Distance-decay effect in stone tool transport by wild chimpanzees

Lydia V. Luncz¹, Tomos Proffitt¹, Lars Kulik², Michael Haslam¹, Roman M. Wittig²,⁴

¹Primate Archaeology Research Group, School of Archaeology, University of Oxford, Oxford, UK
²Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
³Institute of Biology, University of Leipzig, Leipzig, Germany
⁴Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d’Ivoire

Corresponding author: Lydia.Luncz@rlaha.ox.ac.uk
Abstract

Stone tool transport leaves long lasting behavioural evidence in the landscape. However, it remains unknown how large scale patterns of stone distribution emerge through undirected, short term transport behaviors. One of the longest studied groups of stone tool using primates are the chimpanzees of the Taï National Park in Ivory Coast, West-Africa. Using hammerstones left behind at chimpanzee *Panda* nut-cracking sites, we tested for a distance-decay effect, in which the weight of material decreases with increasing distance from raw material sources. We found that this effect exists over a range of more than 2 km, despite the fact that observed, short term tool transport does not appear to involve deliberate movements away from raw material sources. Tools from the millennia-old Noulo site in the Taï forest fit the same pattern. The fact that chimpanzees show both complex short term behavioural planning, and yet produce a landscape-wide pattern over the long term, raises the question of whether similar processes operate within other stone tool using primates, including hominins. Where hominin landscapes have discrete material sources, a distance-decay effect, and increasing use of stone materials away from sources, the Taï chimpanzees provide a relevant analogy for understanding the formation of those landscapes.

Keywords: chimpanzees, stone tools, transport, distance-decay effect, primate archaeology

http://mc.manuscriptcentral.com/prsb
Background

Primates regularly move materials from one place to another, mainly for display [1], foraging [2] and tool use [3,4]. Because the majority of materials involved are organic, these behaviours are often invisible in the absence of direct observation. Stone tools, as durable markers of past activity, offer an opportunity to record the long-term effects of primate behaviour on the landscape. Among the stone-tool-using primates - West African chimpanzees (*Pan troglodytes verus*) [5], Burmese long-tailed macaques (*Macaca fascicularis aurea*) [6], and bearded capuchin monkeys (*Sapajus libidinosus*) [7] - stone tool transport is receiving increasing attention for its role in niche construction [8], site formation [9] and energetic costs [10].

Movement of stone materials has also been instrumental in reconstructing the ranging patterns of early members of the human lineage, the hominins [11,12]. Stone transport especially helps with identifying early hominin tool use, when materials are carried from their original context to a site [13]. A number of studies have shown that Early Pleistocene hominins were selectively transporting stone materials that were suitable for the tasks at hand [11,14–19]. Along with the requirement to bring together suitable stone materials and target prey in one place [20], tool transport has been suggested to attest to planning or other cognitive abilities in early hominins [21].

However, time averaging of the archaeological record – in which multiple activities occurring in the same place at different times are indistinguishable – obscures our ability to identify the individual behavioural sequences included...
One technique used to overcome this limitation and elucidate the stepwise behavioural patterns behind the archaeological record has been to use agent-based modeling. These models examine how a composite record can result from a series of unplanned individual movements [23,24]. Their findings suggest that such tool transport patterns lead to the emergence of a distance-decay effect as a default when the driving factors behind movements are undirected.

The distance-decay [25] effect is defined as a negative correlation between the weight of stone materials at a site, and the site’s distance from the raw material source, and it has been identified from various Early Stone Age hominin archaeological sites [25–28]. This effect has been postulated to occur for two main reasons: (i) heavier stones are energetically more expensive to carry longer distances, and (ii) stones further from sources have typically been used for longer and are more completely broken down (either deliberately flaked or accidentally fractured) as a result [25].

Despite the insights that time-averaged archaeological sites and computational models can provide, they both lack essential information. For the models, the missing information relates to real world behavioural complexity, and for the hominin sites it is an understanding of the individual behavioural steps that have been compressed to form the archaeological record. In this situation, primate archaeology [29–32] gives us a unique opportunity to record those aspects of the data that are missing from other approaches. Here, we present the results of the first study of wild chimpanzee long distance stone tool transport, and its relation
to stone source distributions, on a landscape scale to assess whether or not non-human primates show a distance-decay effect.

