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1 ABSTRACT 
Significant diversity between occupants and their presence and actions results in major uncertainty with regards to 

predicting building performance. However, current occupant modelling approaches – even stochastic ones - suppress 

occupant diversity by focusing on developing representative occupants. Accordingly, existing approaches tend to limit  

the ability of stochastic occupant models to provide probabilistic building performance distributions. Using occupancy 

data from 16 private offices, this paper evaluated three hypotheses: 1) occupant parameters have a continuous 

distribution rather than discrete; 2) modelling occupants from aggregated data suppresses diversity; and, 3) randomly 

selecting occupant traits exaggerates synthetic population diversity. The paper indicates that samples sizes for the 

studied occupants would have more appropriately been an order of magnitude higher: hundreds. This introductory 

paper shows that there are many future research needs with regards to modelling occupants. 

2 INTRODUCTION 
Occupant behaviour has become widely understood to be a leading cause of uncertainty in building performance. 

Moreover, occupants have an increasingly significant effect on building performance as buildings become more 

efficient (Page et al. 2008; Hoes et al. 2009). Numerous field and simulation studies have found the difference between 

the highest and lowest energy consuming occupants in a similar or identical set of homes or offices to be at least a 

factor of two (Gram-Hanssen 2010; Haldi and Robinson 2011). This uncertainty comes at a considerable cost because 

in most cases, engineers will size equipment or renewable energy systems (in net-zero energy buildings) to cover the 

highest expected loads or annual energy (Djunaedy et al. 2011). Furthermore, the predicted economic payback of 

various building upgrades – at design or for retrofit – can be significantly influenced by the assumptions made about 

occupants (Rasouli et al. 2013; Lee and Schiavon 2014). The uncertainty of occupants can be mitigated through 

building design and through diversity of larger buildings or district energy systems, but greater knowledge of the 

complex and dynamic human-building, including quantification of uncertainty and occupant diversity, is needed 

(O’Brien and Gunay 2015). For instance, heating equipment at the zone level should be sized in recognition that a 

certain fraction of occupants will prefer and choose heating setpoints that are at the upper limit of the normal range. 

But this does not mean that the entire building’s heating plant capacity should be sized as if all occupants prefer higher 

temperatures. On the contrary, we expect a diversifying effect such that heating plant sizing can be achieved using the 

mean expected temperature setpoint. But this of course, does not relieve designers of understanding the expected 

occupants and their systemic characteristics (e.g., suit-wearing executives, casually-dressed students, or active 

laboratory workers).  

It follows that the importance of occupant diversity modelling is also related to the design stage. Early in design, when 

building massing, window-to-wall area ratios, and other high-level decisions are being made at the building level, the 

importance of characterizing individual occupants is much lower than in detailed design where room features are being 

designed (Athienitis and O'Brien 2015). 

 Diversity can also provide a smoothing effect on peak loads in the temporal sense. For instance, if all occupants are 

modelled to arrive simultaneously and turn on lights and computers and meanwhile the controls are scheduled to 

activate heating or cooling simultaneously, peak building-level loads will be much higher than if arrivals are staggered.  

In the past decade, the research community has been developing more advanced occupant models based on monitoring 

data. It has been argued that occupants should be represented and modelled stochastically rather than deterministically 

(Nicol 2001). That is, occupants are unlikely to respond in the same way to a given set of circumstances in a machine-

like manner because there are many complexities to their decision making process. Thus, recent occupant modelling 

efforts have been primarily stochastic. But much of the research has focused on modelling a “typical occupant” for 

building simulation, rather than recognizing diversity between occupants with regards to their behaviour and presence. 

In essence, this results in a statistically representative occupant rather than a true representation of a population of 
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occupants. While a degree of uncertainty is introduced by developing agent-based stochastic models whose presence 

and actions are random at any given timestep, another major source of uncertainty stems from differences between 

occupants. 

Diversity has been studied at length in other fields such as biology, psychology, sociology, organizational behaviour, 

and behaviour science (e.g., Gangestad and Snyder 1985; Mohammed and Ringseis 2001; Van Knippenberg and 

Schippers 2007), yet seldom in the context of individual occupant models for BPS. In the current context, diversity 

means to have inter-individual variability with respect to building occupant traits that affect building performance. 

