REASSESSMENT OF ROUTINE MIDSTREAM CULTURE IN DIAGNOSIS OF
URINARY TRACT INFECTION

Authors:

Affiliations:
a. Centre for Nephrology, Division of Medicine, University College London, Royal Free
Campus, Rowland Hill Street, London NW3 2PF, UK.
b. EDI Department of Microbial Diseases, University College London, 256 Gray's Inn
Road, London WC1X 8LD, UK.

Running Head: Failure of midstream urine culture to detect infection

#Address correspondence to:
Sanchutha Sathiananthamoorthy, rebmssa@ucl.ac.uk
Jennifer L. Rohn, j.rohn@ucl.ac.uk

*Present addresses:
Trang K Nguyen, University of Leeds, Leeds, UK
Shradha Gurung, University of Kent, Kent, UK
Linda Collins, Middlesex University, London, UK
Anthony S Kupelian, University College Hospital, London, UK
Rajvinder Khasriya, University College Hospital, London, UK
ABSTRACT

Midstream urine culture (MSU) remains the gold standard diagnostic test for confirming urinary tract infection (UTI). We previously showed that patients with chronic lower urinary tract symptoms (LUTS) below the diagnostic cut-off on MSU culture may still harbour bacterial infection, and that their antibiotic treatment was associated with symptom resolution. Here, we evaluated the results of the UK’s MSU culture in symptomatic patients and controls. Next, we compared the bacterial enrichment capabilities of the MSU culture with a 50 µl uncentrifuged culture, a 30 ml centrifuged sediment culture, and 16S rRNA gene sequencing. This study was conducted on urine specimens from 33 LUTS patients attending their first clinical appointment (mean age = 49 years, standard deviation [SD] = 16.5), 30 LUTS patients on treatment (mean age = 47.8 years, SD = 16.8) whose symptoms had relapsed, and 29 asymptomatic controls (mean age = 40.7 years, SD = 15.7). We showed that the routine MSU culture, adopting the UK interpretation criteria tailored to acute UTI, failed to detect a variety of bacterial species, including recognised uropathogens. Moreover, the diagnostic MSU culture was unable to discriminate between patients and controls. In contrast, genomic analysis of urine enriched by centrifugation discriminated between the groups, generating a more accurate understanding of species richness. In conclusion, the UK’s MSU protocol misses a significant proportion of bacteria, which include recognised uropathogens, and may be unsuitable for excluding UTI in patients with LUTS.
51 **KEY WORDS**

52 Midstream urine culture

53 Urinary tract infection

54 Lower urinary tract symptoms

55 Mixed growth

56 16S rRNA gene sequencing
INTRODUCTION

An estimated 150-250 million individuals worldwide develop urinary tract infection (UTI) every year, making it one of the most frequent types of human infections (1, 2). Midstream urine culture (MSU) is the gold standard test for its diagnosis. Hospital laboratories in the UK abide by the Standards for Microbiology Investigations (SMI B 41) protocol, issued and updated by Public Health England (PHE), which generally recommends a threshold of $\geq 10^5$ colony forming units per millilitre (cfu/ml) to confirm both uncomplicated and complicated UTI (3); this criterion is also adopted in many other countries, but varies considerably. The 10^5 cfu/ml threshold originates from a comparison conducted in the late 1950s of 74 pregnant female patients with clinically determined acute pyelonephritis and 337 asymptomatic women (4, 5).

Concerns regarding the suitability of this quantitative cut-off for patients with uncomplicated, acutely dysuric lower UTI were initially raised by Stamm, for which the evidence-based suggestion for lowering the colony count to 10^2 cfu/ml was concluded to be the more appropriate alternative (6, 7). It is now recognised that culture, interpreted using a single quantitative threshold, may not be appropriate when used to detect different clinical manifestations of UTI (urethritis, cystitis, and pyelonephritis). This may be further complicated by a multitude of host and microbial factors (8, 9), making it increasingly likely that no single threshold is suitable for the detection of UTI in every clinical circumstance (10).

The current quantitative MSU threshold is problematic for other reasons. First, bacterial strains are known to vary in virulence (11), meaning that some strains might generate disease even at lower concentrations. Second, the concentration of bacteria in urine can vary widely depending on fluid intake before MSU sampling; a dilute specimen might fall below the
diagnostic cut-off as a result. Third, recognised uropathogens, including *Escherichia coli* and *Enterococcus faecalis*, adhere to host cells and are also known to invade them to form intracellular colonies (12-14). Thus, urinary supernatant may be a poor substrate for recovering sequestered organisms. However, it is also known that an innate immune response to UTI exacerbates the shedding of urothelial cells into urine (15-19).

An additional problem associated with standard MSU interpretation in the UK is the dismissal of mixed growth cultures by default. Conventionally, ‘mixed growth’ cultures are assumed to reflect contamination by organisms recognised to colonise the healthy periurethral, vaginal and perianal regions (5). Although some laboratories electively consider the growth of up to three organisms each at >10^5 cfu/ml to suggest polymicrobial infection, or may proceed with a repeat assessment, many disregard mixed cultures altogether (3).

However, we and others have shown that polymicrobial infection is common in patients with lower urinary tract symptoms (LUTS) (13, 20-22). In addition, polymicrobial urosepsis has been reported in patients who demonstrated identical, mixed isolates from blood and urine specimens (23, 24). Another study reported that *E. coli*, a predominant uropathogen, manifested greater invasive properties when isolated from a polymicrobial culture in contrast to pure growth (25). This finding is supported by recent work showing that *E. faecalis* can bolster *E. coli* by exporting the nutrient L-ornithine (26).

Few studies have analysed the urinary microbial composition by laboratory outcome (i.e. negative, mixed, positive cultures), and the majority of such work has assessed culture techniques adopted in US laboratories (6, 27-30). Given the limitations of culture-based microbial detection (31-33), characterisation of microbial communities in health and disease is now becoming increasingly dependent on approaches, such as DNA-based identification, which do not require growth in particular culture conditions (34). Using metagenomics, the urinary microbiota in patients with neurogenic bladder dysfunction (35), overactive bladder
(36), urgency urinary incontinence (UUI) (28), stress urinary incontinence (37) and uncomplicated UTI (38) have been described. Some studies have also included comparisons to asymptomatic individuals (28, 33, 35, 36, 39-41).

Critical microbiological evaluation of the urine culture protocol adopted in the UK is long overdue. Here, we chose to study MSU culture performance in patients describing LUTS, including those who fall short of a positive culture and those demonstrating mixed growth, since these are generally deemed not to have a bona fide infection. This assertion hinges on standard culture-based diagnosis, and emerging data (13, 28, 42) suggest that such patients harbour chronic infection. Our aim was to evaluate the MSU culture in symptomatic patients and asymptomatic controls and assess its performance using both culture and molecular approaches, with and without specimen enrichment.

