Title: Quantifying species contributions to ecosystem processes: a
global assessment of functional trait and phylogenetic metrics across
avian seed-dispersal networks

Authors: Alexander L. Pigot¹,², Tom Bregman³,⁴, Catherine Sheard³,⁵, Benjamin
Daly³, Rampal S. Etienne¹, Joseph A. Tobias³,⁶

Affiliations: ¹Groningen Institute for Evolutionary Life Sciences, University of
Groningen, Groningen, The Netherlands, PO Box 11103, Groningen 9700 CC, The
Netherlands. ²Centre for Biodiversity and Environment Research, Department of
Genetics, Evolution and Environment, University College London, Gower Street,
London, WC1E 6BT. ³Edward Grey Institute, Department of Zoology, University of
Oxford, Oxford, OX1 3PS, UK. ⁴Global Canopy Programme, 23 Park End Street,
Oxford, OX1 1HU, UK. ⁵Department of Archaeology & Anthropology, University of
Bristol, 43 Woodland Drive, Bristol BS8 1UU. ⁶Imperial College London, Silwood
Park, Ascot SL5 7PY, UK.

*Correspondence to: alex.pigot1@gmail.com

Keywords: ecological network, ecosystem function, functional diversity, interaction
network, mutualism, phylogenetic diversity, seed dispersal.

Number of words (6100)

Number of tables (0)

Number of references (59)

Number of figures (2)
Quantifying the role of biodiversity in ecosystems not only requires understanding the links between species and the ecological functions and services they provide, but also how these factors relate to measurable indices such as functional traits and phylogenetic diversity. However, these relationships remain poorly understood, especially for heterotrophic organisms within complex ecological networks. Here we assemble data on avian traits across a global sample of mutualistic plant-frugivore networks to critically assess how the functional roles of frugivores are associated with their intrinsic traits, as well as their evolutionary and functional distinctiveness. We find strong evidence for niche complementarity, with phenotypically and phylogenetically distinct birds interacting with more unique sets of plants. However, interaction strengths — the number of plant species dependent on a frugivore — were unrelated to evolutionary or functional distinctiveness, largely because distinct frugivores tend to be locally rare, and thus have fewer connections across the network. Instead, interaction strengths were better predicted by intrinsic traits, including body size, gape width and dietary specialisation. Our analysis provides general support for the utility of traits in quantifying species ecological functions, but also highlights the need to go beyond simple metrics of functional or phylogenetic diversity to consider the multiple pathways through which traits may determine ecological processes.
Introduction

Anthropogenic activity is driving a worldwide decline in the abundance and diversity of species [1], threatening the functional integrity of Earth’s ecosystems [2, 3]. Reliably predicting and thus mitigating against the effects of biodiversity loss, is contingent upon a robust understanding of the contributions of species to the functioning, stability and resilience of ecosystems [4, 5]. However, direct measurements of such contributions are rarely available, leading to the widespread use of functional traits and phylogenetic history as surrogates for species ecological roles [6-11].

The use of trait-based and phylogenetic tree-based proxies is largely based on the idea of niche complementarity, whereby species with similar functional traits and thus partially overlapping niches are expected to perform similar, and to a certain degree redundant, ecological roles [12, 13]. This theory predicts that the functional contributions of species increase with their functional trait distinctiveness (hereafter FD) relative to other members of the community [14]. Because closely related species are expected to share similar traits, ecological redundancy is also expected to decrease with species evolutionary distinctiveness (ED), typically quantified using phylogenetic branch lengths [15]. As a result, for a given richness, assemblages containing a greater functional or phylogenetic diversity of species are expected to provide a greater variety and efficiency of ecological functions [12, 15-17].

Spurred by a growing availability of phenotypic and phylogenetic data, the idea that species functional roles can be quantified on the basis of FD or ED has rapidly been incorporated into conservation biology [6-11]. However, the extent to which simple metrics of functional and phylogenetic diversity provide reliable surrogates for the functional integrity of ecosystems remains unclear for at least two
key reasons [4, 18, 19]. First, most theory and evidence for the effects of functional
diversity is based on experimentally assembled plant communities structured
primarily by competition [20]. The extent to which this framework generalizes across
naturally assembled ecosystems, comprising complex ecological networks of species
linked by different kinds of interactions (e.g. predation, mutualism) has yet to be
established [19, 21]. Second, in addition to FD, species functional contributions are
also expected to vary due to differences in abundance [22, 23] and the possession of
particular intrinsic traits, such as large body size, that may confer a disproportionate
impact on ecological processes [24, 25]. These effects of abundance and intrinsic
traits have the potential to amplify, counteract or even reverse the positive effects of
FD, but we know little about how these different factors co-vary across species and
thus combine to determine species functional roles [26-28]. This is especially the case
across large, heterotrophic organisms that are generally not amenable to experimental
manipulation and where species ecological roles are difficult to quantify.

