The SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis.

Biochemical analysis of the SHOC2 complex.

Lucy C. Young1,2, Nicole Hartig1,3, Isabel Boned del Rio1, Sibel Sari1, Benjamin Ringham-Terry1, Joshua Wainwright1, Greg Jones1, Frank McCormick2, Pablo Rodriguez-Viciana1,4.

1University College London Cancer Institute, London WC1E 6DD, United Kingdom.
2current address: Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco CA 94158, USA.
3current address: Research Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
4Correspondence: p.rodriguez-viciana@ucl.ac.uk, +44 (0)207 7679 6931; Frank.mccormick@ucsf.edu, +1 415 502 1710.

RAS, MRAS, SHOC2, PP1, phosphatase, Noonan syndrome
ABSTRACT

De-phosphorylation of the inhibitory ‘S259’ site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this ‘S259’ RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF. MRAS also functions as targeting subunit as membrane localization is required for efficient RAF dephosphorylation and ERK pathway regulation in cells.

SHOC2 predicted structure shows remarkable similarities to the A subunit of PP2A suggesting a case of convergent structural evolution with the PP2A heterotrimer. We have identified multiple regions in SHOC2 involved in complex formation as well as residues in MRAS switch I and the interswitch region that help account for MRAS unique effector specificity for SHOC2-PP1.

MRAS, SHOC2 and PPP1CB are mutated in Noonan syndrome and we show that syndromic mutations invariably promote complex formation with each other, but not necessarily with other interactors. Thus Noonan syndrome in individuals with SHOC2, MRAS or PPP1CB mutations is likely driven at the biochemical level by enhanced ternary complex formation and highlight the crucial role of this phosphatase holoenzyme in RAF S259 de-phosphorylation, ERK pathway dynamics and normal human development.

SIGNIFICANCE STATEMENT

We demonstrate a mechanism whereby germline mutations in MRAS, SHOC2 and PPP1CB contribute directly to Noonan syndrome by enhancing formation of a ternary complex, which specifically dephosphorylates an inhibitory site on RAF kinases, activating downstream signaling. SHOC2 is required for tumourigenic properties of tumour-derived cell lines with RAS mutations and has more recently been identified by others in a synthetic lethal screen as a gene essential for viability of RAS mutant but not RAS wild type cells. A thorough analysis of this complex at the biochemical and structural level has demonstrated the remarkable ability of this complex to dictate specificity for RAF and suggests possible strategies to inhibit the complex as a way of targeting the RAS-ERK pathway.
INTRODUCTION

Upregulation of the RAS-RAF-MEK-ERK signaling pathway is one of the most common drivers of human cancer and is also responsible for a family of developmental disorders known as RASopathies (1, 2). Within this signaling cascade, regulation of RAF kinases in particular is an intricate process involving multiple phosphorylation/dephosphorylation events and interactions with regulatory proteins (3). RAF is maintained in an auto-inhibited ‘closed’ conformation in the cytosol by an intramolecular interaction between the N-terminal regulatory region and the C-terminal catalytic domain, which is at least in part mediated by a 14-3-3 dimer bound to two phosphorylated residues (S259 and S621 in CRAF) (3). Upon activation, RAS binding to RAF results in RAF translocation to the plasma membrane where other activating steps take place. Key among these is the dephosphorylation of the inhibitory ‘S259’ site (S259 in CRAF, S365 in BRAF and S214 in ARAF), which leads to 14-3-3 dissociation, destabilizes the closed conformation of RAF, allows the Cysteine-rich domain (CRD) to further anchor RAF to the membrane and facilitates RAF dimerization (3).

A key phosphatase that mediates this dephosphorylation step is a heterotrimeric complex comprised of MRAS, SHOC2 and PP1 (4). SHOC2 is a ubiquitously expressed protein comprised almost exclusively of leucine rich repeats (LRRs) that was originally identified in C.elegans as a positive modulator of the ERK pathway (5, 6). A gain-of-function mutation in SHOC2 (S2G), is responsible for a subtype of Noonan syndrome (NS), a RASopathy characterized by short stature, congenital heart abnormalities, dysmorphic features and intellectual disability (7). CRAF/RAF1 mutations are also frequently found in Noonan syndrome and cluster around the S259 14-3-3 binding site, enhancing CRAF activity through disruption of 14-3-3 binding (8) and highlighting the key role of this regulatory step in RAF-ERK pathway activation.

MRAS is a very close relative of the classical RAS oncoproteins (H-, N- and KRAS, hereafter referred to collectively as ‘RAS’) and shares most regulatory and effector interactions as well as transforming ability (9-11). However, MRAS also has specific functions of its own and uniquely among RAS family GTPases, it can function as a phosphatase regulatory subunit when in complex with SHOC2 and PP1 to provide a key coordinate input required for efficient ERK pathway activation and transformation by RAS (4, 12). The mechanisms underlying this unique MRAS specificity remain to be elucidated. Activating mutations in MRAS are very rare in cancer but have recently been identified in Noonan Syndrome (13). Mutations in PPP1CB have also been identified in Noonan syndrome although they remain to be functionally characterized (14-16).

In this study we have characterized biochemically the specificity of the SHOC2-MRAS-PP1 complex and identified key regions of SHOC2, MRAS and PP1 required for complex formation. In addition to MRAS regions in the switch I, II and inter-switch regions required for effector specificity, MRAS membrane localization is essential for complex activity towards RAF in vivo. Critically, we show that NS mutants of SHOC2, MRAS and PP1β selectively promote complex formation and ‘S259’ RAF dephosphorylation, underscoring the critical role of this complex in regulation of the RAS-ERK pathway.
RESULTS

The SHOC2-MRAS-PP1 complex functions as a specific ‘S259’ RAF phosphatase.

We have previously shown that when co-expressed in cells, active MRAS and SHOC2 form a complex with PP1 that efficiently dephosphorylates the ‘S259’ inhibitory site in RAF kinases (4, 12). To be able to further characterize the substrate specificity of the SHOC2-MRAS-PP1 complex in vitro we developed a tandem affinity purification (TAP) strategy where high purity stoichiometric SHOC2-MRAS-PP1 complex could be purified after overexpression in HEK293 T-Rex cells (SI Appendix Fig. 1 A to D). This SHOC2-MRAS-PP1 complex efficiently dephosphorylates S259 CRAF and S365 BRAF but not other sites such as S338 CRAF/S445 BRAF or the inhibitory CRAF S43 and S289/S296/S301 sites. (Fig. 1A). Thus the SHOC2-MRAS-PP1 complex has specificity for the ‘S259’ inhibitory site even among RAF phosphorylation sites. Because of the better yield obtained in the purification of full length BRAF compared to CRAF, BRAF protein was mostly used as a substrate in subsequent in vitro phosphatase experiments.