MATERIALS AND METHODS

Subject recruitment and clinical assessment. This study obtained ethical approval from the East London & the City Research Ethics Committee, London, UK. Adult men and women aged ≥18 years with LUTS were eligible for study inclusion. Pregnant subjects were not included in the study. Since urine cultures are relied upon for diagnosis at initial presentation and during relapse, two separate symptomatic patient groups were recruited and assessed. Patients attending their first appointment at the Whittington Hospital Lower Urinary Tract Symptoms (LUTS) Clinic (referred to in this study as “new patients”), who were not on antibiotic treatment and had not taken antibiotics in the preceding four weeks, were evaluated by the present clinician and inducted into the first patient group. Patients attending a follow-up consultation with symptomatic recurrence, relapse or no response to initial antimicrobial treatment (referred to as “relapsed patients”) were identified following clinical assessment to form the second patient group. Asymptomatic controls aged ≥18 years of either sex, with no
urological complications and not on antibiotic treatment were recruited from departmental staff, students and the general population. All patients and controls provided written consent prior to study inclusion. Figure 1 presents a workflow of all experimental procedures conducted on each subject. Clinicians overseeing the care of new and relapsed patients were blinded from all urinalyses results (i.e. urinary dipstick, microscopy and MSU culture test results). For all downstream analysis, the culture plates were coded with a four-digit study number and processed separately in large batches. The data for each technique were inputted separately and comparisons did not take place until all of it had been entered and the code broken.

Symptoms of urgency urinary incontinence (UUI), voiding dysfunction, pain, and stress urinary incontinence (SUI) were recorded using “yes/no” response questions in a validated questionnaire (43). The context-related symptoms were summed within each of the four symptom groups. Patient and control urine specimens were obtained using the clean-catch MSU method and anonymised with a four-digit study number. Subjects were carefully instructed in the collection technique. Each urine specimen was analysed using urinary dipsticks and an automated Clinitek Status analyser (Siemens Healthcare, Germany) for leukocyte esterase and nitrites. Microscopic leukocyte counts were determined using a Neubauer counting chamber, loaded with 10 µl of fresh urine. Each prepared specimen was examined by microscopy (x200) using an Olympus CX41 light microscope (Olympus, UK).

National routine diagnostic screening. An aliquot of each MSU specimen was submitted to the Whittington Hospital Microbiology Laboratory, London, UK for routine culture. Urine specimens were stored at 4°C until they were transported to the processing laboratory. These samples took approximately 60 minutes to arrive and were cultured either immediately on the same day, or on the next day following overnight storage at 4°C, which reflected usual practice. The protocol involved inoculating ChromID CPS (now ChromID CPS Elite)
chromogenic culture medium (bioMérieux, France) with 1μl of uncentrifuged urine, which was then placed in an ordinary incubator at 37°C. Microbial colonies were identified using the manufacturer’s colour criteria. A count of ≥10⁵ cfu/ml for one organism was interpreted as a significant result. Cultures with a colony count below this threshold were reported as “no significant growth”. MSU cultures, with more than one organism reported as “mixed growth of n types of organisms”.

Extended culture-based analysis. Urine samples were stored at 4°C for 0.5-4.0 hours before transportation to the research laboratory (University College London, UK), where they were processed immediately. An identical MSU culture was performed on an aliquot of the same urine specimen. Simultaneous to this culture, 50 μl of uncentrifuged urine was plated on chromogenic agar. From the remaining aliquots of each specimen, 30 ml was centrifuged at 1400 x g for 10 minutes. The sediment was resuspended in 400 μl of sterilised phosphate buffer saline (PBS) solution (Life Technologies, UK). Ten-fold serial dilutions were performed using PBS to reveal the presence of morphologically small-sized colonies, where the growth of other organisms dominated. All cultures were incubated aerobically at 37°C for 18-24 hours.

Identification of cultured isolates. Microbial isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using the MicroFlex LT mass spectrometer (Bruker Daltonics, USA). In the first instance, the direct colony plate method was employed for identification and each cultured isolate was inoculated twice onto the target plate. The target plate was left to air-dry before applying 1μl of matrix solution (Bruker Daltonics, USA) consisting of alpha-cyano-4-hydroxycinnamic acid dissolved in 50% acetonitrile and 2.5% trifluoroacetic acid. The air-dried target plate was inserted into the mass spectrometer and time was given for the high vacuum to be restored. Using the MALDI Biotyper 3.0 software programme (Bruker Daltonics, USA), the isolate
identifiers were recorded onto the programme and the Bruker Taxonomy library was selected for the analysis. In the event of an unsuccessful identification, an ethanol-formic acid extraction protocol was adopted to assist with microbial cell wall disruption and release of ribosomal proteins (44). A heavy suspension of the unidentified isolate was made in 300 µl of sterile distilled water. Following the addition of absolute ethanol (900 µl) microbial suspension, samples were spun down at 20,000 x g for 2 minutes. The resulting ethanol was discarded and the centrifugation step was repeated. Residual ethanol was removed and the resulting pellet was left to air-dry at room temperature for 5 minutes. The deposit was resuspended in 70% formic acid (20 to 50 µl). An equal volume of acetonitrile was added to this mixture, followed by centrifugation at 20,000 x g for 2 minutes. The supernatant was then applied onto a sterilised target plate twice and left to air-dry, before resuming with the direct approach protocol from the point of adding matrix solution to each dried spot.

16S rRNA gene sequencing of urine. Prior to extraction, urine samples for DNA sequencing were stored at -80°C. Genomic DNA was extracted from each specimen using an approach adapted from a previously reported phenol-chloroform-isooamy alcohol and bead-beating method (45). Specimens were spun down using a pre-cooled centrifuge at 18,000 x g for 5 minutes at 4°C. Cell pellets were resuspended in extraction buffer (500 µl) consisting of 120 mM potassium phosphate (K₂PO₄) buffer (pH 8.0) with 5% cetyltrimethylammonium bromide (CTAB) (Sigma-Aldrich, USA) in 0.7 M NaCl. The specimen tubes were vortexed and contents transferred into pre-sterilised 2 ml tubes containing zirconia/silica beads (0.1mm diameter). Phenol-chloroform-isooamy alcohol (PCI) (25:24:1) alcohol (500 µl) (Invitrogen, USA) was added to each sample and kept on ice. The samples were homogenised using a RiboLyser (Hybaid, Germany) for 30 seconds at 5.5 m/s and spun down at 18,000 x g for 15 minutes.

Chloroform-isooamyl (CI) alcohol (Invitrogen, USA) was added at a 1:1 ratio to the extracted layer of DNA supernatant. After centrifugation at 18,000 x g for 2 minutes at 4°C, the DNA
of each sample was precipitated by adding 30% polyethylene glycol (PEG-8000) (Sigma-Aldrich, USA) at a 2:1 ratio.

