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Abstract—Buried unexploded landmines are a serious threat in
many countries all over the World. As many landmines are nowa-
days mostly plastic made, the use of ground penetrating radar
(GPR) systems for their detection is gaining the trend. However,
despite several techniques have been proposed, a safe automatic
solution is far from being at hand. In this paper, we propose a
landmine detection method based on convolutional autoencoder
applied to B-scans acquired with a GPR. The proposed system
leverages an anomaly detection pipeline: the autoencoder learns
a description of B-scans clear of landmines, and detects landmine
traces as anomalies. In doing so, the autoencoder never uses data
containing landmine traces at training time. This allows to avoid
making strong assumptions on the kind of landmines to detect,
thus paving the way to detection of novel landmine models.
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I. INTRODUCTION

The presence of landmines and explosive remnants of war

represents a serious threat for civilians around the World. As

a matter of fact, even if it is hard to precisely estimate the

number of casualties, more than 25.000 people are killed or

mutilated every year due to landmines [1]. For this reason,

the development of techniques for landmine detection and

minefield clearance is of paramount importance.

To implement a complete landmine detection and localiza-

tion system, a series of different steps have to be developed

[2]: (i) detection - to detect whether any kind of target is

buried within an area of interest, or the area is clear; (ii)

recognition - to discriminate whether at least one of the buried

objects is a landmine, or all objects are just clutter (e.g., stones,

wooden sticks, etc.); (iii) localization - to determine the precise

location of targets of interest. In this work, we focus on the first

step, by proposing an automatic system for object detection.

In the literature, many different landmine detection systems

have been proposed. Some of them, exploit electromagnetic

induction based sensors tailored to capture metal target traces.

However, as landmines are nowadays mostly made of plastic,

ground penetrating radar (GPR) is emerging as a more suitable

technology [3].

A broad family of GPR-based methods works acquiring

and analyzing B-scans of the ground, i.e., 2D images in a
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space-time domain obtained by emitting and recording a signal

with a pair of antennas that are moved on a straight line

parallel to the ground. B-scans should be ideally flat in case

no dielectric discontinuities are present underground. If an

object of limited size characterized by a different dielectric

constant with respect to the ground is buried (e.g., a landmine),

a prominent hyperbola appears. To detect hyperbolas, thus

spotting buried objects, different model-based solutions have

been proposed. To name a few, [4] solves a fitting problem,

[5] proposes a modified Hough transform, whereas [6] and [7]

exploit gradient-based features characterizing B-scan texture.

Due to the recent astonishing deep-learning advancements

in many fields [8], recent methods also started leveraging

convolutional neural networks (CNNs) [9], [10].

In this paper, we propose the first landmine detection

method leveraging a convolutional autoencoder (i.e., a specific

kind of CNN) to analyze B-scans acquired with a GPR.

Specifically, we consider the problem of detecting whether

a B-scan contains any trace of buried object or not. To do

so, we cast landmine detection into an anomaly detection

problem, and solve it through a one-class approach. In a

nutshell, an autoencoder learns a characterization of B-scans

not containing any trace of landmines or other objects at

training time. Upon training completion, the autoencoder can

be used to detect whether a new B-scan under analysis contains

any anomaly with respect to the training set (i.e., presence of

hyperbola, thus objects).

The proposed method is completely data driven, but it has

the inherent advantage of not making strong assumptions on

landmines characteristics (e.g., shape, size, etc.). As long as

buried objects introduce some distortion into a B-scan (i.e., hy-

perbola) compared to B-scans used for training (i.e., obtained

from areas without buried landmines), the system is able to

identify them. Preliminary results on real GPR data acquired in

two different test sites show promising performance compared

to a recently proposed method exploiting CNNs [10].

II. BACKGROUND ON AUTOENCODERS

In this section we quickly introduce to the reader the concept

of autoencoder needed to understand the rest of the paper. For

a thorough autoencoder review, the reader can refer to [11].
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Fig. 1: Scheme of an undercomplete autoencoder. The encoder E
turns the input x into its hidden representation h. This is turned into
x̂ by the decoder D.

An autoencoder is a specific kind of neural network that

takes its name from the ability of being logically split into two

separate components: (i) the encoder, which is the operator E
mapping the input x into the so called hidden representation

h = E(x); (ii) the decoder, which is the operator D that

decodes the hidden representation into an estimate of the input

x̂ = D(h). A visual representation of autoencoder is shown

in Fig. 1.

