saw much lower marginal savings from DSM compared to those
with electrical storage only. Hence, end-user demand pattern played as much of a

role in determining consumer benefits from DSM as their flexibility.

7.2 Main messages

Going back to the research questions posed at the beginning of this work, the an-

swers are summarised as follows:

1. In the earlier years of the simulation (or when system flexibility and renew-
able capacity are low), communicating the real-time price of electricity to
end-users can be an effective solution to managing electricity consumption
and optimising the use of renewable generation in the grid. However, go-
ing past 2020 and further into the future it is possible that consumer herding
could harm the grid leading to increased system costs and greenhouse gas
emissions. Moreover, it is flexible consumers who end up paying for herd-

ing whereas those without any resources save. This might deter certain con-
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sumers from purchasing storage and participating in DSM, which is counter-
productive to the government goals of engaging the end-user and promoting

system flexibility.

. Aggregator-led coordination can help overcome the issue of consumer herd-
ing but only when they are communicated the information on the true cost of
generating electricity. Otherwise, aggregators can herd much like consumers
leading to increased system costs and GHG emissions. Hence, the true value
of aggregators is in communicating system level information to consumers
and assisting a central entity (such as the System Operator) in balancing the

grid.

. Autonomous consumer DSM is possible, however it is likely to emerge from
a more centralised regime giving consumers (and their gadgets) the opportu-
nity to learn the right signals when adjusting to the market. In the context
of the real world implementation of such a regime, this translates into the
consumer demand scheduling software acquiring starter learning information
from previous market observations. This would ensure a safe transition to
purely decentralised DSM. It is argued that the amount of information re-
quired from consumers in the initial stages of such transition can be limited
to one-way signalling from the grid to end-users thus alleviating consumer

privacy concerns.

. In order to extract maximum benefit from consumer flexibility, the future
tariffs for electricity need to reflect the services provided by end-users in the
context of DSM. According to the simulation, consumer tariffs based purely
on RTP or fixed price for electricity are inappropriate for fairly rewarding
end-user services. This is especially applicable to consumers with renewable
generation resources who rely on exporting power into the grid. Hence, a
more tailor-made approach is required when coming up with tariff structures

for different types of consumers.
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7.3 Model limitations and further work

When creating the modelling framework ESMA and obtaining data for the simu-
lation scenarios, a number of assumptions have been made. Some of the model
limitations have been discussed throughout the document. This chapter covers the

most significant limitations and offers ways to improve the model.

1. Electricity generation. In modelling the electricity generation market, cap-
ital costs of different generation technologies are ignored since the purpose
of this work is to explore DSM dynamics and control using short run avoid-
able costs. In addition to this, generators are grouped based on their technol-
ogy, i.e. 9 real world coal power plants with an average capacity of 1.6GW
are represented by one coal generator of capacity 15GW. As a consequence,
the technical characteristics are assumed to be the same for all generators of
the same type. Moreover, technical characteristics of generators stay fixed
throughout the simulation period. Hence, if in 2015 the variable O&M cost
has been assumed at £2.09/MWh and efficiency at 50% then the same is true
in 2050. This significantly simplifies the market dynamics, since in reality
power generators of the same technology vary in their characteristic depend-
ing on the year they were built, the type of fuel they use, their size, and their
operation schedule (especially significant for efficiency). As a result of these
simplifications, the model underestimates the cost of electricity, since instead
of dispatching nine different generators it dispatches one nine times the size.
In order to improve the model, it would be necessary to reflect individual gen-
erator characteristics such as capital and operational costs, efficiency, carbon

emission factor, and generator outages.

2. Wholesale electricity market. The wholesale electricity market is approxi-
mated as a one-shot day-ahead market followed by a rescheduling in the bal-
ancing market. In reality, contracts for physical delivery of electricity range
from years to seconds ahead depending on the type of product being sold.
As a consequence of this approximation, the model underestimates the value

of DSM, which is especially valuable in the balancing market. Although a
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limitation, it is argued that the day-ahead market captures sufficient market
dynamics to effectively model the relationship between electricity demand
and prices. Including a more representative balancing market would better

reflect the value of demand side management.

. Network constraints. Network constraints are not modelled, which means
that electricity can flow freely between the points of generation and consump-
tion. This underestimates the cost of electricity since the price of electricity
also includes the cost of utilising the grid. Another consequence of omit-
ting the network constraints is that the impact of DSM at the local level is
not evaluated. To elaborate, when consumers are coordinated centrally at the
transmission level the demand is optimised, however at lower voltages the
constraints might be breached. This is an important point not being addressed
in the research - conflict of interest when managing demand at the transmis-
sion and distribution levels. However, by removing the network constraints
it is possible to assess the maximum impact of DSM, both positive and neg-
ative. Including network constraints would reflect the value of DSM more

accurately.

. Model uncertainty. Apart from the case when consumers are randomly se-
lected to switch aggregators, the model is deterministic. On the supply side, it
is assumed that there is no error in predicting renewable supply and operation
of dispatchable generation. This assumption is justified by the continuous
improvements in renewable generation forecasting models. On the demand
side, it is assumed that there is no error in predicting non-deferrable consumer
demand. This comes from an assumption that human behaviour is unlikely
to significantly change in the future. Hence, from the system’s point of view
the only source of uncertainty on the demand side comes from the consumers
reacting to the aggregator DSM signals. These assumptions lead to an un-
derestimation of system costs and therefore impact of DSM. Integrating un-
certainty in predicting renewable supply, as well as non-deferrable consumer

demand would reflect the impact of DSM more accurately.
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5. Fuel prices. The wholesale prices for primary fuels (gas, coal, oil, nuclear,
biomass) are modelled on an annual basis, meaning that there are no daily and
hourly fluctuations. This leads to more static costs for generating electricity
by different types of generators. As has been demonstrated in the chapter on
validation, this can lead to the system incorrectly picking generation technolo-
gies when solving the dispatch optimisation model. However, considering the
level of uncertainty in predicting the future it is argued that considering two
boundary scenarios which span a range of potential cases for the evolution
of the national grid (including prices) is sufficient to answering our research
questions. An improvement to the model would be to include more dynamic

fuel prices, which would better reflect the true cost of generating electricity.

6. Consumer demand profiles. Although the uptake of consumer technolo-
gies is explicitly considered in the model, it is assumed that the shape of
non-deferrable consumer demand will stay the same throughout the simula-
tion period. In the case of domestic consumers this might be the case (i.e.
watching TV and cooking), however for non-domestic consumers (especially
industrial) it is difficult to predict how the demand will change over the years.
The main consequence of this assumption is on the shape of the system de-
mand curve and system prices. An improvement to the model would be to
consider a social angle on how end-users might utilise energy in the future.
However, it is an ambitious improvement which would significantly compli-
cate the model. Moreover, the objective of this work to evaluate the potential
impact of DSM on the system and consumers, can be achieved without such
detailed focus on how the shape of the consumer demand curve will change

in the future.

7. District heating. District heating is not considered in the model, however
it constitutes an important part of the British electricity system. Moreover,
district heating can act as a good source of energy storage and as an aggre-
gator unit for end-users. By not including the district heating network all

of the power to schedule demand falls onto consumers themselves, which is
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likely to overestimate to potential for consumer herding. However, this way
of modelling the system offers a way to consider the extremes for the future
evolution of the grid. Including district heating would provide a more holistic

representation of the electricity grid and potential for DSM.

7.4 Addressing model limitations in ESMA

In order to address the limitations which impact the correct calculations of sys-
tem cost, an uplift was introduced which allowed to calibrate the electricity prices
against historical and (to an extent) future values. However, the data against which
the prices were calibrated was limited. In the case of historical data, this was be-
cause for over-the-counter market (which represents the majority of electricity con-
tracts for physical delivery) this data was not available. In the case of future prices,
only average annual values were available and so it was necessary to make do with
calibrating against average annual electricity prices offered by the National Grid.
The major consequence of the limitations described above is that that in terms of
system costs and GHG emissions the impact of DSM is underestimated.