Here we address this issue, using frugivorous birds as a model system for
examining the links between FD and species functional roles. Seed dispersal by
frugivorous birds is an essential process in plant recruitment, especially in tropical
forests where co-evolution between fruiting plants and their seed dispersal agents is
most pronounced [29, 30]. Furthermore, many studies have demonstrated that the
mutualistic interactions between plants and frugivorous birds are strongly structured
according to several clearly defined and easily measured functional traits [31-34]. For
instance, while foraging height determines which plants a bird is likely to encounter
[33], morphological traits such as beak shape and body size influence the rewards and
handling efficiency of feeding on different fruits [31, 34]. This tight association
between traits and resource use, leads to the prediction that frugivores with more
distinct traits will perform more unique functional roles [21, 35] and, all else being
equal, will thus support a greater number of plant species within the network than
those frugivores with less distinct traits [36-38].

To test the extent to which FD can provide a surrogate for frugivore functional
roles we assembled a comprehensive database of avian functional traits across a
global compilation of plant-frugivore interaction networks (see table S1 for references
of the original studies). These networks collectively describe >58000 unique
interaction events across 546 species of birds and allow us to address the following
key aims. First, we examine how trait and phylogenetic similarity relates to the
dietary overlap between frugivores, and thus test the importance of niche
complementarity, a key assumption underlying the relationship between functional
diversity and function. Second, we conduct analyses examining how the functional
roles of frugivores within networks are related to their FD (and ED) as well as a
number of intrinsic traits for which an effect on function is expected. We quantified
species functional roles according to three quantitative network metrics relevant to
understanding the effects of FD, including the frequency of interactions [39],
interaction specialisation [40] and interaction strength — a measure of the number of
plant species dependent on each frugivore [41]. Finally, because direct estimates of
species abundance are not available for the networks we study, we examine the link
between species FD and abundance across a global database of avian communities
[42] using ED as a proxy for FD. Through this approach, we aim to provide a critical
and broad-scale assessment of the utility of functional traits as surrogates for the
ecological functions supported by frugivorous birds.

Methods
We compiled from the literature a database of mutualistic networks describing the visitation and feeding events between birds and fruiting plants. In total, we obtained 34 networks from 25 studies distributed across all the world’s continents (except Antarctica) (table S1). Of these networks, 23 are ‘quantitative’, recording not only the presence or absence of interactions but also the number of individuals visiting each plant species (i.e. visitation rate). Although interaction events are not synonymous with seed-dispersal events [43], they are the best available proxy at this scale in the absence of more detailed information on disperser effectiveness [26, 39]. To ensure that we focused on species most likely functioning as seed dispersal agents, we excluded known seed predators (species in the family Psittacidae, n = 23 species). The functional traits included in this study are specific to birds, and thus we also removed the small number of observations for non-avian frugivores (n = 43 species). Our final database included a total of 58401 unique interaction events between 546 species of birds and 1141 species of plants (table S1, database S1).

Published seed-dispersal networks rarely contain information on species local abundance. To assess how functional distinctiveness may be related to abundance, we therefore downloaded count data for a global compilation of avian assemblages from the online ‘Ecological Register’ repository (http://ecoregister.org/) [42]. This dataset contains 166 avian assemblages, comprising 6976 count estimates from across 2344 species.

Avian functional traits and phylogenetic relationships
For each avian species, we collected ten morphometric measurements, including published estimates of mean species body mass (g) [44] and nine traits measured from field collections and preserved museum skins (database S1). The nine traits measured here (to the nearest 0.01 mm) were: beak length (two separate measures), beak width, beak depth, gape width, tarsus length, tail length, wing length, and Kipp’s distance, the distance between the tip of the longest primary and the first secondary (see table S2 for further details). Previous results indicate that these traits are robust proxies for resource use, foraging manoeuvre and substrate [45]. Where possible, we obtained measurements from at least two individuals from each sex for each species (n = 2665 specimens, mean = 5 per species). Throughout, we used the LN-transformed mean species values to calculate trait distances between frugivores.