At Taï National Park, Ivory Coast, chimpanzees use stone hammers and mainly wooden anvils to crack open different nut species. Most commonly processed are *Coula edulis* nuts; these nuts are rather easy to crack and allow chimpanzees to choose between stone and wooden tools. Another commonly cracked nut species is *Panda oleosa*. In contrast to *Coula* this nut is very hard, requiring greater force, and can only be cracked with large stone tools that typically weigh several kilograms [5]. As large stones are rare in this tropical rain forest, chimpanzees often leave a suitable hammerstone that they have brought to a tree which is currently producing nuts, frequently re-using this tool for as long as the tree bears fruit. Over time this leads to the development of intense use-damage to the hammerstone, in the form of central pits and stone fracture [33].

To test for the distance-decay effect in wild chimpanzee stone transport at Taï, we concentrated on granite tools. Taï National Park is located on a Precambrian granite peneplain, with several isolated granite inselbergs formed from plutonic intrusions, which made this material the most amenable to studying chimpanzee stone redistribution. Granite is also a preferred material for chimpanzee when cracking of *Panda* nuts. We therefore compared stone availability at the inselbergs with that of other environments in the home range of the Taï chimpanzees, predicting that the availability of large granite stones suitable for cracking the hard *Panda* nuts would be highest at the inselbergs.
We then mapped the location, recorded size and raw material of hammerstones used at *Panda* nut-cracking sites throughout the chimpanzee home range. We additionally recorded the use-wear on each hammerstone, as a means of assessing the intensity of previous use. Taking use-damage as a proxy for the length of time that a stone had been used allowed us to determine whether (i) small hammerstones were being transported further before use, or (ii) stones became smaller over time through intense re-use, and traveled further due to a longer latency from the first movement away from the original source.

Our data are more closely aligned with previous archaeological work than fine-scale ethological observations, in that we collected information on the palimpsest of stone distribution that has been built up by the chimpanzees over time. However, we are additionally able to integrate direct observations of chimpanzees into our analysis to shed light onto the development of stone tool distribution pattern throughout the landscape.

2. Methods

The study was conducted in the home range of two chimpanzee communities in the Taï National Park. The two study groups ranging in this area were fully habituated to human observers, and focal follows have been determining their home range since 1985 (North-group) and 2005 (South-group).

(a) **Field data collection**

During February and March 2015 we located 25 active *Panda* nut-cracking sites (7 in the North-group and 18 in the South-group territory) by revisiting sites...
used by the chimpanzees in the prior 18 months (Figure 1). For each hammerstone we recorded its GPS position and weight. We consistently found only one hammerstone per nut cracking site. To determine use-wear of these hammerstones we produced a 3D model of each hammerstone using a NextEngine laser scanner. If stones found at one site were clearly broken into several parts, we combined all parts belonging to a single stone in our calculations (Table S1).

On the basis of GPS reference points taken at landmarks within the chimpanzee home range, we digitized a map of the Taï National Park (originally created by Organisation mondiale de la Santé) that showed the locations of inselbergs. Inselbergs are defined as elevated granite outcrops, marked on the map as polygons. We accounted for the possibility that outcrops without elevation are missing from the map (see below). On average the inselbergs are rarely larger than 100 m radius. For each inselberg we determined one coordinate using the center point of the maximum length and width of the inselberg (Figure 1). For each hammerstone we calculated the distance to all granite inselbergs (n=55) located in the two chimpanzee home ranges. In our analysis we excluded quartzite (South-group N=4) and laterite (North-group N=1) Panda hammerstones, because they cannot be allocated to a specific location of origin and therefore we were not able to estimate transport distances.

To assess the availability of large granite stones, in 2011 we systematically placed 131 line transects of two meter widths through the North-group and South-group ranges. We divided the environmental conditions encountered on
transects into three conditions: forest, inselberg and swamp. Each transect was
500 m in length and ran north-to-south, separated from one another by 500 m
(total transect length= 65.5 km). We counted and measured each stone larger
than 3 cm within a maximum range of 1 m to either side of the transect, and
classified them into one of 10 weight categories (1:0.1-0.25 kg; 2:>0.25-0.5 kg;
3:>0.5-0.75 kg; 4:>0.75-1 kg; 5:>1-2 kg; 6:>2-4 kg; 7:>4-6 kg; 8:>6-8 kg; 9:>8-
10 kg; 10:>10 kg). We only included granite material in the analysis.