The second tool used for addressing limitations was sensitivity analysis. For
example, consumer solar PV and storage capacity was varied in order to address
how these parameters affect the impact of DSM on different types of consumers as
well as the system. For the same reason the weight to past prices used when the
System Operator predicts day-ahead demand was varied around the default value.
Modelling two boundary scenarios (Two Degrees+ and Steady State) was the main
solution to addressing limitations concerning the data in the model. With regarding

to the future electricity tariffs, dynamic and static prices were explored.



Appendix A

Data preparation

The following chapter describes the methods involved in data preparation and model
calibration as well, as going over certain methods which are not mentioned in the

main body of the thesis.

A.1 Consumer electricity demand profiles

For each consumer c, electricity demand profiles can split into two components:
weather independent consumption, [°(¢,d) (due to cooking and watching TV) and
weather dependent component (water and space heating), which is achieved through
operating the heat pump or a resistance heating, If;,(f,d) and I, (¢,d). Weather
dependent demand is defined as ‘thermal’ and weather independent demand as ‘non-
thermal’ and will refer to them accordingly from now on.

In the following section we describe the process of obtaining consumer de-
mand profiles making a distinction between stationary sectors (domestic, commer-
cial, industrial) and transport, since preparing data for transportation sector requires

a slightly different procedure.

A.1.1 Stationary sectors (domestic, commercial, industrial)

The main datasets used to obtain hourly electricity demand profiles for stationary
sectors are the standard half-hourly demand profiles offered by Elexon (Elexon,

2017a). Elexon provides demand data for 8 consumer classes defined as follows:

1. Profile Class 1 — Domestic Unrestricted Customers
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2. Profile Class 2 — Domestic Economy 7 Customers
3. Profile Class 3 — Non-Domestic Unrestricted Customers
4. Profile Class 4 — Non-Domestic Economy 7 Customers

5. Profile Class 5 — Non-Domestic Maximum Demand Customers with a Peak

Load Factor of less than 20%

6. Profile Class 6 — Non-Domestic Maximum Demand Customers with a Peak

Load Factor between 20% and 30%

7. Profile Class 7 — Non-Domestic Maximum Demand Customers with a Peak

Load Factor between 30% and 40%

8. Profile Class 8 — Non-Domestic Maximum Demand Customers with a Peak

Load Factor over 40%

For each of the 8 consumer types, Elexon provides demand profiles for five
different seasons (Winter, Spring, Summer, High Summer and Autumn) and three
day types (weekday, Saturday and Sunday), which enables us to compile an annual
half-hourly demand profile for eight types of consumers. Figure A.1 shows half-
hourly electricity consumption by domestic and non-domestic consumers during an
average autumn weekday, highlighting the difference in their pattern and magnitude.
On the left side, it is possible to see two domestic profiles: one with off-peak electric
heating (in red) and one without (in blue). Since thermal consumption is modelled
explicitly, profiles of class 2 are not considered.

For non-domestic sectors, profiles across the relevant consumer classes
are averaged, i.e. class 3 and 4 for commercial and classes 5, 6, 7 and 8
for industrial sectors. This renders three types of non-deferrable electricity
demand profiles representing domestic, commercial and industrial consumers,
190m (¢ . d),1€°"(t,d), 1" (t,d) where t stands for the hour and d for the day of

the simulation.
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A note on notation. When the superscript includes the economic sector (i.e.

Jdom (t,d)), the variable represents individual real life consumer, whereas when the

superscript includes the consumer index (i.e. [°(¢,d)) the variable corresponds to a

modelled consumer agent, which represents a pool of individual consumers of the

same type (see section 3.4.2.1 on agent representation).

Figure A.1: Half-hourly electricity demand profiles for non-domestic consumers for an av-

erage autumn weekday.
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A.1.1.1 Non-thermal consumer demand profiles

In order to obtain non-thermal consumer demand, the total consumer demand pro-

files, 199™ (¢, d),1<9™(t,d), 1" (t,d), are stripped off the thermal component. In order

to do that the following assumptions are made:

1) The warmest days in the year have no thermal demand component.

2) Any seasonal change in electricity demand profile corresponds to thermal

electricity demand.

The warmest days correspond to High Summer Weekday (Hsr Wd), High Sum-

mer Saturday (Hsr Sat) and High Summer Sunday (Hsr Sun) for the three stationary

sectors as shown in Figure A.2 !,

"High Summer is defined as between 6th Saturday before 4 Aug and Sunday after 4 Aug
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Figure A.2: Electricity demand profiles with the lowest energy demand for the domestic

consumer (Elexon, 2017a).
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This means that for a domestic consumer non-thermal demand on an Autumn

weekday is the same as on High Summer Weekday (Fig

ure A.3). Compiling these

profiles according to the type of day allows us to obtain half-hourly non-thermal

demand profile for the whole year. This procedure is performed for the base year

2015, following which the resolution is reduced to hourl

data.
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Figure A.3: Extraction of non-thermal demand profile for domestic consumer from the total

demand for an Autumn Weekday.
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from the Cambridge Housing Model (CHM)(BEIS, 2015). This demand data is con-
verted into heat demand qg‘;}"M? near1>d) by applying an average gas boiler efficiency

Npoiler assumed at a conservative value of 75% (BEIS, 2017d),1.e.

qg‘??M,heat(tvd) = qg‘%nM,gas(t7d) '0'757 Vi € [17T]7d S [17D]'

Profile qdc‘};”M near (1) is what we take as the electricity demand by a domestic
resistance heater (RH) since it has 100% efficiency when converting power demand
into heat, i.. g2 o (1:d) = g3 (1,d), Ve €[1,T],d € [1,D]..

RH demand profile is converted to that of a heat pump (HP) by dividing it by
the coefficient of performance (COP) of the heat pump (see Appendix B.3 for COP
calculations), i.e.

dom a1, d)
qip (1,d) = COP(d)

Figure A.4 shows an example of how energy consumption by a gas boiler is
converted into resistance heating and heat pump electricity demand profiles for a

domestic consumer.

Figure A.4: Thermal demand for a domestic gas boiler converted into demand for resis-
tance heater, and a heat pump on the 1-2 January 2010/11 (Cambridge Energy,
2017).

—Gas consumption —Heal/RH demand HP demand
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For non-domestic sectors it was not possible to find data for thermal demand,
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Figure A.5: Standard electricity demand profiles for commercial consumer, 1 Jan 2015.
Source: (Elexon, 2017a).
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Figure A.6: Example of scaling the HP demand profile for an industrial consumer on the
1-2 December 2015.
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hence for commercial and industrial consumers it is assumed that the thermal de-
mand pattern by taking the difference between the total demand and the non-thermal
demand profiles obtained in Section A.1.1.1, i.e. [5(t,d) — 1*“(t,d), Vsec €
{com,ind} (Figure A.5).

Now the profile shown on the right side of Figure A.5 gives the pattern but

not the right magnitude of the electricity demand by a non-domestic heat pump.
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This is evident because maximum electricity input capacity for a commercial heat
pump averages at around 10kW (Panasonic, 2017), whereas according to the chart it
is 1.4kW. Hence, for commercial and industrial sectors thermal demand profiles are
scaled in accordance with the power rating capacities for commercially available
models. These average at 10kw and 40kW for commercial and industrial sectors

respectively (Panasonic, 2017)(The Renewable Energy Hub UK, 2017).

Figure A.6 demonstrates the scaling procedure for thermal demand of an in-
dustrial consumer on the 1st and 2nd of December when thermal demand peaks.
It can be seen that the peak is increased from 9kW to 40kW. A similar procedure
is performed for the commercial sector where individual thermal demand peak is

increased from 1.4 to 10kW as per previous discussion.

A.1.2 Transportation sector

The electric transportation sector is modelled as consumer agents of type 8, i.e. in
possession of an electric store. From the perspective of the grid, the transport agent
represents a purely flexible load due to charging, i.e. £V (¢,d). From the perspec-
tive of the electric vehicles (EVs), transport consumers also have a non-deferrable
profile, which corresponds to the vehicles discharging during moving, 1£Y:4 (¢, d).
Together, energy capacity (EEY), power capacity (/XY and the discharge profile
(lEV7dC(t, d)) define the operational constraints of the transport agent. In this section
we show how these are obtained.