Phylogenetic relationships among avian species were extracted from the Jetz et al [46] time-calibrated phylogeny assuming the Hackett backbone topology. To account for phylogenetic uncertainty, we conducted our analysis across 100 trees drawn at random from the posterior distribution.

(d) Testing for niche complementarity between frugivores

For each pair of species in each network we quantified an inverse measure of interaction similarity using the Horn-Morisita distance (dHM). For each network we then calculated the Spearman rank correlation (ρ) between dHM, species phylogenetic patristic distance and Euclidian trait distance. We compared the observed correlation to that expected under a null model of random network structure (1000 replicate simulations) in which interactions between birds and plants were randomly re-assigned while maintaining the exact species degree (i.e. number of partners) of each node, using the ‘permatfull’ function in the R package Vegan [47]. We calculated the
standardised effect size of observed ρ values (i.e. the z-score) and quantified the
number of networks exhibiting a significant positive or negative z-score. We assessed
the overall significance of a departure from null model expectations using a t-test ($p =
0.05$, two-tailed test). To ensure that our results are robust to the quality of network
data and null model assumptions, we repeated our analysis using only quantitative
networks ($n = 23$ networks, database S2). In this case, the null model maintained the
observed frequency of interactions for each node [48].

(e) Quantifying species functional roles

We quantified the roles of frugivores within the network using three complementarity
metrics, focusing on quantitative networks ($n = 485$ observations from 320 species),
which provide the most robust information on species interactions [49].

i) Visitation rate: the number of interactions performed by a species represents
a major quantitative constraint on species functional impact [26]. Although this metric
ignores any potential differences in the ‘quality’ of dispersal agents, these effects may
generally be outweighed by the large observed variation in visitation rates [39].

ii) Specialisation (d'): we quantified the degree of specialisation of each
frugivore using the standardised Kullback-Leibler distance [40]. This metric of
specialisation varies from 0 (generalist) to 1 (specialist), and accounts for differences
in visitation rates both across frugivores and plants. Specifically, frugivores that
deviate from a random sampling of available interaction partners by preferentially
interacting with otherwise rarely visited plants are deemed more specialised.

iii) Species weighted interaction strength: The strength of the interaction
between frugivore species i and plant species j is calculated as the number of visits by
frugivore i to plant j, divided by the total number of visits to plant j [41]. A higher
interaction strength indicates a greater dependency of plant j on frugivore i, and the sum of these values for each frugivore thus provides an integrated measure of its quantitative impact on the plant community.

(f) Identifying the predictors of species functional roles

We examined a number of potential predictors of visitation rates, specialisation d' and interaction strength. We quantified species functional trait distinctiveness (FD) relative to other members of the network using three standard metrics: i) the mean trait distance (MTD), ii) the mean nearest neighbor distance (MNTD), and iii) the distance to the centroid of trait space (CenD). These metrics quantify different aspects of distinctiveness that are expected to influence network roles in different ways. In particular, while MTD and CenD quantify the departure from the average trait value of a community, MNTD is more sensitive to the effects of niche partitioning between the most ecologically similar species [50]. Based on phylogenetic data, we quantified the evolutionary distinctiveness (ED) of species both globally (between all bird species) and locally (between members of the network) using the equal splits (EDES) and fair proportions (EDFP) measures [51]. We account for phylogenetic uncertainty using the mean species ED value from across 100 phylogenetic trees drawn at random from the Bayesian posterior distribution.

We compared the effects of FD and ED to a number of intrinsic traits proposed to influence frugivore functional roles, including the degree of obligate frugivory, average foraging height, body mass and gape width. We extracted gape width measurements (mm) and body mass (g) from our dataset of morphological traits. The degree of obligate frugivory (%) was obtained from an independent dataset containing the percentage contribution of fruit, as well as six other food types.
(invertebrates, vertebrates, carrion, seeds, nectar and ‘other plant material’), to species’ diets [44]. We also used this dataset to calculate species foraging height as the weighted mean across five ordinal levels (1 [ground], 2 [understorey], 3 [midstorey-lower], 4 [midstorey-upper] and 5 [canopy]). Finally, previous evidence suggests that geographically rare species may be more functionally distinct [7], and so we also included geographic range size, calculated by overlaying species breeding extent of occurrence maps on an equal area grid (cell resolution of 110 km ≈ 1° at the equator) [52]. Terms exhibiting a positive skew were LN-transformed and all predictors were normalised to enable a direct comparison of effect sizes.