(b) Use-wear intensity
Our approach to the use-wear assessment was similar to previous studies that
have pioneered the use of GIS analysis of both archaeological and primate
percussive tools, focusing on hammerstones [34] and stone anvils [35,36]
(Figure 2a). After visually assessing pits on 3D models of all hammerstones, we
exported the models as STL files to Meshlab at a resolution of 0.127 mm, where
we calculated total model volume and isolated and cropped the pitted surfaces.
Cropped 3D surfaces were then oriented so the pitted surface was horizontal
using Nett Fab™ and exported as xyz files. Each xyz file was imported into
ArcGIS® 10.2 and converted to TIN (triangular irregular network) models in
order to subsequently convert the 3D surface to a raster DEM surface.
The total extent of the pit was derived using a topographic position index (TPI)
calculated with the land facet analysis plugin for ArcGIS® [37], which calculated
the difference in the elevation of each cell against the average elevation of the
surrounding cells in order to identify relative high and low regions of the 3D
surface. We used a circular scale of 25mm to determine the surrounding
neighbourhood of cells. We applied contour lines using the TPI raster layer in order to consistently delimit the extent of the pitted region of the hammer, and the delimiting contour line was used as a mask in order to extract a DEM raster of the pit. We calculated the total depth of the pit using the DEM raster layer from a bounding box layer. Using this methodology, we were able to record the maximum depth of the pit(s) on each hammerstone.

(c) Statistical analysis (models):

To investigate whether the weight of granite hammerstones at a given nut-cracking site was influenced by the distance between the site and the closest inselberg (as the possible origin), we used Linear Models (LM) [38]. Overall we expected that chimpanzees select a stone source close to a cracking site. For each hammerstone we determined the distance to the nearest inselberg and included that as fixed effect in our first model.

To complement archaeological analysis we added direct observations to the data set and controlled for the different group that ranged in the designated territories. To evaluate potential inter-group differences, we investigated whether the distances between the inselbergs and hammerstone locations differed between the North- and South-group. We applied the same model as described above with a two-way-interaction between the distance to the nearest inselberg and social group as fixed effect.

To analyse whether the distance of the hammerstone to the nearest inselberg correlated with the amount of usage the tool has been exposed to over the years,
we assessed use-wear intensity for all *Panda* nut-cracking tools. As a proxy of use
wear intensity we measured maximum pit depth of hammerstones. We ran a
linear regression with the depth of a use-worn pit as the response, and the
distance to the nearest inselberg to a given *Panda* nut-cracking site as fixed effect.

For all models, we checked various diagnostics of model validity and stability
(Cook's distance, DFBetas, DFFits and leverage) and for the assumptions of
normally distributed and homogeneous residuals by visually inspecting a qqplot
and the residuals plotted against fitted values. We found no obvious deviations
from these assumptions [38]. The significance of the full model as compared to
the null model was established using a likelihood ratio test (LRT; R function
anova with argument test set to 'F') (for the first and third model it was
equivalent to [39]. The p-values were established using LRTs [40]. The models
were implemented in R [42] using the function lm from the base package.

3. Results

(a) Tool weight vs distance to source

Granite hammerstones had a mean weight of 8.7 ± 4.4 kg (range 2.6-17.2 kg),
while distances between the nut-cracking sites and the nearest inselbergs
averaged 704.5 ± 604.3 m (range 114-2265 m). Our first model revealed a
significant distance-decay effect, with the weight of the hammerstones found at a
nut-cracking sites decreasing with increasing distance to the nearest inselberg
(LRT: Estimate=-3.726, SE=1.675, t=-2.225, p=0.043; Figure 3, Table S2).
Furthermore we did not find a difference in the effect on distance to the inselberg on the weight of the hammerstone between North and South-group (LRT: Estimate=-3.198, SE=4.101, t=-0.78, p=0.451, Table S3). Our results suggested that the distance-decay effect is therefore not influenced by potential cultural behaviour of the social group but is a universal effect of long distance tool transport.