Since the number of EVs in the UK is still very low we use the traffic flow data
for conventional vehicles and assume it is the same as for EVs. Figure A.7 shows
the daily and monthly traffic flow distribution, fi(¢,d) and f>(m). We calculate the
annual traffic flow distribution f(¢,d,m) for each hour 7, day d and month m in a

reference year by multiplying and normalising the two distribution together, i.e.

flt,d,m) = W

The resulting distribution offers data on the flow of traffic relative to the aver-

age day in the year. We convert this distribution into an annual energy consumption
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Figure A.7: Traffic distribution by time of day on all roads in Great Britain, 2015
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profile by multiplying it by the average hourly energy consumption value, which
for 2015 comes to 9.9 MWh for the whole fleet of electric vehicles (taking into
account 80% throughput efficiency), i.e. 108,000MWh-0.8/8760 (National Grid,
2017a). The resulting demand profile corresponds to the discharge profile of a fleet
of electric vehicles (Figure A.8, left).

Considering that an average driver covers 10,701 km in 368h per year (De-
partment for Transport (DfT), 2016) and a 0.1 kWh/km average efficiency of an
EV(Energuide, 2017), the average energy consumption by a single vehicle is cal-
culated at 2.9kWh per hour. By dividing the discharge profile of a total fleet by
2.9kWh it is possible to calculate how many electric vehicles are on the move (Fig-
ure A.8, right). Our calculations show that on average vehicles are moving 5% of

the time meaning that the rest of the time they are stationary.

Next, we calculate the number of stationary vehicles (NZY (¢, d)) by subtracting

the number of moving vehicles NZY (¢,d) from the total number of EVs in the

system in 2015 Nt%y = 51,085 according to (National Grid, 2017a), i.e.

N_gc‘l/t(tad) :NtEo}/(t7d) _NnEu‘)/ve(tad)a Vt € [17T]7d € [17D]
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Figure A.8: Modelled energy consumption and numbers of moving electric vehicles, 2015.
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Assumptions regarding EV operation.

1. If an electric vehicle is stationery it is charging;
2. State of charge of the battery at the beginning of the day is the same as at the

end of the day.

Using the above assumption information, we calculate the charging profile
of the EV fleet, 1//¢¢":<h (¢, d),171¢¢!4¢(¢ d) by distributing the daily energy de-
manded by the moving fleet of EVs proportionally to the number of vehicles
that are stationary (Figure A.9). We calculate individual transport consumer
agent charging and discharging profiles (each representing 1000 EVs) by divid-
ing 1/1eet:h( d), 171e¢4<¢( d) by the number of EVs assumed in the system, i.e.
NEY = 51thousand in 2015 according to (National Grid, 2017a). Finally, we calcu-
late the energy and charging capacities by taking the maximum of the cumulative
energy and charging profiles over the whole year. Figure A.10 (left) demonstrates
how the level of energy stored by a fleet of 1000 vehicles changes over the day. It is
possible to see that the maximum state of charge is reached at around 06:00 when
most vehicles are stationary. As EV fleet continues to move throughout the day, the
battery discharges reaching the minimum at around 21:00. The maximum value of
the energy level in the fleet battery determines the storage capacity of the transport

consumer, Emaxtrans
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The right chart in Figure A.10 shows how much charging occurs in each hour
for a fleet of 1000 vehicles (representing 1 transport consumer). The most energy
is charged during the period 15:00-18:00 when electric vehicles become stationary.
The maximum value determines the power at which the transport consumer is able

to draw power from the grid, /"*/74"s,

Figure A.9: Modelled energy consumption and numbers of stationary electric vehicles,
2015.
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Figure A.10: Cumulative energy and charging profiles for 1000 electric vehicles, Friday,
10 July 2015. Source: own modelling.
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The storage capacity of a transport consumer (EFY""%) corresponds to the
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battery capacity of a thousand electric vehicles available for shifting rather than
the maximum battery capacity. This is equivalent to approximately 9% of the
total available EV battery storage capacity (based on the average 20kWh battery
size) suggesting that without vehicle-to-grid services a minor portion of energy de-
manded by electric vehicles is available for shifting. This is because consumers do
not discharge more than 40% of the vehicles as well as moving throughout the day.
The power capacity (1£Y") corresponds to the average charging power capabil-
ity of the fleet throughout the day. Hence, a thousand electric vehicles operating
in a default manner are equivalent to a 1.78MWh electrical storage with a power

capacity of 0.45MW.



Appendix B

Modelling consumer technologies

B.1 Solar PV

Although the National Grid provides data on the total solar capacity up to 2050 at
distribution and transmission levels, it does not state how much of it might belong
to end-users and how much to the system (Figure B.1). Hence, the challenge in
modelling solar generation was in splitting the total capacity between different end-

user sectors and the system.

Figure B.1: Projected installed solar capacity in Great Britain at transmission level. Source:
(National Grid, 2017a).
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In order to allocate total solar capacity the each individual sector, we turn to
the dataset offered by the Department for Business, Energy & Industrial Strategy,

which specifies which solar installations under Feed-In-Tariff scheme (FiT) belong
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to each of the three economic sectors (BEIS, 2017b). Table B.1 summarises the
data for total capacities and number of installations within each sector for the period
2015-2017. Whereas, the dataset is exhaustive in terms of domestic installations, it
does not include all commercial and industrial solar capacity. Other installations,
such as those under the renewable obligation scheme, do not specify which sector
they belong to. Hence, two assumptions are made in order to allocate total solar

capacity.

Table B.1: Solar deployment under FiTs in each economic sector, 2015-2017 (BEIS,

2017b)
2015 2016 2017
Domestic
Capacity (MW) 2069 2558 2676
Number of installations | 603,421 746,199 780,484
Commerecial
Capacity (MW) 723 1059 1459
Number of installations | 16,834 24,664 33,988
Industrial
Capacity (MW) 87 148 252

Number of installations 1088 1847 3159

Assumptions regarding solar PV installations.

1. All domestic installations are deployed under the FiT scheme.

2. The ratio of non-thermal demand peak to solar generation capacity per con-

sumer is the same across all sectors.

3. The share of total solar capacity allocated to each consumer sector and the

system remains constant across the whole simulation period 2015-2050.

4. 50% of solar capacity belongs to end-users and 50% to the system (DECC,
2014).
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5. Non-domestic solar capacity is equally split between commercial and indus-

trial sectors.

Based on assumption 1, and information in Table B.1 it is possible to say that
25% of total installed solar capacity belongs to domestic sector which sees an av-
erage installation of 3.5kW. Hence for domestic consumer the non-thermal peak
to solar capacity amounts to 0.166. Utilising assumption 2, we calculate the aver-
age installation size for commercial and industrial consumers at 18kW and 80kW
(based on non-thermal demand peaks of 3.1kW and 13.7kW). Finally, by using as-
sumptions 4 and 5 and by knowing the average size for non-domestic installations,
we calculate the number of installations for commercial and industrial sectors. Ta-

ble B.2 summarises this information.

Table B.2: Number of solar installations and average size of installation per individual con-
sumer assumed for 2015-2017.

Type of installation 2015 2016 2017
Domestic
Share of total capacity 25% 25% 25%
Average installation size (kW) 3.5 3.5 3.5
Number of installations 603,421 746,199 780,484
Commerecial
Share of total capacity 12.5% 12.5% 12.5%
Average installation size (kW) 18.5 18.5 18.5
Number of installations 55,386 76,942 83,362
Industrial
Share of total capacity 12.5% 12.5% 12.5%
Average installation size (kW) 80.8 80.8 80.8
Number of installations 12,695 17,636 19,107
System level
Share of total capacity 50% 50% 50%
Installation capacity (MW) 363,296 431,452 898,979
Total installed capacity (MW) | 726,591 862,903 898,979
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We then use historical solar generation profile taken from (National Grid,
2015b) and the information compiled in Table B.2 in order to calculate individual
solar generation profiles per individual consumers across the three economic sectors
(Figure B.2). To model future adoption of solar, we scale individual generation pro-
files by the projected capacity increase as demonstrated in Figure B.1(see Appendix
C.2). The reader is reminded that each modelled consumer agent represents 1,000
real life end-users, and so in the modelling framework the standard generation pro-
files shown in Figure B.2 are multiplied by 1000 to represent the solar generation

profile for each consumer agent.

