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Abstract

The research presented in this thesis explores the use of consumer virtual reality
technology for training, comparing its validity to more traditional training formats.
The need to evaluate the effectiveness of training in virtual environments is critical
as a wider audience gains access to an array of emerging virtual reality consumer
devices. Training is an obvious use case for these devices. This is motivated by
the well-known success of domain-specific training simulators, the ability to train
in safe, controlled environments and the potential to launch training programs when
the physical components required to complete a task are not readily available.

In this thesis, we present four user studies that aim to compare the effectiveness
of systems with varying levels of immersion for learning transfer of several tasks,
ranging from object location spatial memory to more complex assembly procedures.
For every study, evaluation of the effectiveness of training took place in a real-
world, physical environment. The first two studies compare geometric and self-
motion models in describing human spatial memory through scale distortions of real
and virtual environments. The third study examines the effect of level of immersion,
self-avatar and environmental fidelity on object location memory in real and virtual
environments. The fourth study compares the effectiveness of physical training and
virtual training for teaching a bimanual assembly task.

Results highlight the validity of virtual environments for training. The overall
conclusion is that virtual training can yield a resulting performance that is superior
to other, more traditional training formats. Combined, the outcomes of each of the
user studies motivate further study of consumer virtual reality systems in training

and suggest considerations for the design of such virtual environments.
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Chapter 1

Introduction

1.1 Research Problem

The availability of affordable consumer Virtual Reality (VR) technology has raised
the manufacturing industry’s interest in Virtual Environments (VEs) for assembly
line operation training. The possibility of training programs to be initiated before
physical workstations, parts and tools are available sounds enticing as it could
enhance the end-to-end manufacturing process. Moreover, these systems offer
unique capabilities related to trainee safety and performance metric gathering
as well as the ability to parallelise training by removing dependencies on the
aforementioned physical components.

Accordingly, this thesis is concerned with the effectiveness of VEs in training.
We focus specificially on level of immersion, understood as the objective fidelity
of sensorial stimuli offered by a VR system, as the main parameter that mediates
the transfer of knowledge from VEs to real-world scenarios. In other words, in
this thesis we explore the ability to use the knowledge that has been acquired in a
specific context (the virtual space) in a new or different one (the physical space).

We designed and ran a series of user studies with the goal of comparing the
effectiveness of training in systems with different levels of immersion for a series
of tasks. These tasks ranged from basic object location memory to more complex,
bimanual procedural tasks. Common across all studies is that performance of

training was always measured in the real world. Thus, all participants were tested
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in solving the user study task in a physical environment with physical components.
This experimental design choice was informed by the fact that previous studies on
the effectiveness of VEs on training have commonly evaluated the effectiveness of

the training transfer in computer-generated environments.

1.2 Scope

The work presented in this thesis focuses on level of immersion as the main
parameter that mediates the transfer of knowledge from virtual to real environments.
For each of the studies presented in this thesis we defined levels of immersion and
included physical training with physical components in the real world as a baseline
training system against which to compare the validity of training in VEs. We also
defined performance metrics relevant to each of the user study tasks such as distance
errors for object location memory tasks and assembly time for procedural tasks,
amongst others.

Although relevant to the research topic, haptics, locomotion techniques and
spatialised audio were not investigated. In addition, studies related to this project
did not examine display systems other than consumer Head-Mounted Displays
(HMDs) - namely the HTC Vive, the Oculus Rift Development Kit 2 and the Oculus
Rift Consumer Version 1 - and desktop computers. In our performance analysis we
did not evaluate or compare software and hardware used to build the training VE
systems. Additionally, the cost of generating training VEs as well as the deployment
and adoption of this training format by industry was not within the scope of this

project.

1.3 Contributions

The main contribution in this thesis is the evaluation of the effectiveness of VEs in
training for a range of tasks through user studies with participants. The experimental
design and method for each of these studies is introduced in the corresponding
chapters for replicability. Results encourage further exploration of consumer VR
systems in training and highlight their superiority over desktop computer training.

We discuss the limitations and include recommendations.
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1.3.1 Methodological Contributions

1. An experimental protocol for exploring the effect of spatial distortions on

object location memory in physical environments (Chapter 3).

2. An experimental protocol for exploring the effect of spatial distortions on

object location memory in VEs (Chapter 4).

3. An experimental protocol for exploring the effect of level of immersion,
environmental fidelity and self-avatar on object location memory in VEs

(Chapter 5).

4. An experimental protocol for comparing virtual and physical training transfer

of bimanual assembly tasks, extending on previous work [2] (Chapter 6).

1.3.2 Substantive Contributions

1. Research findings that highlight the differences and similarities between
object location recall in virtual and physical environments after boundary

distortions (Chapter 3 and Chapter 4).

2. Research findings that explore the effect of level of immersion, environmental

fidelity and self-avatar on object location training in VEs (Chapter 5).

3. Research findings that support the validity of VEs for bimanual assembly
tasks and their superiority over other, more traditional training formats

(Chapter 6).

1.3.3 Analysis Contributions
1. Two proposed selection criteria for determining how object location models
best describe individual participant responses in user studies that explore

the effect of spatial transformations of the boundaries of an environment

(Chapters 3 and 4).
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1.4 Collaborations

The project is based on a series of user studies, two of them being sections of a
large collaboration with other University College London (UCL) departments and
supported through a James S. McDonnell Foundation Scholar award to Dr. Hugo
J. Spiers and a UCL Grand Challenges Small Grant. These user studies are
reported in Chapter 3 and Chapter 4. The main project collaborators, afiliations
and contributions are described in Table 1.1. Other contributors to these studies

include:

e Dominic Zisch, Charles Middleton, Aaron Breuer-Weil, Rowan Haslam,
Ludovico Saint Amour di Chanaz, William De Cothi and Thomas Reed, who

helped running and piloting the study.

* Derrick Boampong, Tatsuto Suzuki, Nikos Papadosifos and Biao Yang, who
provided technical support at the UCL Pedestrian Accessibility Movement
Environment Laboratory (PAMELA) facility.

e Simon Julier, who offered technical advice on Three Dimensional (3D)

tracking for data collection.

The results presented in Chapter 3 and Chapter 4 are based on our own analysis,
performed independently from the rest of collaborators. We also contributed to the

design of the research protocol as well as decided on some of the hypotheses.

1.5 Structure

The rest of this thesis is organised as follows. Chapter 2 covers background literature
related to the research topic. This chapter introduces relevant research on the
parameters of VR systems that mediate learning transfer to the real world as well as
on human spatial cognition.

Chapter 3 reports the experimental design, method, results and discussion of a
collaborative study. This chapter discusses the plausibility of running a study where
participants learn and recall object locations following alterations to the boundaries

of a real-world environment.
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Table 1.1: Project collaborators, UCL affiliations and contributions (in alphabetical order
by first surname).

Collaborator UCL Affiliation Contributions
Study design
Greaves, Jacob Brain Sciences Study execution

Data analysis

Study design
Motala, Anisa Biosciences Study execution
Data analysis
Study design
Murcia Lépez, Maria Computer Science Study execu'tlon

Data analysis

Technical expertise (3D tracking)

Supervision

Spiers, Hugo J. Institute of Behavioural Neuroscience upervt 1‘
Study design
Supervision

Steed, Anthony Computer Science Study design
Technical expertise (3D tracking)
S -

Tyler, Nick Civil, Environmental and Geomatic Engineering up.e.rv1 sion
Facility support

Institute of Behavioural Neuroscience Study design

Zisch, Fiona E. . . . .
The Bartlett School of Architecture Technical expertise (architecture)

Chapter 4 reports the experimental design, method, results and discussion of
a study exploring the effect of scale transformations of a VE on spatial memory
through object location memory and recall.

Chapter 5 reports the experimental design, method, results and discussion of
a study exploring the effect of level of immersion, varied feature fidelity and self-
avatar on object location memory.

Chapter 6 reports the experimental design, method, results and discussion of a
study comparing real and virtual training of a multi-step bimanual assembly task.

Chapter 7 contains conclusions as well as directions for future work.



Chapter 2

Background

2.1 Motivation

This project has been largely motivated by the well-known success of domain-
specific training simulators in medical, military, navigation and pilot training,
amongst other fields. Consumer VR systems offer the possibility to train in
safe, controlled environments and the potential to launch training programs when
the physical components required to complete a task are not readily available.
Moreover, these systems are becoming more accessible to a wider audience through
a range of affordable consumer devices. VEs could deliver cost-efficient, safe,
controlled and potentially effective training. If proven adequate, virtual training
would also allow for the completion of operator instruction prior to the installation
of physical workstations, tools and components, with optional built-in automatic
capture of data relating to system and user performance. This would accelerate
the end-to-end manufacturing process and, consequently, increase efficiency of
production. However, evidence is needed to ascertain the effectiveness of consumer
VR devices for training as opposed to more traditional training formats.

We aim to continue to address the common interest in the fields of
neuroscience, experimental psychology and VR for better understanding the way
humans perceive, navigate, interpret and recall 3D space [3, 4, 5]. Essential to the
survival of motile living species, navigation of environments and recall of specific

locations within them highly rely on spatial memory. This is the component of
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memory responsible for capturing, storing and utilising information about one’s
external surroundings and spatial orientation. The ability to understand and
ultimately predict the behaviour of humans in environments could have a number
of benefits: enhanced user experience and layout optimisation for VR training
applications, enhanced design of the built environment for urban lifestyles [6, 7]
and advanced diagnostic tools for Alzheimer’s disease [8], amongst others.

By advancing our knowledge on how humans acquire, store and use spatial
representations, we could better inform the design of VEs for spatial training [9].
Various aspects of the user experience design of VR applications, including spatial
layout and features of the VEs and objects within it, as well as the user’s starting
location and facing direction, could be rooted in more complete models that

optimise the learning transfer of spatial information.

2.2 Virtual Environments

2.2.1 Level of Immersion

The term immersion can be understood as the objective fidelity of sensorial stimuli
offered by a VR system. Slater et al. have defined it as “a description of a
technology” [10]. Slater suggests to use the term to refer to “what the technology
delivers from an objective point of view” [11]. In his later work, he argues that
“we describe immersion not by the displays plus tracking, but as a property of the
valid actions that are possible within the system” and that “the level of immersion
is completely determined by the physical properties of the system” [12]. Under this
definition, he claims that “system A is at a higher level of immersion than system
B if the valid actions of B form a proper subset of those of system A”. Immersion,
therefore, can be used to define systems in relation to other systems. Ragan et al.
recommend to speak of levels of immersion rather than terms such as nonimmersive
and immersive VR [13].

Bowman and McMahan describe immersion as an objective and measurable
multidimensional array formed by many components including Field of View

(FOV), Field of Regard (FOR), display size, display resolution, stereoscopy, head-
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based rendering, realism of lighting, frame rate and refresh rate [14]. In the
context of this research, we use the concept of level of immersion to refer to the
different widely available consumer displays and navigation techniques used by the
participants to explore the VEs designed for our user studies.

While many applications of VR in training have used desktop environments,
more immersive VR systems are now becoming widely available. Highly immersive
VR technology potentially increases experimental and environment realism, gives
researchers the ability to perform manipulations to an environment, and provides
new data sources, such as body tracking, amongst other benefits [15, 16]. When
being presented with a stereoscopic view and given access to self-motion cues,
participants can respond realistically to situations and events [12, 17].

Previous research has shown that display and interaction fidelity have a strong
effect on strategy and performance in a VR first-person shooter game [18]. As
technology moves towards augmentation of real world learning by the use of virtual
tools, performance in systems with different levels of immersion must be analysed
and compared with real world learning.

In this thesis we consider real world learning the highest level of immersion,
followed by HMD learning and then desktop learning. We also consider the
navigation technique associated with each learning system as an inherent and crucial
element of level of immersion. All training systems as well as the corresponding
navigation techniques are further detailed in each of the chapters reporting the
experiments relating to this thesis. Across all studies we expected the level of

immersion to have an effect on training transfer [19, 20].

2.2.2 Environmental Fidelity

When training in a VE it is important to have an understanding of the technological
variables that can be sacrificed without degrading learning effectiveness transfer to
the real world [16, 20]. One of these variables is environmental fidelity which can
be understood as the fidelity of mapping from a real-world space to a computer-
generated virtual replica. A distinction can be made between two broad types

of environmental cues: geometric, cues provided by environmental surfaces such
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as walls, and featural, nongeometric cues provided by the environment, such as
colour [21, 22, 23]. Previous research has demonstrated an inclination for spatial
localisation to be based mainly on geometric properties of an environment, rather
than featural cues [22, 24].

Although geometric fidelity of a space can be reproduced using basic 3D
objects, such as planes, spheres or cubes, high feature fidelity is not always
achievable or may result in the development of computationally expensive systems.
Previous studies have assessed the impact of rendering style on distance perception
accuracy in virtual replicas of concurrently occupied VEs [25, 26]. These
studies suggest that there are no indications of perceived compressed distances
in immersive VEs where participants can be certain of them being faithful
representations of their occupied space.

Slater et al. explored the effect of visual realism on sense of presence in
immersive VEs [12]. Participants were exposed to a VE rendered in two levels
of visual realism. They found that subjective presence was higher for the version
of the VE with higher visual realism. However, Masahiro Mori’s ‘Uncanny
Valley’ hypothesis [27] remains unanswered, since it is not clear whether higher
environmental fidelity might result in training enhancement up to a point after which
there might be a decrease in performance due to defect magnification.

Based on previous results, in Chapter 5 we directly compare performance
resulting from learning object locations in concurrently occupied virtual and real
environments. We explore learning and recall of multiple external object locations
as subjective measures of spatial perception. We focus on understanding which cues
are necessary for the design of virtual spaces that will ensure the optimal transfer of

spatial knowledge to the real world.

2.2.3 Self-Avatar

Slater and Usoh have suggested that the sense of presence in VEs, or the subjective
feeling of being there, can be enhanced by providing users with a virtual self-
avatar [28]. Results from several studies have suggested that a self-avatar is also

beneficial to performance on interaction tasks in VEs. McManus et al. found that
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participants with with a self-avatar or who saw a character animation performed
behavioural tasks faster and more accurately [29]. Other research has demonstrated
that a self-avatar may alleviate participant’s cognitive workload in a VE [30]. In
their study, Steed et al. found that participants who had an avatar and were allowed
to move their hands had significantly higher recall in a task where they had to
memorise pairs of letters, perform a spatial rotation exercise, and recall the pairs
of letters. They also found that participants who were allowed to move their hands,
but could not see their self-avatar, would often not move their hands or stop moving
them after a short while. Subjective feedback from participants has also highlighted
the utility of a full virtual body as a reference point for spatial tasks [31].

Related work has found that fully tracked, high fidelity virtual avatars can
improve distance estimation accuracy in non-photorealistic Ves [32, 33]. Similarly,
self-embodiment in highly realistic VEs has been reported to increase accuracy
in distance judgements [34]. These results suggest that high fidelity avatars can
facilitate enhanced spatial task performance in a VE without compromising the
ability for effective information transfer to the real world. A recent study also tested
the effect of avatar fidelity on the accuracy of distance estimations in the near-field,
comparing with real-world performance [35]. Results showed that estimations were
more accurate as visual fidelity of the avatar increased, with accuracy of high fidelity
avatars approaching real-world performance.

However, spatial perception enhancement seems to be compromised when
using low geometry avatar representation or single point tracking [36]. Other
results from studies on egocentric distance estimation indicate that simplified avatar
implementations (single-point rather than full body tracking and low fidelity based
on rendering small spheres at raw tracking marker locations rather than high fidelity
using a textured triangle mesh) are significantly less effective [37]. Moreover, in
this study participants who were given simplified avatar representations performed
only marginally more accurately than the participants who were given no avatar.
Similar results were observed in a study where participants that saw a fully-

articulated and tracked representation of themselves made more accurate judgments
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of absolute egocentric distance to locations than participants who saw no avatar
[38]. Nonanimated avatars also improved distance judgments but to a lesser degree.
Another study investigated the degree to which self-avatar movement must reflect
the actual movements of the participant for accurate distance estimation [38].
Results indicated that experience with an animated avatar, even if the movements of
the avatar did not correspond with the participant’s body movement, favoured more
effective distance estimation.

The study presented in Chapter 5 explores the use of single point tracking
virtual avatars based on head tracking with no animations in an object location
memory task. The aim is to explore if a low tracking fidelity virtual avatar
can enhance performance in an object memory location task, where there is no
interaction with the environment and the virtual objects in it, other than unguided,
exploratory navigation. We report how results from this study could inform the
design of future training systems in which robust avatar motion fidelity involving

full body tracking or high fidelity avatars may not be available.

2.2.4 Virtual Environments as Proxies

Our work relates to the overarching theme of visual fidelity in VR training: to what
extent does a VE have to look real so that the learning and recall of information
presented in it is optimal [20, 16, 39]. Findings from relevant spatial cognition
studies have highlighted which geometric and featural cues play the most important
role and to what degree they are necessary in the training of spatial information [22,
21, 23]. We are also interested in scenarios in which the training VE is potentially
different to the environment where the acquired skills are going to be used (the
work enviornment). This could happen in cases in which either the layout of the
work environment is unknown or it is difficult to replicate in VR.

Similarly, research projects that investigate human spatial cognition can require
complicated setups or simulations, difficult or impossible to construct as a physical
space [40, 5]. In the study presented in Chapter 3, the specific premise was to build a
featureless physical large-scale room (approximately 5 x S5m in surface area) which

could change its size and shape. These transformations had to be achieved in a very
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short period of time to keep experimental task timings within reasonable limits.
Solving this involved a very elaborate series of design decisions involving materials,
technology, architecture and labour force under restricted research budget. In
Chapter 4, we present a study in which we use a virtual replica of this physical setup
with a sufficient degree of visual fidelity, where its shape and size can be effortlessly
modified. This replica VE can be used to test initial hypotheses and develop models
before the laborious and time-consuming task of performing real-world studies and
analysis of the real-world data.

In the field of psychology, VEs have been used in lieu of real world
environments for several decades [15, 41, 42, 4, 43]. Loomis et al. analyse the
benefits and drawbacks of immersive VE technology, as compared with traditional
experimental research methods in psychology [15]. On one hand, experimental
realism is increased and researchers are provided with the ability to perform
alterations that would be impossible, or highly complicated, by other means. New
data sources, such as body tracking, can be acquired, providing deeper analysis
of body behaviour and navigation. On the other hand, they point out the high
complexity of hardware and software as factors that can increase the likelihood
of artefacts contaminating results and after-effects such as motion sickness, as

disadvantages of the use of this technology in research.

2.2.5 Training in Virtual Environments

Previous research has highlighted the effectiveness of immersive mixed reality
training in different disciplines, including military training, medical training
and vehicle driving simulators [44, 45], as well as navigation and spatial
knowledge training [20, 46], amongst others. Despite the recognised success in the
aforementioned fields, studies on immersive virtual training transfer have reported
contrasting results.

Several studies have shown that spatial information of the kind required
for navigation transfers effectively from virtual to real situations, confirming the
potential and benefits of VR technology in spatial training [47]. In particular,

this work studied how information about the spatial layouts of virtual buildings
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acquired from the exploration of 3D computer simulations transfered to their real-
world counterpart. Similarly, results to date from several studies have further shown
that following several virtual tours of a building, disabled children acquired a
considerable degree of spatial competence [48, 49, 50, 51]. Another study examined
transfer of spatial learning from a VE to a real-world equivalent environment using
a simulation of a shopping centre with elderly participants. Results confirmed the
potential of training in VEs for the elderly [52].

Hall and Horwitz compared retention of procedural knowledge of equipment
operation in an immersive VE and in a 2D computer environment and found no
significant differences [53]. They claimed that VR training may not be superior
to conventional electronic media for training certain skills. Gavish et al. evaluated
the use of VR and augmented reality technology for industrial maintenance and
assembly task training [54]. They concluded that an augmented reality platform was
more suitable for training of this type of tasks and encouraged further evaluation of
VR-based training.

In a more recent study Gonzalez-Franco et al. compared collaborative
conventional face-to-face training with a mixed reality training setup for a
manufacturing procedure of an aircraft door [55]. Their results indicated that
performance levels yielded by the immersive mixed reality training system were
not significantly different from the conventional face-to-face training format. Rose
et al. evaluated the transfer from a VE to the real world of a simple sensorimotor
task [56]. Overall, virtual training resulted in equivalent or even better real world
performance than real or physical training of the task. However, they advise that
their findings may not apply to other types of training tasks.

Sowndararajan et al. found an effect of level of immersion in memorising a
complex procedure [57]. In their study, participants trained in the system with the
higher level of immersion (a large L-shaped projection display) completed tasks
significantly faster and with fewer errors than participants trained in the system

with lower level of immersion (using a typical laptop display).
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Other studies have shown effective learning transfer in VEs with the addition
of haptic force-feedback devices. For instance, Adams et al. conducted a study to
explore the benefits of haptic feedback for virtual training of a manual task [58].
They reported that force-feedback was a requirement for higher learning transfer in
VEs.

Our work preseented in Chapter 6 is inspired by the work of Carlson et
al. in 2015 [2], itself motivated by previous work [59, 60, 61]. In a between-
subjects experimental design, Carlson et al. compared the effectiveness of virtual
bimanual haptic training versus traditional physical training of an assembly task
consisting of a six-piece burr puzzle. Their results indicated that physically trained
participants initially outperformed virtually trained participants. However, virtually
trained participants improved their testing times after two weeks. Results also
showed that virtual training was enhanced by using coloured blocks as they helped
participants remember the assembly process. We ran a similar task comparing
paper- and video-based training with virtual training in the absence of a haptic
force-feedback device [62].

We agree with Carlson et al. in that 3D burr puzzles are suitable proxy tasks
or abstractions of context-specific manual assembly tasks, such as engine assembly
operations at vehicle manufacturing plants. We therefore decided to use the same
type of task in our study. Following their reported methods, we complemented the
training task with a series of mental rotation tests to distribute participants amongst
the condition groups in our between-subjects experimental design [63, 64, 65].
We also decided to colour-code the puzzle blocks and instructions as well as to
use a semi-transparent virtual representation of the hands in the VE [66, 67],
amongst other recommendations made by the authors which are further explained
in Section 6.1.

Our work presented in Chapter 6 extends and builds on previous work by
comparing a number of virtual and physical training formats, the latter representing
the most common formats (video and paper instructions) in current assembly

process training programmes. The main aim of this research is to verify whether
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exposure to a virtual training environment is sufficient for effective training. We
are specifically interested in situations in which haptic devices are not available
and when the physical components and tools used in the process are not accessible

during training.