In this paper, we refer to a specific family of autoencoders

known as undercomplete convolutional autoencoders. These

are characterized by a hidden representation h of reduced

dimensionality with respect to the input x. Moreover, both en-

coder and decoder operators are composed by series of linear

filtering operations (i.e., convolutions), optionally followed by

non linear functions (e.g., sigmoid, hyperbolic tangent, etc.).

By using this kind of autoencoder it is possible to esti-

mate an almost-invertible dimensionality reduction function

E directly from a representative set of training data (i.e.,

observations of x). A common way of doing this consists in a

priori defining a network model (i.e., the series of parametric

operations composing E and D), and estimating the network

weights (i.e., the operations’ parameters) that minimize some

distance metric between the autoencoder input x and its output

x̂ = D(E(x)). The used distance metric is typically referred

to as loss function, and its minimization is carried out through

iterative techniques (e.g., gradient descent methods, etc.). In

the light of this, we can interpret the hidden representation

h = E(x) as a compact feature vector capturing salient

information from x.

III. LANDMINE DETECTION

In this section we formulate the landmine detection problem

faced in this paper, and report all the details about the proposed

detection method.

A. Problem

Let us define a B-scan acquired with a GPR system as the

2D image X. If X has been acquired over a buried target, we

associate to it the binary label l = 1 indicating the presence of

an object underground. If X has been acquired over a target-

free area, we label it with l = 0, indicating that no object traces

are present. Solving landmine detection problem consists in

computing l̂ (i.e., an estimate of l) given a B-scan X. Correct

detection happens if l̂ = l. Misclassification happens in case

l̂ �= l.

Ex x̂

h

D E
ĥ

e = |h− ĥ|

Fig. 2: Diagram of the proposed anomaly detection scheme. A patch
under analysis x is autoencoded to x̂ and encoded again into ĥ.
Anomaly is detected by thresholding e value.

B. Proposed Detector

The rationale behind the proposed detector is that autoen-

coders can be a powerful instrument for anomaly detection

[12], [13]. Indeed, an autoencoder tailored to encode and

decode a specific kind of data, fails in encoding and decoding

correctly other kinds of data. The error introduced in encoded

or decoded data can be used as anomaly indicator.

It is therefore possible to train an autoencoder to learn a

characteristic hidden representation of B-scans not showing

any object traces (i.e., labeled as l = 0). After training, this

autoencoder will encode and decode B-scans labeled as l = 0
with good quality. Conversely, it will encode and decode B-

scans labeled as l = 1 with poor quality. In the following, we

describe each step of the proposed method.

1) System Training: In order to be independent from the

B-scan size, we propose to work in a patch-wise fashion. To

this purpose, let us consider xi as the i-th patch of fixed

size extracted from a B-scan X. To train the autoencoder,

we define a training set of I patches xi, i ∈ [1, I] extracted

from B-scans associated to label l = 0 (i.e., do not containing

any hyperbola due to buried objects). We then estimate the

autoencoder weights by minimizing the mean squared error

between xi and x̂i averaged over all patches in the training

set.

2) System Deployment: When a B-scan X is to be analyzed,

we split it into a set of I patches xi, i ∈ [1, I] covering

the whole X. We then follow the block diagram reported

in Fig. 2. Each patch xi is encoded into hi = E(xi). The

hidden representation is decoded into x̂i = D(hi), which is

encoded again into ĥi = E(x̂i). We then compare the hidden

representation of the original patch (i.e., hi) with the hidden

representation of the autoencoded patch (i.e., ĥi) by means of

Euclidean distance.

The obtained distance ei = |hi − ĥi| is an indicator

of possible anomalies. Indeed, we expect patches containing

hyperbola traces to be incorrectly autoencoded, thus giving rise

to ĥi strongly different from hi. Conversely, patches similar to

those observed during training should generate ĥi very similar

to hi.

To detect landmines, we collect all ei, i ∈ [1, I] values be-

longing to patches coming from the B-scan X under analysis,
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and apply the following criterion

l̂ =

{
1, if maxi(ei) > Γ,

0, otherwise,
(1)

where Γ is a threshold to be selected. In other words, we detect

presence of landmines if at least one patch xi shows strong

evidence of anomaly.

IV. EXPERIMENTAL SETUP

In this section we report information about the used network

architectures and datasets.

A. Autoencoder Architecture

We tested three different autoencoder architectures to in-

vestigate its impact. All architectures are symmetric, as to

each convolutional layer used at the encoder, corresponds a

deconvolutional layer at the decoder. The input size of each

network is equal to its output size. Hidden representations

are characterized by a reduced dimensionality with respect to

input.