Figure B.2: Standard solar generation profiles for individual end-users in different sector,
1-4 Jan, 2014. Source: (National Grid, 2015b).
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B.2 Electrical storage (ES)

Electrical storage is recognised as a promising solution to balancing renewable en-
ergy in the system. Rapid development of electric vehicles is resulting in lower-
ing costs for lithium based batteries making them accessible not only to large con-
sumers within industrial and commercial sectors but also to residential and smaller
commercial end-users. In fact, the National Grid projects non-transmission level
storage capacity to reach 2.4 GW in the Steady State scenario and almost 6GW
in the Two Degrees scenario by 2040 (National Grid, 2017a). Batteries are often

considered together with rooftop solar, such as in the case of TeslaPower wall as a
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way of balancing renewable energy supply. Hence, the demand for renewables also
drives the rate of storage deployment.
There are different types of electrical storage, however in this work we consider
a lithium battery similar to a Tesla PowerWall due to its commercial availability.
Batteries are characterised by a minimum and maximum energy capacity constraints
max,c

Ep" and EZ¢"°, minimum and maximum power constraints /5 and [ ¢, and

energy efficiency 1.

B.2.1 Technical constraints of the ES (Karoline et al., 2016)

Electric storage must obey the following technical constraints:

ESCI. The charge ["(t,d) and discharge 9(¢,d) of ES must lie within the power
constraints of the battery at all times throughout the day:
e < [ (1, d) - bes(t,d) < I8,

[ <13 (,d) - (1 — bps(1,d)) < [pee,

Where bgs(t,d) is a binary variable to prevent simultaneous charge and dis-

charge of the battery.

ESC2. The net amount of energy going into the ES is bound by the store efficiency:

ER(t,d) = g 195 (1,d) — 125°(t,d).

ESC3. Total available energy in the battery Ef.¢(¢,d) is the sum of the available en-
ergy in the previous time period and the net charge going into the ES:

Epg(t,d) = Egg(t—1,d) +E§?-‘C(I7d)'

ESC4. The amount of discharge 19¢(t,d) is limited by the available energy in the
store:

lggc(ﬁ d) < E}%S(la d)'

ESC5. Total available energy in the battery Ef¢(t,d) must be within the minimum
and maximum ES capacity constraints:

min,c max,c
Epg” <Epg(t,d) <Epg ™.
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ESC6. At the end of the day the amount of charge is the same as at the beginning:
Egs(0,d) = Egg(T,d).

The above constraints are true Ve € ¢,t € [1,T],d € [1,D] .

Whilst the discharge profile, lggc (t,d) is a decision parameter for the stationary
consumers, it is an input for the transportation sector as calculated in A.1.2 and

constitutes a constraint for operating the storage.

B.2.2 Estimating ES parameters

For the residential household the maximum energy capacity per individual con-
sumer is assumed as 10kWh and maximum power as SkW based on the power spec-
ifications of a 13.5kWh Tesla PowerWall battery assuming that some consumers
might have smaller batteries (Tesla, 2017). For commercial and industrial end-
users the stores are scaled based on the total energy consumption in comparison to
the domestic consumer. Hence, if the annual consumption by a domestic household

is 22 MWh and 35 MWh by commercial business, the ES capacity is calculated

as % -10 = 16MWh. Similarly for an industrial end-user, which has an annual
demand of 238kWh, ES capacity results in % -10 = 109kW h energy capacities.

The power constraints are calculated as half the capacity value again based on the
domestic ES power-to-capacity ratio which is approximately 1:2.

For the transportation sector, the available capacity per vehicle is calculated as
E;¢™"™ " =2.9kWh and the maximum power as half the value, i.e. lg’gx’ind=1.45kw
(calculated considering the whole fleet of EVs in Britain as one vehicle). The effi-
ciency for all electrical stores is assumed to be 0.8 and the minimum energy capacity

and power to be 0, i.e. N = 0.8, Egén’sec =0= lglgn’sec Vsec € {dom,com,ind}'.

B.3 Electric heating (EH)(Dejvises, 2012)

Heating electrification contributes a major part to the UK 2050 decarbonisation
goals. In this model two types of electric heating are considered: heat pumps (HP)

and resistance heating (RH). Resistance heating contributes around a quarter of an-

IThis is based on Tesla PowerWall batteries claiming available capacity rather than total battery
capacity which includes the discharge limitation
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nual electricity consumption in the domestic sector today, whilst it is projected that
by 2030 around 160 TWh electricity demand will come from 6.8 million heat pumps
installed across all economic sectors (CCC, 2013). The mathematical formulation
of the two technologies is very similar with the only difference being the coefficient
of performance (COP).

A heat pump is a reversible heating, ventilation, and air conditioning unit,
which transfers thermal energy from a source of heat to a ‘heat sink‘. Heat pumps
operate on the principle of a ‘refrigeration-type cycle® (same as air conditioners and
fridges) and utilise external power in order to move thermal energy in the opposite
direction of spontaneous heat transfer (i.e. from warm to cold) (Bundschuh et al.,
2014). In this work we consider air-source heat pumps (which draw heat from
outside air and upgrade it to a higher temperature to be emitted in the house) due to
wider adoption in the UK (CCC, 2013). Heat pumps are characterised by the max-
imum input electrical power capacity /"¢ and efficiency ngp, which determines
the coefficient of performance (COP) of the HP.

The COP of the air-to-water heat pump for consumer ¢, depends on the Carnot
efficiency of the HP 173" taken as 0.4 (Dejvises, 2012) and the relative temperature

difference between external air, 0,,;, and the heat sink, O7gs, i.e.

‘ Ores(t,d)
P d) = nnax
co HP(t7 ) Nup (OTEs(l‘,d)_eext(l‘vd))7

We take the temperature of the heat sink (the temperature of the heater water)

(B.1)

as 323.15K (equivalent to 50°C) and calculate the COP of the heat pump using the
average monthly external air temperatures in the UK taken from the Met Office(Met
Office, 2017) according to (B.1). Since the temperature fluctuations throughout the
year are taken as historical, the COP values also do not change from year to year.
In reality of course external air temperatures vary from year to year (especially
considering the impact of climate change) and so the value of COP will change.
However, this is left as limitation of the model since we do not consider climate
change in our simulation.

Similarly, resistance heaters (RH) are characterised by the maximum power
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lmin,c max,c
RH

constraints ( py " (and efficiency ngy,. However, since all since all of the

power used by RH goes into meeting thermal energy demand in (B.1), COPgry = 1.

B.3.1 Technical constraints of electric heating resources

EHC1. The power demanded by an electric heater (EH) If;,(f,d) must be within the

minimum and maximum power constraints of the heat pump, /;;;"* = 0 and
lmax,c,
EH -

(e < 16 (1,d) < [0S EH = {HP,RHY},t € [1,T).

EHC2. The power required by an electric heater If;,(¢,d) to fulfil heat demand

g5 p(t,d) is calculated as:

dpp(t,d)
lgp(t,d):m \V/CECK,IEU,T]

B.3.2 Estimating parameters of EH

Electric heating is characterised by the maximum input power rating, i.e.
L™ ey . In order to obtain these values for individual consumer across
domestic and non-domestic sectors, we take the maximum value from the annual

consumer thermal demand pattern obtained in Section A.1 (Figure B.3).

Figure B.3: Example of estimation of heat pump and resistance heating capacity for a
generic consumer.
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B.4 Thermal energy storage

Thermal energy storage (TES) is a mature technology for storing heat and is widely
used in the UK. Moreover, thermal storage can help smooth demand peaks resulting
from the deployment of electric heating such as heat pumps. For this reason, the
dynamics of the HP and RH are considered together with a TES.