PCR was performed to amplify the V5-V7 hypervariable regions of the 16S rRNA gene using the barcoded primers 785F (5’-GGATTAGATACCCBRGTAGTC-3’) and 1175R (5’-ACGTCTCCCDCCTTCCTC-3’) (see Table S1) (Sigma, UK). Each 25 µl sample reaction contained 0.125 µl Moltaq DNA polymerase (0.025 µM) (Molzym, VH Bio Ltd, UK), 2.5 µl of Molzym buffer (x 1) (Molzym, VH Bio Ltd., UK), 0.5 mM MgCl₂, 0.2 mM dNTPs (Bioline, UK), 1 µl of forward and reverse primer (0.4 µM) and PCR water (Molzym, VH Bio Ltd., UK). The PCR reaction stages involved an initial denaturation step at 95°C for 5 minutes and subsequently amplified for 30 cycles at 94°C for 30 seconds (denaturation), 54°C for 40 seconds (annealing), 72°C for 60 seconds (elongation) followed by 72°C for 10 minutes and a final hold of 4°C. All sample reactions were performed in duplex. The DNA concentrations were determined using the Qubit high-sensitivity DNA assay kit (Life Technologies, UK) and the Qubit 2.0 fluorometer (Life Technologies, UK). The amplicons were purified using Agencourt AMPure XP-PCR magnetic particles (Beckman Coulter, USA) and combined in equimolar ratios using elution buffer (Qiagen, UK) to generate three pooled DNA libraries (libraries 1, 2 and 3) for pyrosequencing on the MiSeq desktop sequencer (Illumina Inc., USA), using the v2 reagent kit (Illumina Inc., USA). Since library 3 contained samples with the lowest DNA yields, the purification step was repeated for this pooled library in an attempt to improve on the final DNA concentration.

Our own customised and commercial mock communities were incorporated into DNA libraries 1 and 2 to verify the DNA sequencing protocol (see Figure S1).

Statistical analysis. All descriptive and inferential statistics were generated using SPSS version 25.0 software (IBM, USA). Demographic data, age, gender, 24-hour urinary
frequency, nocturia, validated LUTS scores, log-transformed leukocyte counts were
compared across the groups using non-parametric tests. In all cases, except age, homogeneity
of variance was not shown so Mood’s median test was used instead of the Kruskal-Wallis.
Hospital MSU culture data (with the outcomes: “negative”, “mixed growth” and “positive
culture”) were compared across the study groups using the Chi-squared test or Fisher’s exact
test.

The 16S rRNA data was analysed using QIIME (Quantitative Insights Into Microbial
Ecology, qiime.org version 1.8) (46). The raw reads were demultiplexed and assigned to
samples using barcoded sequences. After demultiplexing, the paired-end data were joined to
obtain a single FASTQ file for each sample. These sequences were then clustered into
Operational Taxonomic Units (OTUs) using an open reference OTU picking strategy. The
OTU clusters were assigned to the Greengenes Reference Database
(http://greengenes.lbl.gov) (47) based on 97% sequence similarity (46). OTUs were then
filtered to remove the chimeric sequences (UCHIME) (48) and taxonomy was assigned using
the Ribosomal Database Project (RDP) Classifier (49). Core diversity analyses based on
study group and sample type were performed.

RESULTS

Clinical characteristics of the patient cohorts providing samples. As previous work
suggested that the gold standard MSU culture was not an optimal diagnostic tool to detect
infection in LUTS patients, we set out to directly compare it with two alternative culture
techniques. We collected clean-catch MSU specimens from 33 untreated new patients (mean
age: 49 years, standard deviation [SD] = 16.5) and 30 patients experiencing a symptomatic
relapse (mean age: 47.8 years, SD = 16.8). Since urine cultures are relied upon for diagnosis
at initial presentation and during relapse, these two patient groups were recruited and assessed separately. For comparison, we also recruited 29 asymptomatic controls (mean age: 40.7 years, SD = 15.7). Table 1 details the clinical characteristics of each study cohort. Statistically similar age distributions were observed for all three study groups ($\chi^2 = 4.4$, df = 2, $P = 0.113$). The majority of patients were female, which reflected the well-known demographics of UTI.

Firstly, we inspected the differences between patient and control cohorts. None of the controls reported any LUTS, thus differing significantly from both patient cohorts studied. A review of the symptomatic history of new patients ($n = 30$, duration of symptoms was not recorded for three patients) revealed 1 patient (3.0%) to experience symptoms for <1 year, 16 patients (48.5%) for 1-4 years, 9 patients (27.3%) for 5-10 years and 4 patients (12.1%) for ≥10 years. The median number of daytime and night-time urinary episodes differed across the three groups, with pairwise post-hoc comparisons identifying a higher median frequency for new patients and relapsed patients compared with controls (Table 1). We proceeded to examine the symptomatic differences between new and relapsed patients. Comparisons of symptom presentation between patient groups revealed that the number of new patients reporting UUI and SUI symptoms was significantly higher than that of relapsed patients. The proportion of new and relapsed patients that reported voiding symptoms and pain symptoms were statistically similar (Table 1).

In addition to observing the presence and absence of symptoms, we also calculated a symptom score to determine the magnitude of LUTS within each patient group. The number of symptoms was summed for each of the four categories to provide a score and compared across the groups using Mood’s median test. The median symptom scores for UUI, SUI, voiding and pain symptoms categories differed across the three study groups. Post-hoc analysis revealed higher median UUI, SUI and voiding scores for new patients than relapsed
patients. However, both patient cohorts had similar pain scores and total symptom scores (Table 1). Statistical comparison of the respective frequencies for each assessed LUTS between new and relapsed patient groups are provided within the supplementary material (Table S2).

Urinary microscopy and dipstick analysis. We performed urinary leukocyte counts to determine whether patient urine manifested evidence of infection independent of bacterial assessment. As shown in Table 2, there was a significant difference in log$_{10}$ leukocyte counts among the three study groups ($\chi^2 = 6.2, \text{df} = 2, P < 0.05$). Post-hoc analysis using Bonferroni’s correction identified significant differences between controls and new patients, and between controls and relapsed patients. No significant difference in log$_{10}$ leukocyte counts was identified between new patients and relapsed patients.

Analysis of the urinary dipstick results showed 13 (39.4%) new patients, 11 (36.7%) relapsed patients and 6 (20.7%) controls tested positive for leukocyte esterase with only 1 (3.0%) new patient testing positive for urinary nitrite. The results were unsurprising, as previous work suggested that the dipstick is not sensitive enough to diagnose infection (leukocyte esterase = 46-66%, nitrite = 6-18%), particularly in patients with non-acute symptoms of UTI (50-52).

Although LUTS can be driven by non-infectious causes, the association between patient symptoms and leukocyte recruitment demonstrates urinary tract inflammation. This is critical if an infective aetiology for LUTS is being considered.