The most common current reference to “diversity” in BPS applications is the derivation and utilization of schedules 

that are normalized to unity and multiplied by some reference value (e.g., total building occupancy capacity or lighting 

power density) (Abushakra, Haberl and Claridge 2004; Bourgeois, Reinhart and Macdonald 2006). There is an implicit 

assumption for those diversity factors that they apply to large buildings (e.g., hundreds or thousands of occupants). 

For estimating building-level peak cooling loads, a major driver of diversity factors and schedules, the current 

approach achieves its purpose (Abushakra, Haberl et al. 2004). The main limitation of these standardized profiles is 

that they are not specific to a given building. In contrast to the traditional diversity profiles, the current focus on 

diversity is on a smaller scale (room-level) where the traditional approach is limiting. For instance, in private offices 

it does not make sense to discuss fractions of an occupant – particularly for the purpose of agent-based modelling 

where the occupants are not merely sources of passive heat gains, but rather active participants in energy performance. 

Also in contrast to the conventional diversity factor schedules, the current paper presents a method to stochastically 

introduce diversity of occupants into BPS tools.  

 

Contrary to pure laboratory-based studies, which control for contextual differences, such that personal characteristics 

and inter-personal traits can be quantified and controlled, there are additional layers of complexity from in-situ 

occupant monitoring campaigns. While, there is strong evidence to suggest that occupants have different sensitivities 

and preferences for comfort conditions (e.g., Nicol 2004; Boyce 2014), contextual factors further introduce noise to 

observed behaviours (O'Brien and Gunay 2014). The diversity in observed behaviours stems from multiple factors 

including sensitivity to environmental conditions, activity type, user interfaces, building controls schemes, personal 

health and wealth, environmental culture, job type and lifestyle, and many other contextual factors. Occupant 

preferences for indoor environmental conditions also depend on occupant metabolic rate, whether an occupant is 

reading, drawing or using a computer, and whether an occupant needs silence to concentrate. Furthermore, room and 

furniture layout could play a role on occupants’ behaviour. For instance, an occupant who is seated at a small desk 

near a window would be more sensitive to daylight glare than an occupant who is seated far from a window at a large 

desk with flexible seating positions (Jakubiec and Reinhart 2012) – even though indoor daylight levels would be 

typically measured identically for both offices. Anecdotally, some occupants may even alter their departure time from 

an office if conditions are uncomfortable. These confounding factors would likely result in prohibitively expensive 

and impractical experimental and in-situ studies because of the immense number of combinations. However, the 

aggregate effect of contextual factors can still be captured to develop more generalized models. Most occupant 

modelling studies have attempted to fit models to a limited number of environmental factors (Reinhart 2004; Rijal et 

al. 2007) with the contextual factors accepted as random noise. A limited number of studies (Sutter, Dumortier and 

Fontoynont 2006; Haldi and Robinson 2010; Schweiker et al. 2012) have had the privilege of several controlled 

contextual factors such that their impact can be quantified. An illustrative example of the diversity between occupants 

with respect to manual office light controls use is shown in Figure 1. It shows that the apparent diversity between 

occupants’ likelihood of turning on lights as a function of workplane illuminance is actually the aggregated effect of 

activity type, physiology, measurement method, contextual factors, and probably additional phenomena. 



 

Figure 1: Illustrative example of light-switching behaviour, showing that observed occupant diversity is an aggregate of many 

diverse factors. The net observed light-switching behaviour plot shows great diversity between individual occupants (each of whom 

is shown as a separate curve). The mean occupant curve is a poor representation of the sample.  

Many practical and theoretical questions arise for in-situ occupant monitoring and modelling campaigns, including: 

 Are the differences between occupants caused purely by inter-occupant physiological differences, contextual 

factors, or consistency of measurement methodology – or is it some complex mixture of these? 

 How should such data-driven models be converted and generalized for use in building simulation such that 

diversity is maintained? 

 What conclusions can be drawn about adequate sample size from occupant trait diversity? 

In spite of the aforementioned benefits of modelling diversity within occupant populations, this matter has been treated 

in relatively simple ways that leave many research questions, and in some cases could lead to significant error 

(Tahmasebi and Mahdavi 2016). While occupant modelling domains are plentiful and can cover adaptive and non-

adaptive actions as well as occupancy (i.e., presence), this paper is focused on application of diversity modelling to a 

single domain: private office occupancy. But prior to focusing on this domain, the paper provides a review of occupant 

diversity modelling approaches and then an in-depth examination of several occupant diversity approaches. Using the 

current occupancy application, three hypotheses about occupant diversity modelling approaches are examined using 

occupancy data from 16 private offices. The Page et al. (2008) model is applied and then adapted to generate synthetic 
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occupants to represent population diversity. In parallel to and to support the hypotheses being tested, four diversity 

modelling approaches are considered. 