A thermal store is characterised by minimum and maximum storage capacity
EJne EreC, minimum and maximum power flow rate [, [ree¢ and efficiency
N7 g for each individual consumer c.

Consumers may utilise TES to shift the electricity demanded by the electric
heater (HP or RH) by means of charging and discharging the store. Hence, if
¢S (1,d) is the heat generated by an electric heater, ¢35 (,d), ¢35 (1,d) are the
charge and discharge profiles of TES, the total heat generated by the system is cal-

culated as:

ch,c

c dc,
qEH(f,d)—qTES(l,d)Jqu%CS(l,d) (B.2)

This must be done in agreement with the following technical characteristics of

the HP-TES:

B.4.1 Technical constraints of the TES system

TESCI. heat going in and out of the TES must be balanced. Hence, the heat generated
directly by an electric heater (g% (t,d)) and the heat discharged from the
TES (q‘;ilg(t, d)) must fulfil the charging requirements of TES (qCT}ZfS) and the
non-deferrable heat demand profile by of consumer ¢ (¢°(¢,d)):

G (1,d) + 4155 (1,d) = q°(1,d) + g}, EH = HP.RH, %1 € [1,T).

TESC2. The net amount of energy going into the TES is the difference between ther-
mal charge q;}%‘g and discharge q‘;%g 2,

) h7 d s
E;‘%Sc(tvd) = q;E%([’d) _qTCEfS(tvd)-

TESC3. TES charge qCT}iECS (t,d) and discharge ch;ZfS(t, d) are bound by the TES energy

ZHere the heat loss in the pipes is ignored.
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flow constraints:
min,c ch,c max,c
dres < drgs(t,d) -bres(t,d) < qrpg

inc _ d ,
dres <drps(t,d)-(1=bres(t,d)) < qrgs’,

where brgs(t,d) is a binary variable to prevent the storage charging and dis-

charging at the same time.

TESC4. Total available energy in the TES is the sum of the available energy in the
previous time period Ef..¢(t — 1,d) adjusted by the store efficiency ng ¢ plus

the net charge going into the store:

Efgs(t,d) = Nfpg- Efps(t —1,d) + Epg (t,d).

TESCS5. Total available energy in the TES( Ef.;¢(¢,d)) must be within the TES capac-
ity constraints:

min,c - max,c
Erps <Ergs(t,d) <Eppg .

TESC6. At the end of the day the amount of thermal energy in the TES must be the

same as at the beginning:

E7ps(0,d) = Eqgs(T,d).
The above constraints are true Ve € ¢,¢ € [1,T],d € [1,D].

B.4.2 Estimating technical parameters of thermal energy stor-
age
Based on the rate at which thermal power can be extracted from a domestic hot
water tank in (Dejvises, 2012), we assume that the thermal output capacity Iy g
for a TES is approximately half of its total energy capacity Eppg , i.e. [Jd% =
0.5 Easse.
It is assumed that the efficiency of TES n7gs = 0.98 (which corresponds to the
heat loss during operation) and the minimum energy stored and power at zero for
all sectors, i.e. Ey. gls’m = 0kWh, ZZ?’M =0 sec={dom,com,ind}.

Figure B.4 summarises the information on the technical specifications of con-

sumer technologies.
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Figure B.4: Technical parameters assumed for consumer technologies.
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Appendix C

Future Energy Scenarios (FES)

We consult the future energy scenarios (FES) provided by the (National Grid,
2017a) in order to model the future evolution of the British electricity system. The
National Grid dataset provides most but not all of the data required, and this chapter
described how datasets were selected. As discussed in chapter 4, we focus on the
two main cases of national grid evolution: Steady State (the least flexible system
with a low penetration of renewables) and Two Degrees+ (the most flexible system

with a high penetration of renewables).

C.1 Transmission level resources

For the transmission level generation capacities (including pumped storage) we se-
lect the Steady State and Two Degrees scenarios to represent the most pessimistic
and the most optimistic cases as shown in Figures C.1 and C.2. Since FES offers
only the power capacities for pumped storage, we model energy capacity by scal-
ing the current energy capacity value of 27.6GWh (Taylor et al., 2012) in-line with
the future projections for pumped storage installations as predicted by the National
Grid.

In terms of the price for primary fuels used by the generators, the FES dataset
offers information on natural gas, coal and oil (National Grid, 2017a), but not for
nuclear and biomass fuels for which reason we consult the data provided by the De-
partment for Business, Energy and Industrial Strategy (DECC, 2012; BEIS, 2016).

However, the fuel prices are reported per unit of generated electricity (£/MWhe)
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Figure C.1: Projected installed generation capacity in Great Britain at transmission level
under Steady State and Two Degrees scenarios. Source: (National Grid,

2017a).
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Figure C.2: Projected installed pumped storage capacity in Great Britain at transmission
level under Steady State and Two Degrees scenarios. Source: (National Grid,
2017a).
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rather than primary fuel (£/MWhf). We assume a 32% nuclear power plant effi-
ciency in order to convert £5/MWhe to £1.6/MWhf of raw nuclear fuel, and a 36%
efficiency in order to convert £60/MWhe to £21.6/MWht for raw biomass for the
base year of 2015 (BEIS, 2016). The report from BEIS suggests an increase in the
price of biomass fuel to 72 £/ MWhe, which is equivalent to 25.1 £/MWhf. We in-
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troduce this increase between 2015 and 2020 and keep the price constant past 2020.
On the whole it is difficult to estimate the future price for raw biomass, since the
price largely depends on its source and the international markets. Whereas bioen-
ergy (sewage, paper, wood waste etc.) might be free, bio crops (forest, crops, etc.)
have a price which is likely to rise, as obtaining this fuel is in direct competition
for land with agriculture. Carbon prices, imports and losses are assumed to evolve
in-line with the FES scenarios. Figures C.3 and C.4 summarise the information

regarding the future evolution of primary fuel and carbon prices.

Figure C.3: Projected prices for primary fuels used in electricity generation under Steady
State and Two Degrees scenarios. Source: (National Grid, 2017a).
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C.2 Consumer resources

The following section covers the scenarios for the future evolution of consumer

technologies.

C.2.1 Electrical storage

A note on assumptions regarding consumer storage. Whilst the National Grid
offers data on the future capacity of distribution level storage, it does not say which
specific sectors it might be installed and so we make an assumption that capacity
is equally split between domestic, commercial, and industrial consumers. However

we acknowledge that due to economies of scale larger consumers are likely to take
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Figure C.4: Projected system losses and imports under Steady State and Two Degrees sce-
narios. Source: (National Grid, 2017a).
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a higher fraction of the total storage capacity and we explore this issue as part of

the sensitivity analysis performed as part of our results.

Figure C.5 demonstrates the most pessimistic (lowest flexibility) and the most
optimistic (highest flexibility) cases for the evolution of consumer electric storage
capacity, which correspond to the Steady State and Consumer Power storage evolu-
tion scenarios provided by (National Grid, 2017a).

To work out the number of stores per sector, we divide the total capacity per
sector by an individual storage capacity as calculated in Appendix B.2. From Fig-
ure C.6 it can be seen that the number of stores is significantly larger under the
Consumer Power scenario compared to Steady State contributing to a higher level

of consumer flexibility.