When comparing the SHOC2-MRAS-PP1 complex to other PP1 complexes that were purified using a similar TAP strategy, the SHOC2-MRAS-PP1 complex displays significantly increased ability to dephosphorylate S365 BRAF compared to other PP1 holocomplexes studied such as GADD45-PP1, SCRIB-PP1 (Fig. 1B), PNUTS-PP1 (Fig. 1C), SDS22-PP1 (Fig. 1D) or MYPT3-PP1 (SI Appendix Fig. S1G). Because of their dimeric nature, we used an N-terminal EE-tagged PP1α for the Tandem affinity purification strategy of other PP1 holocomplexes. To rule out the possibility that this tag may negatively affect the activity of the PP1 holocomplexes in their comparison to SHOC2-MRAS-PP1 complex containing untagged PP1, a batch of SHOC2-MRAS-PP1 complex was generated using EE-PP1 in a strategy similar to that used for the other holocomplexes (Fig. 1D). After careful titration of PP1 levels, no significant differences were observed in the phosphatase activity of SHOC2-MRAS-PP1 complexes containing untagged or EE-PP1, ruling out any interference by the tag on PP1 (Fig. 1D). Taken together, the above results show that MRAS and SHOC2 function as substrate-specifying regulatory subunits for PP1, making the resulting holoenzyme a preferential ‘S259’ RAF phosphatase (Fig. 1E).

S365 BRAF dephosphorylation by the SHOC2-MRAS-PP1 complex in vitro is potently inhibited by the phosphatase inhibitor calyculin A (SI Appendix Fig. 1 E and F) and at significantly higher concentrations by okadaic acid (SI Appendix Fig. 1H). In contrast, a phosphatase inhibitor cocktail containing the commonly used serine/threonine phosphatase inhibitors β-glycerophosphate and sodium pyrophosphate did not have any effect, nor did the tyrosine/alkaline phosphatase inhibitor sodium vanadate. Although PP1 is a metallophosphatase with 2 metal ions in its catalytic site, the metal chelator EDTA had no effect on SHOC2-MRAS-PP1 complex activity (SI Appendix Fig. 1G). This pattern of inhibitor sensitivity inversely correlates with that of lambda phosphatase, which is potently inhibited by EDTA and sodium vanadate but not calyculin A or okadaic acid. We note that the insensitivity to EDTA of PP1 purified from mammalian sources is consistent with the presence of metals other than Mn^{2+} at the active site (Fe^{2+} and Zn^{2+}), which can also contribute to substrate specificity (17, 18).

SHOC2 is predicted to structurally resemble the A subunit of PP2A and uses different regions to interact with MRAS/PP1 and SCRIB.

Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme that may serve as a framework for the SHOC2-MRAS-PP1 complex. The A subunit (PPP2R1A), which is comprised of HEAT repeats, forms a horseshoe shape (Fig. 2A) that serves as a scaffold where the C subunit (PPP2AC) docks with the active site facing away from the scaffold (19). Binding of 1 of 18 known regulatory B subunits are thought to contribute to substrate specificity (20). SHOC2 is mostly composed of LRRs and has no sequence homology with PPP2R1A. However, as for other LRR containing proteins (21), SHOC2 is predicted to form a horseshoe shape structure with striking similarity with PPP2R1A (Fig. 2 A and B).
To test if either SHOC2 or PPP2R1A subunits have the potential to interact with components from the other complex, GST-SHOC2 or –PPP2R1A were transfected into HEK293T cells. GST pulldowns show that in the presence of active MRAS, SHOC2 interacts with PP1 and MRAS but not PPP2AC, whereas PPP2R1A interacts with PP2AC but not PP1 or MRAS (Fig. 2C). Therefore, SHOC2 and PPP2R1A appear to have evolved independently as horseshoe shaped scaffolds to form distinct heterotrimeric phosphatase complexes.

Like most PP1 regulators (22), SHOC2 has regions of intrinsic disorder (Fig. 2B). In particular, the N-terminus of SHOC2 up to the first LRR, which contains a KEKE motif-rich region (23) is predicted to be unstructured (Fig. 2 B and D). To study a possible contribution to complex formation or activity, deletions of N- and C-terminal regions outside the LRR core were expressed in cells together with active MRAS. N-terminal deletion strongly disrupts complex formation with MRAS (consistent with (24)) and PP1 and is defective for ERK stimulation, but only has a modest effect on the interaction with SCRIB (Fig. 2 E and F). In contrast, deletion of the C-terminal residues of SHOC2 strongly disrupts the interaction with SCRIB, while only having a modest effect on the interaction with PP1 (Fig. 2 E and F).

Certain loss-of-function mutations identified in the C.elegans SHOC2 orthologue impair complex formation with PP1 and MRAS in the human SHOC2 protein (4). The D175N mutation, though defective for PP1 and MRAS binding, can still interact with SCRIB (Fig. 2 G and H). The E457K mutant is only partially impaired in complex formation with MRAS-PP1 but severely defective for interaction with SCRIB, consistent with SCRIB primarily interacting with the C-terminal region of SHOC2. Thus multiple distinct regions of SHOC2 likely make independent contacts with MRAS-PP1 and SCRIB (SI Appendix Fig. S2B).

SHOC2 mutations in Noonan syndrome enhances complex formation with MRAS and PP1

SHOC2 S2G mutations are responsible for a subtype of Noonan syndrome and behave as gain-of-function by creating a de novo myristoylation site that promotes SHOC2 association with the plasma membrane, and enhance ERK pathway activation in some contexts (7). An additional mutation in SHOC2, M173I, has been identified in an individual with a RASopathy phenotype although surprisingly it was described as a loss-of-function mutant (25). To further shed light on the role of the SHOC2 as a RAF phosphatase in the context on Noonan syndrome, FLAG-tagged versions of both SHOC2 M173I and S2G were expressed together with active MRAS. Both SHOC2 Noonan mutants have increased ability to interact with MRAS and PP1 compared to WT SHOC2 (Fig. 3A). M173I and S2G SHOC2 also efficiently dephosphorylate S365 BRAF/S259 CRAF in co-transfection assays although in the experimental conditions used overexpression of SHOC2 WT is very potent and stimulates near complete RAF dephosphorylation, and no further increase can therefore be detected with NS mutants (Fig. 3 B and C). Regardless, these data show that M173I (and S2G) promote complex formation of a functional RAF phosphatase complex. Furthermore, when re-expressed in SHOC2 knock-out DLD-1 cells, both S2G and M173I SHOC2 decrease the higher basal levels of S365 BRAF and S259 CRAF phosphorylation as well as the impaired EGF-induced ERK pathway activation caused by SHOC2 ablation (Fig. 3D). Serum starved DLD-1 cells re-expressing SHOC2 S2G and M173I have modestly lower P-S365-BRAF and P-S259 CRAF levels and modestly higher P-MEK and P-RSK levels compared to WT SHOC2-expressing cells (Fig. 3D) which is consistent with RASopathy gain-of-function mutations being only weakly activating, and ERK pathway activation by such mutants being difficult to detect in many experimental systems (see discussion) (7, 26). Inclusion of the D175N (loss-of-function) mutation in the S2G SHOC2 mutant prevented the rescue of the SHOC2 KO cells as measured by ERK activation levels in response to EGF stimulation (Fig. 3E). This suggests that the targeting of SHOC2-S2G to the membrane still requires interactions with MRAS and PP1 in order to exert its effects on the pathway. When SHOC2 interactions in DLD-1 rescue cells were analyzed in FLAG-SHOC2 IPs, the lower expression levels of SHOC2 S2G precluded detection of endogenous proteins. However, increased interaction with MRAS, but not with other SHOC2-interacting proteins such as SCRIB and NOS1AP (12), can be seen with SHOC2 M173I compared to WT (Fig. 3F). Taken together our results suggest
that both SHOC2 S2G and M173I RASopathy mutations function as a gain-of-function to upregulate the ERK pathway during development by selectively promoting phosphatase complex formation with MRAS and PP1.