 Cluster analysis is applied to the 16 occupants; 

 The data from all occupants are aggregated to develop a generalized model;  

 The 16 occupants are captured by 13 occupant traits which are randomly generated; and finally, 

 The same approach as above is used by with parameter correlations maintained. 

Finally, the practical, research, and monitoring campaign implications of diversity and diversity modelling are 

discussed.  

3 LITERATURE REVIEW 
Where occupant diversity modelling for BPS applications is acknowledged in the literature, it is normally comprised 

of four possible approaches: 1) use of real measured occupant data in simulation, 2) clustering of occupant types (e.g., 

active and passive) and then developing models for each occupant typology, 3) developing models from aggregated 

data from all monitored occupants, and 4) developing models for each occupant and then developing metamodels that 

define the model parameter distributions (Haldi 2013). The following sections briefly summarize the methods and 

merits of each approach. Later in the paper, the methods are critically examined using the current dataset in order to 

provide stronger evidence to the literature. 

3.1 Mapping real data to simulation 

Perhaps the simplest way to represent occupant behaviour realistically inside BPS is to directly map observed 

behaviours into building models (e.g., using schedule objects) (e.g., O'Brien et al. 2010; Tahmasebi and Mahdavi 

2015). Assuming the sample size is adequate, this approach incorporates diversity. However, its limitation is that it 

does not generalize results such that they can be applied to other buildings (e.g., unbuilt buildings) in the way that 

other modelling approaches can. But this approach is suitable for estimating energy savings from building retrofits or 

control modifications. This method is not pursued in the current paper, as it has limited applicability.  

3.2 Clustering 

Numerous modelling efforts have attempted to sort occupants into discrete typologies such that a small number of 

simulations can be run to infer a possible range of building performance levels. A particularly popular method to 

introduce diversity into simulation is to divide populations into passive and active users (e.g., Reinhart 2004; Rijal, 

Tuohy et al. 2007; Parys, Saelens and Hens 2011). In these papers, active users consistently adapt to environmental 

inputs while passive occupants never or rarely take actions. This approach is formed on the basis that several 

typologies of occupant have emerged from monitoring studies (D’Oca and Hong 2015). Similarly, Meerbeek et al. 

(2014) clustered all monitored occupants into groups with regards to their blind adjustment activity levels. However, 

it is not evident from their results that the occupants naturally cluster; the results resemble a continuous distribution.  

The clustering approach has appeal because it is conceptually simple and computationally efficient (i.e., only as many 

simulations as occupant types need to be run). There has been a human tendency to attempt to categorize people (e.g., 

personality types) (Myers, McCaulley and Most 1985). However, several challenges have emerged. First, using 

occupant typologies require estimates of population size for each cluster (Bourgeois, Reinhart et al. 2006). Secondly, 

it is not evident from the data that discrete clusters occur. The few researchers who have provided individual 

characteristics suggest much the opposite: that the data more closely resemble a continuum (Reinhart and Voss 2003; 

Yun, Steemers and Baker 2008; Haldi and Robinson 2010; Meerbeek, te Kulve et al. 2014). Finally, it is unclear 

whether an active user of one system is also an active user of the others. One can imagine that if multiple adaptive 

actions are modelled, the number of distinct occupant types would quickly become unmanageable. For instance, if 

there are five possible actions of interest (e.g., light switching and window opening) and two user types for each, there 

would be 32 (25 different occupant types). Yet after about four decades of occupant monitoring and modelling studies, 

only a handful of models have emerged from each common domain.  

3.3 Models from aggregated occupant sample data 

A prominent modelling approach in the past decade has been to develop models by aggregating monitored occupant 

data (e.g., window opening events and presence) and attempting to fit the data against one or more statistically 

significant input variables (Haldi and Robinson 2009)). Given that the equations that define the decision-making 

process (e.g., logistic regression curves) are unlikely to perfectly fit the data, some researchers have reported 



coefficient error ranges. The error distribution can then be used to select model coefficients at the beginning of each 

simulation period (nominally a year). In essence, this is selecting an occupant with a different set of characteristics to 

be run for the entire simulation period. There are, however, several limitations to this approach. Most notably, 

depending on how the data from multiple occupants are combined, the models (in the case of agent-based models) are 

biased towards those occupants that are most active. For instance, if one occupant turns on lights ten times more than 

another, the net effect of combining data from the two occupants will lead to a model that has the average occupant. 