(b) Use-wear vs distance to source

Use-wear intensity increased significantly with increasing distance to the closest inselberg. Linear regression revealed that the pit of a given hammerstone is deeper, the greater the distance between a site and the nearest mountain (LRT: Estimate=0.009, SE=0.003, t= 2.718, p=0.017; Figure 4, Table S4). Therefore, the depth of a pit reflected the potential distance the stone was carried to the current cracking site. We take these results with a note of caution, as pit depth could be affected by other variables for which we do not have data, such as slight variation in the stone material composition, or in the intensity and frequency the hammerstone was used at specific locations throughout its transport. Nevertheless, over the time-averaged dataset in this study, use-wear pit depth is positively correlated with distance to the nearest inselberg.

(c) Stone distribution and availability

To assess granite stone distribution throughout the territory, line transects covered 50.57 km of tree forest, 1.34 km over inselbergs, and 13.59 km through swamps. Because we were interested in the distribution of natural stones we excluded hammers at nut-cracking sites from this analysis. On all inselbergs that

http://mc.manuscriptcentral.com/prsb
were sampled representatively we found large stones in the size range of suitable Panda hammerstones which could function as raw material source. In total we found 133 suitable hammerstones for Panda nut cracking (>2 kg) on the inselberg transects (average of 12.9 suitable hammerstones per 100 m line transect), 3 suitable hammerstones in the forest condition (0.006 suitable hammerstones per 100 m line transect) and no stones suitable for Panda nut cracking in the swamps. Two of the three stones located in the forest area do fit the common scheme of the distance-decay effect which could suggest that these hammerstones mark locations of deceased Panda trees.

4. Discussion

Wild chimpanzee nut-cracking tools from the Taï National Park show a clear distance-decay effect. Hammerstone weights at Panda nut-cracking sites decreased with increasing distance to the nearest location of suitable raw material. Suitable Panda nut-cracking raw material was located at the inselbergs, while the forest and swamps did not have large granite stones available naturally, demonstrating that such stones found at nut-cracking sites have been carried there by the chimpanzees. Our data recorded the longest known stone tool transport by wild chimpanzees, cumulatively reaching over 2 km. Additionally, tools found further from raw material sources were used and re-used more intensively, as measured by the development of pits on their surface.

The oldest known chimpanzee tools to date were excavated from within the range of the Taï North group [43]. Interestingly, the combined weight of granite Panda tool fragments found at that site (Noulo) fits the distance-decay curve
derived from our observations of the modern landscape, indicating that this
behavioural may have remained unchanged for at least 4,000 years (Figure 3).
The continuity of this pattern over millennia suggests that stone tool transport
over the long term is not influenced by cultural factors, instead it follows the
pattern resulting from accumulated, unplanned, short-term transport events.

Based on direct observations, chimpanzees very rarely move large
hammerstones significant distances in one transportation event [5]. Panda trees
often occur in clusters and are not homogeneously distributed throughout the
territory. To date transport of Panda hammerstones has been observed only
within these clusters [33]. Also, hammerstones do not follow a linear transport
path away from the source, but the long term net effect of several sequential
movements is to radiate material further and further away from the source the
longer the hammerstone has been in use. We therefore suggest that chimpanzees
do not intentionally plan long distance transport, and that stone tool distribution
across the landscape has developed through the long-term interplay of ecological
constraints, energetic requirements and foraging behaviour.

Recent studies reported remarkable spatial memory [44], planning of daily
foraging routes [45] and planned short distance tool transport bouts [46] in the
Taï chimpanzees. In contrast to the time-averaged tool distributions that we
report here, these daily activities do not adequately reflect the long-term stone
deposition on a landscape scale. Distance of current stone location to source
therefore cannot be used as a proxy for abilities linked to planned transport for
the Taï chimpanzees. However, we also note that sophisticated planning abilities
may still be responsible for short term day-to-day activities, even where these
are subsequently blurred by time.