We note that genetics in *C. elegans* (D175N, loss-of-function) and RASopathies (M173I, gain-of-function, this study) have identified proximal residues in SHOC2 that can both negatively and positively modulate complex formation with MRAS-PP1 (Fig. 3 G and H). Furthermore, sequence alignment of the LRRs of SHOC2 and SDS22, another LRR protein that interacts with PP1, aligns SHOC2-D175 residue with SDS22-D148 (*SI Appendix* Fig. S2A), a residue known to participate in interaction between SDS22 and PP1 (27). Taken together these observations strongly suggest this area of SHOC2 will make contacts with MRAS and/or PP1 critical for complex formation (*SI Appendix* Fig. S2B).

C-terminal residues of MRAS are not required for SHOC2-PP1 complex formation or phosphatase activity in vitro but are required for efficient BRAF-S365 dephosphorylation and ERK pathway activation in vivo.

Membrane targeting signals within their C-terminal hypervariable regions (HVR) localize RAS family GTPases to the plasma membrane. Excluding the CAAX motif, MRAS does not contain additional cysteines within its HVR that are targeted for palmitoylation in other RAS family members. Instead the HVR of MRAS contains multiple basic amino acids and thus resembles more closely the HVR of KRAS4B (Fig. 4A). Although the HVR is not required for RAS interaction with RAFs, plasma membrane localization is required for ERK pathway activation and transformation (28, 29). C-terminal mutants of MRAS (Fig. 4A) were used to examine whether the same was true for its effectors.

When co-expressed with SHOC2, substitutions of the C-terminal polybasic region (K5Q), deletion of the CAAX box (∆CAAX) or of the last 30 residues comprising the HVR (MRAS 1-178 or ∆HVR) does not impair formation of the SHOC2-MRAS-PP1 complex (Fig. 4 A and B). In fact, deletion of the CAAX box or the HVR and the resulting cytosolic localization (data not shown) significantly enhances complex formation with MRAS-PP1 as well as AF6. In clear contrast, interaction with BRAF is impaired in ∆CAAX and ∆HVR mutants (Fig. 4B). Thus membrane localization differentially contributes to MRAS interaction with different effectors.

Despite showing increased ternary complex formation with SHOC2-PP1, ∆CAAX and ∆HVR MRAS do not stimulate ERK phosphorylation (Fig. 4B) which correlates with their impaired ability to dephosphorylate BRAF S365 in co-transfection assays (Fig. 4C). To test the possibility that the MRAS HVR, although not required for SHOC2-MRAS-PP1 complex formation could be required for its functional activity, the phosphatase activity of recombinant SHOC2-MRAS-PP1 complexes containing either WT or ∆HVR MRAS was compared in *in vitro* assays. WT and ∆HVR MRAS containing SMP complexes had very similar ability to dephosphorylate full length BRAF *in vitro* (Fig. 4 D and E). Taken together, our data suggests that proximal localization at the membrane is required to bring the SHOC2-MRAS-PP1 complex into close proximity to its RAF substrate for efficient dephosphorylation and downstream pathway activation *in vivo*.

Residues in and around the MRAS SWITCH I and interswitch regions contribute to its effector specificity.

The 3 members of the RRAS subfamily (MRAS, RRAS and TC21) contain an identical core effector domain as RAS proteins (32-40 in RAS) and share interactions with most effectors (11) (Fig. 5A). However, the ability to promote complex formation with SHOC2 and PP1 is uniquely specific to MRAS among many RAS family GTPases tested (12). In order to identify residues accounting for this striking effector specificity, a mutational study of MRAS was undertaken. Substitutions in the core effector domain of RAS have been shown to selectively disrupt interaction with different effectors such as RAF, RALGDS and PI3K; e.g. (30). However, the equivalent mutations in the MRAS effector domain disrupt binding to SHOC2-PP1 and B/CRAF binding similarly and thus do not discriminate between these effectors (Fig. 5B).
To identify residues in MRAS mediating SHOC2-PP1 specificity, residues in or adjacent to the switch I region were altered to match those of either RAS or RRAS (Fig. 5 A to C). Substitution of residues within switch I directly preceding the core effector domain to those found in RRAS (RRAS-like S36/Y37/S40 “SY-S”) or mutation of residues between switch I and II domains (inter-switch region) to that of RAS (RAS-like “QVV-GETCL”) (Fig. 5A) strongly disrupt interaction with SHOC2-PP1, but have no effect on interaction with RAFs or AF6 (Fig. 5 C to E). The RAS-like L51R, immediately following switch I, increases binding to BRAF and CRAF while modestly impairing interaction with SHOC2-PP1. RAS-like LI-NH-DE (L33/I34/N36/H37/D40/E41) mildly impairs PP1 binding but increases interaction with AF6. In keeping with our model, reduction of SHOC2-PP1 binding to MRAS in the SY-S and QVV-GETCL mutants results in impaired ability of this MRAS mutants to stimulate BRAF dephosphorylation (Fig. 5D). Thus, multiple residues outside and within switch I are contributing to the specificity of MRAS effector binding (Fig. 5 C to E) with the inter-switch region playing an important role not seen in other RAS-subfamily members (see discussion).

MRAS mutations in Noonan syndrome have enhanced SHOC2-MRAS-PP1 complex activity

G23V and T68I point mutations in MRAS were identified in patients with Noonan syndrome (13) (Fig. 6 A and B). Given that SHOC2 NS mutations stimulate complex formation (Fig. 3E), we addressed if the same was true of MRAS mutations. Both MRAS mutants have increased SHOC2-PP1 binding compared to WT MRAS, which correlates with increased ability to activate the ERK pathway (Fig. 6C) and to dephosphorylate S365 BRAF in co-transfection assays (Fig. 6D).