2.3 Human Spatial Cognition

2.3.1 Neural Correlates of Spatial Representations

Since the discovery of place cells in the mammalian hippocampal formation of
rodents in 1971 [68], the fields of cognitive and behavioural neuroscience interested
in space have made substantial advances in understanding how the human brain
builds a neural representation of the external environment. Place cells activate
when an animal moves through a unique location in an environment, referred to
as the place field. Through the overlap of place fields, the activity of multiple
place cells can determine the location of the animal in the environment, as well
as potentially store other locations within the space [69]. Also identified in bats
[70, 71], researchers have attempted to model the firing and network interactions
of place cells and other spatially tuned neurons to explain spatial representations in
the human brain.

Termed the cognitive map, this internal representation forms the foundation for
navigational abilities, as well as enabling feelings of being embodied and embedded
in the world [72]. In order to successfully navigate the world, it is crucial for
the brain to not only construct an internal representation of spatial geometry and
features, but to also represent one’s own position, orientation, and movement and
likewise objects within the environment.

In 1973 Kaplan suggested the following definition of the cognitive map:

“The cognitive map is a construct that has been proposed to explain
how individuals know their environment. It assumes that people store
information about their environment in a simplified form and in relation
to other information they already have. It further assumes that this

information is coded in a structure which people carry around in their
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heads, and that this structure corresponds, at least to a reasonable
degree, to the environment it represents. It is as if an individual carried
a map or model of the environment in his head. The map is far from
a cartographer’s map, however. It is schematic, sketchy, incomplete,
distorted, and otherwise simplified and idiosyncratic. It is, after all, a

product of experience, not of precise measurement.” (pp. 275-6) [73].

The cognitive map is constructed by integrating egocentric and allocentric
reference frames [74]. In an egocentric frame of reference, spatial geometry and
the location of objects are represented in relation and relative to the self (the head
or a limb). Egocentric frameworks exist as a series of visual snapshots of the
environment [75]. They allow animals to estimate directions and distances to
external cues in relation to their own body, allowing them to guide themselves to,
reach - or avoid - objects [76]. In an allocentric frame of reference geometric
cues are represented in relation to each other in a viewport-independent, quasi
absolute manner. This allows for novel route calculation and topography estimation,
including salient environmental cues and their spatial relationships, as well as
the animal’s location within the environment [68]. There is evidence that both
egocentric and allocentric representations are necessary for successful navigation
of environments [74].

A range of theories and models have been proposed to explain which and how
neural processes might parse the environment to allow navigation and action in
space. As a basis, these models share an understanding of the cells that are involved
in the systematic construction of a map. Place cells in the hippocampus represent
locations along the path travelled by laying down place fields in each respectively
traversed location [77]. It is thought that, together with medial entorhinal grid
cells [78], boundary vector cells and border cells in the medial entorhinal cortex and
subiculum [79, 80, 81], and head-direction cells in limbic brain regions (including
the presubiculum and entorhinal cortex [82]), these cells form a neural correlate of
space: the cognitive map. In order to build a robust and accurate map, the ability to

move around the respective environment appears essential. A process known as path
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integration relates self-motion information to velocity as well as angular and linear
direction to pinpoint one’s current location, orientation and trajectory [83]. This
information is integrated with geometric information from the environment, such
as boundaries, and featural information, such as textures or sounds, to form a

comprehensive map of one’s environment.

2.3.2 Behavioural Studies on Spatial Cognition

Theoretical models of spatial cognition have proven difficult to validate given
the complexity of the study of electrical activity of living neurons and signaling
in humans as well as the low resolution of current neuroimaging techniques.
Novel technologies, such as consumer VR systems, have recently allowed for
new viewpoints, combining neural and behavioural observations to advance these
models.

The behavioural study of spatial cognition in combination with neuroimaging
methodologies has proven valuable in confirming the role of the hippocampus in
spatial memory. For example, a study using VR technology with London taxi
drivers in 1998 showed that activation of the right hippocampus was strongly
associated with accurately knowing the location of places and accurately navigating
between them [84].

Behavioural studies on spatial cognition have also helped to discern egocentric
and allocentric representations in spatial memory tasks. Mou et al. investigated
the frames of reference used in memory to represent the spatial structure of the
environment [85]. They found that spatial memories are defined with respect to
intrinsic frames of reference selected on the basis of egocentric experience and
environmental cues.

However, contrasting results have been reported through behavioural studies
with human participants with regards to how humans learn and recall locations
within an environment. Previous findings suggest that the human brain might
combine mechanisms based on geometric properties of the environment with self-
motion information [86, 87, 88, 5, 89]. Moreover, it is not clear whether these

strategies are the same when encountering real world and VEs with varying levels
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of immersion.

Previous research has looked at the effects of landmark configuration on search
behaviour. Using a desktop VR system, Spetch et al. analysed the effect of
expansions of an array of landmarks on the locus of search for an object presented in
a location equidistant to the landmarks [86, 87]. Their results indicated that humans
focus on locations that preserve all angles to the landmarks, preserving ratios of
distances between landmarks rather than distances.

Waller et al. reported contrasting results when exploring the role of metric
distances and angular information of landmarks on location learning in immersive
VR [89]. Participants observed a cued location in relation to three landmarks in
an immersive VE. They were then asked to return to the location during testing.
Landmark configuration was modified between learning and testing to differentiate
the effects of distance and inter-landmark angular information. They found that,
overall, participants relied more on distance information than angular information.

There is also evidence for spatial updating of egocentric representations [88,
90, 91]. Wang & Simons showed that locations of objects on a circular table can be
better remembered if participants navigate around it, rather than using the equivalent
rotation of the table [88]. These results highlight the role of proprioceptive and
vestibular inputs during self-motion.

In 1996 O’Keefe and Burgess designed and conducted a study aimed at
identifying the environmental features controlling the location and shape of the
place fields of the place cells of rodents [69]. Extending this work, Hartley et al.
used a desktop VE to investigate the effect of manipulations to spatial boundaries
of on object location during learning and recall with human participants [5]. The
aim of this study was to conceptually replicate previous studies with rodents where
alterations to the environmental geometry caused changes in place cell firing.
Participants were presented with an object in a rectangular arena, with distant
features to help orient themselves. After the learning stage and a brief delay, they re-
entered the arena and were asked to mark the location where the object had been in

the learning stage. The geometry of the environment was altered between the stages
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of learning and recall in some of the trials. Response data was compared with a
series of spatial distributions predicted by various geometric models described in
Section 2.3.3. The experiment found that responses that maintained fixed distances
from nearby walls were more common after expansions of the arena and for
locations nearer to the boundaries, whereas responses that preserved fixed ratios
between opposing walls were more common after contractions of the arena and
for locations nearer to the centre. A model derived from response properties of
place cells in the rat hippocampus which matches distances of the cue to the four
boundaries of the arena was the best fit for their results. Hartley et al. concluded
that their results were consistent with the neural representation of location in the
hippocampus [79, 5].

Building on the idea that the cognitive map is an exact and corresponding
representation of space, the map should distort in precise correlation with changes to
spatial geometry. Through two behavioural user studies (presented in Chapter 3 and
Chapter 4) we relate our observations to neuronal knowledge derived from single
cell recordings from rodent studies, and test the validity of the different models of
spatial representation, crucially focusing on the role of physical immersion (and
resulting embodiment and embeddedness) in an immersive VR experience. In
contrast to earlier, albeit desktop based, studies that found evidence for geometric
computations built on distances and ratios to environmental boundaries [86, 5],
our hypothesis was informed by observations made in a pilot experiment. We
propose and present evidence that when self-motion is available, models combining
geometric properties and path integration could hold greater validity for object

location memory.

2.3.3 Object Location Models

Previous studies have looked at the effects of altering the geometry of an
environment on object location learning and placement during learning and
recall [5]. These studies have compared the spatial distribution of participant
responses with locations predicted by different geometric models, some derived

from previous neurophysiological experiments [92, 79]. The relevant models,
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described below, were selected and used in our analysis in Chapter 3 and Chapter 4.
The predicted locations following transformations of the spatial boundaries in our
study are based on these models and were compared with participant response
locations. All model definitions are restricted to environments consisting of four

main walls and are further illustrated in Figure 2.1.

* Fixed Ratio Allocentric (FRA) model: an object’s location is represented as

the ratio of distances between opposing walls [5].

 Fixed Ratio Egocentric (FRE) model: an object’s location is represented as
the ratio of distances between opposing walls [5]. The participant reorients to

the initial facing direction (see Figure 2.1).

* Fixed Distance Allocentric (FDA) model: an object location is represented as

the perpendicular distance from it to its two closest walls [5].

* Fixed Distance Egocentric (FDE) model: an object’s location is represented
as the perpendicular distance from it to the two closest walls [5]. The

participant reorients to the initial facing direction (see Figure 2.1).

* Absolute Distance (AD) model: an object’s location is represented by the
absolute distance to its original location in world coordinates, regardless of

any changes in the environment geometry.

 Path Integration (PI) model: an object location is represented as the vector
resulting from a cumulative record of the movements made by the participant
from an initial location to the object [93]. The participant replicates the

movement maintaining the current facing direction.

* Path Vector (PV) model: based on the PI model, an object’s location is
represented as the vector resulting from a cumulative record of the movements
made by the participant from an initial location to the object [93]. The
participant replicates the movement by reorienting to the initial facing

direction (see Figure 2.1).
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Figure 2.1: 2D top views of the models in an example scenario for a room transition

where the length of the room walls is scaled by a factor of two between
learning and placement. Room a) shows the object’s initial location (circle)
and participant starting location and facing direction (box and arrow). The
rest of the sketches show the predicted object location for each model for a
new given participant starting location and facing direction (box and arrow).
For the Absolute Distance model (d), the initial environment has been overlaid
to illustrate that the object XY coordinates for the model coincide with the
initial object location. Please note that, under this specific configuration, FDA
and PV predictions are the same. These would be different if the participant
starting location was different. Also note that in this example and under this
configuration the PVR model (i) provides with a predicted location that falls
outside the boundaries of the placing room, which in our study would be
considered a null model for a given change in environment geometry.

 Path Vector Ratio (PVR) model: an object’s location is represented as a scaled

vector resulting from a cumulative record of the movements made by the

participant from an initial location to the object [93]. The vector is scaled in

a way that linearly matches the environment transformation between learning

and testing. The participant replicates the movement by reorienting to the

initial direction (see Figure 2.1).

2.4 Summary

This chapter has been divided into three main sections. Section 2.1 introduces

the motivation for the work presented in this thesis. We discuss the potential

benefits of virtual training. We also introduce the common interest in the fields
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of neuroscience, experimental psychology and VR to advance our knowledge on
how humans understand, acquire, store and use representations of space.

Section 2.2 discusses related work on the parameters that mediate the transfer
of knowledge from virtual to real environments. We review definitions on the
concept of immersion and describe how this term is used throughout the thesis.
Across all studies, we consider real world learning as the highest level of immersion,
followed by HMD learning and then desktop learning. We discuss previous
work on environmental fidelity and the distinction between two broad types of
environmental cues: geometric and featural. We introduce self-avatars and their
role in distance estimation accuracy in VEs, noting that previous work has shown
that low geometry avatar representation or single point tracking can degrade spatial
perception. The work listed on environmental fidelity and self-avatar was used to
design the experiment presented in Chapter 5. We review the benefits of using VEs
as proxies in research. We also examine past studies on the use of VEs in training,
which informed the design of the study presented in Chapter 6.

Section 2.3 contains an overview of human spatial cognition. We discuss
the neural correlates of spatial representations, introducing the cognitive map as
well as egocentric and allocentric reference frames. We review behavioural studies
on spatial cognition, which have proven valuable in advancing our understanding
of human spatial cognition given the difficulty of validating theoretical models.
Finally, we introduce a series of object location models derived from previous
neurophysiological experiments. These models were compared with the spatial
distribution of participant responses in the studies presented in Chapter 3 and

Chapter 4.



Chapter 3

Experiment: Distorting Physical

Space

The question of how humans remember space and the objects within it is crucial
in the design of VEs for spatial training. In this chapter we present a study on
spatial memory in physical space. Participants were asked to complete a simple
spatial memory task: to collect an object in a room, exit the room, re-enter
the room and then place the object back where they had found it. The room
was geometrically transformed between collection and placement of the object.
The participants’ responses were compared with a set of models derived from
previous neurophysiological experiments with rodents and desktop VR studies
in which geometry was manipulated between exposures to the environment (see
Section 2.3.3). Results suggest that models which combine memory for geometry

and self-motion may hold greater validity in describing human spatial memory.

3.1 Experimental Design and Hypotheses

Participants entered a room in one of the three spatial configurations and were
asked to collect an object. After a period of time in a separate physical waiting
area, they entered a different configuration of the room and were asked to place the
object back where they had initially found it. This process was repeated twice.
The experimental trials and room dimensions are shown in Table 3.1. Room

configuration, object location and participant starting location as well as facing
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Figure 3.1: Photograph of the physical reconfigurable room on the UCL. PAMELA research
facility platform.

direction for each trial are shown in Figure 3.2. Figure 3.1 shows a photograph of
the physical reconfigurable room on the UCL PAMELA research facility platform.
Figure 3.3 shows a photograph of the physical reconfigurable room and object in
the 2.4 x 2.4m configuration (corresponding to the learning stage of the first trial).
Figure 3.4 shows a photograph of the physical reconfigurable room and object in the
4.8 x 4.8m configuration (corresponding to the learning stage of the second trial).
Participants could navigate the room by physically walking around it. We
recorded participant navigation in the room as well as the location of the object
after being placed by the participant in the placement stage of each trial. We
then compared participant behaviours with the different models (see Section 2.3.3).
This was achieved by calculating the Euclidean distance between object location as
placed by the participants and the location predicted by these models for each trial.
Two selection criteria, one based on quadrants and the other based on distance, are

also presented to further illustrate our results. These are described in Section 3.3.
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Figure 3.2: 2D top views of the room layouts for each of the trials. Circles represent
the object’s location during the learning stage for each trial. Box and arrows
indicate the participant’s initial location and facing direction. The amber
rectangle represents the two rows of amber LED lights suspended over the
room.

Since no salient landmark cues were available in the room, it was decided to
use light as an orientation cue. This would allow participants to reorient themselves
when starting trial stages at different starting locations and with different facing
directions. The in situ LED lighting system suspended from the ceiling at UCL
PAMELA facility was used for this and all other light sources were turned off. All
lights were set to white except for two rows of amber light on the north side of
the room (see Figure 3.5). The row of amber lights remained constant throughout

the experiment and provided a non-geometric and non-landmark cue. A blackout
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Figure 3.3: Photograph of the physical reconfigurable room and object in the 2.4 x 2.4m
configuration (corresponding to the learning stage of the first trial).

Table 3.1: Experimental trials, stages and room dimensions (in m).

Trial Stage Room Dimensions (m)

| Learn 24 x24
Place 4.8 x 4.8
) Learn 4.8 x 4.8
Place 24 x 4.8

curtain was suspended from the lighting grid above the platform around the room

so participants could not see any external cues within the UCL PAMELA facility.
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Figure 3.4: Photograph of the physical reconfigurable room and object in the 4.8 x 4.8m
configuration (corresponding to the learning stage of the second trial).

Groups of six to nine participants were recruited for each lab session. They
were gathered together in the waiting room to complete individually each step of the
experiment, one at a time. Experimenters ensured that the waiting times between
steps were kept constant throughout the entire study, regardless of the number of
participants present at each session.

The study was conducted by three experimenters, each responsible for
three distinct tasks: chaperoning the waiting room, overseeing the testing room
(containing the reconfigurable room) and escorting between the two rooms. The

experimenter chaperoning in the waiting room was responsible for distributing



3.1. Experimental Design and Hypotheses 41

Figure 3.5: Photograph of the real world reconfigurable environment showing the two rows
of amber LED lights used as an orientation cue.

and collecting the different questionnaires to the groups of participants. The
experimenter in the testing room was responsible for the technical equipment as
well as positioning participants in the correct starting locations and facing directions
for each trial. The third experimenter was in charge of escorting participants from
and to the waiting room, as well as helping the other experimenters as needed.

The experimental design, data collection and preliminary data analysis
exploring a subset of the models, as well as a pilot study were reported in two
unpublished MSc student theses [94, 95]. The main purpose of the pilot study was
to test the setup and logistics of the physical room transitions. The experience of
running the pilot study informed the experimental design of the study presented in
this chapter, with the goal of minimising the number of physical room transitions
in each session.

Based on preliminary results obtained from the pilot experiment and in contrast
to earlier desktop VR studies [86, 87, 89, 5], we hypothesised that responses

maintaining fixed distances from nearby walls would be more common after
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expansions of the room and for objects closer to the boundaries of the room, and
fixed ratios between opposing walls would be more common after contractions of

the environment and for locations closer to the centre of the environment.

3.2 Method

3.2.1 Materials

A physical room was built consisting of a reconfigurable four-walled room, erected
on the moveable platform at the UCL PAMELA research facility. The platform at
PAMELA is made of 58 1.2m x 1.2m modules. These are controlled wirelessly
and provide interchangeable surfaces. The lighting system at the facility allows
the simulation of numerous conditions, ranging from daylight to darkness, ambient
to direct light, or variously coloured light scenarios. Each of the four walls was
custom-made from four plywood panels measuring 1.2 x 2.4m. The largest room
was 4.8 wide x2.4m long, the smallest room was 2.4 wide x2.4m long. All walls
were painted white and a grey carpet was placed to cover the original flooring.

It was necessary to provide a way for participants to orientate themselves
globally, as they were starting in a different corner each time. Hartley et al.'s
experimental design used a mountain range projected at infinity as a way of
providing participants with a directional cue [79]. In a physical setup this mode
of operation is not feasible. Projecting a panorama onto the wall would provide
landmark rather than distal cues; resulting in an environmental feature rather than
a constant allowing participants to orientate within the environment. We therefore
used PAMELA’s programmable LED lighting to light one side of the room in amber
as an orientation cue (as detailed in Figure 3.1).

The object used for both learning and recall was a white Tam Tam plastic stool
from Habitat (shown in Figure 3.6). The stool is easy to hold when blindfolded,
lightweight and provides no misleading (or otherwise) orientation cue to the
participant. This object was selected due to its specific rotational symmetry along
the vertical axis, eliminating the question of object orientation. The stool has a

diameter of 0.31m at the widest section and a height of 0.45m.
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Figure 3.6: Image of the object used in the study.

Twelve Optitrack cameras were suspended from the UCL PAMELA lighting
structure and used to track the final location of the stool as well as the participant
navigation in the room. To enable object tracking we placed three retro-reflective
markers on the top of the object. The cameras tracked the location of both the
object reflecting infrared light. The data was recorded using the OptiTrack Motive
software. As a backup to the tracking system failing a video camera was placed
above the center of the room so that the final object location could be estimated in

the event of tracking failure.

3.2.2 Participants

A total of 29 participants (18 female, 11 male; average age 44.8 years, SD = 15.5)
were recruited from the student and staff population at UCL. Participants were
required to be aged between 18 and 65 and have been based in London for at
least five years as recent findings indicate cultural variation in spatial navigation
strategies [96]. One participant was older than the required age range and was
excluded from the study. Another participant was partially sighted and therefore
was also excluded. All participants signed a consent form and the study was
approved by the UCL Research Ethics Committee (Project ID: CPB/2013/015).
Participants were paid £10 per hour for participation. The experimental task lasted

approximately 1.5 hours.
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3.2.3 Procedure

The study was conducted in two different rooms at UCL PAMELA: a waiting room
and a testing room, which contained the room setup for the study. Each session
of the study began with groups of participants (between six and nine) gathering in
the waiting room for an induction. They were asked to sign a paper copy of the
consent form and read an information sheet with written instructions describing the
experimental task. One of the experimenters then proceeded to explain the task
and participants had the chance to ask questions. An outline of the task was also
displayed on a white board in both the waiting and testing rooms. Participants were
also told that the experimenters would remind them throughout the procedure which
stage would come next. They were also shown a physical version of the Tam Tam
stool from Habitat for reference.

The experiment consisted of two trials, specified in Table 3.1. Each trial
involved two stages: a learning stage and a placing stage. In the learning stage
participants were asked to collect the object. In the placement stage they were asked
to place the object back where they had found it in the learning stage. Participants
completed the learning stange and the placing stage of each trial individually.
Table 3.2 contains an outline of the experimental task with the steps followed by
participants between the waiting and testing rooms.

Before accessing the testing room in each of the trial stages, participants
were blindfolded and asked to grab the two ends of a cardboard tube with their
hands. The facilitator escorting participants then grabed the middle of the pole
and guided participants into the testing room. Along the way, the facilitator would
disorient and guide the participant to the starting location for the corresponding
stage (using figures of eight). Participants were disoriented to stop them from
finding correspondences between the starting position during the learning stage and
the starting position during the placement stage.

When participants reached the testing room, the facilitator guided them to
the task starting position within the four reconfigurable walls through an open

corner. The facilitator would leave space within the four reconfigurable walls
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Table 3.2: Experimental task outline with steps followed by participants. Individual stages
were completed by all participants, one at a time following the same order for
each stage. All transitions between waiting and testing involved an experimenter
escorting the participant between these rooms.

Step Room Trial Stage Group/Individual
1 Waiting Induction - Group
Practice (VR i -

2 Testing ractice (_ version) Individual
Trial 1 Learn

3 Waiting Questionnaires - Group
Trial 1 Pl

4 Testing r%a ace Individual
Trial 2 Learn

5 Waiting Questionnaires - Group

Testing Trial 2 Place Individual
7  Waiting Payment - Group

and experimental assistants would close them, with the participants inside. The
facilitator would then indicate to the participants that they could remove the
blindfold and complete the task. They were also asked to indicate to the
experimenter when they had completed each stage. Once the task was complete,
participants were asked to place their blindfold on again and wait for the facilitator
to hand over the cardboard tube in order to be escorted to the next stage of the study.

Participants were asked to complete all stages as quickly and as accurately
as possible. They were not informed about the changes in room configuration
between learning and placement stages and variations of starting location and facing
direction. They were advised that there was no correct response and to try their best
if they were in doubt as to where to place the object.

While participants waited for their turn in the waiting room, participants were
asked to complete a Santa Barbara Sense-of-Direction Scale as well as a Myers
Briggs Personality Test [97, 98]. Participant payment was processed once all

experimental trials and questionnaires were completed.
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Figure 3.7: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 1. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile — 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 3.4 for pairwise interactions.

3.3 Results

Participant response placement data was used to calculate the Euclidean distance
between object positions as placed by participants and locations calculated from the
different models for each of the trials (see Section 2.3.3). We label this distance
as the model error and use it to quantify how accurate a model is in predicting
participant responses for the given trials. Figure 3.7 and Figure 3.8 show boxplots
for mean model errors for Trial 1 and Trial 2, respectively. Figure 3.9 shows cluster
heat maps and scatter plots showing participant response XY placement during the

testing stage each trial.
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Figure 3.8: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 2. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile — 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 3.5 for pairwise interactions.