Furthermore, there is a tendency to reduce the variance by fitting a single equation to data generated by multiple 

occupants. While the resulting models are technically stochastic, they typically do not yield the large inter-occupant 

variations in annual energy use that are seen in reality. In brief, this is because calling such models every timestep for 

a year-long simulation tends to have an averaging effect. 

3.4 Metamodels with reported coefficient distributions 

To address the bias towards certain occupants mentioned in the above method, Haldi (2013) suggested that a model 

be developed for each monitored occupant and then a probabilistic distribution for the model coefficients, from each 

occupant model, can be developed. In this way, the characteristics of each occupant are not biased through aggregation. 

Moreover, this approach alleviates the need to cluster occupants into discrete types. This approach has been seldom 

used for occupant modelling, though it is prevalent in the current paper. 

3.5 Occupancy Modelling 

Because the current domain used to explore diversity is occupancy (presence), a brief review of occupancy modelling 

is provided here. Occupancy modelling for BPS originated with basic hourly schedules to reflect typical building 

populations. This approach offers simplicity and simulation repeatability that is important for demonstrating code 

compliance. But the profiles are generalized to all buildings. Moreover, they are aimed at the building-scale, where 

multipliers can be applied to maximum expected capacity. As discussed later in this paper, this approach is most 

suitable for large buildings, but less so at the room level. Notably, these mean occupancy schedules are often arguably 

poorly named as “diversity factors”. (At a minimum the current meaning of diversity is quite different than that of 

diversity factors). Finally, schedules predict presence but not arrival and departure events of individual occupants. 

More recent research has shown that predicting occupancy is important beyond the resulting internal heat gains and 

indoor air quality implications; occupancy and arrival are good predictors for lighting and equipment use (Reinhart 

2004; Haldi and Robinson 2010). Accordingly, models to predict occupants’ arrival, departure, and presence began to 

emerge about a decade ago. Wang, Federspiel and Rubinstein (2005) proposed a non-homogeneous Poisson process 

model and distributions for the duration of vacancy and occupancy to model individual office occupants. Page, 

Robinson et al. (2008) developed an inhomogeneous Markov chain-based approach and also made the contributions 

of predicting long absence probability and duration and predicting a random number of daily breaks. But these models 

are focused on reproducing measured occupants rather than generating additional synthetic occupants for application 

in unbuilt buildings and they require relatively detailed inputs (e.g., mean occupancy schedule and some other abstract 

parameters). Andersen et al. (2014) developed a method based on inhomogeneous Markov chains and applied a 

hierarchical modelling strategy to distinguish between low and high presence occupants. 

More recent occupancy modelling research has focused on multi-zonal buildings (Agent-based and graphical 

modeling of building occupancy), overtime prediction (Stochastic Modeling of Overtime Occupancy and Its 

Application in Building Energy Simulation and Calibration (Sun 2014)), number of occupants and location within a 

space (Feng, Yan and Hong 2015), and other phenomena. D’Oca and Hong (2015) applied data mining and cluster 

analysis to study occupancy patterns in private offices and found that four occupant types emerged from the data. 

Mahdavi and Tahmasebi (2015) explored the diversity between occupants’ traits and found it to be significant. 

4 GENERAL OCCUPANT MODELLING METHODOLOGY  
This section first describes the general occupancy modelling approach and evaluates its ability to replicate real data. 

Following that, a dataset of 16 occupants’ presence (occupancy) – for between one and four years (depending on the 

office) - was examined to address three hypotheses about occupant diversity modelling.  

4.1 Dataset description 

The 16 identical private offices are located in a modern academic building in Ottawa (Figure 2). The building 

automation system (BAS) logs every time that a movement is detected using commercial and integrated passive 

infrared (PIR) sensors. This approach is unable to determine the number of occupants, though only a single occupant 

is expected in the private offices for the majority of the time. It is unlikely that anyone would be in the office without 



the primary occupant. The current scope is focused on predicting whether at least one person is present. The results 

should be taken into the context that occupants are all engineering professors, have relatively flexible hours, and are 

frequently absent for teaching, meetings, and travel. Thus, while their occupancy patterns may be diverse, there are 

no traits that inherently discretely divide them.  