MRAS G23V (equivalent to the oncogenic G13V in RAS), like MRAS Q71L (Q61L in RAS) also shows increased interaction with other effectors such as BRAF, CRAF and AF6 (Fig. 6C), consistent with activating mutations leading to GTP-loading of MRAS (13). On the other hand, the T68I mutation which is located in switch II, did not stimulate binding to BRAF or CRAF. This suggests that while MRAS-G23V can drive RAF activation through both direct binding and complex formation with SHOC2-PP1, the MRAS-T68I substitution discriminates between effectors selecting specifically for interaction with SHOC2 and PP1 and thus the RAF phosphatase function of MRAS.

The recurrent PP1β-P49R mutation identified in Noonan syndrome selectively enhances SHOC2-MRAS binding

PP1 is known to interact with an extensive range of PP1-regulatory proteins through one or more of a number of docking motifs (such as RVxF, SILK and MyPHONE) that bind to corresponding grooves on PP1 (31). Mutations in PPP1CB/PP1β have been described in patients with a RASopathy phenotype similar to Noonan Syndrome with loose anagen hair (NS-LAH) (14-16) and in individuals with features overlapping NS (32, 33) (Fig. 7A). None of these mutations fall within the recognized catalytic or substrate-recognition regions of the phosphatase, suggesting they are more likely involved in interactions with regulatory proteins. Several of them, including the more common P49R are located on the opposite side to the catalytic site around the SILK motif binding region. The equivalent residue in PP1γ has indeed been shown to interact with the SILK motif of the PP1-interacting protein Inhibitor-2 (34) (Fig. 7B). Since we have previously shown that a degenerate SILK motif in SHOC2 (SLVK) is involved in PP1 binding (12), we chose to examine the effect of this recurrent mutation on interaction with SHOC2 as well as other known PP1 interacting proteins with SILK motifs such as SCRIB and SIPP1, as well as without such as MYPT1, that instead interacts with the RVxF and MyPHONE binding grooves of PP1 (PP1β but not PP1α) (35, 36).

In cells co-transfected with active myc-MRAS, immunoprecipitates of FLAG-PP1β show that P49R mutation increases the interaction with MRAS and endogenous SHOC2 compared to wt. On the other hand, interaction with SIPP1 is impaired whereas binding to SCRIB or MYPT1 is unaffected (Fig. 7E). Similar results are observed with the equivalent P50R substitution on the highly conserved PP1α isoform (Fig. 7E). To further explore the contribution of the SILK as well as RVxF binding
grooves to the interaction with SHOC2, we generated substitutions in amino acids in PP1 regions known to interact with the SILK and RVxF motifs of other interacting proteins (34, 36) (Fig. 7B to D).

In the absence of co-expressed MRAS, endogenous SHOC2 can be readily detected in complex with PP1β P49R, whereas interaction with wt PP1β is at the limit of sensitivity for detection in our experimental conditions (Fig. 7F). However, co-expression of MRAS Q71L greatly stimulates SHOC2 binding to wt PP1β, and in this context substitutions in both SILK (E53A/L54A and E115A/F118A) and RVxF (D241A/L242A, C290R, L288R) binding pockets potently disrupts SHOC2 interaction with FLAG-PP1β (Fig. 7F). In contrast, interaction with MYPT1 (that contains an RVxF motif but lacks a SILK motif) is unaffected by MRAS expression and is disrupted by substitutions in the RVxF but not SILK-binding pockets (Fig. 7F).

Taken together these observation strongly suggest that both the RVxF and SILK binding grooves in PP1 provide points of contact for SHOC2 and show that the recurrent PP1β P49R RASopathy mutation, located within the SILK binding groove, is selectively gain-of-function for interaction with SHOC2-MRAS, but none of the other PP1 interactors tested (see discussion).

DISCUSSION

SHOC2, originally identified as a positive modulator of the RAS-ERK pathway in *C. elegans* (5, 6), functions together with MRAS-GTP and PP1 in a phosphatase complex that specifically dephosphorylates the conserved ‘S259’ inhibitory site in RAF kinases. Striking substrate specificity can be observed in vitro with recombinant SHOC2-MRAS-PP1 complex against S365 BRAF/S259 CRAF but not other RAF phosphorylation sites and when compared to PP1 complexes with other regulatory proteins (Fig. 1). The structure of the PP2A holoenzyme illustrates well how regulatory proteins could dictate phosphatase specificity by creating a different physiochemical landscape of the active site compared to the individual catalytic subunit, as well as different surface areas for substrate recruitment (20). The in vitro enzymatic data in this study is consistent with such a scenario and we speculate that MRAS-GTP and SHOC2 change the physiochemical landscape around the active site of PP1 to provide specificity for ‘S259’ RAF dephosphorylation.

We have previously shown that ‘S259’ dephosphorylation is more readily detected on the RAF that co-immunoprecipitates with RAS than on the total RAF population (4), consistent with the SHOC2-MRAS-PP1 complex preferentially dephosphorylating the pool of RAF recruited by RAS to the plasma membrane. Membrane localization of RAS is not required for its interaction with RAF, but is required for RAF and ERK pathway activation (28, 29). Similarly, membrane localization of MRAS is not required for complex formation with SHOC2 and PP1 but is required for RAF dephosphorylation and ERK pathway activation (Fig. 4). MRAS is regulated by the same GEFs and GAPs that regulate RAS activation (37) and it is therefore expected that upon activation by extracellular signals, MRAS-GTP will promote complex formation with SHOC2-PP1 at the same plasma membrane microdomains where RAS is concomitantly activated. Proximal positioning in 2D is predicted to increase binding constant by 5 orders of magnitude relative to free solution (38). Proximal positioning of the SHOC2-MRAS-PP1 complex at the membrane is thus expected to greatly promote dephosphorylation of the ‘S259’ inhibitory site on the RAS-bound RAF. MRAS thus also behaves as a substrate targeting subunit within the complex.

Although SHOC2 has no sequence homology with the A subunit of PP2A, as for other LRR proteins it is predicted to form a horseshoe shape structure with remarkable similarities to the PP2A A subunit. SHOC2 and PP2A A subunit may provide a case of convergent structural evolution, where different protein sequences have evolved to form a similarly shaped scaffold to form a phosphatase heterotrimeric holoenzyme by bringing together a catalytic subunit (PP1 or PP2AC) with an additional regulatory subunit (MRAS or B subunit respectively). In the case of PP2A, the conformation of the A subunit changes from a twisted hook shape in monomeric form to a tight horseshoe shape when in complex with B and C subunits (20). Equivalent conformational rearrangements are likely to apply to SHOC2. Many proteins, including some that regulate PP1, contain intrinsically disordered regions that become structured in the presence of a binding partner (22, 39). Degenerate RvXF and SILK motifs in SHOC2 lie at either side of a region of predicted disorder in LRR 11 (12). Further modelling of SHOC2
predicts a flexible hinge role for LRR 13 (23), further supporting a dynamic role for this region in complex formation. The N-terminus of SHOC2, which contains the nuclear export KEKE motifs (23), is also predicted to be disordered and is required for complex formation with PP1 and MRAS as well (Fig. 2). We speculate that upon initial binding to MRAS-GTP, these disordered regions in SHOC2 may become structured within the ternary complex allowing for multiple points of contact and a synergistic interaction with PP1 and MRAS (SI Appendix Fig. S3 B and C).