Hospital MSU culture results. Next, we determined the relationship between patient symptoms and their standard MSU results. Table 2 summarises the data, in which the majority of new patients, relapsed patients and controls were reported to have a negative MSU culture. Six (9.5%) symptomatic patients showed a positive culture result as did two (6.9%) controls. A comparison of the hospital MSU culture outcomes revealed that the MSU
culture was unable to discriminate between the three study groups ($\chi^2 = 1.7$, df $= 4$, $P = 0.787$). The hospital reports showed that all four new patients with positive cultures grew $E. coli$, whereas $Enterococcus$ ($n = 1$) and a coliform belonging to the $Klebsiella/Enterobacter/Serratia$ group ($n = 1$) were reported for the positive MSU cultures of relapse patients. $Proteus$ ($n = 1$) and $Streptococcus agalactiae$ ($n = 1$) were cultivated from controls.

Further pairwise statistical comparisons of the number of positive and negative MSU cultures using the Fisher’s exact test were performed. For this particular analysis, “mixed growth” and “no significant growth” cultures were under the category of “negative” as both results are traditionally dismissed as insignificant. This analysis indicated that even with the exclusion of the relapsed group, the MSU culture was still unable to discriminate between asymptomatic controls and new patients ($\chi^2 = 0.539$, df $= 1$, $P = 0.674$). The same analysis for relapsed patients and controls also showed no significant difference ($\chi^2 = 0.0$, df $= 1$, $P = 1.0$). Likewise, comparison of new patients and relapsed patients showed no difference ($\chi^2 = 0.539$, df $= 1$, $P = 0.674$). These results further highlight the inability of the MSU culture to discriminate between the three study groups.

Since the hospital laboratory did not report the microbial composites of mixed growth and negative MSU cultures, we inspected the 1 µl loop MSU cultures that were replicated in our own research laboratories subjecting colonies grown on chromogenic agar to MALDI-TOF MS analysis for identification. The pooled percentage frequencies of organisms identified from the polymicrobial MSU cultures of new patients ($n = 7$), relapsed patients ($n = 4$) and controls ($n = 5$) are shown in Figure S2. No colonies on the research laboratory MSU culture were observed for 17 (58.6%) controls, 12 (36.4%) new patients, and 13 (43.3%) relapsed patients. Whilst 19 isolates were grown from 12 asymptomatic control MSU cultures, 39 isolates were identified from 21 new patient cultures and 25 isolates were grown from 17
relapsed patient cultures. With this replicated diagnostic culture, *Enterococcus* and *Escherichia* were predominantly cultured from new patients and relapsed patients, whereas *Streptococcus* and *Staphylococcus* were most frequently isolated from controls. Within this sample size, Fisher’s exact test confirmed a significantly higher frequency of *Escherichia* ($\chi^2 = 5.4, \text{df} = 1, P < 0.05$) and *Enterococcus* ($\chi^2 = 8.9, \text{df} = 1, P < 0.05$) isolated from new patient cultures than from controls. The relapsing patient group was also observed to produce a significantly higher number of *Enterococcus* isolates than the control group ($\chi^2 = 6.4, \text{df} = 1, P < 0.05$). In summary, the quantitative MSU had no discriminatory diagnostic power, but the microbial communities isolated in the process showed some differences between patients and controls.

Comparison of culture techniques. We compared the discriminatory power of the hospital MSU culture with other methods, specifically plating a larger volume of uncentrifuged urine, and plating samples enriched by centrifugation. As shown in Figure 2, microbial growth was categorised as “no growth”, “one isolate” and “≥ two isolates” for comparison. Of note, as the amount of bacterial input increased (from 1 µl supernatant to 50 µl supernatant to centrifuged sediment); regardless of patient group, more polymicrobial growths were revealed. Using this alternative categorisation, the MSU culture replicated within our research laboratory was still unable to discriminate between the three study groups ($\chi^2 = 4.6, \text{df} = 4, P = 0.326$).

Additionally, culturing more supernatant (50 µl) or the sediment did not improve differentiation across the three cohorts ($\chi^2 = 11.7, \text{df} = 4, P = 0.02$ [no significant differences identified with post-hoc analysis] and $\chi^2 = 8.4, \text{df} = 4, P = 0.078$ respectively), likely because as we and others have reported, healthy bladders also harbour polymicrobial growths. These results suggest that quantitative microbiology is not an adequate diagnostic tool for patients experiencing LUTS.
Patient and control urinary bacterial communities. Figures 3 illustrates pairwise study group comparisons of the genera and respective percentage frequencies identified on the MSU culture (reproduced in-house), 50 µl urine unspun culture and 30 ml sediment cultures (See figure S3 for species-level characterisation across study groups). As seen with the MSU culture results, differences were noted among the various groups on sediment culture. Whilst 15 different genera were grown from symptomatic patient sediment cultures ($n = 13$ from new patients, $n = 11$ from relapsed patients) eight genera were isolated from control sediment cultures. Seven genera were shared by both patient and control groups, which were *Corynebacterium, Enterococcus, Escherichia, Klebsiella, Proteus, Staphylococcus* and *Streptococcus*. Organisms that were cultivated from patient samples that were not isolated from control specimens were *Candida, Citrobacter, Enterobacter, Lactobacillus, Leclercia, Morganella* and *Pseudomonas*. In both symptomatic patient groups, *Enterococcus, Staphylococcus* and *Escherichia* were the most abundant organisms. In asymptomatic controls, *Staphylococcus, Enterococcus* and *Streptococcus* were most frequently isolated. However, *Staphylococcus* ($\chi^2 = 3.7$, df = 1, $P = 0.064$) and *Streptococcus* ($\chi^2 = 2.4$, df = 1, $P = 0.2$) were present at statistically similar frequencies in patients. Fisher’s exact test revealed a significantly higher frequency of *Enterococcus* isolates cultivated from the new patients than from asymptomatic controls ($\chi^2 = 6.2$, df = 1, $P < 0.05$). No significant difference was observed with any other genus between new patients and controls. Comparison of frequencies between control and relapsed patient groups using Fisher’s exact test revealed a significantly higher frequency of *Staphylococcus* ($\chi^2 = 6.9$, df = 1, $P < 0.05$), and *Streptococcus* ($\chi^2 = 7.0$, df = 1, $P < 0.05$) in controls than relapsed patients. No significant differences in the number of genera were identified between new and relapsed patient groups.

We went on to analyse urinary bacteria in unprocessed urine (1 ml uncentrifuged) versus 30 ml of urine enriched by centrifugation in new patient versus control study groups using next-
generation sequencing based on rDNA. The percentage of identified sequencing reads or
reads that passed filter (PF) (Q30 >70%) for loaded DNA libraries 1, 2 and 3 were: (i) 77.9%
(10,122,606 PF reads), (ii) 80.0% (14,910,030 PF reads) and (iii) 68.3% (10,129,563 PF
reads) respectively. Bacterial DNA was detected in the urine samples of 32 (97.0%) of 33
recruited new patients (30 uncentrifuged urine samples and 30 centrifuged samples), 26
(89.7%) of 29 control samples (22 uncentrifuged samples and 23 centrifuged samples).
Samples that yielded low DNA concentrations were salvaged with an extended protocol.
Beyond this, bacterial DNA was undetectable in one new patient and three controls.