 

Figure 2: Office building where monitoring occurred. 

4.2 Data pre-processing 

The data of each office were pre-processed using custom Matlab code to remove anomalies and expected errors. First, 

the data was arranged into 5-minute timesteps such that if the occupant was present for any part of a 5-minute timestep, 

the entire timestep was assumed to be occupied. This leads to a small error and reduces the ability to study very short 

absences (e.g., short washroom breaks), but it is much more convenient for modelling purposes. Five minutes was 

selected to balance accuracy and practicality. Simulation tools typically use between 5 and 15 minute timesteps for 

zone and building level phenomena.  

Next, occupancy events that consisted of a presence duration of 5 minutes and surrounded by an absence of 10 minutes 

or more, before and after, were removed. These are deemed to be janitor cleaning visits, safety inspections, or quick 

drop-off or pick-up events. Such events are unlikely to be associated with significant metabolic heat gains or adaptive 

actions (e.g., light switch events). Prior to this filtering, numerous overnight visits were observed in the data. 

Anecdotally, one of the authors, who is included in the dataset was not in his office between midnight and 7AM, yet 

numerous brief occupancy periods were detected. In previous work by Gunay et al. (2016), no false positives were 

detected from the PIR product used. 

Next, the data were rearranged in an array such that each column represented the occupancy for a day. The data 

revealed that mean occupancy for any given occupant does not significantly differ between weekdays for most 

occupants (Gunay, O'Brien and Beausoleil-Morrison 2015). Moreover, weekends were removed for simplicity. 

Weekend occupancy for most of the occupants was exceptionally rare.  

4.3 Occupancy data overview 

Figure 3 indicates that a wide diversity in daily arrivals and departures among the 16 occupants, with mean occupied 

periods (between first arrival and last departure) ranging from 2.6 to 9.3 hours. 



 

Figure 3: First arrival, last departure, and presence duration statistics for the individual occupants on occupied days only. The 

ellipses indicate the mean and extent of ± one standard deviation of the arrival and departure times for each occupant. The vertical 

dotted lines represent the median first arrival and last departure times for the whole sample of 16 occupants, while the two gray 

bands represent the mean first arrival and last departure times plus or minus one standard deviation for the entire sample. The 

occupants are ordered from shortest to longest mean occupancy (as measured from first arrival to last departure, thus ignoring 

intermediate absences). The occupant numbering is consistent for the paper. 

The individual occupant profiles that cover all weekdays during the monitored period (excluding absent days) are 

shown later inFigure 7. That figure indicates that the occupants are diverse with respect to occupancy profile shape 

and magnitude. Moreover, all occupants of the sample are present much less than typically assumed in offices (e.g., 

US DOE Reference Buildings (Deru et al. 2011)).  

4.4 Base occupancy modelling methodology 

The Page, Robinson et al. (2008) model was implemented, as it is a commonly used algorithm due to its ability to 

model likelihood of state changes and modelling the frequency and duration of long absences. However, some 

deviations from that model were used:  

 Only weekdays were modelled and only one representative weekday was modelled (not Monday through 

Friday separately).  

 Individual occupancy profiles were fit to Gaussian mixture models for generalizability. 

 The method used to describe occupant diversity was varied to address the hypotheses, as described later. 

As per Page’s model, there are a number of parameters that need to be extracted from the raw occupancy data, 

including the probability of presence as a function of time (i.e., occupancy profile), the mobility parameter, the 

probability of starting a long absence, and the probability distribution for the length of long absence. Readers are 

encouraged to refer to Page, Robinson et al. (2008) for details on the original model.  

In order to improve generalizability of the occupancy profiles and regularize complex and noisy occupancy profiles, 

each occupancy profile was fit to a Gaussian mixture model (GMM). GMMs with between one and five modes (peaks) 

explored, though those with more than three modes did not offer a significantly better fit. Thus, three-mode distribution 

was selected to fit these occupancy profiles. This choice is specific to the current sample.  

The corresponding GMM model form is: 

𝑜𝑐𝑐(𝑡) =∑𝑎𝑖𝑒
[−(

𝑥−𝑏𝑖
𝑐𝑖

)]
3

𝑖=1

 (1) 



 

where occ is the mean weekday occupancy at time of day t (in hours), ai indicates the amplitude (probability of 

presence) of each mode, bi is the mean of each mode, and ci indicates the width of each peak. The sets of coefficients 

were sorted such that each of the three terms of the model are in order of time of day (e.g., b1 indicates the timing of 

the first peak occupancy of the day; b3 is the last). Two representative examples are shown in Figure 4. The GMM 

parameter values for all 16 offices are shown in Table 1.  