Genetics point to an additional region of SHOC2 involved in complex formation. D175N was identified as a loss-of-function mutation in the C. elegans SHOC2 orthologue (5, 6) and disrupts interaction with PP1 and MRAS but not SCRIB (Fig. 2). A substitution in an adjacent SHOC2 residue, M173I, was found in an individual with a RASopathy phenotype (25). Although reported as a loss-of-function, we find that M173I behaves as a gain-of-function mutant that has enhanced interaction with MRAS and PP1 and rescues ERK activation in SHOC2-deficient cells. The SHOC2 S2G mutation more frequently found in Noonan syndrome creates a de novo myristoylation site that promotes membrane association (7) and also increases interaction with MRAS and PP1 (Fig. 3) likely by proximal positioning to MRAS at the membrane increasing the binding constant.

The ability to interact with SHOC2 and PP1 appears to be uniquely specific to MRAS among over 30 RAS family GTPases tested (12). We show that at least some of this striking specificity comes from residues within the switch I region that are unique to MRAS (Fig. 5). We have also identified the region between switch I and II domains (interswitch region) as being required for MRAS interaction with SHOC2-PP1 but not other MRAS effectors. Although the interswitch region has not been previously implicated in effector binding in RAS GTPases, it is structurally sensitive to the GDP/GTP cycle and involved in effector interactions in ARF and RAB GTPases (40-42).

MRAS mutations in NS also shed light on effector specificity. In contrast to G23V which increases interactions with all MRAS effectors tested, T68I, which resides in the switch II region, selectively stimulates interaction with SHOC2 and PP1 but not other effectors such as RAF. Thus, although MRAS G23V can contribute to ERK pathway upregulation by both direct interaction with RAFs and SHOC2-PP1, T68I appears to drive NS by specific gain-of-function complex formation with SHOC2-PP1. Selection for specific effectors has already been encountered in a RASopathy setting: In Costello syndrome, HRAS-G60D (also in switch II) enhances interaction with RAF but not with PIK3CA, RALGDS or PLCE1 (26). T68I MRAS also appears to be a weaker activating mutation than G23V. This is consistent with previous observations on the equivalent T58I mutation in HRAS and KRAS in RASopathies. HRAS T58I in Costello syndrome displays a more attenuated phenotype than the more frequent G12 mutations (43). KRAS T58I is found in Noonan syndrome whereas other mutations such as P34R give rise to the more severe phenotype of Cardiofaciocutaneous syndrome (44).

With regards to regions of PP1 involved in complex formation with SHOC2-MRAS, several lines of evidence suggest the both RvXF and SILK binding pockets are likely to provide points of contact for SHOC2 binding. Several of the RASopathy PP1β mutations lie around or within this SILK binding region and the position equivalent to the recurrent PP1β P49R in PP1γ (P50), is part of a pocket that interacts with the leucine in the Inhibitor-2 SILK motif (GILK) (34). We now show that P49R PP1β increases affinity for SHOC2-MRAS. Future studies should determine if other PP1β RASopathy mutations also modulate interaction with SHOC2-MRAS and thus identify additional points of contact. Interestingly, PP1β P49R differentially modulates interaction with PP1 interactors, even among those binding to the SILK region: it increases interaction with SHOC2-MRAS, has no effect on SCRIB binding and decreases SIPP1 binding. A selective gain-of-function interaction is also seen with MRAS T68I, which increases affinity for SHOC2-PP1 but not other MRAS effectors, and with SHOC2 M173I that increases interaction with MRAS-PP1 but not other SHOC2-interacting proteins such as SCRIB. Therefore, in the context of RASopathies, mutations in SHOC2-PP1-MRAS complex members select for increased interaction with the other complex members but not necessarily other interactors and thus for the ‘S259’ RAF phosphatase function of the subunits (but not necessarily other functions).
Patients with PP1β P49R mutation have RASopathies that most closely resemble Noonan Syndrome with Loose Anagen Hair caused by SHOC2 S2G, which conversely promotes interaction with PP1-MRAS (14-16). This strongly suggests P49R PP1β upregulates the RAS-ERK pathway to drive a RASopathy primarily through increased activity of the SHOC2-MRAS-PP1 complex. However, a contribution from impaired SIPP1 binding to the pathogenic features of PP1β P49R cannot be ruled out, particularly in light of the pathogenesis of mutations of the SIPP1-interacting protein PQB1 (polyglutamine-binding-tract binding protein-1). PQB1 is mutated in syndromes with X-linked mental retardation (45) that, in addition to intellectual disability, also feature short stature and congenital heart defects, which overlap phenotypes observed in NS patients. SIPP1 has been suggested to target PP1 to dephosphorylate splicing factors (46) and impairment of SIPP1 binding to PP1β-P49R may therefore alter splicing and contribute to the pathogenic features of this syndromic mutant. Furthermore, in addition to disrupting SIPP1 binding, P49R could also modulate, positively or negatively, interaction with other PP1 interactors not tested in this study, particularly those containing SILK motifs.

It is widely accepted that strong activation of the RAS-ERK pathway is not tolerated during development and RASopathy gain-of-function mutations have to be mild enough as to not be embryonic lethal. Experimentally detecting increased RAS-ERK pathway activation by such weakly activating RASopathy mutations has thus often proven difficult e.g. (7, 26). Consistently, it is often difficult to reproducibly show increased ERK phosphorylation by SHOC2, PP1β and MRAS T68I NS mutants in the experimental systems used in this study. It has been proposed that rather than hyper-activating ERK activity, as in an oncogenic scenario, these mutations may contribute to elevated or sustained pathway activity in response to particular growth factors and/or cell types (7, 26). Regardless, ours as well as other studies (26) suggests that measuring protein interactions in cells provides a more sensitive assay to assess mild gain-of-function RASopathy mutations.

In summary, we show in this study that Noonan syndrome mutations in SHOC2, MRAS and PP1β selectively increase ternary complex formation of a phosphatase holoenzyme that specifically dephosphorylates ‘S259’ RAF, a site that functions as an inhibitory 14-3-3 binding site. Gain-of-function mutations in RAF1 are also frequently found in NS and cluster around the S259 site to disrupt 14-3-3 binding (8, 47). Thus the genetics of Noonan Syndrome underscore the key role of the SHOC2-MRAS-PP1 complex in S259 RAF dephosphorylation and RAF-ERK pathway dynamics.