Species within networks are not independent and networks from the same region may share similar characteristics. We therefore modeled species functional roles using linear mixed-effects models, fitted in the R package lme4, including ‘region’ (typically corresponding to countries), ‘network’ and ‘species’ as random effects. We also included ‘avian family’ as a random effect to ensure that any significant relationships are not driven by individual clades. Finally, we accounted for over-dispersion in the residuals of our model predicting visitation rates by including an additional observation level random effect [53].

We tested the predictors of interaction strength and specialisation following LN and angular transformation respectively. For visitation rate, we used a generalised linear mixed model, assuming a Poisson error structure. When predicting visitation rates we accounted for difference in overall sampling intensity across networks by including the total number of observed interaction events as an offset term. Because interaction strengths will also vary due to sampling intensity and species richness, we standardised species scores relative to the maximum value observed in each network. Predictor terms were assessed both in isolation and in combination using multi-model
averaging [54]. Specifically, we calculated the AIC of models including every
combination of predictors and then used model AIC weights to calculate average
effect sizes, significance and relative variable importance. Metrics of FD and ED
provide alternative measures of distinctiveness and so we fit five different model sets,
one for each metric. Finally, because gape width and body mass (Pearson correlation \(r > 0.8 \)) are strongly correlated we fit separate models for each of these variables.

(g) Quantifying the relationship between distinctiveness and abundance
We tested the relationship between the local abundance of species in each assemblage
and local ED (LN-transformed) using a generalised linear mixed effects model,
assuming a Poisson error structure and including ‘assemblage’, ‘species’, ‘avian
family’ and observation level random effects. We also calculated the correlation
coefficient between ED and local abundance within each avian assemblage to
examine how this relationship varies as a function of species richness and across
geographic space.

Results

(a) Functional trait-based complementarity of frugivore niches
We found that dietary distance (\(d_{HM} \)) between avian frugivores was positively
correlated with trait dissimilarity (figure 1, table S3). Of the 34 networks, 27 exhibited
a positive standardised effect that was significant in 14 cases [\(p < 0.05 \)], strongly
rejecting a null model of random network structure (t-test: \(t = 4.87, p < 0.001 \)).
Phylogenetic distance was positively associated with trait distance (33 of 34 networks
exhibited a positive slope, mean correlation = 0.42; table S3) and accordingly, we also
detected a significant positive relationship between d_{HM} and phylogenetic distance (t-test: $t = 3.77$, $p < 0.001$; table S3). These results were largely robust to the type of network and null model used. When we focused exclusively on quantitative networks, d_{HM} remained positively correlated with both trait (t-test: $t = 3.06$, $p = 0.006$) and phylogenetic distance (t-test: $t = 1.82$, $p = 0.08$), although the latter relationship was marginally non-significant (table S4).

(b) The relationship between functional traits, visitation rates and abundance

The strongest predictor of visitation rates was the degree of obligate frugivory, with specialist frugivores undertaking more visits than dietary generalists (figure 2, table S5). Although visitation rates increased significantly with foraging height when assessed in isolation, this term was not significant in a multi-predictor model. In a single-predictor model, visitation rates decreased significantly with FD according to the MTD metric. However, when we accounted for the degree of obligate frugivory in a multi-predictor model, all FD (except CenD) and local ED metrics were strongly negatively associated with visitation rates. In contrast to local distinctiveness metrics, Global ED was unrelated to visitation rates (figure 2, table S5).

In accordance with the patterns of visitation rates, species abundance in avian assemblages was negatively associated with local ED (slope = -0.36, $P < 0.001$, $n = 6976$ records). This negative relationship was globally consistent and evident across 88% of assemblages (figure S1).

(c) The relationship between functional traits and specialisation
Specialisation (d') increased with FD, an effect that was strongest when quantified using the MTD metric (figure 2, table S5). d' also increased significantly with body mass. This latter effect appears to arise because of the covariation between body mass and MTD, because when including both terms in a multi-predictor model only MTD retained its significant effect. All other intrinsic traits had low variable importance scores and were not significant predictors of d' (figure 2, table S5).