Given that no standard procedure for analysing this type of data exists, for
informative purposes we defined two different selection criteria to determine which
models or subset of models could best describe individual participant responses
for each trial (see Section 2.3.3). This was done in order to filter out outliers or
participant responses that lay far from the predicted locations. The first selection
criteria, refered to as Quadrant Criteria (QC), divided each room into four quadrants.
These quadrants were defined by dividing the room into four equal sections with two
conceptual lines perpendicular to the walls, intersecting at the centroid of the room.

Following this selection criteria, only responses falling in the same quadrant as the
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Figure 3.9: Cluster heat maps and scatter plots showing participant response placement
during the testing stage for trial 1 (left) and trial 2 (right).The columns represent
X-axis and the rows represent Y-axis positions (in m). Each cell is colorized
based on the level of response counts in each region.

predicted location given by the corresponding model were considered. The second
criteria, labelled Distance Criteria (DC), was defined such that only responses
falling within 0.5m from the predicted location given by the corresponding model
were computed. Table 3.3 shows the number of participant responses that met each
of the selection criteria for each model in each of the trials and overall. We also
included results of the union of both criteria.

Table 3.4 and Table 3.5 show pairwise comparisons between models using
a paired-samples t-test with Bonferroni corrections for Trial 1 and Trial 2,
respectively, without excluding outliers.

For Trial 1, we found a statistically significant difference between the FRE

model (M =3.11,5D = 1.66) and the FDE model (M = 3.48,SD = 1.90). We also
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Table 3.3: Participant responses that met each of the selection criteria for each model in

each of the trials and overall (both trials combined). The last row indicates the
total number of participant responses (N). Note that model PI is a null model (the
predicted object location falls outside the boundaries of the room) and therefore
does not belong to any of the four valid quadrants. Both the QC and the DC are
not applicable in this case.

QC DC QCuDbC
Trial 1 Trial2 Overall Trial 1 Trial2 Overall Trial 1 Trial2 Overall

FRA 2 8 10 0 5 5 0 2 2
FRE 2 3 5 2 2 2 0 2
FDA 9 4 13 0 1 1 0 0 0
FDE 9 14 23 5 1 6 5 1 6
AD 2 8 10 0 4 4 0 2 2
PI - - - - - - -

PV 18 14 32 0 3 3 0 2 2
PVR 9 4 13 1 8 9 1 3

N 29 29 58 29 29 58 29 29 58

Table 3.4: Pairwise comparison t and p values between all models for Trial 1. The last row

shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR
FRA 0.63 -0.12 -035 1.79 -3.53%2 2.68" -1.15
FRE -0.68 -324> _0.16 -3.11® 0.87 -2.10°
FDA 031 098 -3.74% 254> 096
FDE -0.84 -232° 161 -1.33
AD 3782 2.14>  -1.80
PI 5868 1.73
PV -2.13b
M 334 311 335 348 316 537 280 3.81

4 interaction is significant at the 0.001 level (two-tailed)

b interaction is significant at the 0.05 level (two-tailed)
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Table 3.5: Pairwise comparison t and p values between all models for Trial 2. The last row
shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR

FRA -1.73 -11.26 -2.78® 3.17° -18.01* 2.09° 2.06°
FRE 036 -4.75% 3.86% -25.24 5.04° 4.68
FDA -0.77 639 -15.68% 4.55% 4.16
FDE 4.64° -19.722 5.71* 5207
AD 28.01* -0.10 0.52
PI 32.67* 37.082
PV 0.80

M 153 196 205 227 112 6.46 1.13 1.05

4 interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)

found that model PI (M = 5.37,8SD = 2.77) had a significantly higher model error
than all other models, except model PVR (M = 3.81,SD = 2.13). This was due to
the fact that the predicted location from this model fell outside the room, making this
model null for this trial. We found that, overall, model PV (M = 2.80,SD = 0.63)
had the lowest model error, and was significantly lower than model FRA (M =
3.34,SD = 0.87), model FDA (M = 3.35,SD = 1.10), model AD (M =3.16,SD =
0.66), the null model PI (M = 5.37,SD = 2.77) and model PVR (M = 3.81,8D =
2.13), but not significantly different from the egocentric models (models FRE and
FDE). This model was also the one with the highest number of paricipant responses
meeting the QC for Trial 1, but not the DC (see Table 3.3). This is due to a high
overall model error across all participants, higher than 0.5m.

For Trial 2, we found that the lowest model error corresponded to model AD
(M =1.12,SD = 0.65), model PV (M = 1.13,5D = 0.59) and model PVR (M =
1.05,8D = 0.77). These models were significantly lower from all other models, but
showed no significant difference amongst themselves. Note that, similar to Trial 1,
the location predicted by the PI model fell outside the room, making this model null

for this trial. For model AD distances are preserved in world coordinates, regardless
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of any changes in the environment geometry. This suggests that participants may
have attempted to map the object location in the room using static, absolute cues
(such as marks on the carpet). Other significant interactions were found and are
shown in Table 3.5. Similar to the results of Trial 1, model PV was one of the two
models with the highest number of participant responses meeting the QC for Trail
1 (see Table 3.3). This was not the case for model AD and model PVR. Due to
the high overall model error across all participants, the DC is not very relevant in
explaining participant responses for this trial.

Results for the Santa Barbara Sense-of-Direction Scale and the Myers Briggs
Personality Test, and their relation with object location memory results are not
reported as part of this thesis. Separate statistical analysis showed no effect of

gender or age on model error.

3.4 Discussion

Overall, results highlight strong differences in participant behaviour, with
contrasting models describing different response object locations. No single model
can account for all participant behaviour. Models based on self-motion seem
to hold greater accuracy in describing part of our responses, whereas the model
that preserves the absolute distance to its original location in world coordinates,
regardless of any changes in the environment geometry, seemed to work best in
explaining other participant responses. More data would be needed to understand
what makes participants behave in ways best represented by different models.
Constructing a reconfigurable, featureless large-scale room in the real world
is a complex exercise. Progressive wear and tear caused by room reconfiguration
can inevitably create cues on the walls and floor that participants could be using to
learn and recall the object’s location. This could nullify the intended effect of the
experimental design. Similarly, lack of control over external sounds can provide

participants with strong directional cues when taking part in the different trials.
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The relevant models decribed and explored in our study represent some
individual participant behaviour. Unlike Hartley et al. [5], we did not find strong
evidence to suggest that responses maintaining fixed distances from nearby walls
were more common after expansions of the room and for objects closer to the
boundaries of the room, and fixed ratios between opposing walls were more
common after contractions of the environment and for locations closer to the centre
of the environment. Models based on self-motion seemed to better explain part
of our participant responses. This highlights the need to explore more complex
paradigms which combine models based on spatial geometry and models based on
self-motion or navigation.

The relative success of the AD model in Trial 2, where an object location is
represented by the absolute distance to its original location in world coordinates,
regardless of any changes to the environment geometry, could have several
explanations. On the one hand, participants could have used some of the cues
produced by wear and tear of the physical walls or the carpet. This includes a
line between the seams of two pieces of carpet as well as the LED light grid on
the ceiling of the room. These did not change between trial stages, providing
participants with cues that remained constant and would have aided in placing the

object in its original location in world coordinates.



Chapter 4

Experiment: Distorting Virtual

Space

In this chapter we present the VR equivalent study to the one presented in Chapter 3.
Results from our study highlight the role of spatial layout as well as the user’s
starting location and facing direction, which have a strong effect on participant
behaviour. Similar to the study presented in Chapter 3, results suggest that
models which combine memory for geometry and self-motion may be better at
describing object location memory in immersive VEs. All in all, our VR study
on spatial cognition offers promising outcomes, further illustrating its potential as a

fundamental research tool in this and similar fields of study.

4.1 Experimental Design and Hypotheses

The experimental design of our immersive VR study is based on Hartley et al.’s
2004 desktop VR study [5]. It is part of a larger research project, which includes
a real world version of the study, presented in Chapter 3. In the study presented
in this chapter we generated the VEs from a series of 3D scans of the physical
environments, where four white wall panels made of four flats each were used to
build a space in three different configurations (see Figure 4.1).

Participants used a HMD to enter the VE with the reconstructed room in one
of the three configurations and were asked to collect a virtual object. All 3D scans

were performed under the same lighting conditions, providing very similar virtual
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Figure 4.1: Photograph of the real world reconfigurable environment and object (left) and
render of the VE and virtual object (right) used in the study. The real world
environment was 3D scanned to construct the VEs. A 3D virtual replica of the
object was used in the study. Three retroreflective markers are shown in the left
image on the object since these were used to 3D track its location in the real
world. Markers were not necessary in our virtual version of the task.

replicas of the real world environments. After a period of time in a separate physical
waiting room, they entered a different configuration of the VE and were asked to
place the object back where they had initially found it. This process was repeated
twice. The experimental trials are shown in Table 3.1. Room configuration, object
location and participant starting location as well as facing direction for each trial
are shown in Figure 3.2.

Participants could navigate the VEs by physically moving around them within
the tracked 3D space. We recorded participant navigation around the VEs as well
as the location of the virtual object after being placed by the participant in the
placement stage of each trial. We then compared participant behaviours with the
different models (see Section 2.3.3). This was achieved by calculating the Euclidean
distance between object location as placed by the participants and the location
predicted by these models for each trial. Two selection criteria, one based on
quadrants and the other based on distance, are also presented to further illustrate
our results. These are described in Section 3.3.

Groups of six to nine participants were recruited for each lab session. They
were gathered together in a waiting room. They completed individually each step of
the experiment, one at a time. Experimenters ensured that the waiting times between

steps were kept constant throughout the entire study, regardless of the number of
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participants present at each session.

The study was conducted by three experimenters, each responsible for
three distinct tasks: chaperoning the waiting room, overseeing the testing room
(containing the VR system) and escorting between the two rooms. The experimenter
chaperoning in the waiting room was responsible for distributing and collecting the
different questionnaires to the groups of participants. The experimenter in the
testing room was responsible for the technical equipment as well as positioning
participants in the correct starting locations and facing directions for each trial. The
third experimenter was in charge of escorting participants from and to the waiting
room, as well as helping the other experimenters as needed.

Based on preliminary results obtained from our real world pilot experiment
and in contrast to earlier desktop VR studies [86, 87, 89, 5], we hypothesised that,
by providing participants with idiothetic cues in both a physical and an immersive
VE set-up, models based on self-motion would hold the highest validity for object

location memory [95].

4.2 Method

4.2.1 Materials

The three VEs consisted of high fidelity point clouds obtained from 3D laser scans
of the real environments, rendered with a bespoke GPU-based point cloud renderer.
The real world environment consisted of a reconfigurable four-walled room, built
at UCL PAMELA. Each of the four walls was made from four plywood panels and
was 4.8m wide x 2.4m tall. All walls were painted white and a grey carpet was
placed to cover the UCL PAMELA facility’s flooring. 3D scanning was performed
with a Faro Focus 3D S120 laser scanner. The scanned floor was substituted by a
texturized plane to fill in the missing points from the scanner’s dead spot beneath it.

The VEs were rendered in a HTC Vive Developer Edition at 1:1 scale in Unity
at 90FPS with a vertical FOV of 60 degrees. The computer had an Intel Core i7-
6700 CPU @ 3.40GHz, with 32GB RAM and an Nvidia GTX 980 Ti GPU running

Windows 10 Enterprise. The HTC Vive Developer Edition base stations were placed
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in opposite corners of the 4.8m x 4.8m surface area (corresponding to the largest
room configuration).

Participants used one HTC Vive Developer Edition wireless controller
throughout the study. In each trial, the application would always begin with an
empty virtual space where only the virtual controller was visible. This enabled
the experimenters to make sure that the controller was not out of battery and
fully functioning. Participants could then begin the corresponding stage of the
experiment by pressing the front red system button. During each stage, participants
could grab the object by pressing the rear trigger whenever the controller was within
a Scm range of the object. By releasing the trigger button, the object would then
fall to the floor level and rotate to a vertical position.

The object used in the study was a virtual replica of a white Tam Tam plastic

stool from Habitat, detailed in Section 3.2.1 and shown in Figure 4.1.

4.2.2 Participants

A total of 39 participants (14 female, 25 male; average age 30.8 years, SD =
10.9) were recruited from the student and staff population at UCL. Participants
were required to be aged between 18 and 65 and have been based in London
for at least five years as recent findings indicate cultural variation in spatial
navigation strategies [96]. All participants signed a consent form and the study
was approved by the UCL Research Ethics Committee (Project ID: CPB/2013/015).
Participants were paid £10 per hour for participation. The experimental task lasted

approximately 1.5 hours.

4.2.3 Procedure

The study was conducted in two different rooms at UCL: a waiting room and a
testing room, which contained the VR setup. Each session of the study began with
groups of participants (between six and nine) gathering in the waiting room for an
induction. They were asked to sign a paper copy of the consent form and read an
information sheet with written instructions describing the experimental task. One of

the experimenters then proceeded to explain the task and participants had the chance
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to ask questions. An outline of the task was also displayed on a white board in both
the waiting and testing rooms. Participants were also told that the experimenters
would remind them throughout the procedure which step would come next.

Participants were informed that they would be able to see the SteamVR
chaperone grid when using the VR system. The chaperone grid is a security system
embedded in SteamVR that renders a virtual blue grid over the VE when the user
approaches the boundaries of the tracking space. SteamVR does not allow for
deactivation of the chaperone grid for security reasons. Participants were told
that when they saw the blue grid this meant they were approximately 40cm away
from the physical limits of the room and asked to ignore it when completing the
experimental task. They were also shown a physical version of the Tam Tam stool
from Habitat for reference.

The experiment consisted of two trials, specified in Table 3.1. Each trial
involved two stages: a learning stage and a placing stage. In the learning stage
participants were asked to collect the virtual object. In the placement stage they
were asked to place the virtual object back where they had found it in the learning
stage. Participants completed the learning stange and the placing stage of each trial
individually. Table 3.2 contains an outline of the experimental task with the steps
followed by participants between the waiting and testing rooms.

For each stage in the testing room, the participant was asked to wear the
HTC Vive Developer Edition HMD as well as to hold a controller with his or
her preferred hand. The experimenter would take hold of the opposite side of
the controller and guide as well as disorient the participant to the starting location
for the corresponding stage (using the HMD as a blindfold). Participants were
disoriented to stop them from finding correspondences between the physical testing
room and the VEs. Starting locations were marked with tape in the testing room to
help the experimenters place participants at the starting location and in the correct
facing direction for each stage.

Participants were also asked to indicate to the experimenter when they had

completed each stage. Once the task was complete, participants were asked to
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continue placing the controller to be escorted to the next stage of the study.
Participants were asked to indicate to the experimenter when they had completed
each stage.

Prior to the two experimental trials, participants completed a practice trial.
This was to ensure that they had a chance to familiarise themselves with the HTC
Vive controller, as well as grabbing and placing the virtual object. The practice VE
consisted of an empty space with a floor and a sphere (radius = 0.25m) to practice
interacting with the controller. Participants were asked to navigate to the sphere.
They were then asked to grab and release it as many times as needed until they felt
comfortable with the interaction.

Participants were asked to complete all stages as quickly and as accurately
as possible. They were not informed about the changes in VE configuration
between learning and placement stages and variations of starting location and facing
direction. They were advised that there was no correct response and to try their best
if they were in doubt as to where to place the virtual object.

While participants waited for their turn in the waiting room, participants were
asked to complete a Santa Barbara Sense-of-Direction Scale as well as a Myers
Briggs Personality Test [97, 98]. Participant payment was processed once all

experimental trials and questionnaires were completed.

4.3 Results

Participant response placement data was used to calculate the Euclidean distance
between object positions as placed by participants and locations calculated from
the different models for each of the trials (see Figure 4.5). We label this distance
as the model error and use it to quantify how accurate a model is in predicting
participant responses for the given trials. Figure 4.2 and Figure 4.3 show boxplots
for mean model errors for Trial 1 and Trial 2, respectively. P1, PV and PVR models
were calculated for each participant from their 3D tracked starting location and
facing direction, as this data slightly varied from participant to participant. This

was due to the experimental procedure, which involved the experimenter physically
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Figure 4.2: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 1. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile — 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 4.2 for pairwise interactions.

guiding and placing participants at the starting location and correct facing direction
for every trial stage. Placement data from two participants in Trial 2 was not logged
correctly and has therefore not been included in the analysis. Figure 4.4 shows
cluster heat maps and scatter plots showing participant response XY placement
during the testing stage each trial.

Given that no standard procedure for analysing this type of data exists, for
informative purposes we defined two different selection criteria to determine which
model or subset of models could best describe individual participant responses for

each trial (see Section 2.3.3). The criteria are described in Section 3.3). Table 4.1
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Figure 4.3: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 2. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile — 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 4.3 for pairwise interactions.

shows the number of participant responses that met each of the selection criteria for
each model in each of the trials and overall. We also included results of the union
of both criteria.

Table 4.2 and Table 4.3 show pairwise comparisons between models using
a paired-samples t-test with Bonferroni corrections for Trial 1 and Trial 2,
respectively, without excluding outliers. Results show a large number of significant
pairwise interactions at the p<0.05 level, but we will only report in detail the ones

we consider most relevant.
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Figure 4.4: Cluster heat maps and scatter plots showing participant response placement
during the testing stage for trial 1 (left) and trial 2 (right).The columns represent
X-axis and the rows represent Y-axis positions (in m). Each cell is colorized
based on the level of response counts in each region.

For Trial 1, there was a statistically significant difference in model error
for the FDE model and all other models, with the highest mean model error
(M = 4.68,SD = 1.37), followed by the FRE model (M = 4.13,SD = 1.27) and
the PVR model (M = 4.17,SD = 1.61). No statistically significant difference was
found between the FRA (M = 2.35,SD = 1.54), AD (M = 2.38,SD = 0.90) and
PI (M = 2.37,8D = 1.93) models, with the lowest mean model error. The rest
of pairwise interactions are contained in Table 4.2. In this trial, models based on
egocentric reference frames (FRE, FDE, PV and PVR) had a statistically higher
model error, indicating that most participants did not reorient to the initial facing
direction during the learning stage. Also, the models with statistically significant

lowest distance error (FRA and AD) were also the models with highest number of
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Figure 4.5: Trial 1 result plot for Participant 8 showing learning and placement stage
navigation data (red path) as well as object placement response location (red
circle) and all predicted locations (see legend). In this particular example the
participant’s reponse falls 0.03cm away from the FRA prediction. The amber
rectangle represents the two rows of amber LED lights suspended over the
room.

participant responses meeting the selection criteria (see Table 4.1). Note that the
location predicted by the PI model fell outside the room, making this model null for
this trial.

For Trial 2, there was a statistically significant difference in model error for the
PI model (M = 2.99,SD = 0.91), with the highest mean model error, and the rest
of the models. This is due to the fact that the location predicted by the PI model fell
outside the room, making this model null for this trial. There was also a statistically
significant difference in model error for the FRA model (M = 0.87,SD = 0.51),
with the lowest mean model error, and the rest of the models, but no significant
difference with the FRE model (M = 1.07,SD = 0.60). No statistically significant
difference was found between the AD (M = 0.95,SD =), FDA (M = 0.99,5SD =
0.45) and FRE (M = 1.07,SD = 0.60) models. The rest of pairwise interactions
are contained in Table 4.3. Results indicate that this trial triggered object location
memory based on the geometry of the envionment (FRE, FRA, FDE, FDA, AD),
rather than self motion models (PV and PVR).

Overall, results highlight strong differences in participant behaviour, with
contrasting models describing different response object locations. No single model

can account for all participant behaviour: models based on spatial geometry seem
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Table 4.1: Participant responses that met each of the selection criteria for each model in
each of the trials and overall (both trials combined). The last row indicates the
total number of participant responses (N). Note that model PI is a null model (the
predicted object location falls outside the boundaries of the room) and therefore
does not belong to any of the four valid quadrants. Both the QC and the DC are
not applicable in this case.

QC DC QC UDC

Trial 1 Trial2 Overall Trial 1 Trial 2 Overall Trial 1 Trial2 Overall

FRA 15 11 26 7 1 15 11 26
FRE 2 7 9 2 1 2 7 9
FDA 15 11 26 12 0 12 15 11 26
FDE 2 7 9 2 0 2 7 9
AD 15 12 27 0 8 8 15 12 27
PI - - - - - - - - -
PV 9 7 16 0 6 6 9 9 18
PVR 2 7 9 0 2 2 2 7 9
N 39 37 76 39 37 76 39 37 76

to hold greater accuracy in describing part of our responses, whereas models based
on self-motion best portray the rest of responses. However, more data would be
needed to understand what makes participants behave in ways best represented
by different models. Results also indicate that the light cue, designed to help
participants reorient back to the initial facing direction, was not salient enough in
Trial 1. This cue might have been more obvious in Trial 2, as participants had
become more familar with the VE’s features at this point in the experimental task.
Results for the Santa Barbara Sense-of-Direction Scale and the Myers Briggs
Personality Test, and their relation with object location memory results are not
reported as part of this thesis. Separate statistical analysis showed no effect of

gender or age on model error.

4.4 Discussion

The limitations listed in Section 3.4 can be conveniently solved using immersive
VR. Using this technology, the experimenter can have a higher level of control
over the experimental setup and provide ecologically valid stimuli without the noise

that is introduced in the real world. This includes easily and rapidly transforming
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Table 4.2: Pairwise comparison t and p values between all models for Trial 1. The last row
shows mean model error values for each model (M). Interaction is not significant

unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV  PVR
FRA 759 4.46* -890*° -024 023 -1.66 -5.76
FRE -5.71* -19.37* 9.81*  3.862 6.79¢ 2.33b
FDA 7112 145 075 -049 -4.08
FDE 11.20° 4.83* 8.882 7232
AD 036 -2.77° -8.66*
PI -1.756 -3.96*
PV -9.242
M 235 413 263  4.68 238 237 3.04 417

# interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)

Table 4.3: Pairwise comparison t and p values between all models for Trial 2. The last row
shows mean model error values for each model (M). Interaction is not significant

unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR
FRA -1.47 255 2.76° 5.60° -16.53* -3.60° -3.95%
FRE 0.64°> -3.19> 0.88 -827*% -7.58 9132
FDA -1.78 071 -15.63* -3.20° -3.60%
FDE 2145  -8.168 -3.58% -4.30?
AD -15.84% -3.14> -3.48?
PI 5348 5282
PV -3.892
M 087 107 099 121 095 299 1.54 159

# interaction is significant at the 0.001 level (two-tailed)

b interaction is significant at the 0.05 level (two-tailed)
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the environment in a variety of ways such as scale transformations. It also allows
to automatically capture participant behaviour, including object placement and
navigation data, which are generally more difficult to acquire in the real world and
require the use of additional tracking devices and software.