We have previously proposed that the SHOC2-MRAS-PP1 complex has properties of an attractive therapeutic target for ERK pathway inhibition in RAS-driven tumours (4, 12). SHOC2 was recently identified as one of five genes necessary for proliferation of RAS mutant but not RAS-wild-type acute myeloid leukemia cell lines (48) and in a screen to overcome BRAF inhibitor resistance in BRF mutant cells (49, 50), further strengthening the case for the SHOC2 complex as a therapeutic target. Phosphatase inhibitors continue to lag well behind kinase inhibitors in drug discovery but there is increasing evidence that serine/threonine phosphatases represent underexplored targets of pharmacological inhibition. Pending resolution of its crystal structure, this study suggests possible strategies to inhibit the SHOC2-MRAS-PP1 complex. Allosteric inhibition is an emerging theme in phosphatases (51-54) and there is now proof-of-concept of specific inhibition of a PP1 holophosphatase by small molecules binding to its regulatory subunit (55). Inhibition of substrate binding, as is the case with the immunosuppressants FK506 and cyclosporin inhibition of PP2B/calcineurin (56) is also an attractive possibility. Targeting PP1 directly away from the catalytic pocket may also be a viable strategy. It has been proposed that targeting the small surface grooves in PP1 involved in interaction with particular PP1-interaction motifs (such as the SILK motif) would only inhibit selected PP1 holoenzyme subsets (31). The syndromic PP1β P49R provides proof-of-concept for such an approach as it shows that substitutions around the SILK binding groove can differentially modulate interaction even among the reduced number of SILK containing PP1-interactors. The 173-175 region of SHOC2 may also provide an attractive candidate region for small molecules to disrupt the SHOC2-MRAS-PP1 complex as substitutions in this region can both positively and negatively regulate complex formation (Fig. 3). The crystal structure of the SHOC2-MRAS-PP1 complex should greatly assist in driving a drug discovery effort to target this unique RAS-ERK pathway component.
Materials and Methods

Purification of recombinant proteins
SHOC2-MRAS-PP1α complex was purified from T-REx™-293 (ThermoFisher Scientific) ‘T-8’ cells using a tandem affinity strategy, as outlined in Fig. S1A. Other PP1 holoenzymes (GADD34/PP1α, MYPT3/PP1α, SDS22/PP1α and SHOC2/MRAS/PP1α used in Fig. 1D) were transiently co-expressed as FLAG-PP1Rs and EE-PP1α in HEK293 cells. FLAG-mScarF/EE-PP1α was generated after transient transfection into 2T-shSHOC2 cells (with stable SHOC2 knock-down). Cells were washed with PBS and lysed in PBS-M lysis buffer (PBS pH 7.4, 1% w/v Triton X-100, 5 mM MgCl₂, 0.1 mM MnCl₂, 1 mM DTT, Protease inhibitor cocktail (Roche) and Phosphatase inhibitor solution (10 mM NaF, 2 mM Na₃VO₄, 2 mM Na₂P₂O₇, 2 mM β-glycerophosphate). Extracts were centrifuged at 20,000 x g for 20 min at 4 °C and incubated with FLAG beads (Millipore Sigma) for 2-4 h at 4 °C while rotating. Beads were washed with TBS-MMX (20 mM TRIS pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 0.1 mM MnCl₂, 0.1% Triton-X-100, 5 mM β-mercaptoethanol) and eluted with 100 µg/mL FLAG peptide (Millipore Sigma, F4799). Eluate was added onto EE-antibody linked agarose beads, incubated for 2 h at 4 °C while rotating, washed with TBS-MMX and eluted with 100 µg/mL GluGlu peptide (3x CEEEEYMPME).

T6 (TAP6) BRAF protein was purified from HEK293T cells stably expressing pLEX-TAP6-BRAF. The TAP6 tag is tandem array of tags containing SBP, 2x HIS, 3x Strep and FLAG tags followed by a TEV protease cleavage site. Cells were lysed (with lysis buffer as above except 1 mM EDTA and no MgCl₂) and cleared as above, and incubated with Strep-tactin (Millipore Sigma) beads rotating for 2 h at 4 °C. Beads were washed 5 times with PBS/0.1% Triton-X-100/500 mM NaCl/5 mM β-mercaptoethanol and then equilibrated in 20 mM Tris pH 7.5/0.1% Triton-X-100/100 mM NaCl/5 mM β-mercaptoethanol. BRAF was eluted in the same buffer containing 2.5 mM Desthiobiotin, which was subsequently removed through dialysis. FLAG-BRAF/CRAF were purified similarly to T6-BRAF except using transiently transfected HEK293T cells, FLAG beads and elution with FLAG peptide as for PP1 complexes above. In addition, cells were treated with 100 nM calyculin A 20 minutes prior to lysis to increase phosphorylation of RAF.

In vitro phosphatase assays
In vitro phosphatase assays were performed in PP1 buffer (20 mM HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 0.1 mM MnCl₂, 5 mM β-mercaptoethanol, 0.1 mg/mL BSA) using 200 ng BRAF as substrate. BRAF substrate was diluted in PP1 buffer and pre-treated with inhibitors on ice for 15 min where applicable, followed by incubation at 30°C or 37°C with PP1 complexes. Reactions were stopped by adding NuPAGE sample buffer (ThermoFisher Scientific) and de-phosphorylation of BRAF was visualised by western blotting with P-S365 BRAF and total BRAF or FLAG antibodies. Phosphatase inhibitor cocktail (IC) used is as described in protein purification section (above).

Plasmids and transient transfection
Constructs were generated by cloning cDNA into the pENTR vector and expression plasmids were generated using the Gateway system (Invitrogen). Site-directed mutagenesis was carried out on pENTR plasmids according to (57). Transient transfection was performed by incubating plasmid and polyethylenimine (PEI, Polysciences) in OptiMEM (ThermoFisher Scientific) (at a ratio of 4 µg PEI to 1 µg plasmid) for 20 minutes prior to addition to cells. Fresh medium was added 16 h after transfection and cells were lysed on the following day.
Cell culture and Generation of stable cell lines
HEK293 and DLD-1 cells were cultured in DMEM supplemented with 10% FBS at 37°C under 5% CO₂. For EGF stimulation, cells were serum-starved in DMEM/0.5% FBS for at least 6 hours followed by treatment with 25 ng/ml EGF unless stated otherwise.