C.2.2 Solar PV

For consumer solar, National Grid provides capacities for all installations at the dis-
tribution level under Steady Sate and Consumer Power scenarios (Figure C.7). We
model future solar capacity within each sector by multiplying the current number
of solar PV installations calculated in Appendix B.1 by the capacity scaling factor

calculated relative to the base year 2015 (Figure C.7). From Figure C.8 we can see
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Figure C.5: Projected capacity of electrical storage installed at the distribution level across
different sectors in Great Britain under Steady State and Consumer Power sce-
narios. Source: (National Grid, 2017a).
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Figure C.6: Projected number of electrical storage installed at the distribution level across
different sectors in Great Britain under Steady State and Consumer Power sce-
narios. Source: (National Grid, 2017a).
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that even though the capacity of solar PV has been assumed to be the same across
the three consumer sectors, the number of domestic installations is much larger due

to a lower individual capacity.
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Figure C.7: Projected installed solar capacity in Great Britain at distribution level under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a).
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Figure C.8: Projected number of solar PB installations in Great Britain at distribution level
under Steady State and Consumer Power scenarios. Source: (National Grid,
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C.2.3 Electric heating
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We calculate the number of heat pumps in the system by dividing the annual en-

ergy consumed by HPs aggregator across each sector by the annual energy demand

of a single HP calculated in Section B.3 (Figure C.9). Whilst the FES provides

data for the domestic sector, for non-domestic consumers we consult the report on

future HP adoption provided by the Committee on Climate Change (CCC, 2013).
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The report provides the predicted values for annual electricity consumption by non-
domestic heat pumps under Default and Critical pathways, which is aligned with
the Steady State and Two Degrees FES scenarios. We then make an assumption
that all non-domestic heat pumps are split equally between commercial and indus-
trial consumers in terms of the total input capacity. Figure C.10 shows the calculated

number of installed heat pump within each stationary sector.

Figure C.9: Projected annual consumption by heat pumps in domestic and non-domestic
sectors in Great Britain under Steady State and Consumer Power scenarios.
Source: (National Grid, 2017a; CCC, 2013).
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Similarly to the data on heat pumps, for resistance heaters the FES dataset
offers information only for domestic consumers. In order to calculate the annual
contribution of resistance heating sources in the non-domestic sectors, we subtract
the already calculated annual energy demand by the heat pumps (Figure C.9) from
thermal demand of non-domestic consumers (represented by cooling and ventila-
tion, low temperature processes, refrigeration, space and heating) (Figure C.11). In
order to obtain the numbers of non-domestic RH installations, we divide the annual
energy demand values for each sector by the individual RH consumption values in
the reference year 2015. To model the future evolution of non-domestic RHs we

apply the growth factors of domestic RHs (Figure C.13).
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Figure C.10: Projected heat pumps installations across all sectors in Great Britain under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a;

CCC, 2013).
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Figure C.11: Projected annual demand by resistance heaters across all sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c¢).
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Assumptions regarding thermal energy storage (TES). For thermal energy
stores it is assumed that for all sectors 50% of consumers with any source of electric
heating have a thermal store, which allows us to calculate the number of TESs in

the system by dividing the total number of HPs and RHs by two.
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Figure C.12: Projected annual demand by resistance heaters across all sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c).
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Figure C.13: Projected resistance heating installations across all sectors in Great Britain
under Steady State and Consumer Power scenarios. Source: (National Grid,
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C.2.4 Non-thermal consumers

We calculate the level of non-thermal consumption by subtracting thermal energy

demand (see Appendix C.2.3) from the total energy demand in each sector. We then

calculate the number of non-thermal consumers by dividing annual non-thermal

consumption by individual non-thermal energy demand for a single non-thermal
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consumer. Hence, if the commercial sector uses 96.96 TWh/year towards non-

thermal resources and an individual commercial consumer uses 16,556 MWh/year,

then there are % = 5,856 non-thermal consumers within the commercial sec-

tor.

Figure C.14: Projected electricity demand by thermal and non-thermal resources across
stationary sectors in Great Britain under Steady State and Consumer Power
scenarios. Source: (National Grid, 2017a; BEIS, 2017¢).

350 Steady State 350 Two Degrees

TWh
TWh

300

250

200 ﬂ”’#////[/////f///l'///'/////////ﬁ/

y///i///m/mmmﬂl/ﬂ//

0
2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050

m Domestic (non-thermal) =~ Domestic (thermal) m Commercial (non-thermal)
v Commercial (thermal) ® Industrial (non-thermail) % Industrial (thermail)

For the transportation sector the number of non-thermal consumers corre-
sponds to the number of electric vehicles in the system. We use the FES data
on Steady State and Two Degrees scenarios as shown in Figure C.16 in order to
calculate the total number of electric vehicles in the system represented by plug-in

electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs).
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Figure C.15: Projected number of non-thermal consumers in different sectors in Great
Britain under Steady State and Consumer Power scenarios. Source: (National
Grid, 2017a; BEIS, 2017c).
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Figure C.16: Projected number of electric vehicles on the road in Great Britain under
Steady State and Consumer Power scenarios. Source: (National Grid, 2017a;
BEIS, 2017c¢)
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Appendix D

Creating consumer agents

D.1 Allocating consumer numbers to consumer

agents

When the model run is initialised in step RO of the algorithm shown in Fig-
ure 3.9, the environment creates consumer agents, i.e. ny.,, Vsec € .7 type €
{typel,...,typel0}. This step is performed only once during the run. The alloca-
tion of consumers is done at the beginning of each of the run, as this is when the
global parameters for technology capacities change.

The information of how many real consumers each agent represents is con-
veyed by the consumer multiplier numbers shown in Table D.1. In addition to this
the model is operated in megawatts rather than kilowatts and so we make it simpler
by making the smallest unit of consumer multiplier 1000 consumers which auto-
matically convert all kilowatt values into MW.

The number of consumers of each type within each sector as shown in Table
3.3 changes depending on the scenario and the year of simulation. For example, the
National Grid projects the number of domestic consumers with electrical storage of
capacity 3kW (average) to reach 710,000 by 2050 in their Future Energy Scenar-
i0s (FES) under high penetration case (assuming an equal split of storage between
residential, commercial and industrial sectors). Some of those consumers will be of
type 8 and not have any other resources, however a proportion will be of types 7,

9 and 10. Now, the number of consumers of type 7 is constrained by the number
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Table D.1: Allocation of consumer multipliers.

Sector . . .
Domestic Commercial Industrial Transport
Consumer type

dom com ind

1 (no resources) Mg el My pel My pel 3
. dom com ind

2 (with HP) My My ped My pe2 -
g dom com ind

3 (Wlth HP and TES) mtype3 mtype3 mtype3 3
: dom com ind

4 (Wlth RH) mtype4 m[ypeé‘. mlyp64 -
o dom com ind

5 (with RH and TES) My nes My pes Miypes )
: dom com ind

6 (with PV) My pe6 My pe6 My pe6 )
g dom com ind

7 (with PV and ES) M e My peT My pe -

. dom com ind trans
8 (Wlth ES) mtypeS mtype8 mtypeS mtypeg

e dom com ind

9 (with HP,PV,TES,ES) M1y pe9 Miype9 Mypey )
: dom com ind

10 (Wlth RH,PV,TES,ES) mtypelO mtypel() mtypelO -

Key: HP - heat pump, RH - resistance heater, PV - solar photovoltaic, TES - thermal energy
store, ES - electrical store.

domestic consumers with solar PV in the system projected to reach 3.2 million by
2050 in accordance with the FES, whilst the number of consumers of types 9 and 10
are also constrained by the availability of heat pumps (1.2 million), thermal storage
(8.2 million) and resistance heating (2.7 million) in the system. The total number
of domestic consumers of all types must equal to 36.5 million (calculated based on
total non-thermal electricity consumption in 2050) making the process of allocating
consumer numbers non-trivial. Coupled with an additional constraint of there being
at least 1 agent of each type (required to assess the impact of system dynamics on all
consumer types) makes the process of allocating consumers to each type becomes
non-trivial.

The model allocates consumers at the beginning of each run by minimising the
difference between the number of actual projected technologies (N2<“) (taken
from FES or other available sources) and the technology number modelled in ESMA

sec,techy |
(N mod )

I'The reason, we do not look for exact numbers is because at times the problem is not solvable
taking into account all technology value constraints. A correction factor introduced slightly later
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sec tech sec,techy?2
min Z Z N = Na )7, (D.1)
sece.S teche 7

where .7 = {ES, TES,HP,RH, PV, tot} is a set of all technology types and

. = {dom,com,ind,trans} is a set of all consumer sectors.

