Materials and methods

Three samples of cellulose acetate were prepared at the UCL Heritage Science Laboratory for the sorption and diffusion methods carried out at Imperial College London using the DVS Endeavour, produced by Surface Measurement Systems.

CA samples were prepared with 10% and 20% diethyl phthalate (DEP) and triphenyl phosphate (TPP) plasticiser, and with different thicknesses (0.8 mm and 2 mm respectively).

Sorption and diffusion in both unaged and aged (70 °C and 50% RH) samples were analysed using DVS at 25 °C under different RHs from 0% to 90% (in 10% RH increments). Each RH level was applied for 3 hours. Chemical changes, such as loss of plasticisers, were studied using FTIR and 1H NMR.

Results and discussion

In Fig. 1, the change in mass (%) is reported as a function of RH (%) for the cellulose acetate samples.

All the CA plastics present a similar Type III sorption isotherm profile, which indicates strong water-water interactions on the surface and the formation of multi-layers of water [2].

Although DEP and TPP plasticisers have slightly different hydrophobicities (log Kow 2.47 and 4.59 respectively [3]), their behaviour is similar, as it is possible to observe from the thick samples containing 10% DEP and TPP.

The CA with DEP and TPP show the same profile. As it can be observed, the CA with a higher amount of plasticiser (20%) absorbed a smaller amount of water vapour compared to the samples with 10% plasticiser. It is also evident that samples with a higher concentration of plasticiser absorb less water vapour due to the hydrophobicity property of the plasticiser.

The thickness of the sample can act as a barrier to the water uptake mechanism. However, as it is seen in the samples with 10% of DEP, at higher percentages of RH, the difference in water uptake between the thin and thick samples of 10% DEP disappears, and water uptake ceases to depend on thickness of the sample. The same however cannot be said for the samples containing 20% DEP.

It is evident that the aged thick CA/DEP has an uptake amount of more than 8.81% due to the hydrolysis process. This suggests that the migration of plasticisers is already underway.

Conclusion

This study has shown how the sorption mechanism in a hydrophilic polymer is related to the amount of plasticiser and thickness of the sample which can work as a barrier against water vapour.

The preliminary DVS studies have revealed that the hydrolysis process and the consequent migration and evaporation of the plasticisers results in an increase in the hydrophobicity of the plastic.

DVS has demonstrated to be a suitable technique for the study of water sorption in plastics, providing information on the material’s water sensitivity, which can provide guidelines for the conservation of plastics in museums.

References


Acknowledgements

The COMPLEX project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 716390).