Figure 4 presents the relative abundance of the 20 most abundant taxa identified from the
uncentrifuged and centrifuged urine samples of new patients and controls (see supplementary
Table S3 for hierarchical classifications). The 20 most abundant taxa made up 81.0% of new
patient sequences and 79.0% of control sequences. The most abundant taxa of the
uncentrifuged urinary bacterial community of new patients from highest to lowest were
Enterobacteriaceae (32.3%), followed by Lactobacillus (15.5%) and Streptococcus (8.7%)
and Enterococcus (8.0%), whereas the most abundant taxa of the new patient urinary
microbial community represented by centrifuged samples were Enterobacteriaceae (26.9%),
Enterococcus (12.8%), Psychrobacter (9.3%) and Streptococcus (8.3%). The most abundant
taxa identified from uncentrifuged control samples were Streptococcus (21.5%),
Enterobacteriaceae (20.1%), Lactobacillus (11.6%) and Gardnerella (7.5%). In contrast, the
most abundant taxa identified from centrifuged control urine samples were Streptococcus
(15.8%), Staphylococcus (14.8%), Enterobacteriaceae (11.5%) and Lactobacillus (9.2%).
From these data, a decrease in overall abundance of Lactobacillus (15.5% uncentrifuged,
7.8% centrifuged) and an increase in abundance of Enterococcus (8.0% uncentrifuged, 12.8%
centrifuged) were observed with the new patient centrifuged urinary community when
compared with the new patient uncentrifuged community. On the other hand, the control
centrifuged community showed an increase in overall abundance of *Staphylococcus* (1.9% centrifuged, 14.8% uncentrifuged) compared with the control uncentrifuged urinary community. Centrifugation of samples therefore has a strong influence on species recovery. Moreover, this approach also highlights differences in microbial composition between patients and controls (similar to what was seen in our sediment culture data [Figure 3]).

Table 3 presents the richness and diversity measures of new patient and control urinary tract bacterial communities. Richness was assessed by comparing the mean number of OTUs and mean Chao1 estimator values using the Welch’s two-sample *t* test. Diversity was assessed by comparing the mean Shannon index and mean inverse Simpson’s index using the Welch’s two-sample *t* test. Pairwise comparisons indicated no significant difference in the mean number of observed OTUs and Chao1 estimator between patient and control uncentrifuged samples, centrifuged samples and both combined. Additionally, no significant difference was observed in the mean Shannon’s index and inverse Simpson’s index between patients and control communities.

Overall, our analyses show a clear difference between patients with LUTS and controls, namely that the *Enterobacteriaceae* was the most abundant taxa associated with disease, and *Streptococcus*, with health. However, it is clear the method of sample processing enriches for different taxa. Specifically, centrifugation enriched *Enterococcus* in patient samples, and *Staphylococcus* in controls.

Comparison of sediment culture and sequencing approaches. As shown in Figure 5, colour-coded matrices consisting of all cultured bacterial taxa that were detected by centrifuged sediment culture and 16S rRNA gene sequencing were generated for new patient centrifuged samples and control centrifuged urine samples. Among all centrifuged samples 37 (59.7%) of 62 contained bacteria that were detected by both culture and sequencing.
methods. Three (9.1%) patient and four (13.8%) control centrifuged samples were sequence-negative, but culture-positive. Two (6.1%) patient and three (10.3%) centrifuged control samples were culture-negative, but sequence-positive *Enterococcus* was the most frequently identified bacterium from both sediment culture and sequencing methods. These genera were identified from 22 (66.7%) new patient samples. *Staphylococcus* was the most frequently identified bacterium by both methods from control samples. This genus was identified from 11 (37.9%) centrifuged samples. *Escherichia* demonstrated the most cases (*n* = 14) in which it was detected by sediment culture, but remained undetected by sequencing. One new patient sample (NL5) grew *Leclercia* on sediment culture, but this particular taxa was not detected by sequencing. This analysis shows that the sequencing method is vastly superior to culture techniques for bacterial detection, and that culture methods do not recover a large number of bacterial species, including recognised uropathogens.

DISCUSSION

A recent commentary in *J Clin Micro* emphasised how the diagnostic landscape for UTI is becoming increasingly challenging in the face of alternatives to standard culture (53). The primary purpose of this study was to evaluate the routine MSU culture performed in UK diagnostic laboratories. This evaluation is crucial, since culture is considered the gold standard diagnostic test for confirming or excluding UTI in symptomatic patients, although evidence suggests that it may be deficient (6, 7). In the UK, symptom-based empirical antibiotic treatment for acute UTI is recommended (54). The evidence suggests that the diagnostic accuracy of acute symptoms in previously asymptomatic subjects outperforms routine culture-based diagnosis (55). By contrast, relapsing patients with LUTS are not as straightforward and may demonstrate a distinct microbiota under the influence of prescribed
antimicrobials. The cohort of relapsing patients was consequently excluded from genomic analysis to aid in clarifying the differences in urinary microbial communities between first-visit patients with LUTS and health. Despite testing negative on routine MSU, such patients have been shown to harbour uropathogens when their urine is examined with more sensitive methods (13, 28, 29, 36, 42). Furthermore, symptomatic resolution has been observed following antibiotic treatment in this type of patient (56). Therefore, we questioned whether current routine MSU cultures with a $>10^5$ cfu/ml threshold were sensitive enough to detect UTI in patients presenting with LUTS.

Following a symptomatic assessment of LUTS patients, we scrutinised the microbial composition of each patient and control MSU culture and compared these to the results reported by the hospital diagnostic laboratory, as well as to organisms identified using other alternative culture and molecular methods. Crucially, we found that the routine MSU culture results reported by the diagnostic laboratory failed to discriminate between patients and control groups. Fewer than 10% of patients with a clinically suspected UTI had a positive MSU culture, with only four of 33 new patient cultures producing monomicrobial growth at 10^5 cfu/ml. In contrast, bacterial DNA sequencing revealed bacteria including recognised uropathogens in 30 of 32 new patients, including symptomatic patients who were reported to have a negative MSU culture. In this study, 16S rRNA gene sequencing was not applied as a diagnostic test, but rather, it was used to determine whether recognised uropathogens were missed with routine culture techniques, and to characterise symptomatic and healthy urinary bacterial communities.

Our second key finding was that MSU culture grossly underestimated the amount of polymicrobial growth in patient urine. For example, 36.4% of new patient urines grew mixed growths; this number rose to 63.6% when more uncentrifuged urine was plated, and to 84.8% in the case of centrifuged sediment cultures. Although it is now recognised that even healthy
urine contains bacteria (41), which certainly complicates the diagnostic landscape, our enhanced culture and genomic analyses showed a clear difference between the taxa isolated between patients and controls. Specifically, Enterobacteriaceae was the dominant family in new patients, whereas Streptococcus was foremost in asymptomatic controls. These findings, taken together with other reports, suggest that automatically discounting polymicrobial cultures may dismiss symptomatic patients in need of treatment.