The above problem is constrained by the availability of technology within each

sector and across all type of consumers. Hence, the total domestic electrical storage

dom,ES __

will be spread across domestic consumers of types 7, 8, 9 and 10. So, n,, .

dom dom dom dom
type7 + mtype8 + mtypeQ + mtypelO'

The constraints are summarised as follows:

sec,ES __  sec sec sec sec
mod — Muypel + Myypes + My pe9 + Mtypel0;

sec,TES __ _ sec sec sec sec
- mtype3 + ntypeS + ntype9 + ntypelO?

mod
Moo = Miper + e & Mo,
n:foC;iRH IS;16764 + ntypeS + n:;;dm
nftf(féipv nf)e);e6 + nf;;ﬂ + n?;;e9 + ntypelO? and
Moo = Miypet + Miyped + Miypes + My pos 10005+

type6 + ntype7 + ntypgg + ntype9 + ntypelO Vsec € ..

The model solves the above minimisation problem for n;,, Vsec €

SN type € {typel,...,typel0}. We refer to the consumer number for each type

sec 3 3
Niype s consumer multiplier.

For domestic consumers in the Two Degrees+ scenario we introduce a linear
efficiency improvement for domestic appliances as per National Grid’s scenarios

which assume a 30% improvement by 2030.

corrects for the slight deviation.
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D.1.1 Consumer numbers

The following charts demonstrate how the consumer allocation method described
in D.1 works in calculating the number of consumers for each type and sector. We
compare the two scenarios considered in this work Steady State and the Two De-
grees+ .

It can be seen how the share of consumers with no resources reduces over time
for the Two Degrees+ scenario, whilst under Steady scenario the share of differ-
ent consumers stays fairly consistent. This is expected as consumer are obtaining
more distributed energy resources such as solar PV, storage and electric heating.
The change is more pronounced for the domestic consumers compared to commer-
cial and industrial sectors, where by 2040 the model project no consumers without

resources (Figure D.1).

Figure D.1: Demonstration of consumer allocation for domestic sector.
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For commercial sector there is still a considering number of consumers with
no resources under Two Degrees+ scenario with the number dropping to around
4.4 million by 2035. Again we can see how the share of consumers with electric
heating and storage increases over time. This is especially true for consumer with
heat pumps and thermal storage (in green) and for consumers with electric storage
(in orange) (Figure D.2).

For industrial sector we note that under Steady state scenario the number of



D.1. Allocating consumer numbers to consumer agents 265
Figure D.2: Demonstration of consumer allocation for commercial sector.
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consumers drops, whilst under Two Degrees+ it stays fairly consistent (Figure D.3).

Figure D.3: Demonstration of consumer allocation for industrial sector.
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Transportation sees a significantly larger number of electric vehicles under Two
Degrees+ scenario (Figure D.4).

Once the environment has set the day and the year of the simulation consumer
adjust capacities for all their resources based on the consumer allocation number
calculated in step EO.

Although the number of consumers varies throughout the length of the run,
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Figure D.4: Demonstration of consumer allocation for transport sector.

" Steady State Two Degree+
w T -
T 18 18
]
> 16 146 4
2
+=
@ 14 14 -
7
é 12 12
z
10 10 4
8 8 -

0 0 -
2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050

the number of agents does not change from what has been set in step RO. Hence,
there might be 50,000 consumers of type 3 (in possession of HP and TES) but the
model will only have 1 modelled agent representing all of them. Hence, when the
consumer sets technological capacities at the beginning of the run, it multiplies in-
dividual technology capacity by the consumer multiplier number since it represents
the number of technological units belonging to this agent type. For example, if
there are 50,000 domestic consumers of type 3, then the HP capacity for one do-
mestic consumer agent of type 3 is calculated as the individual HP capacity 2 kW
multiplied by the consumer multiplier 50,000 resulting in the aggregate capacity of
100 MW.

Applying consumer multipliers allows to keep the number of modelled tech-
nologies in-line with FES scenario. For example, during daily initialisation step
C1 (Figure 3.9) consumers predict renewable generation by selecting the relevant
daily generation profile from the annual generation data. They then scale the daily
profile by the consumer multiplier set in CO. Hence, if a consumer agent repre-
senting 41,487 commercial consumers with solar is prediction generation for the
2nd January 2015 it will select the daily generation profile for the 2nd of January
and multiply it by 41,487 as shown in Figure D.5. We assume no uncertainty in

consumer agents predicting renewable generation.
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Figure D.5: Projected installed solar capacity in Great Britain at distribution level. Source:
(National Grid, 2017a).
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Appendix E

Model calibration

E.1 Wholesale prices calibration

As discussed in section 3.4.5.3, in the context of ESMA electricity generators sched-
ule based on the simplified least-cost dispatch model. However, this underestimates
the true level of wholesale electricity prices. Here, a method of uplifting the elec-
tricity prices to a more representative level is introduced. The modelled uplift £(¢,d)
represents any additional costs incurred in generating and delivering electricity to
end-users such as the costs for utilising the transmission and distribution network
as well as balancing.

Hence, the final wholesale price in time ¢ and day d consist of a short run

component psg(t,d) and a demand dependent uplift £(z,d) is not modelled:

p(tvd):pSR(tvd)+8(t7d)7 \V/I‘E[I,T]. (E.1)

In order to calculate the uplift we use historical data for wholesale prices taken
from the exchange (Figure E.1). As can be seen from the figure the data is very
noisy. It is expected, since exchange trades include deals for short term delivery
some of which are not for physical delivery but rather speculative. In order to
reduce the noise we fit a polynomial to obtain the historical relationship between
demand and wholesale price level as shown on the chart.

We then use the relationship between historical demand and prices in order

to calculate the residual prices, i.e. the difference between historical and prices
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Figure E.1: Historical electricity prices vs system demand, Jan-Dec (APX Group, 2015)
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modelled in ESMA. In the final step we fit a polynomial to the residual prices,
which determines the uplift calculations.

The left chart in Figure E.2 shows the prices output from the model as well as
the prices according to the historical relationship. The chart on the right shows the

residual prices as well as the equation for calculating the uplift, i.e.

g(t,d) = —51.34+0.00601-L(t,d) — 1.51- 10~ "L*(z,d) + 1.51- 10" 2L3(z,d),
(E.2)

where L(t,d) is the system demand in time ¢ and day d.

Adding the uplift to the modelled prices according to (E.1) renders the final
wholesale prices in ESMA. Figure E.3 shows how the modelled prices compare to
historical values for the base year 2015. We note that historical relationship is only
available for demand higher than 21GW and so for demand below this value we
model the uplift as a linear function guided by the assumption that at zero demand
the cost of utilising the grid is zero.

We acknowledge that the equation for the uplift is calibrated against a historical
2015 year and that it will likely change in the future. In order to adjust the uplift to

future years we consult the Future Energy Scenarios (FES) provided by (National
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Figure E.2: Modelled electricity prices.
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Figure E.3: Modelled electricity prices.
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Grid, 2017a), which offer an average electricity price level for baseload generation.
Figure E.4 demonstrates how baseload electricity prices are projected to change

under different national scenarios.

We use this information about prices to adjust the uplift relationship on system
demand determined earlier. For Two Degrees+ we select the medium case, since it
is a combination of the Two Degrees and Consumer Power scenarios. In addition
this we expect that as the level of renewable generation increases a high proportion

of the price will come from the capital costs, which are not modelled in ESMA. We
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Figure E.4: Projected electricity prices. Source: (National Grid, 2017a)
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compensate for this by choosing the higher uplift scenario from the medium and

low cases. Figure E.5 demonstrates how the uplifts change throughout the years

and Figure E.6 shows the final wholesale prices modelled in ESMA.
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Figure E.6: Projected wholesale electricity prices in the base case (no coordination).
Source: ESMA.
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E.2 Demand side response algorithms

Since the demand side algorithm used in this work have been adapted from the
original it was important to set the right tolerance level € for their convergence and
the damping term «. The primary concern when setting these parameters was to
balance speed and accuracy of the simulation. The following section describes the

reasoning behind setting these parameters.