We are able use these direct observations of individual events to inform on the
processes that led to the current situation. For example, two *Panda*
hammerstones found 37 m apart, at two different nut-cracking locations
illustrate how the distance-decay effect might have developed. Repeated use of a
tool eventually breaks it at its weakest points, typically on the edges [9] or, as in
this case, across the deepening pit in the center (Figure 2b). Both segments of the
broken stone continued to be used as separate hammers, coupled with continued
transportation. The result is a fragmentation of the original behavioural record,
but the emergence of the archaeological pattern.

Our results empirically support the results of prior agent-based models, by
showing that short-term, undirected movements can produce a time-averaged
distance-decay curve. This situation occurs even though the assumptions
underlying these models are simplified versions of the environmental and social
conditions that the chimpanzees have to negotiate. This concordance suggests
that studies of hominin stone transport that emphasise complex drivers such as
advanced planning abilities [12,47–49] may be over-interpreting the hominin
evidence, where that evidence is indistinguishable from the model outcomes.

Hominin stone tool distance-decay patterns have been explained as outcomes of
the curation of raw material [26], natural topographic barriers [25], the
mitigation of risk related to the need to possess sharp cutting edges [26], or
planning for future needs [20]. Stone tool deposition might have furthermore be
influenced by the ranging pattern of carnivores and ecological factors such as
water sources and clusters of shelter trees. The data presented in this study add the time-averaged result of multiple short-
distance transport bouts to the rage of possible hominins behaviours associated
with this spatial patterning of lithic material, and may go some way to
developing a better understand of the 'middle range' behaviours between raw
material acquisition and artefact deposition. If archaeological circumstances provide similar evidence as seen in chimpanzee
stone tool transport patterns – discreet and identifiable raw material sources
within the landscape as well as decreasing mass of material and increase in
reduction intensity from raw material sources- then the behavioual processes
observed for wild chimpanzees should be the starting reference point for
behavioural reconstructions. Our study emphasizes that the final observed
distribution of material is rarely under the control of the tool user, and should
not be interpreted as such without supporting contextual evidence.
We have demonstrated that landscape-wide patterning of materials applies to
the Taï chimpanzees, and is identifiable using archaeological methods. For both
chimpanzees and hominins, investigations can now proceed to help explain how
these patterns emerge from the interplay of short- and long-term behavioural
processes.
Ethical statement

All our work was conducted in compliance with appropriate animal care regulations and national laws. Data collection was non-invasive and in compliance with the requirements and guidelines of the ‘Ministère de l’enseignement supérieure et de la recherche scientifique’ and adhered to the legal requirements of the Côte d’Ivoire. We further strictly adhered to the regulations of the Deutsche Tierschutzgesetz or the ASP principles for the ethical treatment of non-human primates.

Data accessibility statement

The dataset supporting this article has been uploaded as part of the supplementary material (Table S1).

Competing interests

We have no competing interests.

Authors’ contribution

LVL designed the study, carried out the data collection and analysis, wrote the manuscript, TP carried out analysis and wrote the manuscript, LK carried out the analysis and wrote the manuscript, MH designed the study and wrote the manuscript, RMW designed the study and edited the paper.
Acknowledgements

We thank Lissa Ongman and Sylvain Lemoine for their contribution to the data collection and Christophe Boesch and three anonymous reviewers for helpful comments on the manuscript. We thank the Centre Suisse in Ivory Coast for logistical support on site, the ‘Ministère de l’enseignement supérieure et de la recherche scientifique’, the OIPR (‘Office Ivorien des Parcs et Réerves’) for granting us permission to conduct research in Côte d’Ivoire and the Taï National Park.

Funding

LVL, TP, LK, MH were funded by the ERC grant European Research Council Starting Grant no.283959 (PRIMARCH), RMW was funded by the Max Planck Society.

References

http://mc.manuscriptcentral.com/prsb

http://mc.manuscriptcentral.com/prsb

Figure captions:

Figure 1. Position of inselbergs (black) and located hammerstones (grey) in the Taï National Park. The size of the grey circles (hammerstones) corresponds to the weight of the hammerstone material at a site. The two polygons represent the home range of the North- and the South-group. The X represents the location of the excavated Noulo chimpanzee site.

Figure 2. (a) Assessing pit depth from Panda nut-cracking hammerstone using 3D models. (1) Photograph (Sony Nex6); (2) 3D scan (NextEngine laser scanner);
(3) Topographic model of the pitted area (GIS). (b) Refit of broken hammerstone, each part was independently used as a hammer at two *Panda* cracking sites that were 37 meters apart.