There is of course a formal possibility that the mixed growths reported here could simply be the result of contamination by skin bacteria during sample collection. In the UK, this possibility is addressed by the UK Standards for Microbiology Investigations, which recommends the counting of squamous epithelial cells in the urine as a marker for contamination. However, their utility for this purpose is complicated by the fact that exfoliation of urothelial cells as an innate immune response to UTI is a recognised phenomenon, which is widely used as a surrogate marker of infection in both mice and humans (14, 21, 57-65). Indeed, using antibodies against uroplakin III, a highly specific marker for cells originating from the urinary tract, we previously demonstrated that the majority of epithelial cells shed in the urine of symptomatic patients originate from the bladder (14). Finally, were the presence of mixed growths merely the result of contamination, we would not expect their presence to cluster statistically with symptoms as they have done in this study.

Of note, some UTI-associated organisms were shared at the culture level by symptomatic and asymptomatic patients: Corynebacterium, Enterococcus, Escherichia, Klebsiella, Proteus, Staphylococcus and Streptococcus. The presence of “uropathogenic” species in controls could reflect a lack of the appropriate virulence factor expression (11), or immune differences in the host (for e.g. (66)). However, similar community profiles in the bladder have been seen by others (13, 28, 29, 42, 67), which makes it likely that the ability to be pathogenic is highly
context-dependent, and could therefore be influenced by the presence of other species. Such pathobiont relationships are common in the microbial world (68) and in the case of UTI, have been reported in mixed infections with *E. coli* and *Enterococcus* (25, 26). Furthermore, voided urine passes through the urethra as well as the bladder; the microbial ecology of the urethra is poorly understood in the case of UTI (69-71), and further studies are needed to understand what role such urethral communities might play.

Further afield, microbial community inhabitants in adjacent niches such as the vagina and perianal region may also influence what species induce UTI pathophysiology. For example, recent work by Gilbert *et al.* showed that transient exposure to the vaginal organism *Gardnerella vaginalis* could induce dysbiosis, reactivating dormant *E. coli* in previously infected mouse bladders (64). Other interactions could be protective; for example, the vaginal commensal *Lactobacillus crispatus*, which is known to make the vagina less hospitable to certain Gram-negative perianal uropathogens, may decrease the instance of recurrent UTI (72, 73). Indeed, our results showing that *Lactobacillus* is a dominant organism among the control samples, consistent with reports from other groups comparing the urine of patients with LUTS with asymptomatic controls, supports this notion (28). Further research, including detailed sequence comparisons, is required to understand the mobility and interspecies effects of the various microbial inhabitants in the region perianal and urethra region. This could further our understanding of the significance of polymicrobial communities in UTI.

Of interest, the process of centrifugation had a major effect on which taxa dominated, enriching *Enterococcus* in patient samples, and *Staphylococcus* in controls. This is perhaps unsurprising, given that uropathogens are known to strongly adhere to and, in some cases, invade urothelial cells (14). These cells are shed into the urine via an innate immune response that is yet to be fully characterised (63, 74). Therefore, a significant proportion of bacteria in such specimens – and perhaps those most relevant for pathophysiology – could be cell-
associated, not planktonic. The MSU culture samples a small amount of urine supernatant and does not access the cell-rich sediment that settles by gravity. Several reports from the Brubaker group also recognised the limitations of standard culture and developed the expanded quantitative urine culture (EQUC) protocol. This involves inoculating uncentrifuged urine onto a broader selection of culture media for optimal species isolation (28, 36, 42). The approach demonstrated that the routinely performed standard quantitative culture missed 67% of recognised uropathogens, with the authors suggesting that the method be used to supplement the standard culture (42). They did not however analyse centrifuged sediment with this protocol.

In addition to factors beyond control, such as the volume of fluid intake before urine sampling, even the use of a broader selection of culture media has its limitations (31). The cultured urinary community depends on the types of specimens analysed, techniques employed, nutrient medium used, laboratory conditions (e.g. pH, temperature, O_2 concentration), as well as the viability, facultative and fastidious natures of urinary tract organism. Such factors can distort the species richness of the urinary tract community. Additionally, bacteria may exist in the viable but not cultivable (VBNC) state, also referred to as conditionally viable environmental (CVEC) cells, active but not cultivable (ABNC) or dormant cells (75). Such species are more reliably represented by nucleic acid-based approaches.

In their studies, Brubaker et al. examined bladder urine specimens (specifically collected by a transurethral catheter [CSU] or suprapubic aspiration [SPA]) (28, 33, 36, 42). In our study, we used a clean-catch MSU specimen collection technique for several reasons. The aim of this study was to evaluate the routine MSU culture technique, which is the primary method in the clinic for collecting a urine sample for culture. In symptomatic patients, catheterisation is potentially an invasive, uncomfortable and painful method of collection that has also been
reported to increase the risk of developing an infection (76). Furthermore, catheterisation may
bypass organisms colonising the urethra, which may represent an early stage UTI or
contribute to the infection. Hooton et al. discussed this as a possible reason for why a lower
threshold is usually applied to CSU cultures and a higher count is considered for MSU
cultures, since it is unclear if the latter collection method has sampled bacteria from the
bladder and/or the urethral region (27).

Female subjects formed the majority of patients and controls, in line with the demographics
of UTI. Given that a previous study found some differences between the microbial ecology in
male and female bladders (77), it would be interesting to further explore the effect of sex on
symptomatic urinary microbiota.

The lack of statistical difference between patient and control uncentrifuged samples was
consistent with other studies (28, 78) and could be attributed to the small study cohort.
However statistical comparison of all patient samples (uncentrifuged and centrifuged) to all
control samples (uncentrifuged and centrifuged) using the non-parametric Kruskal-Wallis test
did confirm a significantly higher median number of OTUs in patients than controls. This
suggests that incorporating centrifuged urine samples may clarify the distinction between
patient and control bacterial community richness.

While region-specific 16S rRNA gene sequencing using the MiSeq platform provided a less
biased representation of the urinary bacterial community, it is important to acknowledge the
limitations of this method. Due to the short-read sequencing approach used, approximately
30% (approximately 500 nucleotides) of the 16S rRNA gene was amplified, which makes
identification at the genus level possible, but reliable taxonomic assignment of reads at the
species level elusive. Our comparison of taxa identified by culture and 16S rRNA gene
sequencing revealed that the sequencing method was more capable of identifying the
cultivable bacterial taxa from patient and control samples compared with the centrifuged sediment culture technique. However, the sediment culture method permitted bacterial identification at the species level, which could not be achieved reliably by 16S rRNA gene sequencing directly from urine. Of note, *Escherichia* demonstrated one the highest rates for detection by culture but was often undetected by DNA sequencing among centrifuged and uncentrifuged samples. This genus belongs to the *Enterobacteriaceae* family, which are reported to be challenging to identify reliably at the genus level due to the high degree of sequence similarities (79). Given that *E. coli* is a prominent uropathogen, improvements are needed. A molecular species-level characterisation could be achieved using the more recently developed third generation sequencing technologies, including the MinION platform series (80). The potential to reconstruct more than 90% of the 16S rRNA gene makes species-level characterisation possible.