E.2.1 Aggregator DSM algorithm: AGG _DF and AGG_CM

Algorithm AGG_DF has been taken almost directly from the original one proposed
by (Gan et al., 2013). So for this algorithm it was important to set the tolerance
level € at which it was decided that the algorithm converges. Figure E.7 shows
how the cost at each iteration changes when we set a different tolerance level. For
the purpose of the demonstration we run the simulation for one winter day in 2050
(Steady State). It is possible to see that when the level of tolerance level € is higher
the algorithm converges quicker but the total system cost is higher.

We select the appropriate tolerance level by looking at the time it takes for the
algorithm to run daily as well as the accuracy at each value (Figure E.8). Looking at
the time it takes for the simulation to complete one day and the marginal benefit of

decreasing the tolerance level brings to reducing the system cost, we select tolerance
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Figure E.7: Demonstration of the convergence of algorithm AGG_DF, 1 Jan 2050 (Steady
State). Source: ESMA.
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of 0.005%. We justify this choice by the fact that running the simulation for more
than 45 minutes per year would take too long to complete at least two scenarios
and three years of simulation, especially considering that the marginal benefit of
reducing cost is 0.004%.

Figure E.8: Analysis of convergence time and accuracy of algorithm AGG_DF with differ-
ent level of tolerance, 1 Jan 2050 (Two Degrees+). Source: ESMA.

Convergence Number of iteration  Time taken Time taken per System cost Marginal
tolerance to converge per day (s) year (mins) [£ milion] reduction in cost
0.000005 22 2.68 58.87 135.59 -0.003%
0.00001 18 7.51 45.68 135.59 -0.004%
0.00005 15 6.45 39.22 135.60 -0.022%
0.0001 11 5.02 30.52 135.63 0.111%
0.0005 5 2.79 16.95 135.78 -0.043%
0.001 4 2.30 14.01 135.83 -0.200%
0.005 2 1.43 8.72 136.11 0.317%
0.01 1 0.88 5.38 136.54 0.000%
0.05 1 0.89 5.43 136.54

For AGG_CM it has been found that the algorithm performs best when the
penalty term is set to 0 meaning that consumers are instructed to maximise shifting

demand towards periods of low electricity prices (Figure E.9). For all the other
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setting of o, the algorithm converged to a higher cost.

Figure E.9: Demonstration of the convergence of algorithm AGG_DF, 1 Jan 2050 (Steady
State). Source: ESMA.
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E.2.2 System Operator cost minimising algorithm (SO_CM)

For SO_CM the tolerance level has been kept at the same level as for AGG_DF
to ensure fairness when comparing different regimes. However, we found that it
was necessary to adjust the damping term ¢. Figure E.10 demonstrates how the
algorithm reduces the system cost as « is varied between 0 and 1. Similarly to the
case of AGG_DF « is selected based on the system cost and the convergence time of
the algorithm (Figure E.11). In fact only with ot = 0.05 does the algorithm converge
in a reasonable time.

However it turns out that the algorithm is quite sensitive to this parameters as
can be seen in Figure E.12 where the algorithm is run across different years and
scenarios. On the whole the model is more sensitive to the lower values of alpha
(<0.02), however the sensitivity changes depending on the year of the simulation.
This happens because unlike algorithm AGG_DF (where the signal is based on the
average aggregate consumer demand) in SO_CM it is the price which itself depends
on the system demand and generation resources in the system. Hence it is of no

surprise that the optimal damping parameter setting has to be adjusted daily.
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Figure E.10: Demonstration of SO_CM algorithm convergence under different values of ¢,

1 Jan 2050 (Steady State).
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Figure E.11: Analysis of convergence time and accuracy of algorithm SO_CM with differ-
ent  setting, 1 Jan 2050 (Two Degrees+). Source: ESMA.

Alpha setfing Mumber of iteration  Time taken Time taken per System cost Marginal
to converge per day (s) vear [mins) (£ million)  reduction in cost

o] does not converge 42.00 255.50 157.84 4.903%

0.001 does not converge 43.00 261.58 150.446 4.314%

0.005 does not converge 47.40 288.35 144.24 4.954%
0.01 =100 44,90 273.14 137.43
0.05 19 8.40 51.10 136.95
0.1 27 12.00 73.00 137.00
0.15 36 15.80 96.12 137.02
0.2 37 16.40 99.77 137.08
0.25 38 16.70 101.59 137.13
0.5 49 22.00 133.83 137.28
1 86 40.00 243.33 137.34

In order to consider the full potential of algorithm SO_CM the simulation is

run for a range of « settings and select those days with the lowest system cost

as demonstrated in Figure E.13. It is noted that the value of alpha for which the

algorithm achieves the lowest cost varies depending on the day, which is of no

surprise since system prices and demand change throughout the year. In addition to

this, on certain days the system does better when consumers do not coordinate at all

(red points). This situation happens during the days when the price curve is steep
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Figure E.12: Sensitivity of system cost to the o setting on the 1st January in 2015, 2030
and 2050 in the Steady State and Two Degrees+.
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meaning that increasing demand from operating storage is not justified by making
savings from a reduction in price peaks. Looking at the pattern for consumer exports
(Figure E.14) it is possible to see that it appears to inversely mimic the pattern for
best o setting (with an exception of a few outliers). This suggests that the higher
the amount of renewables and the lower the prices, the lower is the optimal setting
for . This relationship also confirms our explanation for why on certain days the
system does better without DSM, i.e. when renewable generation is high the price
curve is shallow and so DSM carries less value in comparison to the higher cost

which comes from operating storage.
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Figure E.13: Alpha settings which lead to the least system cost on the daily basis in 2015,
2030 and 2050 in the Steady State and Two Degrees+.
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E.3 Consumer learning algorithm for o

When choosing settings for conStep and conExplore, we perform sensitivity anal-
ysis of the model to these two parameters and select the combination which leads
to the least system cost. We focus on the year 2050 in Two Degrees+ since it is the
year which saw the highest level of herding.

Figure E.15 shows the level of system cost achieved under different combina-
tion of step size and exploration rate of consumer, which can be identified by the
shade of the square. It is possible to see that the system achieves the lowest cost
when conExplore=0.5 and conStep=0.005 which corresponds to the situation when
the consumer explores 50%. Hence, these values are chosen as the default setting
for the learning algorithm in our model. When step size is too small, the consumer

fails to converge to the optimal value of a in time, whereas when step size is too
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Algorithm 6: Consumer algorithm for learning o.

Input : Consumer ¢ knows today’s electricity prices p(z,d), own net

demand [$,,(¢,d) and own a“(d) and yesterday’s cost for
purchased electricity z°(d — 1) and a(d —1).

Output: Damping term for day ahead a“(d + 1)

1 . Consumer calculates the cost of purchase electricity in day d:

=

2(d) =) p(t,d)-1y(1,d)

t=1

if z°(d) > z°(d — 1) then

2 | a(d+1)=a‘(d-1);

3 end

4 else

s | if Random|0,1] < conExplore then

6 if Random[0,1] < 0.5 then

7 | a‘(d+1) = ac(d)+conStep;
8 end

9 else

10 | a‘(d+1) = ac(d) — conStep;
11 end
12 end
13 else

14 ‘ do nothing;

15 end
16 end

17 Consumer updates yesterday’s o and cost:

F(d—-1)=z(d),a(d-1) = a(d)
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Figure E.14: Daily consumer exports in 2015, 2030 and 2050 in the Steady State and Two

Degrees+.
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large it is easy for consumer to overshoot. When the exploration rate is too small,

the consumer fails to progress with finding an optimal value of ¢, whereas when

the exploration rate is too large the consumer does not stick with a“ which leads to

lower cost.

Figure E.15: Sensitivity of system cost to values of conExplore and conStep, 2050 (Two

Degrees+).
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Data tables
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Appendix G

Colophon

U] This document was set in the Times New Roman typeface using IATEX and

BibTgX, composed with a text editor.

[J The model was developed in Repast Simphony-2.3.1 using the JAVA pro-

gramming language.
U] Linear programming was implemented using IBM’s ILOG CPLEX 12.6.

L] Figures and tables were created Rstudio with R-3.4.3 and Microsoft Excel
2010.

[J Graphical drawings were created using Microsoft Power Point 2010.
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