Figure 3. Weight of stone tools as a function of the distance to the nearest inselberg. Each circle represents a stone tool (black circle: this study, cross: excavated tools from [43]). The dashed line shows the fitted model and the dotted lines the 95% confidence interval. (The excavated material was not included in the model and only placed on the graph for visual aid).

Figure 4. Use-wear pit depth as a function of the distance to the nearest inselberg. Each dot represents one stone tool. The dashed line shows the fitted model and the dotted lines the 95% confidence interval.

Figure 5. Granite stone distribution in the chimpanzee home range in the Taï National Park. Available stone size is corrected for the area sampled in the three different ecological conditions (forest, inselberg, swamp). The horizontal line represents the minimum weight of a suitable *Panda* hammerstone (assessed through our sample size).
Supplementary Tables Captions:

ESM 1: Supplementary Data Set

Table S1:
Data set used to investigate the distance-decay effect in wild chimpanzees:
The hammerstones for *Panda oleasa* nut cracking were located in two study
groups (North and South group) the Taï National Park in Côte d’Ivoire, West-
Africa. Here we present their weight and the distance to the nearest potential
source (inselberg).

ESM 2: Statistical models and model results

Table S2:
Investigations of the weight of granite hammerstones and its influenced by the
distance to the closest inselberg (as the possible origin):
The table presents the results of a linear model analyzing the effect of distance to
the nearest inselberg on hammerstone weight of *Panda* nut cracking tools. The
comparison of the full with the null model revealed: $F_{1,14}=4.949$, $P=0.043$.

Table S3:
Investigations of differences in the distance-decay effect between two social
groups (North and South group):
The table presents the results of a linear model analyzing the effect of distance to
the nearest inselberg on hammerstone weight in regard to the social group
(North and South group) ranging in the area the hammerstone was located in.

The comparison of the full with the null model revealed: \(F_{3,12} = 2.797, P = 0.086 \). ‘Distance.Inselberg*GroupSouth’ refers to the impact of the two-way-interaction between distance of the nearest inselberg and social group (North or South group) on hammerstone weight.

The interaction was not significant, i.e. the distance-decay effect was not influenced by the social group \((F_{1,12} = 0.608, P = 0.451) \).

Investigations of the use-wear intensity of hammerstones and its distance to the source:

The table presents the results of a linear model analyzing the effect of pit depth of *Panda* hammerstones on distance to the nearest inselberg. The comparison of the full with the null model revealed: \(F_{1,14} = 7.390, P = 0.017 \).
Figure 1. Position of inselbergs (black) and located hammerstones (grey) in the Tai National Park. The size of the grey circles (hammerstones) corresponds to the weight of the hammerstone material at a site. The two polygons represent the home range of the North- and the South-group. The X represents the location of the excavated Noulo chimpanzee site.

112x158mm (300 x 300 DPI)
Figure 2. (a) Assessing pit depth from Panda nut-cracking hammerstone using 3D models. 1) Photograph (Sony Nex6); 2) 3D scan (NextEngine laser scanner); 3) Topographic model of the pitted area (GIS). (b) Refit of broken hammerstone, each part was independently used as a hammer at two Panda cracking sites that were 37 meters apart.

93x87mm (600 x 600 DPI)
Figure 3. Weight of stone tools as a function of the distance to the nearest inselberg. Each circle represents a stone tool (black circle: this study, cross: excavated tools from [43]). The dashed line shows the fitted model and the dotted lines the 95% confidence interval. (The excavated material was not included in the model and only placed on the graph for visual aid).

48x46mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/prsb
Figure 4. Use-wear pit depth as a function of the distance to the nearest inselberg. Each dot represents one stone tool. The dashed line shows the fitted model and the dotted lines the 95% confidence interval.

80x81mm (300 x 300 DPI)
Figure 5. Granite stone distribution in the chimpanzee home range in the Tai National Park. Available stone size is corrected for the area sampled in the three different ecological conditions (forest, inselberg, swamp). The horizontal line represents the minimum weight of a suitable Panda hammerstone (assessed through our sample size).

49x48mm (300 x 300 DPI)