This study underlines the potential weaknesses of the MSU culture for diagnosing UTI in patients affected by LUTS, which should now be assessed further in a larger, multi-centre study. These patients appear to harbour chronic infection, missed by quantitative cultures and most effectively demonstrated by non-culture techniques. These methods shed light on the complexity of the bacterial communities within these patients, whose symptoms and the urinary white blood cell count may be the best indicators of infection until the disease landscape is better understood. In the meantime, those responsible for UTI detection, diagnosis and patient care, including clinicians and microbiologists, may wish to use caution when interpreting a negative or mixed growth MSU result in symptomatic patients, as well as reassess reporting and treatment guidelines to arrive at a solution most appropriate for patients, in a way that also preserves antibiotic stewardship efforts (53). Ultimately, a point-of-care test based on a sound understanding of the relevant microbiomes using emerging
portable genomic technology would revolutionise the diagnostic landscape for this common affliction.

ACKNOWLEDGEMENTS

We would like to thank UCL Crucible Research Programme for funding this work. The funders were not involved in the study design, data collection, interpretation or decision to submit work for publication.

We thank Neil Jones and Poonam Sanganee (Microbiology Department, Whittington Hospital, UK) for their technical support with MALDI-TOF MS-based microbial identification and Tony Brooks (Genomics Centre, University College London, UK) for his assistance with library denaturation and final preparation stages of the 16S rRNA gene sequencing work. We thank members of the EDI Microbial Diseases laboratory (University College London, UK) for their advice on DNA library preparation. We also thank Sanjay Khadayate (MRC London Institute of Medical Sciences, Imperial College London, UK) for his advice and assistance with the bioinformatics analysis.

We are very grateful to Sophie Collier and Verve Enne for critically reviewing the manuscript.

The following reagent was obtained through BEI Resources, NIAID, NIH as part of the Human Microbiome Project: Genomic DNA from Microbial Mock Community B (Even, Low Concentration), v5.1L, for 16S rRNA Gene Sequencing, HM-782D.

J. R. has received funding from AtoCap Ltd.
REFERENCES

https://www.gov.uk/government/publications/managing-common-infections-
guidance-for-primary-care.

FIGURE LEGENDS

Figure 1. Experimental workflow of the study. Abbreviations: MALDI-TOF MS = Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry.

Figure 2. Composition types (no growth, pure and mixed cultures) achieved with three different techniques (MSU culture (1 µl), unspun culture (50 µl) and sediment culture (30 ml) across study groups.

Figure 3. Pairwise comparisons of the percentage frequencies of organisms identified from the urine specimens of new patients (n = 33), relapsed patients (n = 30) and controls (n = 29) using three different culture techniques: routine midstream urine (MSU) culture, unspun culture of a 50 µl sample volume and a spun sediment culture of a 30 ml sample volume. **3A:** new patients versus controls, **3B:** relapsed patients versus asymptomatic controls and **3C:** new patients versus controls. Data are presented as percentages of the total number of isolates identified.

Figure 4. Percentage sequence abundances of the 20 most abundant taxa detected in both new patient and control cohorts when categorised by sample type.

Figure 5. Comparison of genus-level taxa detected by sediment culture and 16S rRNA gene sequencing for new patient (NL) spun samples (n = 33) and asymptomatic control (AC) spun samples (n = 29). Interpretation: bacteria identified by culture only (pink), sequencing only (blue), both (purple) and neither (cream).
OBJECTIVE 1: Evaluation of UK MSU culture across symptomatic and asymptomatic groups

NEW PATIENTS (n = 33)

RELAPSED PATIENTS (n = 30)

CONTROLS (n = 29)

MIDSTREAM URINE SPECIMEN COLLECTION

CLINIC URINALYSIS
 Urinary dipstick (Leukocyte esterase, nitrite)
 Urinary microscopy (Leukocytes)

SYMPTOMATIC ASSESSMENT
 Urgency urinary incontinence, voiding, pain and stress urinary incontinence symptoms

HOSPITAL MSU CULTURE
 Reported as:
 >10^5 cfu/ml (positive)
 OR
 Mixed growth of n types of organisms (contamination)
 OR
 No significant growth (negative)

CULTURE ANALYSIS
 MSU culture (1 µl)
 Urine culture (50 µl)
 Sediment culture (30 ml)

MICROBIAL IDENTIFICATION
 MALDI-TOF MS
 (Direct colony & ethanol formic acid extraction)

16S rRNA GENE SEQUENCING
 Phenol chloroform isoamyl & bead beating extraction

OBJECTIVE 2: Comparison of MSU culture with alternative methods for bacterial enrichment

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Tables

Table 1. Clinical characteristics of each study group. Abbreviations: CI = confidence interval, SD = standard deviation, SUI = stress urinary incontinence, UUI = urgency urinary incontinence. Superscripts: a = Kruskal-Wallis test, b = Mood’s median test, c = Chi-squared test. $ = statistical comparison between new patient and relapsed patient groups only.

Table 2. Descriptive measures of in-house (clinic) microscopic leukocyte counts and reported routine hospital midstream urine culture results for each study group. Abbreviations: wbc = white blood cell.

Table 3. Richness and diversity measures determined for new patients and controls
Table 1.