(d) The relationship between functional traits and interaction strength

Obligate frugivory and body mass were the strongest predictors of species interaction strengths, indicating that large-bodied specialist frugivores have the highest quantitative impact in the network (figure 2, table S5). Although interaction strength increased significantly with gape width when assessed in isolation, this term was no longer significant when accounting for other covariates. Importantly, across both single and multi-predictor models, interaction strength was not significantly related to either FD or ED. In fact, most distinctiveness metrics exhibited a weak negative association with interaction strength that was marginally non-significant in the case of MTD (figure 2, table S5).

Discussion

Our analysis of the functional and phylogenetic structure of avian frugivore networks provides support for trait-based niche complementary between species, a key pattern thought to underpin the positive relationship between functional trait diversity and ecological function. In particular, we found that closely related frugivores with similar functional traits consistently interact with more similar sets of plants, while distantly related birds with distinct traits exhibit relatively little overlap in resource use. In
accordance with this, our analysis showed that frugivores with distinct traits also tend to be more functionally specialised, interacting with plants that are less frequently visited by other members of the community. The importance of functional trait matching in structuring interactions within plant-frugivore networks is well established [31-34, 55] [56], and our analysis across multiple networks, regions and ecosystems, further highlight the utility of functional traits as general predictors of the overlap and specialisation of these mutualistic interactions.

The pattern of niche complementarity that we report here is expected to lead to a positive relationship between FD and species functional contributions, because species with distinct traits should be less ecologically redundant [21]. We found that functionally distinct birds do tend to feed on less frequently visited plants, suggesting that species per capita impacts may indeed increase with FD. However, our analysis also shows that this does not translate into stronger interaction strengths and thus higher quantitative impact at the species level because functionally distinct species tend to undertake fewer interactions overall (i.e. have lower visitation rates). As a result, on average, plants were no more dependent on interactions with functionally distinct frugivores than they were on species with seemingly more redundant traits. This lack of relationship between FD and species interaction strength was true regardless of the metric used to calculate FD or whether we employed ED as a proxy for trait distinctiveness.

One possible explanation for the decline in visitation rates with FD is the occasional inclusion in the networks of distinct and distantly related species from other trophic guilds that rarely feed on fruit. However, this is unlikely to explain our results, because we found that the negative effects of FD on visitation rates actually became stronger when we statistically accounted for the degree of obligate frugivory
and other intrinsic species traits. Visitation rates are expected to strongly reflect underlying differences in species abundance [39] and thus an alternative explanation is that the decline in visitation rates with FD is driven by a lower abundance of distinct species within local assemblages. Here, using phylogenetic relatedness as a proxy for trait similarity, we reveal this trend in birds at a global scale by showing that locally evolutionary distinct species consistently occur at lower densities than those species coexisting with many close relatives. Thus, our results suggest that the quantitative impacts of frugivores are independent of FD, because the positive effects of reduced ecological redundancy are nullified by a corresponding decrease in abundance.

A lower abundance of species with distinct functional traits has been demonstrated in assemblages of plants and reef fish [7, 57] and a similar trend of declining visitation rates with FD has also recently been reported for insect pollinators in New Zealand [50]. The processes driving these trends are unclear, but trait-dependent environmental selection provides a likely candidate [58]. In particular, we speculate that if certain trait combinations are unfavorable in the local environment, then these trait values will be represented by both few individuals and species. While this negative relationship between abundance and trait distinctiveness is not included in traditional biodiversity-ecosystem function theory [12], our results suggest that it may be sufficient to decouple FD from the functional impacts of frugivores within seed-dispersal networks.

Although species interaction strengths were generally unrelated to metrics of functional diversity, we detected a significant effect of intrinsic functional traits, notably obligate frugivory, body size and gape width. Previous studies have suggested that obligate frugivores play an important role as ‘network connectors’ because of
their nutritional requirement to feed on multiple different fruits [59]. In contrast, our
analysis shows that frugivory is unrelated to interaction specialisation, and that the
stronger interaction strengths of obligate frugivores is instead likely due to their
higher feeding rates. The positive contributions of body size and gape width to
interaction strength also make sense. While plants producing small fruits can be
dispersed by a wide variety of birds, only large-bodied frugivores with wide gapes are
able to disperse the fruits of large-seeded plants [31]. The primary importance of
large-gaped frugivores for seed-dispersal has previously been shown [60] and our
analysis extends this finding across different avian assemblages, highlighting the
status of large-gaped species as what might be termed ‘network keystones’.