The relevant models decribed and explored in our study represent some
individual participant behaviour. Unlike Hartley et al. [5], we did not find strong
evidence to suggest that responses maintaining fixed distances from nearby walls
were more common after expansions of the room and for objects closer to the
boundaries of the room, and fixed ratios between opposing walls were more
common after contractions of the environment and for locations closer to the centre
of the environment. Our results indicate that object location and participant starting
location as well as facing direction have a crucial impact on model error in a VE
with a low number of available landmarks. They also illustrate that the change in
boundary geometry has a crucial impact on participant object location memory. In
this study, the design of Trial 1 triggered reponses that were best modelled by the
FRA model, as well as the AD model. However, Trial 2 prompted responses best
modelled by models based on the geometry of the environment (FRE, FRA, FDE,
FDA, AD). This highlights the need to explore more complex paradigms which
combine models based on spatial geometry and models based on self-motion or
navigation.

Similar to the results from Chapter 3, we observed a relative success of the
AD model, where an object location is represented by the absolute distance to its
original location in world coordinates, regardless of any changes to the environment
geometry. An alternative hypothesis is that participants were attempting to find
a correspondence between the physical testing room and the virtual room. This
could have happen when participants entered the testing room and were asked to put
on the HMD. However, participants were disoriented before being escorted to the
starting location for each trial stage (wearing the HMD as a blindfold). Therefore,
this hypothesis would only hold for cases in which participants were exceptional at

mentally tracking the disorienting path. This encourages further work to understand
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to what extent the physical environment in which a VR simulation takes place has
an impact on spatial learning and recall of the VE.

Results from this studies combined with its real world counterpart motivate
the need for further analysis on behavioural differences in real and virtual spaces,
and the factors that affect these differences. Furthermore, the availability of
novel consumer VR systems could alleviate the need to build complex real world
enviornments to carry out specialist research on spatial cognition once these

differences are better understood.



Chapter 5

Experiment: The Effect of
Environmental Features, Self-Avatar
and Level of Immersion on Object
Location Memory in Virtual

Environments

In this chapter we present a user study on spatial memory based on the work
presented in Chapter 3 and Chapter 4. Using a modified version of the task
presented in these chapters, we explore the effect of varied environmental feature
fidelity of VEs, the use of self-avatars, and the level of immersion of a system
on object location learning and recall. Following a between-subjects experimental
design, participants were asked to learn the location of three identical objects by
navigating one of the three environments: a physical laboratory or low and high
detail VE replicas of this laboratory. Participants who experienced the VEs could
use either a HMD or a desktop computer. Half of the participants learning in the
HMD and desktop systems were assigned a virtual body. Participants were then
asked to place physical versions of the three objects in the physical laboratory
in the same configuration. We tracked participant movement, measured object

placement, and administered a questionnaire related to aspects of the experience.
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Figure 5.1: Screen captures of the high detail VE (left) and low detail VE (right).

HMD learning resulted in statistically significant higher performance than desktop
learning. Results indicate that, when learning in low detail VEs, there is no
difference in performance between participants using HMD and desktop systems.
Overall, providing the participant with a virtual body had a negative impact on
performance. Preliminary inspection of navigation data indicates that spatial

learning strategies are different in systems with varying levels of immersion.

5.1 Experimental Design and Hypotheses

In this study we aimed to explore the effect of level of immersion, the presence or
absence of a virtual body and the role of environmental features on object location
memory. We compared placement accuracy when object locations were learnt in
the real world and object locations were learnt in two distinct virtual replicas of
the environment: a high detail 3D scan, where colour, environmental and geometric
features are available, and a low detail non-photorealistic replica of the shape of
the room, where only geometric features were accessible. Participants learnt the
position of three identical objects in one of the three environments as shown in
Figure 5.1. Once learning was complete and after a short period of time, participants
were asked to place the three objects in the real room in their original positions (see
Figure 5.2).

Participants observed the VEs and learnt objects positions in different systems
following a 2 x 2 x 2 design, with fidelity (high detail, low detail) as a within-

subjects factor and avatar (body, no body) and level of immersion (HMD, desktop
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Figure 5.2: Participant placing the three objects in the recall stage. Plastic stools were used
as objects for the study. Three retroreflective markers were attached to each
stool for optical tracking.

learning system) as between-subjects factors. Real world learning in the real
environment with physical objects was treated as an additional learning system.
Table 5.1 contains a summary of the mixed design experimental conditions.
Participants in the learning system conditions with a virtual body were
assigned a single point tracking avatar model based on head tracking. In other
words, a fixed mannequin was placed underneath the participant’s head position,
with no other reference points or animated movements. Participants learning in the
real world and in the HMD learning system conditions were able to explore the
space by physically walking around the room. Participants learning in the desktop
system condition were able to navigate the room by using keyboard and mouse
control, to change position and view, respectively. All participants completed the
learning stage in one of the three learning systems and then placed the physical

objects in the real world (see Subsection 3.3). In addition to the between-subjects
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Table 5.1: Mixed design experimental conditions.

Learning System

Desktop body  Desktop no body HMD body HMD no body Real world

Desktop body  Desktop no body HMD body HMD no body

Low detail VE ) ) ) ) -
Low detail VE  Low detail VE Low detail VE Low detail VE
High detail VE Pesktop l?ody De.sktop n9 body HMD b(?dy HMD no -body B
High detail VE  High detail VE High detail VE ~ High detail VE
Real environment - - - - Real world

learning system variable, one variable was manipulated within participants learning
in the desktop and HMD systems: VE fidelity. Participants in the desktop and
HMD learning conditions repeated the task twice, once in the low detail VE and
once in the high detail VE. The order in which participants experienced the low
detail and high detail VEs was altered, ensuring that the two possible combinations
were tested equally. Participants learning in the real world repeated the same task
twice, always in the real environment. The dependent variable was placement error,
or the absolute distance between participant response and original object position,
based on x- and y-coordinates, in meters. We also recorded the navigation paths of
all participants when learning and recalling object locations.

We hypothesised that providing optic flow information, natural locomotion,
and access to idiothetic cues in a HMD would promote higher similarity with real
world learning in terms of placement accuracy and navigation. Previous results have
indicated that training in a VEs of relatively low fidelity allows people to develop
useful representations of large-scale navigable space [20], contrary to the thought
that increasing overall fidelity of a simulator will lead to increases in transfer [99].
Regarding the presence and absence of a single point tracked avatar, we intend to
further replicate and verify the results of previous studies in which this type of
low motion fidelity virtual body has degraded performance [37]. Because of the
availablity of geometric as well as environmental cues, we expected learning in the
high detail VE to result in greater accuracy than learning in the low detail VE when
placing the objects in their original positions. We predicted that spatial learning

and recall in systems with higher level of immersion would result in performance
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comparable to real world learning.

5.2 Method

5.2.1 Materials

The experiment was conducted in a research laboratory at UCL. The laboratory
consisted of a 6m long x 4m wide x 3m high open space. The high detail VE was
comprised of a high fidelity 3D laser scan point cloud of the room with textures
derived from photographs, rendered with a GPU-based point cloud renderer. 3D
scanning was performed with a Faro Focus 3D S120 laser scanner. The low detail
VE was modeled using diffuse shaded planes to reproduce the geometric shape of
the laboratory. Figure 5.1 shows screen captures of the low detail VE, high detail
VE and real room from the same viewport. All environments were rendered at scale
1:1 in Unity at 60F PS without VSync and a vertical FOV of 60 degrees for the
desktop system and 60F PS in each eye for the HMD on an Intel Xeon E7 CPU,
with 16GB RAM and Nvidia GTX 680 GPU running Windows 7. During the user
study the physical room contained a table and a computer that was not included in
the scanned virtual 3D model. The table and computer had not been in the room
when the 3D scanning took place but were necessary to support the experimental
setup.

Head tracking and object positional data was logged with a NaturalPoint
OptiTrack motion capture system using twelve Flex 3 cameras and retroreflective
markers, at a sampling rate of 60Hz. The measured mean tracking error was 3mm.
A 27 inch Dell U2713HM monitor and an Oculus Rift Development Kit 2 (DK?2)
were used as displays for the desktop and HMD learning conditions, respectively.
High fidelity single point tracking virtual avatars, based on head tracking, were
used in the corresponding desktop body and HMD body conditions. A female and
male avatar model were obtained from the Rocketbox® Library [100]. These were
preprocessed to remove the heads before being included in the virtual scene. The
avatars were not animated and remained in an idle position throughout the task. An

Epson EB-585Wi projector was mounted in the ceiling of the laboratory, aligned



5.2. Method 72
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Figure 5.3: Renders of the VE built for the user study. The top row shows the high detail
environment with no self-avatar, a female self-avatar and a male self-avatar
(from left to right). The bottom row shows the low detail environment with no
self-avatar, a female self-avatar and a male self-avatar (from left to right).

with the room and projecting onto the ground. It was used to place the physical
versions of the objects in their corresponding positions for real world learning. The
objects used in the study were three identical white Tam Tam plastic stools from
Habitat, detailed in Section 3.2.1. Figure 5.3 contains renders of the high detail
and low detail environments built for the study, with and without the self-avatar

representations.

5.2.2 Participants

A total of 20 participants (9 female, 11 male; average age 26 years, SD = 5.3) were
recruited from the student and staff population at University College London. All
participants signed a consent form and the study was approved by the University
College London Research Ethics Committee (Project ID: 6708/002). Participants
were paid £10 for participation. They were assigned to the different experimental
conditions based on individual results for a standard spatial ability test to avoid any

possible bias between groups [63].

5.2.3 Procedure

The experimental task consisted of two phases, before and during the lab session.
Figure 5.4 shows an overview of the experimental task. Participants performed

all their trials in the same learning system condition. Before the lab session,
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Online Background questionnaire

Purdue test

Lab session
Trial 1 Trial 2

Debrief interview

Figure 5.4: Overview of the experimental task.

participants were asked to read an online information sheet that introduced the
experimental task. They were asked to read and sign an online informed consent
form and asked to complete a digital version of a standard spatial ability test as well
as a background questionnaire.

During the lab session, participants were asked to sign a paper copy of the
consent form and asked to read an information sheet with written instructions
describing the experimental task. Participants were asked to switch off their mobile
phones and were introduced in the lab. No practice trials were done and participants
were not given feedback on their performance throughout the experiment.

The experimental task consisted of two trials, each with a learning and a recall
stage. The learning stage involved viewing the three virtual objects in the real room
or one of the low and high detail VEs in one of the three learning system conditions:
real world, desktop or HMD. In the recall stage participants were asked to place the
three physical objects as they remembered them from the learning stage into the
real room. No further information was given and participants were asked to try
their best if they were in doubt as to where the object’s original position was. There
was no time limit for the learning and recall stages, and participants were able to

freely navigate the environment. Participants could navigate through all objects of



5.3. Results 74

Table 5.2: Post-trial questionnaire related to several aspects of the experience: examination,
confidence, difficulty, movement, application and observation. Responses were
recorded on a 1-5 Likert scale with varying vocabulary anchoring the low and
high ends of the scale, respectively.

Variable Question Likert Scale Range
Examination The learning environment allowed me to closely examine the objects.  1:Poorly - 5:Very Well
Confidence I am confident that I performed the task well. 1:Unconfident - 5:Confident
Difficulty The placement task was... 1:Easy - 5:Difficult
Movement I could move around the learning environment as I wanted. 1:Disagree - 5:Agree

Application I could diréctly appl?/ Whé.lt I learned in the learning environment. |:Disagree - 5:Agree
when placing the objects in the real room

Observation The leaming enviro.m.nent allowed me to naturally observe and |:Disagree - 5:Agree
learn the object positions.

the environment, but not through the environment boundaries. An experimenter
was present at all times during the experimental task to manage cables and provide
guidance on the different experimental stages.

Participants learning in the HMD and desktop learning systems (16
participants) performed the two trials, each corresponding to one of the two versions
of the VE in the learning stage: high detail and low detail. Participants experienced
the two VEs in different orders, ensuring that the two possible combinations were
tested equally. Participants learning in the real world (4 participants) performed
the same trial twice, always learning in the real room. In each trial, and for each
participant, all three objects were randomly arranged on a conceptual 5x5 grid,
avoiding straight line configurations. Participants could not see the grid in the
environment and were asked to ignore retroreflective markers on the stools, which
were used to track and identify the stools for data collection.

After each trial, participants were asked to complete a short online
questionnaire measuring examination, confidence, difficulty, movement, application
and observation (see Table 5.2). After the two trials were completed, they were

interviewed regarding individual strategies used throughout the experimental task.
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Figure 5.5: Mean placement errors in all learning system conditions for real world (green),
high detail (blue) and low detail (orange) VEs in m. Error bars show standard
erTors.

5.3 Results

5.3.1 Object Placement

Tracked object placement data was used to calculate the Euclidean distance, referred
to as placement error, between object positions as placed by participants in the recall
stage and original object positions. Figure 5.5 shows mean placement errors for all
learning system conditions. For statistical analysis the mean placement error was
calculated from the error of each of the three objects for all trials.

A three-way mixed Analysis of Variance (ANOVA) with fidelity (high detail,
low detail) as a within-subjects factor and avatar (body, no body) and level of
immersion (HMD, desktop learning system) as between-subjects factors was run.
There were no outliers in the data, as assessed by inspection of a boxplot. There
was homogeneity of variances for both high detail placement errors (p = .257) and

low detail placement errors (p = .143), as assessed by Levene’s test for equality of
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variances. Results showed a statistically significant two-way interaction between
fidelity and level of immersion, F(1,12) = 6.3, p = .027, and fidelity and avatar,
F(1,12) = 6.3, p = .027. Separate statistical analysis showed no effect of gender,
age or other background information such as videogame experience on placement
error.

Statistical significance of simple main effects was accepted at a Bonferroni-
adjusted alpha level of .025. There was a statistically significant simple main effect
of avatar for the low detail environment, F(1,12) = 6.453, p = .026, but not for the
high detail environment, F(1,12) =.017, p = .899. All pairwise comparisons were
performed for statistically significant simple main effects. Bonferroni corrections
were made with comparisons within each simple main effect considered a family of
comparisons. Adjusted p-values are reported. Mean placement error was lower
when an avatar was present than when an avatar was absent when learning in
the low detail environment, with a mean difference of -0.20 (95%CI,—0.372 to
—0.028),p = .026. There was a statistically significant simple main effect of
learning system for the high detail environment, F(1,12) = 16.423, p = .002, but
not for the low detail environment, F(1,12) = 1.098, p = .315. Mean placement
error was lower when learning with an HMD system than with a desktop system,
when learning in the high detail environment, with a mean difference of -0.083
(95%CI,—0.254 to —0.089), p = .002.

A Kruskal-Wallis H test showed that there was an overall statistically
significant difference in placement error between the different learning systems,
x2(2) = 56.452,p < .001, with a mean rank placement error score of 84.15 for
desktop learning, 57.53 for HMD learning and 19.15 for Real World learning.
When comparing the three system conditions, Real World learning resulted in
statistically significant lower placement error (M = 0.09,SD = 0.04), followed by
HMD learning (M = 0.27,SD = 0.16) and Desktop learning (M =0.45,SD =0.21),
respectively. No statistically significant differences were found between the two

trials.
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Figure 5.6: Learning stage 2D (XY plane) tracked navigation trajectories for all
participants in each learning condition for Real World (green), High Detail
(blue) and Low Detail (orange) VEs. Each point represents an XY position at a
sampling rate of 60Hz. All interesections in the 5 X 5 conceptual grid represent
a possible object position. The conceptual 5 x 5 object grid was invisible to
participants.

5.3.2 Questionnaire

A one-way between subjects ANOVA was performed on questionnaire responses
for desktop body, desktop no body, HMD body and HMD no body learning system
conditions, for high and low detail VEs. Results show a large number of mixed
significant interactions with no overarching trend due to the limited number of

repetitions.

5.3.3 Navigation

Tracking results, shown in Figure 5.6, indicate contrasting movement patterns in
Real World, HMD and Desktop learning system conditions. Qualitative inspection
of data suggests that participants learning in the real world and HMD systems
primarily navigated areas within the boundaries of the conceptual 5 x 5 object
grid whereas participants learning in the desktop computer mainly navigated areas
outside the boundaries of the conceptual 5 x 5 object grid. The mean percentage
of time spent navigating inside and ouside the conceptual 5 x 5 object grid was

calculated for each learning system and is shown in Figure 5.7.
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Figure 5.7: Mean percentage of navigation time spent outside (grey) and inside (yellow)
the conceptual 5 x 5 object grid for all participants in each learning condition
during the learning stage.

A one-way between subjects ANOVA was conducted to compare the effect
of learning system on the percentage of time spent navigating inside the conceptual
5 x 5 object grid in desktop, HMD and real world learning system conditions. There
was a significant effect of learning system on percentage time spent navigating
inside the conceptual 5 x 5 object grid at the p < .05 level [F(2,39) =371.991,p <
.001]. Post hoc comparisons using the Tukey HSD test indicated that the mean
percentage spent navigating inside the conceptual 5 x 5 object grid for desktop
learning (M = 0.24,SD = 0.06) was significantly lower than the mean percentage
spent navigating inside the conceptual 5 x 5 object grid for HMD learning (M =
0.80,SD = 0.08) and real world learning (M = 0.78,SD = 0.04). No significant
difference was found between HMD and real world learning.

To further illustrate differences in navigation strategies, we created cluster heat
maps of the time spent in each region of the room for each of the system conditions:
Desktop (left), HMD (middle) and Real World (right), shown in Figure 5.8. These
results show different spatial navigation strategies between desktop and HMD

learning strategies, where the former tended to access areas towards the far end
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Figure 5.8: Cluster heat maps of the time spent in each region of the room for each of
the system conditions: Desktop (left), HMD (middle) and real world (right).
The columns represent X-axis and the rows represent Y-axis positions (in m).
Each cell is colorized based on the level of counts of the head location (for all
participants) in each region during learning.

of the room and the latter tended to navigate areas clustered within the object grid
along the Y axis. Along the X axis, the range of positions accessed by participants
learning in the desktop system was wider than the range of movement performed by
participants learning in the HMD system. HMD navigation was not only different
from desktop navigation, but also qualitatively very similar to real world navigation

during learning.

5.4 Discussion

This study analyses object location memory transfer from VR to the real world. It
extends previous work on spatial perception in VEs [101, 102, 103, 104, 38, 26, 32,
34, 105, 20] by suggesting an experimental task in which participants are asked to
learn and recall a series of object configurations in concurrently occupied virtual
and real environments.

Our results illustrate that HMD learning resulted in statistically significant
higher performance followed by desktop learning. Our analysis suggests that
availability of environmental features in VEs can enhance object location memory
under certain setups. The overall negative effect of the self-avatar indicates that

single point tracked virtual bodies may not be sufficient to increase performance



5.4. Discussion 80

in this experimental task. Specifically, the use of self-avatar in HMD body
learning impaired placement accuracy. Single point tracking caused the virtual
self-avatar to appear in front of the participant’s real body if they leaned forward,
partially occluding some of the available environmental features. The degradation
in performance might have been because the virtual body occluded features in the
environment that the participant could have attended to. This might then have
forced a change to a different strategy for learning one or more object placements.
Moreover, the lack of motion fidelity provided by single point virtual bodies might
interfere with presence in VEs.

The results on navigation strategies seem promising. Similar to participants
learning in the real world, participants learning in the HMD system mainly
navigated areas within the boundaries of the conceptual 5x5 object grid, whereas
participants learning in the desktop system primarily explored areas outside the
boundaries of the conceptual 5x5 object grid. This may suggest that, when learning
object locations in less immersive systems, users navigate towards the environment
boundaries to obtain more global views of the scene. In addition, the range of
areas of the room accessed by participants learning in the desktop system was
wider than the range of areas of the room participants learning in the real world and
HMD system in the X and Y axis. Although differences in navigation in systems
with varying levels of immersion have been reported [106], further exploration
is required to understand the trajectories selected by users when learning object
locations.

One of the limitations of the work presented here is the relatively low number
of participants. A larger population sample is needed to further validate our results
as well as to explore the effect of more complex self-avatars with higher motion
fidelity on spatial memory. It would also allow us to analyse navigation trajectories
in more detail, exploring the regions visited by participants in relation to the object
locations and features of the environment. Other experimental tasks comparing
object location memory in systems with varying levels of immersion are required to

confirm whether our results are generalisable.



Chapter 6

Experiment: A Comparison of
Virtual and Physical Training
Transfer of Bimanual Assembly

Tasks

In this chapter we present a study that explores the effect of level of immersion on
training of a more complex procedural task, compared with the studies presented in
the previous chapter which looked at object location memory. For this, we compare
the effectiveness of virtual training and physical training for teaching a bimanual
assembly task. In a between-subjects experiment, 60 participants were trained
to solve three 3D burr puzzles in one of six conditions comprised of virtual and
physical training elements. In the four physical conditions, training was delivered
via paper- and video-based instructions, with or without the physical puzzles to
practice with. In the two virtual conditions, participants learnt to assemble the
puzzles in an interactive VE, with or without 3D animations showing the assembly
process. After training, we conducted immediate tests in which participants were
asked to solve a physical version of the puzzles. We measured performance through
success rates and assembly completion testing times. We also measured training
times as well as subjective ratings on several aspects of the experience. Our

results show that the performance of virtually trained participants was promising.
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Table 6.1: Experimental condition types, acronyms and definitions. Please note the choice
of acronym Vi to represent video and Vg to represent virtual environment
to avoid any confusion in making reference to the experimental conditions
throughout the thesis.

Type Acronym Definition

P Paper instructions
Physical PB Paper %nstruct?ons and physical blocks .
PVy Paper instructions and assembly process video
PVIB Paper instructions, assembly process video and physical blocks
Virtual Vg Virtual paper instructions and virtual blocks

VEA Virtual paper instructions and virtual blocks, with assembly process animations

Figure 6.1: One of the three 3D printed burr puzzles used in the study.

A statistically significant difference was not found between virtual training with
animated instructions and the best performing physical condition (in which physical
blocks were available during training) for the last and most complex puzzle in terms
of success rates and testing times. Performance in retention tests two weeks after
training was generally not as good as expected for all experimental conditions. We
discuss the implications of the results and highlight the validity of virtual reality

systems in training.

6.1 Experimental Design and Hypotheses

Inspired by previous research [2], in our study we used three different colour-
coded versions of a six-piece burr puzzle for the assembly task (see Figure 6.1).
Burr puzzles have been commonly used for assembly task training studies in
the past because they provide a recognisable and adequately complex model in

which participants must follow a specific procedure in order to solve them [59, 2].
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Table 6.2: Classification of the experimental conditions according to instruction type (static
or static and animated) and block availability (no blocks, physical blocks or
virtual blocks) during training. See Table 6.1 for experimental condition types,
acronyms and definitions.

Physical Virtual
No blocks Physical blocks Virtual blocks
Static instructions P PB Virtual Environment (Vg)
Static and animated instructions PV, PVB Virtual Environment with Animations (VgA)

However, our study differs from previous work in that no haptic devices were
used. In addition, we are interested in whether consumer virtual reality systems
are sufficient for effective training.