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>NEW PATIENTS</th>
<th>RELAPSED PATIENTS</th>
<th>CONTROLS</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 33)</td>
<td>(n = 30)</td>
<td>(n = 29)</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (%)</td>
<td>32 (97.0)</td>
<td>27 (90.0)</td>
<td>26 (89.7)</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>1 (3.0)</td>
<td>3 (10.0)</td>
<td>3 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Mean age in years (SD)</td>
<td>48.7 (16.5)</td>
<td>47.8 (16.5)</td>
<td>40.7 (15.7)</td>
<td>0.113a</td>
</tr>
<tr>
<td>Age range</td>
<td>18-77</td>
<td>24-78</td>
<td>20-76</td>
<td></td>
</tr>
<tr>
<td>Urinary Patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>8.8 5.1 6.5 (5.5-10.5)</td>
<td>8.5 3.7 8.0 (6.5-9.5)</td>
<td>5.9 1.5 5.5 (5.5-6.5)</td>
<td>< 0.05b</td>
</tr>
<tr>
<td>Nocturia</td>
<td>1.7 1.7 1.5 (0.5-2.0)</td>
<td>1.6 1.9 1.0 (0.0-2.5)</td>
<td>0.3 0.4 0.0 (0.0-0.5)</td>
<td>< 0.05b</td>
</tr>
<tr>
<td>Symptoms [Yes/No]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(% within group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUI (%)</td>
<td>25 (75.8)</td>
<td>12 (40.0)</td>
<td>0 (0.0)</td>
<td>< 0.05c</td>
</tr>
<tr>
<td>Pain (%)</td>
<td>24 (72.7)</td>
<td>26 (86.7)</td>
<td>0 (0.0)</td>
<td>0.172c</td>
</tr>
<tr>
<td>Voiding (%)</td>
<td>29 (87.9)</td>
<td>21 (70.0)</td>
<td>0 (0.0)</td>
<td>0.080c</td>
</tr>
<tr>
<td>SUI (%)</td>
<td>17 (51.5)</td>
<td>2 (6.7)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Number of symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.4 2.9 3.0 (1.0-4.0)</td>
<td>1.4 2.2 0.0 (0.0-2.0)</td>
<td>0.0 0.0 0.0 (0.0-0.0)</td>
<td>< 0.001b</td>
</tr>
<tr>
<td>Pain symptoms</td>
<td>3.1 2.7 3.0 (1.0-4.0)</td>
<td>3.6 2.9 3.0 (2.0-4.0)</td>
<td>0.0 0.0 0.0 (0.0-0.0)</td>
<td>< 0.001b</td>
</tr>
<tr>
<td>Voiding symptoms</td>
<td>4.1 2.8 4.0 (2.0-6.0)</td>
<td>3.6 2.8 4.0 (2.0-5.0)</td>
<td>0.0 0.0 0.0 (0.0-0.0)</td>
<td>< 0.001b</td>
</tr>
<tr>
<td>SUI symptoms</td>
<td>0.7 0.8 1.0 (0.0-1.0)</td>
<td>0.3 1.0 0.0 (0.0-0.0)</td>
<td>0.0 0.0 0.0 (0.0-0.0)</td>
<td>< 0.001b</td>
</tr>
<tr>
<td>Total symptom score</td>
<td>11.3 5.9 12.0 (9.0-14.0)</td>
<td>8.9 5.2 9.0 (6.0-11.0)</td>
<td>0.0 0.0 0.0 (0.0-0.0)</td>
<td>< 0.001b</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>DIAGNOSTIC TEST</th>
<th>NEW PATIENTS (n = 33)</th>
<th>RELAPSED PATIENTS (n = 30)</th>
<th>CONTROLS (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINIC MICROSCOPIC LEUKOCYTES (log_{10} wbc/µl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean log_{10} cell count, SD (95% CI)</td>
<td>1.7, 0.9 (0.3-1.0)</td>
<td>0.7, 1.0 (0.4-1.1)</td>
<td>0.2, 0.4 (0.1-0.3)</td>
</tr>
<tr>
<td>Median log_{10} cell count (95% CI)</td>
<td>0.3 (0.0-0.3)</td>
<td>0.5 (0.0-0.8)</td>
<td>0.0 (0.0-0.8)</td>
</tr>
<tr>
<td>Frequencies (% of group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zero wbc/µl</td>
<td>15 (45.5)</td>
<td>12 (40.0)</td>
<td>20 (69.0)</td>
</tr>
<tr>
<td>1-9 wbc/µl</td>
<td>11 (33.3)</td>
<td>11 (36.7)</td>
<td>8 (27.6)</td>
</tr>
<tr>
<td>≥10 wbc/µl</td>
<td>7 (21.2)</td>
<td>7 (23.3)</td>
<td>1 (3.4)</td>
</tr>
<tr>
<td>HOSPITAL MIDSTREAM URINE CULTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant growth³</td>
<td>21 (63.6)</td>
<td>23 (76.7)</td>
<td>22 (75.9)</td>
</tr>
<tr>
<td>Mixed growth of two organisms</td>
<td>3 (9.1)</td>
<td>2 (6.7)</td>
<td>4 (13.8)</td>
</tr>
<tr>
<td>Mixed growth of three organisms</td>
<td>4 (12.1)</td>
<td>2 (6.7)</td>
<td>1 (3.4)</td>
</tr>
<tr>
<td>≥10^5 cfu/ml of one organism</td>
<td>4 (12.1)</td>
<td>2 (6.7)</td>
<td>2 (6.9)</td>
</tr>
</tbody>
</table>

Footnotes:

$ = <10^5$ organisms/ml, or growth of $≥2$ organisms at <100 colonies

* = ≥100 colonies
Table 3

<table>
<thead>
<tr>
<th>METRIC</th>
<th>NEW PATIENTS</th>
<th>CONTROLS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unspun (n = 30)</td>
<td>Spun (n = 30)</td>
<td>Both (n = 60)</td>
<td>Unspun (n = 22)</td>
<td>Spun (n = 23)</td>
<td>Both (n = 45)</td>
</tr>
<tr>
<td>OTU Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>237.5 (122.4)</td>
<td>243.5 (145.1)</td>
<td>247.0 (137.7)</td>
<td>271.8 (271.8)</td>
<td>264.7 (235.2)</td>
<td>276.2 (214.0)</td>
</tr>
<tr>
<td>Median</td>
<td>251.0</td>
<td>224.0</td>
<td>247.5</td>
<td>247.0</td>
<td>217.5</td>
<td>230</td>
</tr>
<tr>
<td>Min-Max</td>
<td>4-510</td>
<td>7-606</td>
<td>4-619</td>
<td>10-639</td>
<td>6-1016</td>
<td>6-1016</td>
</tr>
<tr>
<td>Chao1 estimator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>310.2 (147.7)</td>
<td>317.0 (159.7)</td>
<td>333.3 (164.4)</td>
<td>341.6 (205.0)</td>
<td>336.9 (253.0)</td>
<td>362.5 (255.9)</td>
</tr>
<tr>
<td>Median</td>
<td>340.9</td>
<td>283.4</td>
<td>334.2</td>
<td>315.1</td>
<td>295.6</td>
<td>321.1</td>
</tr>
<tr>
<td>Min-Max</td>
<td>7-570.5</td>
<td>7.2-706.0</td>
<td>7-740.6</td>
<td>20.5-780.2</td>
<td>7.5-1085.7</td>
<td>7.5-1193.4</td>
</tr>
<tr>
<td>Shannon’s index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>1.6 (0.8)</td>
<td>1.7 (0.9)</td>
<td>1.7 (0.9)</td>
<td>1.8 (0.8)</td>
<td>1.7 (0.8)</td>
<td>1.7 (0.8)</td>
</tr>
<tr>
<td>Median</td>
<td>1.5</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0.3-3.3</td>
<td>0.5-3.3</td>
<td>0.3-3.3</td>
<td>0.4-3.2</td>
<td>0.3-3.4</td>
<td>0.3-3.4</td>
</tr>
<tr>
<td>Inverse Simpson’s Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>3.4 (2.8)</td>
<td>4.0 (3.2)</td>
<td>3.7 (3.0)</td>
<td>3.9 (2.6)</td>
<td>3.9 (3.5)</td>
<td>3.9 (3.0)</td>
</tr>
<tr>
<td>Median</td>
<td>2.6</td>
<td>3.0</td>
<td>2.7</td>
<td>3.3</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Min-Max</td>
<td>1.1-14.6</td>
<td>1.2-13.2</td>
<td>1.1-14.6</td>
<td>1.1-11.6</td>
<td>1.1-17.0</td>
<td>1.1-17.0</td>
</tr>
</tbody>
</table>