Lentiviruses were generated by transient transfection of HEK293 cells with the lentiviral construct, pMD.G and p8.91 packaging vectors. Virus-containing medium was harvested 48 h and 72 after transfection and supplemented with 5 μg/ml Polybrene (hexadimethrine bromide, Millipore Sigma). Cells were transduced with lentivirus and where required, selection was carried out with either 2.5 μg/ml puromycin, 200 μg/ml Hygromycin or 1mg/ml G418. T-REx-293 cells were cultured in 5 μg/mL blasticidin to maintain expression of the Tet repressor.

For generation of T-8' cell lines described in Fig.s S1, T-REx-293 cells were subjected to 3 sequential rounds of lentiviral infection with pLEX-MCS (Dharmacon) SHOC2-FLAG, pLenti-CMV/TO-Neo (Addgene Plasmid #17292) expressing EE-MRAS-Q71L and pLenti-CMV/TO-Hygro (Addgene Plasmid #17291) expressing untagged PPP1CA. Dox-inducible constructs were a gift from Eric Campeau (58).

HEK293 cells expressing shRNA to SHOC2 have been previously characterized (12). Briefly, cells were transduced with lentivirus as above generated from pGIPZ-shSHOC2 (5'-3' CTGCTGAAATTGGTGAATT) (ThermoFisher Scientific), were selected with puromycin and knockdown was assessed by Western blot.

DLD-1 SHOC2 KO cells were generated by transient transfection with the pSpCas9(BB)-2A-GFP (PX458), which was a gift from Feng Zhang (Addgene plasmid #48138), containing a GFP expression cassette and the following gRNA-encoding sequence targeting exon 3 of SHOC2: 5'-gRNA-3' GAGCTACATCCACGTGA, PAM: ATG. GFP-positive cells were sorted by FACS into 96-well plates and single-cell clones were analysed by Western blot to assess SHOC2 protein levels. DLD-1 SHOC2 KO cells were then transduced with lentivirus expressing an empty vector, FLAG-SHOC2 WT or different FLAG-SHOC2 mutants: D175N, E457K, M173I, SILK and 3'FLAG S2G. After being selected with puromycin, re-expression of WT or mutant SHOC2 was assessed by Western blot.

Cell lysis and interaction assays
Cells were lysed in PBS with 1% Triton-X-100, protease inhibitor cocktail (Roche), phosphatase inhibitor solution as before and 1 mM EDTA (except where GTPase interactions were concerned and EDTA was substituted for 5 mM MgCl₂). Tagged proteins were immunoprecipitated/pulled down from cleared lysates using either FLAG (M2) agarose (Millipore Sigma), glutathione sepharose beads (GE Healthcare) or EE (Glu-Glu) beads and rotation at 4°C for 2 hr. Resins were washed with PBS/1% Triton-X-100/1 mM EDTA or 5 mM MgCl₂ buffer and after draining were resuspended in NuPAGE LDS sample buffer (ThermoFisher Scientific) prior to SDS-PAGE and Western blotting. Antibodies to the FLAG tag were from Millipore Sigma. Antibodies to PP1α, GST, SCRIB, BRAF, P-S43 CRAF, CRAF, MYPT1, RSK, P-S380 RSK, NOS1AP and AF6 were from Santa Cruz Biotechnology.

Antibodies to Myc, P-T202/Y204 ERK, ERK, P-S473 AKT, AKT, P-S217/221 MEK, MEK, P-S259 CRAF, P-286/296/301 CRAF, P-S338 CRAF, and P-S445 BRAF were from Cell Signaling Technology. Antibodies to PP1β, SIPP1/WPB11 and EE tag were from Bethyl Laboratories and the PP2AC antibody was from BD Transduction Laboratories. SHOC2 and MRAS and antibodies were generated as previously described (4, 12), P-S365 BRAF antibody was generated in-house against the QRDRESS[pSer]APNVHIC peptide. HRP and DyLight conjugated secondary antibodies for western blotting were from GE Healthcare and Thermo Scientific respectively. Membranes were visualized on either an Odyssey scanner (LI-COR) or Image Quant system (GE Healthcare).

Acknowledgements
We thank Dhirendra Simanshu for critical reading of this manuscript.

References

Fig. 1. SHOC2-MRAS-PP1 complex functions as a RAF ‘S259’ phosphatase.

(A) SHOC2-MRAS-PP1α complex has increased phosphatase activity in vitro against S259 CRAF/S365 BRAF compared to other phosphorylation sites. CRAF/BRAF were purified from cells pre-treated with calyculin A to increase stoichiometry of phosphorylation of all possible phosphorylation sites and incubated with SHOC2-MRAS-PP1α complex (SMP) for 60 min at 37 °C.
(B) SHOC2-MRAS-PP1α complex has increased phosphatase activity against S365 BRAF compared to GADD34-PP1α or SCRIB-PP1α complex. T6-BRAF was incubated with 10nM PP1 complexes at 37 °C for the indicated times.
(C) SHOC2-MRAS-PP1α complex has increased S365 BRAF phosphatase activity compared to PNUTS-PP1α. T6-BRAF was incubated with increasing amounts of PP1 complexes at 37 °C for 30 min. The band above T6-BRAF detected with the FLAG antibody corresponds to FLAG-PNUTS.
(D) EE-N-terminal tag in PP1α does not affect phosphatase activity in vitro. SHOC2-MRAS-PP1 complexes containing either untagged or EE-tag PP1α were compared to each other and to SDS22-PP1α in a dose response as in C.
(E) Summary of B-D highlighting substrate specificity of SHOC2-MRAS-PP1 complex against S365 BRAF compared to other PP1 holophosphatases.

Fig. 2. SHOC2 is predicted to structurally resemble the A subunit of PP2A and uses different regions to interact with MRAS/PP1 and SCRIB.

(A) Domain structure of the A subunit of PP2A (UNIPROT ID P30153) showing HEAT repeats and structure (PDB 2IAE), visualised using PyMOL.
(B) Domain structure of SHOC2 (UNIPROT ID Q9UQ13) showing mutants used, regions of disorder predicted by Globplot 2 (globplot.embl.de) and model generated with ITASSER using LRR domains (residues 102-560) (zhanglab.ccmb.med.umich.edu/I-TASSER).
(C) SHOC2, but not the A subunit of PP2A (PPP2R1A) interacts with active MRAS and PP1 but not PP2A catalytic subunit (PP2AC). GST-SHOC2, -PPP2R1A or -GFP (control) were co-transfected with empty vector or FLAG-MRAS-L71. GST pulldowns were probed with the indicated antibodies.
(D) Domain structure of SHOC2 model of full length SHOC2 structure generated by the Phyre2 server showing flexible/disordered N-terminus (in blue) (sbg.bio.ic.ac.uk/phyre2).
(E) SHOC2 N-terminus is required for interaction with MRAS/PP1 whereas C-terminus interacts with SCRIB. FLAG-IPs and lysates of FLAG-SHOC2 WT or truncation mutants were probed as indicated.
(F) Quantification of Myc-MRAS-L71, endogenous PP1 and SCRIB bound to FLAG-SHOC2 in E relative to WT SHOC2.
(G) SHOC2 D175N and E457K differentially affect interaction with MRAS/PP1 and SCRIB. MRAS-L71 was co-transfected with FLAG-GFP (control), -SHOC2 WT or mutants.
(H) Quantification of proteins interacting with SHOC2 in G. Li-COR signal was divided by the FLAG-SHOC2 bait signal and plotted relative to SHOC2 WT.