Furthermore, large-bodied specialist frugivores also appear highly sensitive to human
pressures, being the first to disappear following habitat degradation [25], suggesting
that even the loss of only a few frugivore species may have a disproportionate impact
on the maintenance of seed-dispersal services.

Metrics used as surrogates for ecosystem function in conservation biology
generally only consider the functional and phylogenetic diversity of species and rarely
account for species abundance or intrinsic functional traits (e.g. [8-11]). This is
because, at such broad spatial and taxonomic scales, information on abundance is
generally unavailable while the relationships between intrinsic traits and ecosystem
functions are generally unclear. However, abundance and intrinsic traits are known to
exert major constraints on species functional effects [22, 27, 28], and our results
suggest that standard functional and phylogenetic diversity metrics ignoring these
aspects of assemblage structure may misrepresent the diversity of interactions
supported by avian frugivores [61], and within ecological networks more generally
[50].
These conclusions are subject to a number of caveats. First, we have focused on how functional traits relate to the present day quantitative impacts of species within networks. In contrast, the functional resilience of networks is likely to also depend on network topological plasticity and the ability of species interactions to be ‘re-wired’ following extinction [62]. It seems likely that species with distinct traits are generally less functionally substitutable than those with more redundant phenotypes, although this remains conjecture until further empirical evidence has been compiled from ‘re-wiring’ events. Second, birds mediate a number of critical ecological processes beyond seed dispersal, including pollination, predation and nutrient recycling [63]. Our results therefore do not preclude the possibility that a positive effect of functional distinctiveness on function may emerge when considering multiple ecological processes (i.e. multi-functionality) [17]. Finally, our meta-analysis examining the quantitative component of seed-dispersal networks assumed that higher interaction strengths translate into larger functional impacts [26, 39], which may not always be the case given the potential for interspecific variation in the effectiveness of avian dispersal agents [43].

Broad-scale comparative analyses of how functional traits and phylogenetic metrics relate to the functional roles of species provide an important perspective in helping to translate the results of detailed experimental studies to reliably predict, and thus mitigate, the consequences of species loss in natural ecosystems. However, these efforts remain preliminary and the robustness of any conclusions drawn at this scale will depend on the quality and relevance of the ecological data used to quantify species functional roles. Our analysis using data on frugivore-plant interaction intensities confirms a general pattern of trait-based niche complementarity across networks, but nonetheless suggests that functional trait diversity may provide a
relatively weak surrogate for frugivore functional roles. A more detailed examination of the links between functional diversity, abundance, and ecological processes is a key priority for future research.
Acknowledgements

We thank Nico Alioravainen, Monte Neate-Clegg and Samuel Jones for assisting in the collection of trait data, Chris Cooney, Robert Heathcote, Ally Phillimore, Uri Roll, Chris Trisos, Anthony Waldron and Nasim Zargar for their helpful advice and discussion and Nathalie Seddon and three anonymous reviewers whose comments greatly improved the manuscript. This study was funded by a Natural Environment Research Council research grant (JAT), VICI grant (RE) and a VENI fellowship (AP).

Data accessibility statement

The data used in this study has been deposited in Data Dryad database S1.

Author contributions

AP devised the research, TB, CS, BD compiled data, AP performed the analyses, AP, RE and JAT wrote the paper.

Competing Interests

There are no competing interests.

Ethics Statement

NA
References

Figure 1. Functional trait-dependent structure of mutualistic seed-dispersal networks. Observed correlations between dietary d_{HM} and functional trait dissimilarity (circles) across the 34 empirical networks compared to the expectations under the null model (horizontal bars indicate 95% confidence interval). Filled circles indicate correlations that are stronger than expected under the null model.
Figure 2. Functional trait and phylogenetic predictors of species network roles quantified on the basis of visitation rates, interaction specialization d' and interaction strength ($n = 485$). Results are shown for both univariate (U) and multivariate (M) models. M1-M4 denote models of interaction strength including various combinations of visitation rate and d' as predictors. Circle colour denotes positive (magenta) or negative (green) trends and statistical significance (dark: $p < 0.05$; light: $p > 0.05$). Circle size is proportional to the absolute effects size scaled relative to other predictors in each model.