 
 

Figure 4: Example plots for two occupants’ mean weekday occupancy and corresponding GMM (occupants 2 and 9). 

Table 1: Nine GMM occupancy profile parameters for each occupant.  

Occupant 
number a1 b1 c1 a2 b2 c2 a3 b3 c3 

Constraints  >0   >b1   >b2  

1 0.14 10.07 1.49 0.35 12.43 1.22 0.23 15.54 1.67 

2 0.45 9.22 1.08 0.17 9.75 0.16 0.36 14.06 2.56 

3 0.63 8.93 0.98 0.57 12.92 1.92 0.52 16.72 1.53 

4 -0.03 13.61 1.07 0.11 14.73 4.25 -0.02 19.79 1.80 

5 0.23 10.18 1.54 0.27 14.19 2.17 0.13 17.06 0.78 

6 0.20 13.53 1.09 0.14 15.74 4.27 0.25 17.83 0.92 

7 0.19 9.53 0.73 0.21 13.87 2.65 0.19 15.98 0.89 

8 0.16 14.25 2.78 0.19 16.60 1.00 0.18 17.94 1.02 

9 0.19 8.72 0.77 0.14 10.31 1.60 0.15 14.32 2.89 

10 0.13 14.11 3.77 0.04 15.81 0.40 0.13 17.36 0.75 

11 0.21 11.26 2.14 0.19 13.55 0.44 0.29 15.19 1.16 

12 0.03 9.20 0.90 0.26 12.51 1.44 0.16 15.14 1.48 

13 0.25 12.96 0.93 0.27 13.18 3.24 0.37 16.44 0.85 

14 0.27 10.65 2.21 0.15 13.62 0.73 0.23 14.98 2.76 

15 0.23 10.63 2.22 0.15 13.38 0.37 0.31 14.73 2.71 

16 0.19 9.65 1.12 -0.26 14.46 2.09 0.42 14.51 3.24 

 

As others (e.g., Haldi 2013) have done, the parameters were assumed to be normally distributed. However, several 

practical constraints or contributing factors likely cause the population parameters to not be perfectly normally 

distributed. Most notably, the b parameters (time of peak) are influenced by typical meeting and class schedules and 

typical meal times. Furthermore, the b and c parameters cannot be negative; thus the actual distribution is truncated at 



zero and impossible parameter values were rejected in the Monte Carlo simulations discussed later in the paper. The 

authors acknowledge that this violates the Gaussian distribution.  

The histograms are accompanied by best-fit normal distributions and parameters are provided in Figure 5. Moreover, 

the Anderson-Darling test was used to assess whether the sample originated from a normal distribution. The 

corresponding p-values are annotated in Figure 5. The null hypothesis (H0) of this test is that the data are sampled 

from a normally-distributed population. The interpretation of the p-value is that high values (above α = 0.05) indicate 

that there is insufficient evidence to disprove normality of the population (i.e., it resembles a normal distribution). 

While some of the distributions (a1, b1, c1, a2, and c3) fail the normality test, the paper proceeds under the assumption 

that the data are normally distributed.  

 

Figure 5: Frequency distributions of the nine parameters that define the occupancy profiles 

Relying on these new smooth occupancy profiles would lose one vital parameter that is necessary to characterize the 

tendency of occupants to take intermediate breaks: the mobility parameter (μ). Using the raw occupancy data, the 

probability of transitioning from present-to-absent (T10) and absent-to-present (T01) was calculated for every 

timestep. The corresponding probabilities of the occupant remaining in their office (T11) or out of their office (T00) 

were also calculated. The resulting mobility parameter μ for each occupant was obtained by calculating the ratio of 

transition events to static events (T10 + T01)/(T00 + T11). Similarly to the conclusion of Page, Robinson et al. (2008), 

each of the 16 current occupants have relatively constant mobility parameters during the day, though diversity between 

them [0.03, 0.28] is significant. These values and the analysis that follows are based on 5-minute timesteps.  

Next, the long absences were explored, which for this population is a particularly critical aspect of the model. The 

occupants’ attendance records ranged from 23 to 91% on a daily basis. Similar to Page, Robinson et al. (2008)’s 

approach, the probability that an occupant embarks on a one-weekday or longer absence was calculated.  