In our study, participants were trained and tested in assembling three versions
of a six-piece burr puzzle. To provide increasing difficulty, the first three blocks had
been preassembled for the first puzzle, the first two for the second and none for the
third. This meant that participants had to remember a higher number of steps in the
assembly process over the course of the experimental task for each puzzle.

Following a between-subjects experimental design, participants were trained
to solve each puzzle by adding the corresponding unassembled blocks in one of six
experimental conditions (see Table 6.1). Experimental conditions were designed
to account for scenarios in which blocks are not available (P and PVy), physical
blocks are available (PB and PV{B) or virtual blocks are available (Vg and VEA)
during training (see Table 6.2 for a classification of the experimental conditions).
The physical experimental conditions (P, PB, PVy and PV|B) were designed to
encompass combinations of paper- and video- based instructions. The virtual
experimental conditions (Vg and VEA) involved a virtual version of the paper
instructions, with or without 3D animations showing how to correctly assemble the
puzzle, and always with virtual blocks to practice during training. All instructions
(static and animated) were colour-coded to match the physical puzzle blocks.

Following training and after a short break, participants were asked to assemble
a 3D printed physical version of the corresponding puzzle within a given time.
Participants were asked to attend a retention session, two weeks after the training,

in which they were asked to solve the same puzzles in the same order and within
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the same time constraints. We measured success rates as well as training and testing
times. Sessions were complemented by a series of mental rotations tests as well as
questionnaires and debrief interviews.

As part of their recommendations for future work, Carlson et al. suggested
adding a snap-to-fit function or constraint system [107] to alleviate the time
that virtually trained participants spent attempting to fit and assemble the virtual
blocks [2]. We followed this recommendation and added such functionality in the
virtual training environment. We also followed their recommendation to make the
selection of a block in the VEs cause a change of colour instead of just causing a
change in transparency, as participants in their study reported that it was difficult to
discern transparent pieces against the transparent virtual representation of the glove.
In their discussion they mentioned individual differences for interaction between
the two hands, as some participants showed a preference for the haptic device or the
glove for predominant use. We therefore decided to make interaction ambidextrous,
meaning all operations were designed to be performed equally by both hands. We

made the following hypotheses:

H1: The conditions in which the physical blocks were available during training
(PB and PVB) would yield a higher number of successful puzzle completions
during immediate and retention testing. This relates to the experience (or
lack of) built around manipulating and assembling the physical blocks during

training.

H2: The conditions in which static and animated instructions (video or 3D
animations) were available during training (PVy, PV[B and VgA) would
result in lower assembly times during immediate and retention testing, as
participants would have received richer visualisation on how to assemble the

blocks during training.

H3: Condition PVB, with physical blocks and animated instructions (video),
would yield the best performance as measured by immediate and retention
success rates and assembly testing times. This hypothesis is based on H1 and

H2.
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Figure 6.2: Physical lab where the experiment took place (left) and analogous VEs (right).

6.2 Method

6.2.1 Materials

The user study was conducted in a lab at UCL. The room consisted of a 3.1m long
x 2.7m wide x 4.0m high room. A virtual replica of the laboratory was modeled
for the VE used in the virtual experimental conditions. Figure 6.2 contains images
of the physical room and analogous VE. An Oculus Rift Consumer Version 1,
two Oculus Touch controllers and two Oculus sensors were used for the virtual
experimental conditions. The VEs was rendered at scale 1:1 in Unity 5.6.0 without
VSync at 90FPS in each eye on an Intel Core 17-4770K CPU @ 3.50GHz, with
16GB RAM and Nvidia GeForce GTX 1080 GPU running Windows 8.1 Pro. The
Oculus Avatar SDK 1.15.0 [108] was used to include hand presence and interaction
for the Oculus Touch controllers. The Burr Tools 0.6.3 software was used to
digitally create and solve the three versions of the six-piece burr puzzles as well
as to generate the paper instructions and assembly process videos [109]. The puzzle
blocks were 3D printed with a Ultimaker 2+ 3D printer with a 0.4mm nozzle and
standard settings, with PLA 3D printing material. 3D models of the burr puzzles
used in the study are available to download at https://vr.cs.ucl.ac.uk/
research/virtual-training. Preassembled blocks for the first and second

puzzles were glued together. Paper instructions were printed on A3 paper and
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attached to Smm A3 foamboards. Assembly videos were presented using VLC

2.2.3 on a 13-inch mid 2014 MacBook Pro laptop running macOS 10.12.2.

6.2.2 Participants

A total of 60 participants (30 female, 30 male; average age 26.51 years, (SD =
6.47)) were recruited from the student and staff population at UCL. All participants
signed a consent form and the study was approved by the UCL Research Ethics
Committee (Project ID: 6708/004). Participants were paid £15 for participation.

A screener questionnaire was used to filter out potential participants who enjoy
solving 3D puzzles or who have any type of colour-blindness. Eligible participants
were assigned to the different experimental conditions based on individual results
for Purdue’s Visualisation of Rotations Test [63] to avoid any possible bias between
groups, with a similar mean score for the test in each of the experimental condition

groups. Likewise, an equal number of females and males were assigned to each

group.

6.2.3 Physical Training Environment

Participants assigned to the physical experimental conditions (P, PB, PV and PV{B)
were seated on a stool in front of the table in the lab on which the blocks had been
placed in the correct initial configuration for each puzzle. Participants were seated
facing the table and were told that they could adjust the distance to it if they wished
to.

Paper instructions were designed to show the initial configuration of the blocks
at the top and the assembly process steps at the bottom (see Figure 6.3). For the first
two puzzles, blocks that had been preassembled and the corresponding steps in the
assembly process were faded out. The orientation of the images of the blocks in
the instructions was randomly selected for each puzzle. For those experimental
conditions involving paper instructions, these were placed against the wall on the
table in front of the participant. Assembly process videos were generated using Burr
Tools [109] and showed a step-by-step animation of the assembly process from the

perspective matching the one in the paper instructions. The laptop was placed on
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the table in front of the participant. Participants could interact with the video (play,
pause, stop, rewind, and fast forward) using the VLC user interface.

For those experimental conditions in which the physical blocks were available
during training (PB and PV|B) these were initially placed on the table following
the same configuration as the paper instructions. Preassembled puzzles were placed

behind the blocks.

6.2.4 Virtual Training Environment

Participants assigned to the virtual experimental conditions (Vg and VEA) were
seated on a stool in the center of the lab. They were then asked to put on the
Oculus Rift and hold the two Oculus Touch controllers with the experimenter’s
help. The VE showed the virtual replica of the room and table used in the physical
environment in front of them, with the blocks for the corresponding puzzle arranged
in the correct configuration. Participants were seated facing the virtual table and
were told that they could adjust the distance to it if they wished to. For the
first two puzzles (in which two or three of the blocks had been preassembled)
participants could see the preassembled puzzle hovering over the table in front of
them. Virtual paper instructions were presented against the wall on the table in
the same location as the physical paper instructions were presented in the physical
training environment.

Using the Oculus Avatar SDK 1.15.0 [108], virtual hands were rendered using
the default shader (see Figure 6.4). Participants could then manipulate the 3D
environment by grabbing the virtual puzzle blocks. They could hold the trigger
button to grab unassembled puzzle blocks and the grip button to move and rotate
assembled blocks as a single unit. Participants could grab any block at any given
time, but only the correct block in the assembly process could be attached to the
puzzle. No physics constraints were added to the blocks meaning they could be
moved through each other and through the virtual hands and table.

Visual feedback was provided to aid participants in learning the assembly
process during training. When participants grabbed the correct block in the

assembly process, a blue transparent preview block was shown in the puzzle,
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PUZZLE 1

PUZZLE 2

STEP 2 STEP3 STEP4 STEPS

PUZZLE 3

STEP1 STEP 2 STEP 3 STEP 4 STEP 5

ARRET

Figure 6.3: Assembly instruction sheet for each of the three burr puzzles used in the study.
Each instruction sheet contains a diagram of the six pieces and five ordered
steps needed to solve the puzzle. Preassembled pieces and steps for Puzzles 1
and 2 were faded out.
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indicating where the block had to be assembled. Participants had the option to
deactivate the block preview. A blue highlight was used to indicate what the next
block in the assembly process was. This highlight would then turn to red when the
block collided with the preview block, indicating that the piece was near its correct
location but in the wrong orientation. The highlight would turn green when the
block was within an angle of twenty degrees from the correct orientation. If the
participant released the trigger when the block showed a green highlight, it would
snap into the correct location and the participant could move on to assemble the
next piece or reset the puzzle. No audio or vibration feedback was used in the
experience.

A user interface with virtual buttons was added on the right-hand side of the
virtual table. Buttons were represented by blue spheres which the participant could
interact with by touching them, after which they would turn to grey and back to
blue to indicate that the interaction was successful. For participants in the Vg
and VgA conditions, two buttons were available: RESET and HELP ON/OFF.
Interacting with the RESET button would immediately relocate all blocks in their
initial positions so participants could restart the assembly process whenever they
wished. The HELP ON/OFF button acted as a toggle to activate and deactivate the
blue transparent preview of the block in the puzzle so participants could practice
assembling the puzzle with and without the visual aid.

For participants in the VEA condition, two more buttons were added: NEXT
STEP and REPLAY LAST STEP. The NEXT STEP button would trigger the
animation of the assembly of the next block in the process. The REPLAY LAST
STEP would reposition the last block assembled in its original location on the table
and animate its assembly onto the puzzle.

All interactions in the virtual training environment could be equally carried out
using either hand and participants could concurrently complete one interaction with
each hand. For example, a participant could grab and rotate the assembled pieces

with one hand and grab the next block to attach with the other hand.
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Figure 6.4: Screenshot of a participant grabbing a virtual block and assembling it onto
the 3D puzzle. The green highlight indicates on the block is colliding with
its preview block and within twenty degrees from the correct orientation. By
releasing the trigger button of the Oculus Touch controller the virtual block
would snap into its correct location.

6.2.5 Procedure

The experimental task consisted of two lab sessions. The first session comprised
training and immediate testing. The second session, two weeks after the first,
comprised retention testing. Figure 6.5 shows an outline of the experimental task.
Before the first lab session, participants were asked to read and sign an online
informed consent form and answer a digital version of Purdue’s Visualisation of
Rotations Test [63] used to pre-allocate participants to the experimental conditions.
Participants also answered a background questionnaire with a specific focus on prior

experience with videogames, 3D modelling software and VEs.
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During the first lab session, participants were asked to sign a paper copy of the
consent form and asked to read an information sheet with written instructions
describing the experimental task. In this session participants completed a
familiarisation task and three trials, each with a training and a testing stage. The
three trials corresponded with each of the three burr puzzles in increasing order
of difficulty. During the familiarisation task participants were introduced to the
physical or virtual training environment depending on the experimental condition
they had been assigned to. A sample assembly task involving piling up rectangular
blocks was used and participants were able to familiarise themselves with the paper
instruction format, the video player and the interactive VEs, accordingly.

For each of the trials, the training stage involved learning to assemble the
corresponding puzzle in one of the six experimental conditions in a maximum time
of eight minutes. During the testing stage participants were asked to assemble
the physical 3D puzzle in a maximum of three minutes. Time limits for training
and testing were defined through piloting of the experimental task. In each trial
participants completed the training stage and, after a thirty second break, the testing
stage. They then completed a questionnaire at the end of each trial (see Table 6.3).
For both training and testing participants were told what the limit times were and
were advised that they could end the stage before the time expired if they wished to.
Participants were also told that the initial configuration of the blocks on the table
during training would match the initial configuration of the blocks during testing
and the paper instructions.

Participants were asked to try their best if they were in doubt as to how
to assemble the puzzles during testing. An experimenter was present at all
times during the experimental task to manage cables for those particpiants in the
virtual experimental conditions and provide guidance on the different phases of
the experimental task. After completing all trials participants were interviewed
regarding the strategies used throughout the sessions.

After a waiting period of two weeks, participants returned to the lab for the

second session. In this session participants were asked to complete a paper version
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Table 6.3: Post-trial questionnaire related to several aspects of the experience: difficulty,
ease of use and seriousness. Responses were recorded on a 1-5 Likert scale with
varying vocabulary anchoring the low and high ends of the scale, respectively.

Variable Question Likert Scale Range

Difficulty Please rate the difficulty of the task you just completed. 1: Very difficult - 5: Very easy

Ease of use  Please rate the ease of use in assembling parts in the training environment. 1: Very difficult - 5: Very easy
Seriousness  Please rate how seriously you took the task. 1: Very unseriously - 5: Very seriously

of the Vandenberg and Kuse Mental Rotations Test [65]. They then completed the
retention test for each of the three puzzles, in which they were asked to solve the
three burr puzzles from the first session without a training phase, in the same order
and in a maximum of three minutes. They completed the same questionnaire from
the first session at the end of each retention trial (see Table 6.3). After completing
all retention trials they were interviewed regarding strategies used throughout the

session.

6.3 Results

6.3.1 Types of Errors

Unsuccessful puzzle completions during immediate and retention testing were due
to one of two reasons. In most cases, participants did not complete the 3D puzzles
within the given maximum time (180s). On the other hand, a low number of
participants decided to stop the time before the upper limit thinking that they had
successfully solved the puzzle. However, close inspection showed that they had
not correctly assembled the pieces. Completion time values for both immediate
and retention testing were corrected by assigning the upper time limit (180s) to all

unsuccessful attempts.

6.3.2 Immediate Testing

6.3.2.1 Training times
Boxplots with training times for each of the puzzles are shown in Figure 6.6. Non-
parametric statistical analysis was performed for training times because our data

was not normally distributed as shown by a Shapiro-Wilk test.
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Online Background questionnaire

Purdue test

First session Familiarisation task

Trial 1 Trial 2 Trial 3

Debrief interview

2-week waiting period

Second session | Vandenberg and Kuse test

Retention trial 1 Retention trial 2 Retention trial 3

Debrief interview

Figure 6.5: Overview of the experimental procedure.

A Kruskal-Wallis H test showed that there was an overall statistically
significant difference in training times for the first puzzle between the different
experimental conditions, x2(5) = 25.648,p < 0.001, with a mean rank score of

15.35 for P, 38.85 for PB, 13.85 for PVy, 40.15 for PVB, 36.25 for Vg and 38.55
for VEA.
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Figure 6.6: Boxplot containing training times for each of the puzzles. Medians are shown
as dark horizontal lines. Boxes represent the IQR. Whiskers represent either
the extreme data points or extend to 1.5 x IQR. Outliers (data points outside the
whiskers) are shown by circles. A value, X, is an outlier if X < lower quartile
— 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR. See Table 6.4

for pairwise interactions.

Table 6.4: Test statistics using Dunn’s procedure [1] for training times between the
different experimental conditions. Significance values have been adjusted by
the Bonferroni correction for multiple tests. Interaction is not significant unless

it is explicitly indicated as specified in the legend.

PB PV; PViB VE VEA
P -23.50*  1.50 -24.80* -20.90 -23.20%
PB 25.008  -1.30 2.60 0.30
Puzzle1l PV, -26.30*  -2240  -24.70%
PViB -3.90 -1.60
VE -2.30
P -17.50 1190 -1420 -1495 -13.25
PB 29.40*  3.30 2.55 4.25
Puzzle 2 PV, -26.10*  -26.85* -25.15%
PViB 0.75 -0.95
VE 1.70

4 interaction is significant at the 0.05 level (two-tailed)

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in training times for the second puzzle between the different

experimental conditions, x2(5) = 22.764,p < 0.001, with a mean rank score of
22.50 for P, 40.00 for PB, 10.60 for PVy, 36.70 for PVB, 37.45 for Vg and 35.75

for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically

significant difference in training times for the third puzzle between the different
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experimental conditions, x2(5) = 10.701,p = 0.058, with a mean rank score of
21.95 for P, 33.50 for PB, 18.90 for PVy, 35.70 for PVB, 37.15 for Vg and 35.80
for VEA.

Pairwise comparisons were performed using Dunn’s procedure [1] with a
Bonferroni correction for multiple comparisons with adjusted p-values. These are
displayed in Table 6.4. Note that pairwise comparisons for puzzles in which the
Kruskal-Wallis H test showed no overall statistically significant difference have not
been included.

The post hoc analysis revealed statistically significant differences in training
times for the first puzzle. There was a statistically significant difference between P
(mean rank = 15.35) and PB (mean rank = 38.85) (p = 0.036), PV|B (mean rank
=40.15) (p = 0.020) and VEA (mean rank = 38.55) (p = 0.041). There was also a
statistically significant difference between PV (mean rank = 13.85) and PB (mean
rank = 38.85) (p = 0.018), PVB (mean rank = 40.15) (p = 0.010) and VA (mean
rank = 38.55) (p = 0.021).

The post hoc analysis revealed statistically significant differences in training
times for the second puzzle. There was a statistically significant difference between
PV1 (mean rank = 10.60) and PB (mean rank = 40.00) (p = 0.002), PVB (mean
rank = 36.70) (p = 0.010), Vg (mean rank = 37.45) (p = 0.007) and VEA (mean
rank = 35.75) (p = 0.015).

Separate statistical analysis showed no significant effect of gender or age on

training times for all puzzles.

6.3.2.2 Immediate testing success rates

A binomial logistic regression was performed to ascertain the effects of
experimental condition on the likelihood that participants succeed at assembling
each puzzle during the immediate testing phase. Figure 6.7 shows the number
of successful and unsuccessful completions of each puzzle for all experimental
conditions. PV[B was chosen as the reference category as this was the condition

that produced the highest number of successful puzzle completions, overall.
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Figure 6.7: Number of successful (green) and failed (red) attempts at solving the three
puzzles in the immediate testing phase for each of the experimental conditions.

The binomial logistic regression model was not statistically significant,
x2(5) = 8.809,p = 0.117 for the first puzzle. The model explained 18.3%
(Nagelkerke R?) of the variance in success rate and correctly classified 61.7%
of cases. The Wald criterion demonstrated that only condition P made a significant
contribution to prediction (p = 0.016). The model suggested that participants in this
condition were 0.05 times as likely to successfully assemble the first puzzle than
participants in the reference category (PViB).

The binomial logistic regression model was statistically significant, x2(5) =
12.016, p = 0.035 for the second puzzle. The model explained 24.7% (Nagelkerke
R?) of the variance in success rate and correctly classified 71.7% of cases. The Wald
criterion demonstrated that P and PVy made a significant contribution to prediction
(p =0.016 and p = 0.035, respectively). The model suggested that participants in
the P experimental condition were 0.048 times as likely to successfully assemble
the second puzzle than participants in the reference category (PViB). The model
suggested that participants in the PVy experimental condition were 0.074 times as
likely to successfully assemble the second puzzle than participants in the reference

category (PViB).
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The binomial logistic regression model was statistically significant, x2(5) =
24.255, p < 0.001 for the third puzzle. The model explained 45.8% (Nagelkerke R?)
of the variance in success rate and correctly classified 78.3% of cases. The Wald
criterion demonstrated that P and PV made a significant contribution to prediction
(p = 0.035 and p = 0.007, respectively). The model suggested that participants in
the P experimental condition were 0.074 times as likely to successfully assemble
the third puzzle than participants in the reference category (PViB). The model
suggested that participants in the PVy experimental condition were 0.028 times as
likely to successfully assemble the third puzzle than participants in the reference
category (PViB). Condition VgA did not contribute to this model (Wald = .000).
However, it is important to note that all participants in this condition successfully
completed the third puzzle.

A binomial logistic regression was then performed to ascertain the effects
of successful completion of the first puzzle on the likelihood that participants
succeed at assembling the second puzzle during the immediate testing phase. The
logistic regression model was statistically significant, }¥2(1) = 12.993, p < 0.001.
The model explained 26.5% (Nagelkerke R?) of the variance in success rate and
correctly classified 73.3% of cases. The model suggested that participants who
succeeded at correctly assembling the first puzzle were 7.65 times as likely to
successfully assemble the second puzzle than participants in the reference category
(PVIB).

A binomial logistic regression was also performed to ascertain the effects
of successful completion of the second puzzle on the likelihood that participants
succeed at assembling the third puzzle during the immediate testing phase. The
logistic regression model was statistically significant, ¥2(1) = 15.174, p < 0.001.
The model explained 30.8% (Nagelkerke R?) of the variance in success rate and
correctly classified 76.7% of cases. The model suggested that participants who
succeeded at correctly assembling the second puzzle were 9.687 times as likely to
successfully assemble the third puzzle than participants in the reference category

(PV{B).
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As a result, a binomial logistic regression was performed to ascertain the
effects of successful completion of the first puzzle and experimental condition on
the likelihood that participants succeed at assembling the second puzzle during
the immediate testing phase. The logistic regression model was statistically
significant, y2(1) = 22.265,p = 0.001. The model explained 42.1% (Nagelkerke
R?) of the variance in success rate and correctly classified 75% of cases. The
Wald criterion demonstrated that none of the experimental conditions made
a significant contribution to prediction. The Wald criterion also showed that
successful completion of the previous puzzle did contribute significantly to
prediction (p = 0.003). The model suggested that participants who succeeded
at correctly assembling the first puzzle were 8.273 times as likely to successfully
assemble the second puzzle than participants in the reference category (PV[B). This
model presented with the highest percentage of completely classified observations
for the second puzzle.

A binomial logistic regression was also performed to ascertain the effects
of successful completion of the second puzzle and experimental condition on
the likelihood that participants succeed at assembling the third puzzle during the
immediate testing phase. The logistic regression model was statistically significant,
x2(1) = 32.441,p < 0.001. The model explained 57.5% (Nagelkerke R?) of
the variance in success rate and correctly classified 83.3% of cases. The Wald
criterion demonstrated that condition PVt and successful completion of the previous
puzzle made a significant contribution to prediction (p = 0.030 and p = 0.007,
respectively). The model suggested that participants in the PV condition were
0.048 times as likely to successfully assemble the third puzzle than participants in
the reference category (PViB). Participants who successfully completed the second
puzzle were 8.475 times as likely to successfully assemble the third puzzle than
participants in the reference category (PViB). Note that condition VEA did not
contribute to this model (Wald = .000). However, it is important to note that all
participants in this condition successfully completed the third puzzle. This model

presented with the highest percentage of completely classified observations for the
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Figure 6.8: Boxplot containing corrected immediate testing times for each of the puzzles.
Medians are shown as dark horizontal lines. Boxes represent the IQR.
Whiskers represent either the extreme data points or extend to 1.5 x IQR.
Outliers (data points outside the whiskers) are shown by circles. A value, X,
is an outlier if X < lower quartile — 1.5 x interquartile range or if X < upper
quartile + 1.5 x IQR. See Table 6.5 for pairwise interactions.
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Figure 6.9: Boxplot containing corrected retention testing times for each of the puzzles.
Medians are shown as dark horizontal lines. Boxes represent the IQR.
Whiskers represent either the extreme data points or extend to 1.5 x IQR.
Outliers (data points outside the whiskers) are shown by circles. A value, X,
is an outlier if X < lower quartile — 1.5 x interquartile range or if X < upper
quartile + 1.5 x IQR.

third puzzle.