Architecture N1 is composed by:

1) A convolutional layer with 16 filters, stride 1x1, size

6x6.

2) Three convolutional layer with 16 filters, stride 2x2, size

5x5, 4x4, 3x3, respectively.

3) A convolutional layer with 8 filters, stride 1x1, size 1x1.

Its output is the hidden representation.

4) Four deconvolutional layers with 16 filters, stride 2x2,

size 2x2, 3x3, 4x4, 5x5, respectively.

5) A deconvolutional layers with 1 filter, stride 1x1, size

6x6, followed by hyperbolic tangent activation.

This architecture shrinks the input by a factor 32 (e.g., a 32x32

image is turned into a 32 element hidden representation).

Architecture N2 is the same as N1, but the convolutional

layer returning the hidden representation is substituted by three

layers: (i) one convolutional layer with 16 filters, stride 2x2,

size 2x2; (ii) one convolutional layer with 16 filters, stride 2x2,

size 1x1; (iii) one deconvolutional layer with 16 filters, stride

2x2, size 2x2. This architecture shrinks the input by a factor

64 (e.g., a 32x32 image is turned into a 16 element hidden

representation).

Architecture N3 is the same as N1, but the convolutional

layer returning the hidden representation is substituted by a

convolutional layer with 16 filters, stride 2x2, size 2x2. This

architecture shrinks the input by a factor 16 (e.g., a 32x32

image is turned into a 64 element hidden representation).

All networks have been trained using Adam optimizer

with default parameter until loss function stopped decreasing.

Network input was always normalized in range [−1, 1]. All

tests were run on a workstation equipped with a Titan X GPU

reaching convergence in a few minutes.
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Fig. 3: Example of an original B-scan X showing an hyperbola (a),
its autoencoded version X̂ in which the hyperbola is not perfectly
reconstructed (b), and spatial reshape of ei related to B-scan patches.

B. Dataset
All used data has been acquired using the same system

of [10]. Specifically, we used a GPR equipment consisting

in an IDS Aladdin (IDS Georadar srl) radar, a shielded

ground coupled dipole antenna (spaced 9 cm), with a central

frequency and a bandwidth of 2 GHz. A soft pad, the PSG

[14], was placed between the radar equipment and the soil to

ensure accurate measurements and fixed antenna orientation

from trace to trace. We acquired data so that each A-scan

corresponds to a time window of 20ns and contains 384

time samples. For B-scans acquisition we considered inline

sampling of 0.4cm and crossline sampling of 0.8 cm.
With this system we acquired data from two different test

sites. The first setup (i.e., S1) corresponds to the one presented

in [10], consisting of 9 different targets representing inert

landmine models and battlefield debris buried in a sand pit

characterized by a very low clay content and a gritty texture,

at a depth of approximately 10 cm. In this setup we acquired

114 B-scans. The second setup (i.e., S2) consists of 8 targets

representing inert landmine models and rocks buried in long

jump landing pit sand. In this setup we acquired 64 B-scans.

For each setup, we manually labeled each B-scan by knowing

where objects were buried.
As explained during numerical analysis, we constructed dif-

ferent training datasets by changing the amount of considered

training B-scans and setups. For testing, we always considered

all B-scans non used for training belonging to setup S1 only.

V. EXPERIMENTAL RESULTS

In this section, we explain the used evaluation metrics and

collect results from our numerical analysis.

A. Evaluation Metrics
The proposed method is based on a threshold Γ. We

therefore evaluated our technique by means of receiver op-

erating characteristic (ROC) curves. A ROC curve represents

the probability of correct detection (i.e., correctly finding an

object) and probability of false detection (i.e., detecting objects

in clear areas) by spanning all possible values of the threshold

Γ. This means that each working point of a ROC curve

determines a specific Γ value. As compact measure of ROC

goodness we selected the area under the curve (AUC). This

measure ranges between 0.5 (i.e., random guess) and 1 (i.e.,

perfect result).
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(a) Different training set size B

(b) Different training setup S

Fig. 4: ROC curves under different conditions: (a) proposed N1 and
baseline [10] changing the amount B of used training B-scans; (b)
proposed solution trained on setups S1 and S2, then tested on S1.