Next, the distribution of absence durations (days) was calculated for each occupant. A consistent distribution form 

was sought for all occupants for the sake of the approach of the current paper: to develop occupant trait distributions. 

Systematic testing of common probability distribution forms revealed that log-logistic performs best because of its 

ability to support both a peak at one day and a relatively long tail (very long absences of weeks or months). The log-

logistic distribution is defined by log(mean) and log(shape parameter). For the sample at hand, multi-day absences are 

not unusual since work hours are quite flexible and some occupants may travel for conferences or vacation. The 

distribution of long absence durations for each of the 16 occupants is shown later in Figure 11.  



The mobility parameter, probability of embarking on a long absence, and the two long absence duration log-logistic 

are summarized in Figure 6. Again, the Anderson-Darling test for normality was applied and the results are annotated 

in the figure. For these parameters, the test suggests that the population resembles a normal distribution (or more 

specifically that the null hypothesis was not disproven).  

 

Figure 6: Frequency distributions for four occupant traits, as titled for each plot. 

In all, each occupant’s presence patterns were characterized by 13 parameters: nine parameters defining the three-

mode GMMs, the mobility parameter, probability of embarking on a long absence and two parameters that define the 

log-logistic distribution of absence durations. The relationship between the parameters is further discussed in Section 

5.3.  

Prior to examining diversity modelling, the modelling approach was confirmed for each occupant (see Figure 7). 

Regardless of monitoring period, the model was run for 1000 weekdays. The corresponding mean measured and 

modelled occupancy (including absences) and fraction of absent days are shown. The model generally replicates 

measurements well, though two particular occupant characteristics were found to cause larger errors: absence duration 

profiles that were poorly described by the log-logistic regression (e.g., they had numerous extended absences) and 

occupancy profiles that were poorly described by the GMM. 



 

Figure 7: Comparison of modelled (blue, dotted line) and measured (black, thin line) weekday occupancy – including long absences 

- for all 16 occupants. Measured (meas.) versus modelled (mod.) mean daily occupancy and fraction of days absent are annotated 

in each plot. 

From visual inspection, generally, the model was able to reproduce the observed occupant characteristics reasonably 

well. Notably, the model was verified with the same data from which the model parameters were trained because the 

general modelling approach was previously validated by Page, Robinson et al. (2008).Further comparisons for key 

occupant characteristics are discussed later and provided in Figure 9.  

 

5 OCCUPANT DIVERSITY MODELLING 
Using the base modelling approach as a starting point, the data were analyzed and the modelling methodology varied 

as needed to test three diversity modelling hypotheses. This section presents both the methodologies and the results 

because they are were developed in parallel.  

5.1 Occupant traits are best described by a continuous function; not discrete. 

As previously noted, the two prevalent schools of thought on occupant diversity are that occupants can be discretized 

into several typologies and that occupants cannot be categorized into several typologies because they are continuous. 

To assess the suitability of each approach, k-means clustering was applied to the sample dataset. In all, the following 

occupant traits were analyzed: 

 mean first daily arrival time 

 mean last daily departure time 

 annual occupied duration 

 mean daytime mobility parameter 

 probability of starting long absence 

 log-logistic parameters for long absence duration  



Note that the cluster analysis was not applied to the nine GMM parameters that were used to fit the mean occupancy 

profiles for each occupants, as clustering 16 occupants within a nine-dimensional space is impractical. The clustering 

results for the six occupant traits are presented in Figure 8. The interpretation of the criterion value (“gap statistic” 

was used; see Tibshirani, Walther and Hastie (2001) for details) is that higher values indicate a closer resemblance to 

discrete clustering rather than random scatter. The Matlab algorithm seeks a compromise between the maximum 

criterion value and fewer clusters. That is, if the improvement to clustering is marginal for a greater number of clusters, 

then the algorithm indicates that the current number of clusters is optimal.  

 
 

 

 
 

 

  
Figure 8: Results of k-means clustering of six key occupant traits. The traits are labelled in the upper graph axes. The upper plot 

of each pair shows the scatter of the parameters, where each point represents and occupant and the optimal clustering is indicated 



by like symbols. The lower plot in each pair indicates the criterion value corresponding to the number of clusters specified. The 

optimal number of clusters, as determined by the algorithm, is circled.    