To summarise, the binomial logistic regression model for the first puzzle was
not statistically significant, with only condition P significantly contributing to the
model. For the second puzzle, the binomial logistic regression model with the
highest percentage of correctly classified observations was the one that ascertained
the effect of successful completion of the previous puzzle during immediate testing.
For the third puzzle, the binomial logistic regression model with the highest
percentage of correctly classified observations was the one that ascertained the
effect of both experimental condition and successful completion of the previous

puzzle. These results show some support for HI and H3.
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Table 6.5: Test statistics using Dunn’s procedure [1] for immediate testing times between
the different experimental conditions. Significance values have been adjusted by
the Bonferroni correction for multiple tests. Interaction is not significant unless
it is explicitly indicated as specified in the legend.

PB PVi PViIB Vg VEA

p 500 425 2735* 6.80 8.80
PB -0.75  2235* 1.80 3.80
Puzzle1 PV, 23.10* 2.55 455
PViB 20.55 18.55
VE 2.00
P 11.30  4.60 29.05* 1690 14.65
PB -6.70 1775 5.60  3.35
Puzzle 2 PV, 24.45* 1230 10.05
PVB 12.15 14.40
VE -2.25
p 11.50 -2.15 25.45* 15.70 25.40°%
PB -13.65 1395 420 13.90
Puzzle 3 PV, 27.60* 17.85 27.55%
PViB 9.75  0.50
VE 9.70

2 interaction is significant at the 0.05 level (two-tailed)

6.3.2.3 Immediate testing completion times
We compared puzzle completion times between the different experimental
conditions during the immediate testing phase. Completion time values were
corrected by assigning the upper time limit (180s) to all unsuccessful attempts
(see Section 6.3.1). All the corrected data satisfied the assumption of homogeneity.
Boxplots with immediate testing times for each of the puzzles are shown in
Figure 6.8. Non-parametric statistical analysis was performed for immediate testing
times because our data was not normally distributed as shown by a Shapiro-Wilk
test.
A Kruskal-Wallis H test showed that there was an overall statistically
significant difference in time taken to assemble the first puzzle in the testing phase

between the different experimental conditions, ¥%(5) = 16.618, p = 0.005, with a
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mean rank score of 39.20 for P, 34.20 for PB, 34.95 for PVj, 11.85 for PV|B, 32.40
for VE and 30.40 for VEA.

A Kruskal-Wallis H test showed that there was an overall statistically
significant difference in time taken to assemble the second puzzle in the testing
phase between the different experimental conditions, y%(5) = 17.986, p = 0.003,
with a mean rank score of 43.25 for P, 31.95 for PB, 38.65 for PV, 14.20 for PV|B,
26.35 for Vg and 28.60 for VEA.

A Kruskal-Wallis H test showed that there was an overall statistically
significant difference in time taken to assemble the third puzzle in the testing
phase between the different experimental conditions, y?(5) = 24.536, p < 0.001,
with a mean rank score of 43.15 for P, 31.65 for PB, 45.30 for PVy, 17.70 for PV|B,
27.45 for Vg and 17.75 for VEA.

Pairwise comparisons were performed using Dunn’s procedure [1] with a
Bonferroni correction for multiple comparisons with adjusted p-values. These are
displayed in Table 6.5. Note that pairwise comparisons for puzzles in which the
Kruskal-Wallis H test showed no overall statistically significant difference have not
been included.

The post hoc analysis revealed statistically significant differences in immediate
testing times for the first puzzle. There was a statistically significant difference
between PV[B (mean rank = 11.85) and P (mean rank = 39.20) (p = 0.004), PB
(mean rank = 34.20) (p = 0.003) and PV (mean rank = 34.95) (p = 0.002).

The post hoc analysis revealed statistically significant differences in immediate
testing times for the second puzzle. There was a statistically significant difference
between PV|B (mean rank = 14.20) and P (mean rank = 43.25) (p = 0.002) and PV;
(mean rank = 38.65) (p = 0.019).

The post hoc analysis revealed statistically significant differences in immediate
testing times for the third puzzle. There was a statistically significant difference
between PV|B (mean rank = 17.70) and P (mean rank =43.15) (p = 0.013) and PV;
(mean rank = 45.30) (p = 0.005). There was a statistically significant difference
between VEA (mean rank = 17.75) and P (mean rank =43.15) (p = 0.013) and PV
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(mean rank = 45.30) (p = 0.005).
The analysis of immediate testing completion times shows some support for
H2 and H3. Separate statistical analysis showed no significant effect of gender or

age on training times for all puzzles.

6.3.2.4 Subjective questionnaire ratings
There was no statistically significant difference in rated difficulty, ease of use and
seriousness between groups as determined by one-way ANOVA for the first puzzle.

There was a statistically significant difference in ease of use of the training
environment (F(5,54) = 5.006, p = 0.001) between groups as determined by one-
way ANOVA for the second puzzle. A Tukey post hoc test revealed that participants
in the P condition M = 2.5, SD = 1.08) rated the ease of use of the training
environment as significantly more difficult than participants in the Vg (M = 4.4,
SD =0.70, p=0.001) and VEA M =4.1, SD = 1.1, p = 0.007) conditions. No other
significant interactions were found for the second puzzle.

There was a statistically significant difference in task difficulty (F(5,54)
=4.613, p =0.001) between groups as determined by one-way ANOVA for the third
puzzle. A Tukey post hoc test revealed that participants in the P condition (M =
1.9, SD = 1.00) rated the difficulty of the task as significantly more difficult than
participants in the VEA (M = 4.1, SD = 0.88, p = 0.002) condition. Participants
in the PB condition (M = 2.7, SD = 1.34) also rated the difficulty of the task as
significantly more difficult than participants in the VEA condition (M = 4.1, SD =
1.34, p =0.003). No other significant interactions were found for the third puzzle.

There was a statistically significant difference in ease of use of the training
environment (F(5,54) =3.044, p=0.017) between groups as determined by one-way
ANOVA for the third puzzle. A Tukey post hoc test revealed that participants in the
P condition (M = 2.4, SD = 1.35) rated the ease of use of the training environment
as significantly more difficult than participants in the VEA (M =4.4,SD =0.70, p =

0.007) condition. No other significant interactions were found for the third puzzle.
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Table 6.6: Number of successful attempts, failed attempts and participants solving the three
puzzles in the retention testing phase for each of the experimental conditions.

P PB PVl PViIB Vg ViA

Puzzle 1 Success 2 3 3 6 7 5
Fail 6 6 7 4 3 4

Puzzle 2 Succ'ess 2 0 2 4 1 0
Fail 6 9 8 6 9 9

Puzzle 3 Succ‘ess 0O O 3 1 1 0
Fail g8 9 7 9 9 9

N 8 9 10 10 10 9

6.3.3 Retention Testing

6.3.3.1 Participants

A total of 56 participants who completed the first part session returned to complete
the second session two weeks later (average number of days between training
session and retention session: 14.16, SD = 0.918). Overall, retention testing
performance was lower than expected for all conditions both in terms of success
rates and completion times. We believe this is due to the high complexity of the 3D

puzzles.

6.3.3.2 Retention testing success rates

A binomial logistic regression was performed to ascertain the effects of
experimental condition on the likelihood that participants succeed at assembling
each puzzle during the immediate testing phase. PV[B was chosen as the reference
category (the condition with most successful puzzle completions, overall).

The binomial logistic regression model was not statistically significant,
x%(5) = 6.240,p = 0.284 for the first puzzle. The model explained 14.3%
(Nagelkerke R?) of the variance in success rate and correctly classified 65.5%
of cases. The Wald criterion demonstrated that none of the conditions made a
significant contribution to prediction.

The binomial logistic regression model was not statistically significant,

xZ(S) = 10.054, p = 0.074 for the second puzzle. The model explained 28.3%
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(Nagelkerke R?) of the variance in success rate and correctly classified 83.6%
of cases. The Wald criterion demonstrated that none of the conditions made a
significant contribution to prediction.

The binomial logistic regression model was not statistically significant,
x2%(5) = 8.289,p = 0.141 for the third puzzle. The model explained 30.7%
(Nagelkerke R?) of the variance in success rate and correctly classified 90.9%
of cases. The Wald criterion demonstrated that none of the conditions made a

significant contribution to prediction.

6.3.3.3 Retention testing completion times

We compared puzzle retention testing times between the different experimental
conditions. Completion time values were corrected by assigning the upper time
limit (180s) to all unsuccessful attempts. All the corrected data satisfied the
assumption of homogeneity.

Boxplots with training times for each of the puzzles are shown in Figure 6.9.
Non-parametric statistical analysis was performed for retention testing times
because our data was not normally distributed as shown by a Shapiro-Wilk test.

A Kruskal-Wallis H test showed that there was no overall statistically
significant difference in time taken to assemble the first puzzle in the retention
testing phase between the different experimental conditions, x2(5) = 8.101, p =
0.151, with a mean rank score of 34.69 for P, 32.88 for PB, 33.45 for PVy, 20.90 for
PV1B, 21.95 for Vg and 26.28 for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically
significant difference in time taken to assemble the second puzzle in the retention
testing phase between the different experimental conditions, xz(S) =5.832,p=
0.323, with a mean rank score of 25.25 for P, 32.00 for PB, 26.35 for PVy, 23.70 for
PViB, 29.35 for Vg and 32.00 for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically
significant difference in time taken to assemble the third puzzle in the retention
testing phase between the different experimental conditions, y%(5) = 7.151, p =

0.210, with a mean rank score of 30.50 for P, 30.50 for PB, 22.55 for PVy, 27.55 for
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PV|B, 27.65 for Vg and 30.50 for VgA.

6.3.3.4 Subjective questionnaire ratings
There was no statistically significant difference in rated difficulty and seriousness
between groups as determined by one-way ANOVA for any of the three puzzles.

Tukey post hoc tests showed no significant interactions.

6.4 Discussion

In terms of training times, post hoc analysis revealed a significant difference
between the physical conditions where no blocks were available during training
(P and PVy) and the rest of the physical conditions where blocks were available
during training (PB and PViB), amongst other significant interactions. For the
second puzzle, we observe a significant difference in training times between PVy
and all other conditions except P, amongst other effects. For the third puzzle we
found no significant interactions. We believe it is important to note the lack of
significant differences in terms of training times between the virtual conditions and
condition PVB, the overall best performing condition. We also believe that the
lower training times for conditions P and PB could be due to the lack of blocks to
practice with during training, which meant participants did not have any activities
to perform during training and therefore decided to move on to the next stage of the
experimental task. This could be related to a high number of unsuccessful puzzle
completions in these conditions. An increase in training times for these conditions
in puzzles 2 and 3 could be due to participants understanding the complexity of the
tasks after the immediate testing for the first puzzle and deciding to spend more
time inspecting the paper instructions and video (when available).

Regarding success rates for immediate testing, we observed that condition
PVB yielded the highest number of successful completions of the three puzzles
(see Figure 6.7). We also observed that condition P yielded the lowest number
of successful completions of the puzzles during immediate testing. Condition
PB showed a ceiling effect in the second and third puzzle. Successful puzzle

completions in condition PVy decreased with each puzzle. Immediate testing
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success rates for the virtual conditions, Vg and VEA, increased with each puzzle.
Our analysis showed that the binomial logistic regression model for the first puzzle
was not statistically significant, with only condition P significantly contributing to
the model. For the second puzzle, the binomial logistic regression model with the
highest percentage of correctly classified observations was the one that ascertained
the effect of the successful completion of the previous puzzle during immediate
testing. For the third puzzle, the binomial logistic regression model with the highest
percentage of correctly classified observations was ones that ascertained the effect
of experimental condition as well as the successful completion of the previous
puzzle during immediate testing.

In terms of immediate testing completion times, we observed how (parallel
to an increase in success rate) the immediate testing times for condition VEA
decreased with each puzzle. A statistically significant difference was not found
between this condition and condition PV[B (the condition with overall lowest
testing times). This result could indicate that the availability of static and animated
instructions in the virtual training environment contributed to effective training.

Anecdotal evidence from the training videos as well as participant feedback
during debrief interviews shows that virtually trained participants initially struggled
to assemble the pieces during the immediate testing phase. We believe this is due to
the lack of experience in handling and joining the physical blocks during training.
However, after the first and second tasks, participants refined their strategy during
the training stage to include physically plausible movements of the puzzles pieces.
This is, participants replicated the movement they would then perform with the
physical blocks in the virtual training environment and avoided allowing the pieces
to go through each other, as no physics restrictions were assigned to the virtual
blocks in the virtual training environment.

Subjective questionnaire ratings answered by participants during the first
session showed no statistically significant difference in rated difficulty, ease of use
and seriousness between groups as determined by one-way ANOVA for the first

puzzle. For the second puzzle, results indicated that participants in the P condition
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rated the training environment as significantly more difficult to use than participants
in the Vg and VgA conditions. When asked about task difficulty in the third puzzle,
participants in the P and PB conditions rated the difficulty of the task as significantly
more difficult than participants in the VEA condition. In terms of ease of use,
participants in the P condition rated the ease of use of the training environment
as significantly more difficult than participants in the VEA condition.

One of the limitations in our design was the high complexity of the puzzles.
Overall, retention testing resulted in lower performance than we had expected and
we believe this is due to the difficulty associated with remembering the process to
solve the three puzzles two weeks after the training. This was further validated
by verbal feedback from our participants during the second session. Our previous
piloting of the task had not shown this effect. Future studies should further evaluate
the suitability of the task for retention. This evaluation should aim to balance the
amount of training and complexity of the task to avoid floor and ceiling effects in

subsequent retention sessions.



Chapter 7

Conclusions

This chapter summarises the work presented in the thesis. We reiterate the main
results from each of the four studies presented. We discuss the limitations of our
designs as well as the implications for virtual training. We then synthesise and
discuss overall conclusions across all studies. Finally, we introduce directions for

future work in this area.

7.1 Conclusions on Distorting Real and Virtual

Space

In Chapter 3 and Chapter 4 we introduced two studies on human spatial memory.
Participants were asked to collect an object in a room, exit the room, re-enter the
room and then place the object back where they had found it. The room was
geometrically modified between learning and placement of the object. We then
compared participant object placement with different models derived from previous
spatial cognition experiments. Chapter 3 reports the physical, real-world version of
the study. Chapter 4 reports the virtual counterpart version of the study.

Overall, results highlight strong differences in participant behaviour, with
contrasting models describing different response object locations. No single model
can account for all participant behaviour accross systems (in both the real world and
VR versions).

These studies have not replicated findings from Hartley et al., who reported that

human spatial representations are likely determined by proximities to environment
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boundaries, similar to rodent place cell firing. This study was run in a desktop
VR system. Our results show that self-motion contributes significantly to spatial
representations in combination with geometric information. It is not clear if
distance information is favoured over angle information when remembering object
locations. These findings indicate that grid cells, which have a role in the brains
coordinate system for navigation, may also have a substantial role in human spatial
memory, although further work is needed to confirm this. Whilst this study cannot
refute findings from Hartley et al., results here certainly show that the findings are
not sufficient to reconcile a behaviourally based neural account of human spatial
memory.

Our results highlight the need to test more suitable models that merge memory
for geometry and self-motion, or combinations of the ones presented here. It also
emphasises the importance of spatial layout for training VEs as well as the user’s
starting location and facing direction, which have a strong effect on participant
behaviour. In addition, it further motivates the design of experimental setups that
will maximise the differences in locations predicted by the models and make it more
clear if participant behaviour is actually following a specific model. Future work
includes comparing our results with a desktop VR version of the study.

We believe that this study could inform the design of followup studies on
spatial cognition in immersive VR and assist experts in the design of training
simulations where users are required to remember object locations. Followup
experiments should further examine the effectiveness of spatial training in
immersive VR, specifically in situations in which the work environment, where
the acquired skills will be used, is unknown or difficult to replicate as a virtual
model. Under this circumstances, trainees would undergo the training simulation
in a virtual space that is different to the work environment. Design of training VEs

would strongly benefit from more accurate behavioural models.
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7.2 Conclusions on the Effect of Environmental
Features, Self-Avatar and Level of Immersion on

Object Location Memory in Virtual Environments

In Chapter 5 we ran a study on object location memory. The experimental task
involves several judgements, including distance estimation, and it is not clear
exactly what strategies participants use to learn object locations [5]. Previous
work has shown that distance estimation is impaired within immersive VR,
although including a self-avatar and increasing confidence in fidelity can reduce this
impairment [25, 102, 103, 104, 38, 26, 32, 34, 37, 105]. Our results suggest that
level of immersion is extremely important for accurate object location learning and
recall, and that higher environmental fidelity may reinforce learning transfer from
VEs to the real world. However, most importantly, they indicate that providing
users with a virtual body can interfere with successful completion of the task. This
motivates studies of more complex self-representations.

We believe that the main outcomes of this study could be generalised to other
spatial learning scenarios and assist experts in the design of training simulations
related to spatial memory, where trainees are required to remember component or
tool locations as part of the task. Overall, our results denote that HMD training
resembles real world training more than desktop learning, related to higher object
location memory accuracy. However, desktop training applications can be suitable
and offer acceptable results when precise location learning accuracy is not required.
Regarding self-avatars, our results suggest that a low fidelity avatar representation
can degrate object location memory. In our experimental task, this observation is
particularly important when the training transfer takes place from a low fidelity VE,

where only basic geometric cues are available, to the real world equivalent.
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7.3 Conclusions on A Comparison of Virtual and
Physical Training Transfer of Bimanual Assembly

Tasks

In Chapter 6 we ran a study that compares the effectiveness of virtual and traditional
paper- and video-based training transfer of a bimanual assembly task motivated by
previous research [59, 2]. In a between-subjects experimental design, participants
were trained to solve three six-piece burr puzzles in a virtual training environment
or a physical training environment. The conditions were designed to account
for situations in which the physical puzzle blocks are available or not during
training. The conditions were also devised to include static instructions (paper)
or combinations of static and animated instructions (video or 3D animations).

Following training, participants were asked to solve physical versions of the
puzzles. Participants then completed a retention session two weeks after the
training. During the course of the study participants answered mental rotations
tests and questionnaires measuring several aspects of the experience.

We hypothesised that the experimental conditions where the physical blocks
were available during training (PB and PVB) would result in better performance
than the other conditions as measured by success rates and puzzle completion
times. Overall, we expected that those conditions were video or 3D animations
were available (PViB and VEA) would result in lower assembly times during
immediate and retention testing. Out of those, we predicted that condition PV|B,
with animated instructions (video), would yield the highest performance. Although
there were conditions we expected to deliver worse or better performance, we had
no hypothesis on the full order so all the analysis presented in this manuscript is
two-tailed.

Our results highlight the effectiveness of the virtual training environment.
Success rates and completion times indicate that the performance of virtually trained
participants (in conditions Vg and VgA) increased with each puzzle, reaching the

level of the best performing physical condition (PV[B).
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Following a between-subjects experimental design, participants were trained
to assemble three versions of a 3D burr puzzle in one of six experimental conditions
(see Table 6.1 for definitions). All participants completed an immediate testing
phase and a retention test two weeks after the training, both with physical versions
of the puzzles. Participants were trained and tested in solving the puzzles in
increasing order of complexity in that they had to remember a higher number of
steps in the assembly process for each of the puzzles.

We analysed performance in terms of success rates as well as immediate testing
times and retention testing times. Our results show that the performance of virtually
trained participants was promising. Condition VEA yielded success rates and
immediate testing times similar to the best performing physical condition (PVB, in
which physical blocks and animated instructions were available during training) for
the last and most complex puzzle. We believe these results are of great importance
given that virtually trained participants did not have the chance to interact with the
physical blocks at any point during training. We also observed that participants
were more likely to successfully assemble a puzzle during immediate testing if
they had successfully assembled the previous one. Retention testing performance
was unexpectedly low due to the high complexity of the task. We believe that the
results of this study further validate the effectiveness of virtual training for bimanual

assembly tasks.
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7.4 Overall Conclusions

We discussed the requirement for more sophisticated models of spatial cognition
that merge memory for geometry and self-motion. A more granular analysis of
participant behaviour, supported by in-depth debrief interviews to understand their
strategies, could help refine the current models. This could include head direction
or eye-gaze data collection to analyse the cues that participants were using to place
the object in Chapter 3 and Chapter 4.

We observed the need to explore orientation cues other than lighting to aid
participants in reorienting to a previous facing direction as it is not clear whether
the amber lighting at the UCL PAMELA facility was sufficient for this purpose in
in Chapter 3 and Chapter 4. Results from this study also highlighted the importance
of room layout, starting position and facing direction, as these largely influenced
participant behaviour.

We learnt about the importance of featural, non-geometric cues (by design,
such as plugs and wall decorations, or accidental, such as wear and tear) for accurate
object location memory (in Chapter 3, Chapter 4 and Chapter 5). The degree of
environmental fidelity of a VE will be dependent on the training task and the level
of accuracy needed in performing the task after training.

We observed the superiority of HMD-based VEs over desktop-based VEs for
accurate object location learning as well as performance degradation with single-
point tracked avatars in Chapter 5.

We noted the success of transparent hand representation and ambidextrous
interaction for training transfer of a bimanual assembly task in Chapter 6.
Observations from this study also raised the question around haptics: whether
the adaptation period for virtually trained participants during which they adjust
their strategy to replicate only physically plausible movements can be shortened if
a haptic device is available. This study also raised the question of task complexity
and the difficulty in designing experimental tasks that avoid floor and ceiling effects

in subsequent retention testing.
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7.5 Directions for Future Work

The question on whether VR consumer technology can deliver effective training
for any type of task remains unanswered. Recent advances in the field have
provided evidence that virtual training is possible and promising. However, more
research is needed to ascertain the full effectiveness of this technology for training
by testing across a richer spectrum of tasks. We suggest including real world
training as a baseline condition in future research endeavours in this area, as well
as testing in the real world, to effectively measure the training transfer. We also
recommend the evaluation of other parameters that mediate the transfer from virtual
to real enviroments such as spatial sound, locomotion, avatar self-representation and
haptics in order to refine and optimise the design of VEs for training.

Equally, there is a need to further explore the validity of research studies
that use VEs as proxy environments to replicate real-world scenarios. Despite the
numerous benefits of using this technology, including the high level of experimental
control and the ease of data capture, it is unclear whether this technology induces
other nuances that can affect the way participants understand, behave in or solve
a task. We encourage further exploration of the long-term effects of VR system
usage with longitudinal trials that span longer periods of time to better understand
learning curves and familiarisation.