Fig. 3. SHOC2 mutations in Noonan syndrome enhance complex formation with MRAS and PP1

(A) FLAG IPs/lysates from HEK293T transfected with FLAG-SHOC2 WT/mutant or GFP plus Myc-MRAS-L71. SHOC2 S2G has a FLAG tag on the C-terminus (labelled 3’) whereas for M173I the FLAG-tag was provided by the vector and is at the N-terminus (hence the molecular weight
difference). SHOC2 WT with similar FLAG-tag configuration at either N- or C-term are shown at either side.

(B) As in A, but in cells co-transfected with T6-BRAF and T6-CRAF. RAFs were pulled down with Strep-tactin (ST) beads and probed as indicated.

(C) Quantification of BRAF and CRAF S365 dephosphorylation from B.

(D) Lysates from DLD-1 SHOC2 knock-out cells transduced with lentiviruses expressing either empty vector of FLAG-SHOC2 WT or mutants after serum starving and 5 min EGF treatment (25ng/ml).

(E) Lysates from cells as before including a SHOC2 double mutant (S2G/D175N) and stimulated with 5 ng/ml EGF for 5 min.

(F) FLAG-SHOC2 IPs from cells used in D.

(G) SHOC2 model of Fig. 1B (aa 102-560) with D175N (blue) and M173I (green) residues highlighted. SLVK (SILK-like) and KIPF (RVXF-like) motifs are highlighted in red and orange respectively.

(H) in silico modelling of D175N and M173I mutations with electrostatic potential computed using Swiss-PdbViewer. Positive charges are represented as blue and negative charges as red. Region displayed is the boxed region of E, i.e the N-terminus up to approximately residue L220.

Fig. 4. C-terminal residues of MRAS are not required for SHOC2-PP1 complex formation or phosphatase activity in vitro but are required for efficient S365 BRAF de-phosphorylation and ERK pathway activation in vivo.

(A) Outline of MRAS C-terminal mutations used. Poly-lysine residues changed are shaded pink and CAAX box shaded blue.

(B) EE immunoprecipitates and lysates of FLAG-EE-MRAS constructs were probed with the indicated antibodies.

(C) The CAAX box and HVR are required for S365 BRAF dephosphorylation in vivo. Lysates from cells co-transfected with T6-BRAF and MRAS (‘M’) mutants were analysed as in B.

(D) The HVR is not required for S365 BRAF dephosphorylation in vitro. Different amounts of SHOC2-MRAS-PP1 complexes were incubated with T6-BRAF protein for 30 minutes at 37°C. mSMP complex is purified from T-REx-293 mammalian cells and contains full length MRAS, whereas iSMP is from Sf9 insect cells and contains MRAS ΔHVR. Where shown, calyculin A (CA) was added as control.

(E) The SMP EC_{50} was derived from Li-COR quantification of D.

Fig. 5. Residues in and around the MRAS SWITCH I and interswitch regions contribute to its effector specificity.

(A) Alignment of selected MRAS residues with RRAS, TC21 and H/N/KRAS with selected residues studied highlighted.

(B) GST-MRAS pulldowns from transfected HEK293 were probed with indicated antibodies and visualised with chemiluminescence.

(C) FLAG-MRAS IPs were probed for the indicated antibodies and visualised with Li-COR Odyssey (except AF6 which was chemiluminescence).

(D) Streptactin pulldowns of T6-BRAF were assessed for P-S365 phosphorylation in the presence of SHOC2 and MRAS-Q71L mutants.
Structure of MRAS (PDB 1X1R) with Switch I (orange) and Switch II (red) with residues highlighted that when mutated to those of RRAS or RAS alter effector binding (also indicated underneath).

Fig. 6. MRAS mutations in Noonan syndrome have enhanced SHOC2-MRAS-PP1 complex activity

(A) Positions of Noonan syndrome mutations (upper) and the activating Q71L mutation within MRAS.
(B) Model of MRAS (PDB 1X1R) showing locations of residues in (A): G23 (blue), T68 (turquoise), Q71 (yellow); Switch I (orange), Switch II (red), GDP (green sticks) and Mg2+ (pink sphere).
(C) FLAG IPs/lysates from cells transfected with Myc-SHOC2 and either GFP (control) or MRAS WT/mutants were probed with indicated antibodies.
(D) P-S365 levels on transfected T6-BRAF were assessed in response to combinations of transfected empty vector/Myc-SHOC2 and GFP/MRAS WT/mutants.

Fig. 7. The recurrent PP1β-P49R mutation identified in Noonan syndrome selectively enhances SHOC2-MRAS binding

(A) Positions of syndromic mutations in PP1β.
(B) Positions of mutations in A in the 3D structure of PP1β (from PDB 1S70) (rear side of structure in C). SILK and RVxF binding grooves highlighted in yellow and purple respectively. Mutated SILK-binding residues used in F are circled. Y301I (not indicated) is the result of a base insertion and causes a frameshift of the terminal amino acids.
(C) As in B but showing the side of PP1β on which the catalytic site is located, with Mg2+ (pink sphere) and substrate binding grooves (dashed lines) shown.
(D) Rotation of structure in C to show locations of indicated mutated residues within the RVxF-binding region (see F).
(E) FLAG IPs and lysates from cells transfected with WT/mutant PP1α and PP1β and active MRAS.
(F) As in E comparing SILK- and RVxF-binding mutants of PP1.
Rasopathy similar to NS with LAH
Zambrano, et al. 2017
Bertola, et al. 2017

Syndromic intellectual disability, congenital heart disease

Severe intellectual disability, growth retardation, dysmorphic features
Hamdan, et al. 2014

Binds RVxF
Binds SILK

E183, A/V
D252, Y
E274, K
Y304L fs

P49R
A56P
E183A/V
D252Y
E274K

β
β
β
β

PP1
PP1
PP1
PP1

β
β
β
β

IP:FLAG
LYSATE

FLAG-PP1β:
empty
WT
P49R

E115,
F118

E183,
P49

L53, L54

D241A/L242A (RVxF)
E53A, L54A (SILK)

C290R (RVxF)
L288R (RVxF)

SHOC2
MYPT1
IP:FLAG
LYSATE

Myc-MRAS Q71L

empty

Myc-MRAS
MYPT1
SIPP1
SCRIB

MYPT1
SIPP1
SCRIB