B. Numerical Analysis

To provide a visual example of the working method, Fig. 3

shows a B-scan region X, its encoded and decoded version

X̂, as well as the patch-by-patch error ei obtained using

architecture N1 with patches of size 32x32. It is possible to

notice that the original hyperbola due to a buried object is

just only mildly reconstructed in X̂. Conversely, the rest of

the B-scan is almost perfectly autoencoded. Computing ei it

is possible to clearly spot an area with high mean square error,

corresponding to the detected hyperbola.

To investigate the effect of using more training data, we

tested our architecture N1 using patches of size 32x32 using

B = 1 or B = 3 training B-scans. Fig. 4a shows the ROC

curves for our method, and the baseline [10] in the same

exact conditions. It is possible to notice that our method

improves over [10] when only few data is available for

training. Moreover, we apparently do not need to use a high

number of training images, as results using B = 1 and B = 3
are comparable. It is also worth noting that [10] makes some

assumptions on the kind of expected hyperbola, as its training

contain both patches showing and not hyperbola traces.

Another test we performed consisted in fixing architecture

N1 and changing the image patch size considering 16x16,

32x32 and 64x64. Results remain in line with those presented

in Fig. 4a with a maximum AUC deviation of 1%. We therefore

stopped our investigation on patch size, considering 32x32 a

good choice.

Moreover, we tested the different architectures N1, N2 and

N3 on setup S1 using B = 3 training images. Also in this

case we obtained comparable results, with slight AUC decrease

for N2, which reduces data dimensionality too much. For this

reason we decided to only consider N1 for other tests.

Finally, we performed a cross-dataset test. We trained N1

on B = 3 B-scans split into 32x32 patches using either setup

S1 or S2. Fig. 4b shows results in terms of testing on setup

S1 only. It is possible to notice that the proposed method is

robust against cross-training (i.e., training on S2 and testing

on S1). This means that the system is not strictly tailored to

the only kind of soil used during training.

VI. CONCLUSIONS

In this paper we proposed an anomaly detection technique

based on convolutional autoencoders for landmine detection

in GPR data. The proposed solution is a data-driven approach

exploiting a one-class paradigm. Our system uses only data

not containing landmine traces at training stage. This makes

the system robust to a wide variety of targets, as no strong

assumptions are a priori made. Moreover, it is easy to train the

system on any specific soil condition. In a practical situation,

the system could be trained on a small area that has been

previously checked to not contain landmines. Then, it can be

used to test neighboring regions. Future work will focus on

disambiguation between anomalies due to actual landmines or

different buried objects.

REFERENCES

[1] International Campaign to Ban Landmines, “Landmine monitor 2015,”
Human Rights Watch, 2015.

[2] T. R. Witten, “Present state of the art in ground-penetrating radars for
mine detection,” in SPIE Detection and Remediation Technologies for
Mines and Minelike Targets, 1998.

[3] Y. Liao, L. W. Nolte, and L. M. Collins, “Decision fusion of ground-
penetrating radar and metal detector algorithms - a robust approach,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 2,
pp. 398–409, 2007.

[4] H. Chen and A. G. Cohn, “Probabilistic robust hyperbola mixture model
for interpreting ground penetrating radar data,” in International Joint
Conference on Neural Networks, 2010.

[5] G. Borgioli, L. Capineri, P. Falorni, S. Matucci, and C. G. Windsor,
“The detection of buried pipes from time-of-flight radar data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 8, pp.
2254–2266, 2008.

[6] H. Frigui and P. Gader, “Detection and discrimination of land mines
in ground-penetrating radar based on edge histogram descriptors and a
possibilistic k -nearest neighbor classifier,” IEEE Transactions on Fuzzy
Systems, vol. 17, no. 1, pp. 185–199, 2009.

[7] P. A. Torrione, K. D. Morton, R. Sakaguchi, and L. M. Collins,
“Histograms of oriented gradients for landmine detection in ground-
penetrating radar data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 3, pp. 1539–1550, 2014.

[8] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, January 2009.

[9] L. E. Besaw and P. J. Stimac, “Deep convolutional neural networks for
classifying GPR B-scans,” in SPIE Detection and Sensing of Mines,
Explosive Objects, and Obscured Targets, 2015.

[10] S. Lameri, F. Lombardi, P. Bestagini, M. Lualdi, and S. Tubaro, “Land-
mine detection from GPR data using convolutional neural networks,” in
European Signal Processing Conference (EUSIPCO), 2017.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[12] D. Cozzolino and L. Verdoliva, “Single-image splicing localization
through autoencoder-based anomaly detection,” IEEE International
Workshop on Information Forensics and Security (WIFS), 2016.
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