Moreover, the spatial memory models explored in this thesis failed to capture
the behaviour of our participants, not only within each of the experimental setups,
but across levels of immersion. We recommend augmenting the modalities of data
capture to include head direction or eye gaze in order to better understand which
cues determine spatial memory. We also suggest extending the work presented in
this thesis to explore other spatial layouts and boundary distortions in the process
of defining new models. This raises the need for further exploration in the fields of
behavioural neuroscience and experimental psychology as well as the requirement
for these disciplines to continue to collaborate with researchers in the field of

computer science, and, specifically, VEs.
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List of Acronyms

2D Two Dimensional

3D Three Dimensional

AD Absolute Distance
ANOVA Analysis of Variance
BP Boundary Proximity

CA Corner Angle

DC Distance Criteria

FDA Fixed Distance Allocentric
FDE Fixed Distance Egocentric
FOV Field of View

FOR Field of Regard

FRA Fixed Ratio Allocentric
FRE Fixed Ratio Egocentric
HMD Head-Mounted Display

HSSMI High Speed Sustainable Manufacturing Institute
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IQR Interquartile Ranges

P Paper (Experimental condition in Chapter 6)

PAMELA Pedestrian Accessibility Movement Environment Laboratory
PB Paper and Blocks (Experimental condition in Chapter 6)

PI Path Integration

PV1 Paper and Video (Experimental condition in Chapter 6)

PViB Paper, Video and Blocks (Experimental condition in Chapter 6)
PV Path Vector

PVR Path Vector Ratio

QC Quadrant Criteria

UCL University College London

UK United Kingdom

VE Virtual Environment

Vg Virtual Environment (Experimental condition in Chapter 6)

VEA Virtual Environment with Animations (Experimental condition in Chapter 6)

VR Virtual Reality
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Ethics Application for The Effect of
Environmental Features, Self-Avatar
and Level of Immersion on Object
Location Memory in Virtual

Environments

UCL Research Ethics Committee Application (Project ID: 6708/002) for the study
presented in Chapter 5. This application document contains the information sheet
as well as the informed consent form that participants had to sign to take part in the

study.
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IMPORTANT: ALL FIELDS MUST BE COMPLETED. THE FORM SHOULD BE COMPLETED IN PLAIN
ENGLISH UNDERSTANDABLE TO LAY COMMITTEE MEMBERS.

SEE NOTES IN STATUS BAR FOR ADVICE ON COMPLETING EACH FIELD. YOU SHOULD READ THE
ETHICS APPLICATION GUIDELINES AND HAVE THEM AVAILABLE AS YOU COMPLETE THIS FORM.

APPLICATION FORM

SECTION A APPLICATION DETAILS

Project Title: The effect of environmental features on spatial memory in immersive and non-immersive
virtual environments

Date of Submission: 17/04/2015 Proposed Start Date: 01/05/2015

UCL Ethics Project ID Number: 6708/002 Proposed End Date: 01/11/2015

If this is an application for classroom research as distinct from independent study courses, please provide
the following additional details:

| Course Title: Course Number:

Principal Researcher
Please note that a student — undergraduate, postgraduate or research postgraduate cannot be the Principal Researcher for Ethics

University College London

purposes.
Full Name: Anthony Steed Position Held: Professor
Address: Department of Computer Science, Email: A.Steed@cs.ucl.ac.uk

[Telephone:  +44 (020) 7679 4435

Fax: +44 (020) 7387 1397

| Declaration To be Signed by the Principal Researcher

| have met with and advised the student on the ethical aspects of this project design (applicable only if the
Principal Researcher is not also the Applicant).

| understand that it is a UCL requirement for both students & staff researchers to undergo Disclosure and
Barring Service (DBS) Checks when working in controlled or regulated activity with children, young people or
vulnerable adults. The required DBS Check Disclosure Number(s) is: N/A

| have obtained approval from the UCL Data Protection Officer stating that the research project is compliant
with the Data Protection Act 1998. My Data Protection Registration Number is: Z6364106/2015/04/22

| am satisfied that the research complies with current professional, departmental and university guidelines
including UCL'’s Risk Assessment Procedures and insurance arrangements.

| undertake to complete and submit the ‘Continuing Review Approval Form’ on an annual basis to the UCL
Research Ethics Committee.

| will ensure that changes in approved research protocols are reported promptly and are not initiated without
approval by the UCL Research Ethics Committee, except when necessary to eliminate apparent immediate
hazards to the participant.

| will ensure that all adverse or unforeseen problems arising from the research project are reported in a timely
fashion to the UCL Research Ethics Committee.

1 will undertake to provide notification when the study is complete and if it fails to start or is abandoned.

SIGNATURE: DATE: | 7/ S / 0\8
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Applicant(s) Details (ir Applicant is not the Principal Researcher e.g. student details):
Full Name: Maria Murcia Lopez

Position Held: PhD Student

| Address: Department of Computer Science, University | Email: maria.murcia.13@ucl.ac.uk

| College London Telephone: +44 (020) 3549 5686
Fax: N/A

Full Name:

Position Held:

Address: Email:
Telephone:
Fax:

m Sponsor/ Other Organisations Involved and Funding
a) Sponsor: P UCL [[] Other institution
if your project is sponsored by an institution other than UCL please provide details:

b) Other Organisations: If your study involves another organisation, please provide details. Evidence that the relevant authority
has given permission should be attached or confirmation provided that this will be available upon request.

c) F ing: What are the of funding for this study and will the study result in financial payment or payment in kind to the
department or College? /f study is funded solely by UCL this should be stated, the section should not be left biank.

Signature of Head of Department or Chair of the Departmental Ethics Committee
(This must not be the same signature as the Principal Researcher)

I have discussed this project with the principal researcher who is suitably qualified to carry out this
research and | approve it. The project is registered with the UCL Data Protection Officer, a formal

| signed risk assessment form has been completed, and appropriate insurance arrangements are in
place. Links to details of UCL's policies on data protection, risk assessment, and insurance arrangements can be found at:
htip://ethics.grad.ucl.ac. .php

UCL is required by law to ensure that researchers undergo a Disclosure and Barring Service (DBS)
1 Check if their research project puts them in a position of trust with children under 18 or vulnerable
|adults.

*HEAD OF DEPARTMENT TO DELETE BELOW AS APPLICABLE*
| 1am satisfied that checks: (1) have been satisfactorily completed
( 2) have been initiated

( 3) are not required

If checks are not required please clarify why below.

Chair’s Action Recommended:/tg Yes []No

A recommendation for Chair's action can be based only on the criteria of minimal risk as defined in the Terms of Reference of the
UCL Research Ethics Committee.

PRINT NAME:
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SECTION B DETAILS OF THE PROJECT

Please provide a brief summary of the project in simple prose outlining the intended value of the project, giving necessary
| scientific background (max 500 words).

'Desktop virtual environments (VEs) have been used extensively to investigate human spatial abilities.
' These systems have delivered advantages over traditional psychological pen and paper testing. The
availability of immersive VEs such as head-mounted displays (HMDs) opens up new possibilities for
investigating spatial learning and mental representations of space. Previous research has shown that
people rely on environmental cues when learning object locations in VEs.

In this study we aim to use VEs to further explore human spatial memory. The experimental task will
investigate object location memory when learning in systems with and without environmental features, such
plugs and wall decorations. With this experiment we aim to understand if and how the shape of a room can
be used to memorise object positions when there are no other cues. The experimental task will investigate
the effect of environmental features on object location memory when learning in systems with different
levels of immersion.

Briefly characterise in simple prose the research protocol, type of procedure and/or research methodology (e.g.
observational, survey r h, experimental). Give details of any samples or measurements to be taken (max 500 words).

In this experimental study, participants will be requested to learn the positions of objects in virtual reality
(VR) and place them in reality. They will explore a VE in one of five conditions: real, HMD (no body), HMD
(with body), desktop (no body), and desktop (with body).

Participants will be assigned a code that is used in the data collection. A separate record will be made
matching participant codes to names, so that participants can remove their data from the study. This
personally identifying information (PIl) will be kept in a written form. The Pl will be kept for three months (so
as to allow the subjects to withdraw their data), and then securely destroyed by shredding this sheet. Only
the named researchers will have access to the PIl and it will be locked in the desk of Prof. Anthony Steed.

Since we want to divide participants into the different conditions according to their spatial ability, some
online tests and questionnaires will be completed at least a week before the experimental task takes place.
For this, participants will be able to read the information sheet and give informed consent online. They will
then complete a spatial ability test (“Purdue Visualization of Rotations Test", by Guay, R., year 1976) and a
short background questionnaire (attached) about their age, computer experience and video game
experience.

On the day of the experiment, participants will be asked to read a paper information sheet and sign a paper
consent form. They will then complete a standard simulator sickness questionnaire ("Simulator Sickness
Questionnaire (SSQ)" by Kennedy et al. 1993).

| Those in the two HMD conditions will be introduced to the virtual reality equipment and allowed to walk
around the virtual space where the experiment will take place. Those in the desktop conditions will be
allowed to familiarise with mouse and keyboard navigation.

Participants will complete two subtasks, each with a learning and a recall stage. During the learning stage
participants will navigate the VE though the interface corresponding to the condition group and observe
three virtual objects. During the recall stage participants will be asked to place physical versions of the three
objects in the real environment. Each learning stage corresponds to a different VE (with and without
environmental features). At the end of each subtask participants will answer a short questionnaire related to
| aspects of the experience (attached).

We will track participant navigation and object placement with an OptiTrack Motion Capture system and 12
Flex 3 cameras.

The participants will then fill in a SSQ.

Participants will then be interviewed. After the interview has been completed, participants will be informed
about scale manipulation.
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Those participants who did not experience the HMD will be given an opportunity to try the equipment before
leaving.

The participant will be paid £10 for participation.

Attach any questionnaires, psychological tests, etc. (a standardised questionnaire does not need to be attached, but please provide
the name and details of the questionnaire together with a published reference to its prior usage).

Where will the study take place (please provide name of institution/department)?

If the study is to be carried out overseas, what steps have been taken to secure research and ethical permission in the study
country?

Is the research compliant with Data Protection legislation in the country concemed or is it compliant with the UK Data Protection Act
19987

Test Filming Facility

5th Floor

One Euston Square

“UCL, London Media Technology Campus (UCL/BBC)
40 Melton Street

London NW1 2FD

United Kingdom

‘ Have collaborating departments whose resources will be needed been informed and agreed to participate?
Attach any relevant correspondence.

No resources from other departments or institutions are needed to run the experiment at UCL.

How will the results be di i d, includi ication of results with research participants?

The results will be distributed through publication in scientific journals.

Participants will have the opportunity to request a copy of such papers on publication, or on acceptance for
publication (depending on the policies of the journal concerned).

56 |

‘ Please outline any ethical issues that might arise from the proposed study and how they are be addressed. Please note that
all research projects have some ethical considerations so do not leave this section blank.

The purpose of the study is to determine whether performance after learning object locations in virtual
reality conditions with different levels of immersion is worse than in the real world. We expect the lack of a
virtual body may lead to a reduction in performance. The lack of a virtual body may make participants feel
uncomfortable. After the study, we will make sure that participants understand that the experiment helps us
understand learning in virtual reality systems and is not a test of their own performance.

I

SECTION C AILS OF PARTICIPANTS

Participants to be studied

{7613. Number of volunteers: J 30 ‘
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Upper age limit: | N/A

Lower age limit: | 18

C1b. Please justify the age range and sample size:

Adult participants are required to reduce subject bias. There are two VEs and 2 orders in which the
subtasks can be ordered. We want to test all orders an equal number of times (3 times in each condition).
We therefore need 30 participants.

If you are using data or information held by a third party, please explain how you will obtain this. You should confirm that
the information has been obtained in accordance with the UK Data Protection Act 1998.

N/A

Will the research include children or vulnerable adults such as individuals with
a learning disability or cognitive impairment or individuals in a dependent or unequal relationship? |:| Yes & No

How will you ensure that participants in these groups are competent to give consent to take part in this study? If you have relevant
| correspondence, please attach it.

Will payment or any other incentive, such as gift service or free services, be made to any research participant?
|Z Yes [:l No

If yes, please specify the level of payment to be made and/or the source of the funds/gift/free service to be used.

Participants will be paid £10.

Please justify the payment/other incentive you intend to offer.

The payment is to cover travel expenses.

1
Recruitment

(i) Describe how potential participants will be identified:
Any person of 18 years of age or older.
(i) Describe how potential participants will be approached:

Advertisements will be placed around the UCL campus and email circulars will be sent out, as we expect
some potential recruits to be students or staff at UCL.

(iii) Describe how participants will be recruited:

As above

| Attach recruitment emails/adverts/webpages. A data protection disclaimer should be included in the text of such literature.
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Will the participants participate on a fully y basis? X ves [Ino
Will UCL students be involved as participants in the research project? & Yes |:| No

If yes, care must be taken to ensure that they are recruited in such a way that they do not feel any obligation
to a teacher or member of staff to participate.

Please state how you will bring to the attention of the participants their right to withdraw from the study without penalty?

This is stated to them verbally and also written on the consent form and information sheet.

CONSENT

Please describe the process you will use when and

Participants will be asked to read an information sheet and sign a consent form online before completing
online questionnaires prior to the appointment.

During the day of the experiment, participants will be given a copy of the experimental information sheet
and the consent sheet and asked to read them carefully. They will then be asked if they have understood
the information and if they have any questions.

The participants will then be reminded that they can leave the experiment at any time without giving a
reason, and that they will still receive £10 for travel expenses if they do so. If they agree they will then be
asked to sign the consent form before the experimental task begins.

A copy of the participant information sheet and consent form must be attached to this application. For your convenience proformas
are provided in C10 below. These should be filled in and modified as necessary.

In cases where it is not proposed to obtain the participants informed consent, please explain why below.

Will any form of deception be used that raises ethical issues? If so, please explain.

No deception is used that raises ethical issues.

Will you provide a full debriefing at the end of the data collection phase? |Z Yes |_—_| No

If ‘No’, please explain why below.

Information Sheets And Consent Forms

A poorly written Information Sheet(s) and Consent Form(s) that lack clarity and simplicity frequently delay ethics approval
of research projects. The wording and content of the Information Sheet and Consent Form must be appropriate to the age and
educational level of the research participants and clearly state in simple non-technical language what the participant is agreeing to.
Use the active voice e.g. “we will book” rather than “bookings will be made”. Refer to participants as “you” and yourself as “I” or “we”.
An appropriate translation of the Forms should be provided where the first language of the participants is not English. If you have
different participant groups you should provide Information Sheets and Consent Forms as appropriate (e.g. one for children and one
for parents/guardians) using the templates below. Where children are of a reading age, a written Information Sheet should be

6
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provided. When participants cannot read or the use of forms would be inappropriate, a description of the verbal information to be

provided should be given. Please ensure that you trial the forms on an age-appropriate person before you submit your application.

Title of Project: The effect of environmental features on spatial memory in immersive and non-immersive
virtual environments

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 6708002
Investigator Names Anthony Steed, Maria Murcia Lépez

Work Address Department of Computer Science, University College London
Gower Street, London, WC1E 6BT

Contact Details A.Steed@ucl.ac.uk, M.Murcialopez@cs.ucl.ac.uk

INFORMATION SHEET FOR PARTICIPANTS

We would like to invite you to participate in this research project.
Details of Study

The purpose of this study is to investigate spatial memory in virtual reality. You will be asked to learn and recall
the positions of a series of objects in a room. You will also answer an online test, three questionnaires and a
short interview. You will be asked to perform the learning task with one of the following:

e adesktop computer system

e ahead-mounted virtual reality display

e no display/visualisation tool

The whole study is divided into two parts. Part 1 must be completed online and will last approximately 20
minutes. Part 2 will be completed at the lab and will take approximately 40 minutes.

If you have any questions about the study now please ask the experimenter. Please note that specific aspects
regarding this study cannot be discussed with you until the end of the session. If you have any questions at a
later date, please email Anthony steed or Maria Murcia at the addresses above.

IMPORTANT

When people use virtual reality systems, some people sometimes experience some degree of nausea.
If at any time you wish to stop taking part in the study due to this or any other reason, please just say
so and we will stop.

There has been some research, which suggests that people using head-mounted displays might
experience some disturbances in vision afterwards. No long term studies are known to us, but the
studies which have been carried out do testing after 20 minutes, and find the effect is still sometimes
there. There have been various reported side effects of using virtual reality equipment, such as
“flashbacks” (illusory experiences of motion). With any type of video equipment there is a possibility
that an epileptic episode may be generated. This, for example, has been reported for computer video
games or television viewing.

Please note that you will not be able to participate in this study if you have previously suffered an
epileptic episode or if you have consumed alcohol within the last 6 hours.
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Procedure

Before your appointment:

You will be asked to read an online Instruction Sheet, which introduces the first part of the
experimental task.

You will be asked to read and sign an online Informed Consent Form. If you sign it the study will
continue with your participation. Note that you can withdraw at any time without giving any
reasons.

You will be asked to complete a short questionnaire related to background information and your
prior experience using videogames.

You will be asked to complete a spatial ability test.

During your appointment:

You will be asked to read an Instruction Sheet, which introduces the second part of the
experimental task.

You will then be asked to read, understand and sign an Informed Consent Form. If you sign it the
study will continue with your participation. Note that you can withdraw at any time without giving
any reasons.

You will be asked to switch off mobile phones during the experiment.

You will be then introduced into the lab to perform the experiment.

Throughout the experiment you will be asked to wear several props for positional tracking
purposes. The experimenter will help you placing them. We please ask you not to touch them to
ensure that all data is correctly acquired.

At three points during the experiment you will be asked to complete a short online questionnaire
about aspects of the experience.

Finally, there will be a short discussion with the experimenter about the overall experience.

You will be paid £10 for your participation.

Please do not discuss this study with others for about three months, since the study is ongoing.
Thank you for your participation.

A decision to withdraw at any time, or decision not to take part in, will not affect the standard of
care you receive.

You may withdraw your data from the project at any time up until it is transcribed for use in the
final report on the (date)

Information that we collect will never be reported in a way that specific individuals can be
identified. It will be reported in a statistical and aggregated manner, and any verbal comments that
you make, if written about in subsequent papers, will be presented anonymously.

We will record your name and assign you a participant ID number that will be used in the data
collection. A record matching your name and participant number will be made on a piece of paper
separate from all other data collection means. The reason for keeping this record is so that we can
remove your data from the project as stated above.

This record will be destroyed by shredding the relevant paper on or shortly after so that
only anonymous data records are retained. We are asking your permission to retain these
anonymous data for writing reports and future research projects.

Please discuss the information above with us if there is anything that is not clear or if you would like more
information.
All data will be collected and stored in accordance with the Data Protection Act 1998.
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Title of Project: The effect of environmental features on spatial memory in immersive and non-immersive
virtual environments

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 6708002

INFORMED CONSENT FORM

Please complete this form after you have read the Information Sheet and/or listened to an explanation about
the research.

Thank you for your interest in taking part in this study. Before you agree to take part, the person organising the
study must explain the project to you.

If you have any questions arising from the Information Sheet or explanation already given to you, please ask
the researcher before you decide whether to join in. You will be given a copy of this Informed Consent Form to
keep and refer to at any time.

Participant’s Statement

|

have read the notes written above and the Information Sheet, and understand what the study
involves.

understand that if | decide at any time that | no longer wish to take part in this project, | can notify
the researches involved and withdraw immediately.

consent to the processing of my personal information for the purposes of this research study.
understand that such information will be treated as strictly confidential and handled in accordance
with the provisions of the Data Protection Act 1998.

agree that the research project named above has been explained to my satisfaction and | agree to
take part in this study.

understand that the information | have submitted will be published as a report and | may request a
copy. Confidentiality and anonymity will be maintained and it will not be possible to identify me
from any publications.

agree that my non-personal research data may be used by others for future research. | am assured
that the confidentiality of my personal data will be upheld through the removal of identities.

certify that | do not have epilepsy.

certify that | have not consumed alcohol within the last 6 hours.

Signature: Date:

Name in block letters:
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SECTION ETAILS OF RISKS AND BENEFITS TO THE RESEARCHER AND THE RESEARCHED

Have UCL’s Risk Assessment Procedures been followed? x Yes D No

If No, please explain.

Does UCL'’s insurer need to be notified about your project before insurance cover can be provided? D Yes & No

The insurance for all UCL studies is provided by a commercial insurer. For the majority of studies the cover is automatic. However,
for a minority of studies, in certain categories, the insurer requires prior notification of the project before cover can be provided.

If Yes, please provide confirmation that the appropriate insurance cover has been agreed. Please attach your UCL insurance
registration form and any related correspondence.

‘ Please state briefly any precautions being taken to protect the health and safety of researchers and others associated with
the project (as distinct from the research participants).

There are no such factors in this study.

Will these participants participate in any activities that may be potentially stressful or harmful in connection with this
research? D Yes & No

If Yes, please describe the nature of the risk or stress and how you will minimise and monitor it.

Will group or indivi intervi

q i ires raise any topics or issues that might be sensitive, embarrassing or
upsetting for participants?

If Yes, please explain how you will deal with this.
No
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m Please describe any expected benefits to the participant.
The participant will experience the use of novel technologies.

Specify whether the ing pr arei

-3

Any invasive procedure(s) D Yes E No

Physical contact |:| Yes E No

Any procedure(s) that may cause mental distress D Yes & No

Please state briefly any precautions being taken to protect the health and safety of the research participants.

Does the research involve the use of drugs? |:| Yes [Z No

If Yes, please name the drug/product and its intended use in the research and then complete Appendix |

Does the project i Ive the use of ically modified materials? D Yes |Z No
If Yes, has approval from the Genetic Modification Safety Committee been obtained for work? |:| Yes D No

If Yes, please quote the Genetic Modification Reference Number:

Will any non-ionising radiation be used on the research participant(s)? D Yes & No

If Yes, please complete Appendix II.

| Are you using a medical device in the UK that is CE-marked and is being used within its product indication? DYes |Z No
|

| 1f Yes, please complete Appendix IIl.
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CHECKLIST

Please submit ether 12 copies (1 original + 11 double sided photocopies) of your P i form for full
committee review or 3 copies (1 original + 2 double sided copies) for chair’s action, together with the appropriate supporting
documentation from the list below to the UCL Research Ethics Committee Administrator. You should also submit your
application form electronically to the Administrator at: ethics@ucl.ac.uk

D to be Attached to Application Form (if ) Ticked if Tick if
attached not relevant
Section B: Details of the Project
e Questionnaire(s) / Psychological Tests X O
e Relevant correspondence relating to involvement of collaborating
department/s and agreed participation in the research. O X
Section C: Details of Participants
¢ Parental/guardian consent form for research involving participants under 18  [] X
e Participant/s information sheet X [
e Participant/s consent form/s X O
e Advertisement X O
Section D: Details of Risks and Benefits to the Researcher and the Researched
e Insurance registration form and related correspondence ] X
Appendix I: Research Involving the Use of Drugs
¢ Relevant correspondence relating to agreed arrangements for dispensing  [] X
with the pharmacy
e Written confirmation from the manufacturer that the drug/substance has O X
has been manufactured to GMP
e Proposed volunteer contract O X
e Full declaration of financial or direct interest O X
e Copies of certificates: CTA etc... O X
Appendix li: Use of Non-ionising Radiation
Appendix lll: Use Medical Devices
Please note that corresponde garding the ication will lly be sent to the Principal Researcher and copied to

other named individuals.




Appendix D

Ethics Application for A Comparison
of Virtual and Physical Training

Transfer of Bimanual Assembly

Tasks

UCL Research Ethics Committee Application (Project ID: 6708/004) for the study
presented in Chapter 6. This application document contains the information sheet
as well as the informed consent form that participants had to sign to take part in the

study.
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WU

IMPORTANT: ALL FIELDS MUST BE COMPLETED. THE FORM SHOULD BE COMPLETED IN PLAIN
ENGLISH UNDERSTANDABLE TO LAY COMMITTEE MEMBERS.

SEE NOTES IN STATUS BAR FOR ADVICE ON COMPLETING EACH FIELD. YOU SHOULD READ THE
ETHICS APPLICATION GUIDELINES AND HAVE THEM AVAILABLE AS YOU COMPLETE THIS FORM.

APPLICATION FORM

APPLICATION DETAILS

m Project Title: The effectiveness of virtual and physical training of assembly tasks

Date of Submission: 06/01/2017 Proposed Start Date; 01/02/2017
UCL Ethics Project ID Number: 6708/004 Proposed End Date: 01/06/2017
If this is an application for classroom research as distinct from ind study please pi

the following additional details:

Course Title: Course Number:

Principal Researcher
Please note that a student — undergraduate, postgraduate or research postgraduate cannot be the Principal Researcher for Ethics

pumoses.

Full Name: Anthony Steed Position Held: Professor

Address: Department of Computer Science, Email: A.Steed@cs.ucl.ac.uk

University College London Telephone: _ +44 (020) 7679 4435
Fax: +44 (020) 7387 1397

Declaration To be Signed by the Principal Researcher

= | have met with and advised the student on the ethical aspects of this project design (applicable only if the
Principal Researcher is not also the Applicant).

| understand that it is a UCL requirement for both students & staff researchers to undergo Disclosure and
Barring Service (DBS) Checks when working in controlled or regulated activity with children, young people or
vulnerable adults. The required DBS Check Disclosure Number(s) is: N/A

| have obtained approval from the UCL Data Protection Officer stating that the research project is compliant
with the Data Protection Act 1998. My Data Protection Registration Number is: Z6364106/2017/02/38

| am satisfied that the research complies with current professional, departmental and university guidelines
including UCL's Risk Assessment Procedures and insurance arrangements.

| undertake to complete and submit the ‘Continuing Review Approval Form' on an annual basis to the UCL
Research Ethics Committee.

t will ensure that changes in approved research protocols are reported promptly and are not initiated without
approval by the UCL Research Ethics Committee, except when necessary to eliminate apparent immediate
hazards to the participant.

| will ensure that all adverse or unforeseen problems arising from the research project are reported in a timely
fashion to the UCL Research Ethics Committee.

| will undertake to provide notification when the study is complete and if it fails to start or is abandoned.
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SIGNATURE: DATE: UJ 3 ( )1

Applicant(s) Details (if Applicant is not the Principat Researcher e.g. student details):

Full Name: Maria Murcia Lopez
Position Held: PhD Student

Address: Department of Computer Science, University | Email: maria.murcia.13@ucl.ac.uk
Coliege London Telephone: +44 (020) 3549 5686
) - Fax: NA -
Fult Name - )
Position Held:
Address: Email:
Telephone:

l Fax:

Sponsor/ Other Organisations Involved and Funding

a) Sponsor: X ucL [ other institution
If your project is sponsored by an institution other than UCL please provide details:

b) Other Organisations: If your study involves another organisation, please provide details. Evide that the rel t
has given permission should be hed or confirmation provided that this wilf be available upon request.

¢) Funding: What are the of funding for this study and will the study resu!t in financial payment or payment in kind to the
department or College? /f study is funded solely by UCL this should be stated, the section shouid not be left blank.

Signature of Head of Department or Chair of the Departmental Ethics Committee
{This must not be the same signature as the Principal Researcher)

| have discussed this project with the principal researcher who is suitably qualified to carry out this
research and | approve it. The project is registered with the UCL Data Protection Officer, a formal
signed risk assessment form has been completed, and appropriate insurance arrangements are in
place. Links to details of UCL's policies on data protection, risk t, and i can be found at
http.//ethics.grad.ucl.ac.uk/procedures.php

UCL is required by law to ensure that researchers undergo a Disclosure and Barring Service (DBS)
Check if their research project puts them in a position of trust with children under 18 or vulnerable
adults.

*HEAD OF DEPARTMENT TO DELETE BELOW AS APPLICABLE*

| am satisfied that checks: ( 1) have been satisfactorily completed
( 2) have been initiated
( 3) are not required

If checks are not required please clarify why below.

Chair’s Action Recommended: jZ/ Yes [INo

A recommendation for Chair’s action can be based only on the criteria of minimal risk as defined in the Terms of Reference of the
UCL Research Ethics Committee.
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PRINT NAWE:
SIGNATURE: pate:  /5/3/1)
SECTION B DETAILS OF THE PR CT

Please provide a brief summary of the project in gimple prose outlining the intended value of the project, giving necessary
scientific background (max 500 words).

The availability of immersive virtual reality systems such as head-mounted displays (HMDs) opens up new
possibilities for training. Previous research has shown that, while physical training outperformed virtual
training, after two weeks virtually trained participants improved their test assembly times in a 3D puzzle
assembly training task.

In this study we aim to further explore the effectiveness of immersive virtual environments (VEs) for training
of assembly tasks with a similar training task based on 3D puzzle assembly. The experimental task will
investigate the effect of various modes of virtual and physical training on the ability of participants to
complete a physical 3D puzzle and to retain that knowledge after a period of two weeks.

Briefly characlerise in simple prose the h p |, type of p dure and/or h methodology (e.q. observational, survey
research, experimental). Give details of any samples or measurements to be taken (max 500 words).

In this experimental study, participants will be requested to learn a procedural process to successfully
complete a 3D puzzle. We will look at the effect of training in different systems. Participants will be
instructed to complete the puzzle in one of six experimental conditions:

- Paper instructions only (real world)

- Paper instructions + blocks (real-world)

- Video + paper instructions (real-world)

- Video + paper instructions + blocks (real-world)

- Virtual paper instructions + virtual blocks (VE)

- Virtual paper instructions + virtual blocks + animation (VE)

All participants will then be tested in the real world with a physical 3D puzzle.

Those participants in the virtual experimental conditions will be using an Oculus Cansumer Version 1 (CV1)
head-mounted display (HMD) as well as Oculus Touch controllers. On the day of the experiment the
researcher will introduce the devices to the participants, who will have a chance to familiarise with the
equipment before completing the experimental task.

As we want to ensure that participants in this study are being trained on a novel procedural task, candidates
will be asked to complete a short questionnaire (see Screener Questionnaire document). The purpose of
this questionnaire is to filter out participants who enjoy solving 3D puzzles, woodworking or model building
in their free time as well as to try to balance the number of male and female participants in the study. It will
also be used to select participants that have never previously suffered an epileptic episode and participants
that do not have any type of colour blindness. Data collected through this questionnaire will be immediately
destroyed after the selection process has been completed attending to the previous criteria and will not be
used for any other purpase.

Once the final participants have been selected they will be assigned a code that is used in the data
collection. A separate record will be made matching participant codes to names, so that participants can
remove their data from the study. This personally identifying information (PIl) will be kept in a written form.
The PII will be kept for three months (so as to allow the subjects to withdraw their data), and then securely
destroyed by shredding this sheet. Only the named researchers will have access to the PIl and it will be
locked in the desk of Prof. Anthony Steed.

Since we want to divide participants into the different conditions according to their spatial ability, some
online tests and questionnaires will be completed at least a week before the experimental task takes place.
For this, participants will be able to read the information sheet and give informed consent online. They will
then complete a spatial ability test (“Purdue Visualization of Rotations Test", by Guay, R., year 1976) and a
short background questionnaire (attached) about their age, computer experience and video game
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experience.
The experimental task will consist of two sessions separated by a period of approximately two weeks.

On the first session, participants will be asked to read a paper information sheet and sign a paper consent
form. They will then complete a standard simulator sickness questionnaire ("Simulator Sickness
Questionnaire (SSQ)" by Kennedy et al. 1993) as well as a mental rotations test (“Vandenberg and Kuse
mental rotations test (MRT)" by Vandenberg and Kuse, 1978).

Those in the HMD conditions will be introduced to the virtual reality equipment and will remain seated
throughout the experimental task.

Each trial will consist of a training and a recall stage. During the training stage participants will receive the
instruction corresponding to their condition group with. During the testing stage participants will be asked to
solve a physical version of the 3D puzzle. Participants will compiete the trial three times, each
corresponding with a 3D puzzle with a different complexity level. After each trial participants will be asked to
answer a short questionnaire, which includes some questions taken from the Vandenberg and Kuse MRT
(attached).

The participants will then fill in a SSQ.

Participants will then be interviewed. After the interview has been completed, the first £5 of the participant
payment will be processed and participants will be given a chance to ask questions.

Those participants who did not experience the HMD will be given an opportunity to try the equipment before
leaving.

Approximately two weeks after the first session, participants will complete the second session of the
experimental task, looking at training retention. Participants will be given the information sheet. Participants
will be reminded that they can stop the session at any point and without giving any reason and they will be
given the chance to ask questions to the experimenter. Participants will then be asked to complete the
physical assembly of the three 3D puzzles that they learnt to complete in the first session. Participants will
then be interviewed about the strategies used to remember the assembly process. Finally, participants will
be paid the remaining £10.

Attach any questionnaires, psychological tests, elc. (a standardised questionnaire does not need to be attached, but please provide
the name and details of the q i i her with a published to its prior usags).

Where will the study take place (please provide name of institution/department)?

If the study is to be carried out overseas, what steps have been taken to secure research and ethical permission in the study
country?

Is the pliant with Data P ion | ion in the country concerned or is it compliant with the UK Data Protection Act
19987

HMD Lab

Room 5.02, Roberts Building
1-19, Torrington P, Bloomsbury, London WC1E 6BT

Have collaborating departments whose resources will be needed been informed and agreed to participate?
Attach any relevant correspondence.

No resources from other departments or institutions are needed to run the experiment at UCL.

How will the results be d di of results with research participants?
The results will be distributed through publication in scientific journals.

Participants will have the opportunity to request a copy of such papers on publication, or on acceptance for
publication (depending on the policies of the journal concerned).
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Please outline any ethical issues that might arise from the proposed study and how they are be addressed. Please nole that
all research projects have some ethical considerations so do not leave this section blank.

The purpose of the study is to determine whether performance after learning the steps to complete a 3D
puzzle in immersive virtual reality conditions is worse than learning in the real world. We expect virtual
training may lead to a reduction in performance. The lack of a virtual body may make participants feel
uncomfortable. After the study, we will make sure that participants understand that the experiment helps us
understand learning in virtual reality systems and is not a test of their own performance.

SECTION C DETAILS OF PARTICIPANTS

Participants to be studied

C1a. Number of volunteers: | 72

Upper age limit; | N/A

Lower age limit: | 18

C1b. Please justify the age range and sample size:
Adult participants are required to reduce subject bias. There are six experimental conditions and we would
like twelve participants in each of the experimental conditions (between-subjects experimental design).

If you are using data or information held by a third party, please explain how you will obtain this. You should confirm that
the information has been obtained in accordance with the UK Data Protection Act 1898.

N/A
Will the research include children or vull ble adults such as individuals with
a learning disability or cognltive imp or inad dent or qual p D Yes E No

How will you ensure that participants in these groups are competent to give consent to take part in this study? /f you have relevant
correspondence, please attach it.

Will payment or any other incentive, such as gift service or free services, be made to any research participant?
@ Yes D No

If yes, please specify the level of payment to be made and/or the source of the funds/gift/free service to be used.

Participants will be paid £15. Participants will be paid the first £5 on the first session and the remaining £10
in the second session (see B2). This is to encourage participants to attend the second session
corresponding with the retention testing phase of the study.

Please justify the payment/other incentive you intend to offer,

The payment is to cover travel expenses.
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Recruitment

(i) Describe how potential participants will be identified:
Any person of 18 years of age or older.
(ii) Describe how i i will be app
Advertisements will be placed around the UCL campus and email circulars will be sent out, as we expect
some potential recruits to be students or staff at UCL.

(iii) Describe how participants will be ited

As above

Attach recruitment ils/adverts/ A dala protection disclaimer should be included in the text of such literature.
Will the participants participate on a fully voluntary basis? X ves [Ino

willucL be as p: p in the h project? Yes D No

If yes, care must be taken to ensure that they are recruited in such a way that they do not feel any obligation
to a teacher or member of staff to participate.

Please state how you will bring to the attention of the participants their right to withdraw from the study without penalty?

This is stated to them verbally and also written on the consent form and information sheet.

CONSENT

Please describe the process you will use when

and

Participants will be asked to read an information sheet and sign a consent form online before completing
online questionnaires prior to the appointment.

During the day of the experiment, participants will be given a copy of the experimental information sheet
and the consent sheet and asked to read them carefully. They will then be asked if they have understood
the information and if they have any questions.

The participants will then be reminded that they can leave the experiment at any time without giving a
reason in both sessions, and that they will still receive the payment corresponding to the sessions that they
attend (£5 for session 1 and £10 for session 2, each paid in the respective sessions). If they agree they will
then be asked to sign the consent form before the experimental task begins.

A copy of the participant it ion sheet and form must be to this application. For your i p
are provided in C10 below. These should be filled in and modified as necassary.

In cases where it is not proposed to obtain the participants informed consent, please explain why below.

Will any form of deception be used that raises ethical issues? If so, please explain.

No
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Will you provide a full debriefing at the end of the data collection phase? E Yes D No

If ‘No', please explain why below.

(o3[}l | Information Sheets And Consent Forms

A poorly written Information Sheet(s) and Consent Form(s) that lack clarity and simplicity frequently delay ethics approval
of research projects. The wordlng and content of the Information Sheet and Consent Form must be appropriate to the age and
i level of the P p and clearly state in simple hnical what the is agl g to.

An appropriate translation of the Forms should be provided where the first language of the participants is not English. If you have

forp using the templ below. Where children are of a reading age, a written Information Sheet should be
provuded. When participants cannot read or the use of forms would be inappropriate, a description of the verbal information to be
provided should be given. Please ensure that you trial the forms on an age-appropriate person before you submit your application.

Use the active voice e.g. “we will book™ rather than “bookings will be made”. Refer to participants as you and yourself as “I” or “we".

different pamcrpanl groups you should provide Information Sheets and Consent Forms as appropriate (e.g. one for children and one

INFORMATION SHEET FOR PARTICIPANTS

We would like to invite you to participate in this research project.
Details of Study

The purpose of this study is to investigate assembly task training in virtual reality. You will be asked to learn
and recall the steps to complete a task. You will also answer a series of questionnaires and a short interview.
The experimental task will consist of two sessions. The first session will last approximately 60 minutes and the
second session will last approximately 30 minutes. You will be asked to perform the task with one of the
following:

¢ ahead-mounted virtual reality display

* no display/visualisation tool

If you have any questions about the study now please ask the experimenter. Please note that specific aspects
regarding this study cannot be discussed with you until the end of the session. If you have any questions at a
later date, please email Maria Murcia or Anthony Steed at the addresses above.

IMPORTANT

When people use virtual reality systems, some people sometimes experience some degree of nausea.
If at any time you wish to stop taking part in the study due to this or any other reason, please just say
so and we will stop.

There has been some research, which suggests that people using head-mounted displays might
experience some disturbances in vision afterwards. No long term studies are known to us, but the
studies which have been carried out do testing after 20 minutes, and find the effect is still sometimes
there. There have been various reported side effects of using virtual reality equipment, such as
“flashbacks” (illusory experiences of motion). With any type of video equipment there is a possibility
that an epileptic episode may be generated. This, for example, has been reported for computer video
games or television viewing.

Please note that you will not be able to participate in this study if you have previously suffered an
epileptic episode, if you have any type of colour blindness or if you have consumed alcohol within the
last 6 hours.
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TURN PAGE

Procedure

During Session 1

You will be asked to read an Information Sheet, which introduces the first part of the
experimental task.

You will then be asked to read, understand and sign an Informed Consent Form. If you sign
it the study will continue with your participation. Note that you can withdraw at any time
without giving anv reasons.

You will be asked to switch off mobile phones during the experiment.

You will be then introduced into the lab to perform the experiment.

You will be asked to complete a short questionnaire related to background information and
your prior experience using videogames.

Throughout the experiment, you may be asked to wear a head-mounted display. The
experimenter will help you placing it on.

At several points during the experiment, you will be asked to complete a short online
questionnaire about aspects of the experience.

Finally, there will be a short discussion with the experimenter about the overall experience.
You will be paid £5 for your participation.

During Session 2

Note
*

You will be asked to read an Instruction Sheet, which introduces the second part of the
experimental task.

Note that you can withdraw at any time without giving any reasons.

You will be asked to switch off mobile phones during the experiment.

You will complete a task and a short interview.

You will be paid £10 for your participation.

Please do not discuss this study with others for about three months, since the study is
ongoing.

Thank you for your participation.

A decision to withdraw at any time, or decision not to take part in, will not affect the standard
of care you receive.

You may withdraw your data from the project at any time up until it is transcribed for use in
the final report on the (date)

Information that we collect will never be reported in a way that specific individuals can be
identified. It will be reported in a statistical and aggregated manner, and any verbal
comments that you make, if written about in subsequent papers, will be presented
anonymously.

We will record your name and assign you a participant ID number that will be used in the
data collection. A record matching your name and participant number will be made on a
piece of paper separate from all other data collection means. The reason for keeping this
record is so that we can remove your data from the project as stated above.

This record will be destroyed by shredding the relevant paper on or shortly after

so that only anonymous data records are retained. We are asking your permission to retaln
these anonymous data for writing reports and future research projects.

Please discuss the information above with us if there is anything that is not clear or if you would like more
information.
All data will be collected and stored in accordance with the Data Protection Act 1998.
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Title of Project: The effectiveness of virtual and physical training of assembly tasks

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 6408/004

INFORMED CONSENT FORM

Please complete this form after you have read the Information Sheet and/or listened to an explanation about
the research.

Thank you for your interest in taking part in this study. Before you agree to take part, the person organising the
study must explain the project to you.

If you have any questions arising from the Information Sheet or explanation already given to you, please ask
the researcher before you decide whether to join in. You will be given a copy of this Informed Consent Form to
keep and refer to at any time.

Participant’s Statement

have read the notes written above and the Information Sheet, and understand what the study
involves.

understand that if | decide at any time that | no longer wish to take part in this project, | can notify
the researches involved and withdraw immediately.

consent to the processing of my personal information for the purposes of this research study.
understand that such information will be treated as strictly confidential and handled in accordance
with the provisions of the Data Protection Act 1998.

agree that the research project named above has been explained to my satisfaction and | agree to
take part in this study.

understand that the information | have submitted will be published as a report and | may request a
copy. Confidentiality and anonymity will be maintained and it will not be possible to identify me
from any publications.

agree that my non-personal research data may be used by others for future research. | am assured
that the confidentiality of my personal data will be upheld through the removal of identities.

certify that | have never suffered from an epileptic episode.

certify that | do not have any type of colour blindness.

certify that | have not consumed alcohol within the last 6 hours.

Signature: Date:

Name in block letters:




141

| SECTION D DETAILS OF RISKS AND BENEFITS TO THE RESEARCHER AND THE RESEARCHED

Have UCL's Risk A P been foll d? & Yes D No

If No, please explain.

Does UCL's insurer need to be notified about your project before insurance cover can be provided? D Yes E No

The insurance for all UCL studies is provided by a commercial insurer. For the majority of studies the cover is automatic. However,
for a minonity of studies, in certain ies, the insurer requires prior notification of the project before cover can be provided.

If Yes, please provide confi ion that the appropriate i cover has been agreed. Please altach your UCL insurance
registration form and any related correspondence.

Please state briefly any precautions being taken to protect the health and safety of researchers and others associated with
the project (as distinct from the h partici )

There are no such factors in this study.

Will these participants participate in any activitles that may be p or in with this
research? D Yes No

If Yes, please describe the nature of the risk or stress and how you will minimise and monitor it.

Will group or | inter
upsetting for participants?

q raise any topics or issues that might be sensitive, embarrassing or

If Yes, please explain how you will deal with this.
No
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Please describe any expected benefits to the participant.
The participant will experience the use of nove! technologies.

Specify the 9 pr are
Any invasive procedure(s) |:| Yes E No

Physical contact Oves XNo
Any procedure(s) that may cause mental distress |:| Yes E No

Please state briefly any precautions being taken to protect the health and safety of the research participants.

Does the research involve the use of drugs? D Yes E No

If Yes, please name the drug/p and its use in the h and then p Appendix |

Does the project involve the use of genetically modified materials? L—_] Yes x No

If Yes, has approval from the Genetic Modification Safety Committee been obtained for work? I:] Yes D No

If Yes, please quote the Genetic Modification Reference Number:

Will any non-lonising radiation be used on the research particlpant(s)? D Yes No

If Yes, please complete Appendix II.

m Are you using a medical device in the UK that is CE-marked and is being used within its product indication? DYes & No

If Yes, please complete Appendix IIl.

1
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. CHECKLIST |

Please submit ether 12 copies (1 original + 11 double sided ph pies) of your ion form for full
committee review or 3 coples (1 original + 2 double sided copies) for chair's action, together with the appropriate supporting
documentation from the list below to the UCL Research Ethics Committee Administrator. You should also submit your

pp form to the A at: ethics@ucl.ac.uk
to be Attached to Application Form (if Ticked If Tick if
attached not relevant
Section B: Details of the Project
e Questionnaire(s) / Psychological Tests X O
» Relevant correspondence relating to involvement of collaborating
department/s and agreed participation in the research. X
Section C: Details of Participants
« Parental/guardian consent form for research involving participants under 18 [ X
o Participant/s information sheet X O
e Participant/s consent form/s X O
¢ Advertisement X O
Section D: Details of Risks and Benefits to the Researcher and the Researched
s Insurance registration form and related correspondence O X
Appendix I: Research Involving the Use of Drugs
» Relevant correspondence relating to agreed arrangements for dispensing O X
with the pharmacy
« Written confirmation from the manufacturer that the drug/substance has O X
has been manufactured to GMP
« Proposed volunteer contract O X
o Full declaration of financial or direct interest O X
s Copies of certificates: CTA etc... O X
Appendix Il: Use of Non-lonising Radiation
Appendix lil: Use Medical Devices
Please note that spond: reg g the application will be sent to the Principal Researcher and copied to

other named individuals.




Appendix E

Colophon

This document was set using BIgXand BibTgXwith the UCL Thesis document class,
composed with ShareLaTeX and the following tools:
Matlab. IBM SPSS. Autodesk. AutoCAD. Evernote.
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