The results of the k-means clustering analysis suggests that the occupant traits can only be weakly clustered, if at all. 

A visual inspection of the scatter plots shows that the found clusters are not particularly distinct. Two of the traits – 

mobility parameter and probability of starting a long absence – resulted in one cluster being optimal. That is, no 

discernable clusters emerge.  

In general, the current evidence suggests that occupant traits and characteristics should not be clustered into typologies. 

This corroborates previous research by Haldi and Robinson (2010) and Reinhart and Voss (2003), whose plotted 

results show a relatively continuous distribution of occupant traits for modelling adaptive occupant behaviours. 

However, the current analysis must be taken in the context that the current dataset contains very similar occupants 

(engineering professors within the same university culture). Clusters would likely emerge if administrative staff were 

mixed into the current sample, given their more regular hours. Davis III and Nutter (2010) showed that single-purpose 

buildings reveal highly distinctive occupancy patterns with respect to each other. But the current dataset does not 

allow for such analysis to be performed; on the contrary, it enables the exploration of the traits of seemingly similar 

occupants. 

5.2 Modelling occupants from grouped occupant data suppresses population diversity. 

A common implicit goal among previous occupant modelling approaches is to develop a single model that fits all 

occupants. In this way, stochasticity is still introduced through parameter uncertainty and on a time step basis, but 

inter-occupant diversity may be suppressed by aggregating the data from all occupants.  

To explore the impact of aggregating data, the base occupancy modelling method was modified as follows: 

 The mean weekday occupancy profile for all occupants combined (and equally weighted) was determined 

and then a distribution (Weibull) was fit to the variability of the 16 occupants with respect to the mean 

occupancy profile.  

 The mobility parameter and probability of a long absence were fit to normal distributions as previously 

developed and shown in Figure 6. 

 The absence duration data for all occupants was aggregated and then a log-logistic distribution was fit to it. 

The standard error of the two log-logistic parameters was used to introduce uncertainty into the simulation.  

For each simulated occupant, the occupancy profile multiplier and four remaining parameters were independently and 

randomly selected. The validity of assumption of independence of these randomly sampled parameters is explored in 

the next hypothesis.  

To establish evidence for whether modelling occupancy from aggregated sample data adequately reproduces the 

sample diversity, 1000 occupants were generated and simulated for 300 weekdays. Occupancy and sample 

characteristics were found to converge beyond these values. The resulting distribution of select occupant traits is 

shown in the third column of the plots in Figure 9. Comparing these distributions to that of the original sample of 16 

occupants (first columns in Figure 9), it is not strongly evident that modelling occupants from aggregate sample data 

suppressed diversity despite the fact that 1000 occupants were modelled (vs. the 16 measured occupants). However, 

beyond the high-level results presented in Figure 9, the current modelling approach failed to generate occupants that 

vary significantly from the mean of the 16 occupants, as shown in Figure 12. For instance, distinct artefacts from the 

original occupants are evident in the synthetic occupants. The occupancy profiles and absence duration distributions 

closely resemble the shape of the sample means, despite the fact that even the sample of 16 shows considerable 

diversity in the shapes of these plots. Beyond the shape of the synthetically generated mean occupancy profiles, a 

major cause of the suppressed diversity in the current approach is that the predicted occupancy is highly-sensitive to 

the method for absence duration modelling because the sample of 16 occupants has high absenteeism (mean of 35% 

of weekdays).  



  

  

  
Figure 9: Comparison of key occupant traits with respect to different proposed diversity modelling methods. For each of the plots, 

each of the following distributions from left to right is shown: the raw data from the original monitored 16 occupants; the models 

derived directly from the 16 occupants; the model derived from aggregated data; the model derived from the distribution of 

occupant traits but without trait correlations maintained; and, the model derived from the distribution of occupant traits with trait 

correlations maintained. The last two modelling approaches address Hypothesis 3. 

In conclusion, the modelling approach, to aggregate data initially and then develop occupant models, has a tendency 

to supress occupant diversity. . While the high level metrics in Figure 9 do not indicate significant suppression, the 

more detailed results in Figure 12 show that the current diversity modelling approach fails to provide diverse inter-

occupant occupancy profiles. Thus a further conclusion from this approach is that models should be evaluated 

according to many metrics – particularly emphasizing those that could matter for simulation applications. An 

additional drawback of this method is the risk of bias towards occupants that contribute more events (e.g., long 



absences) to the aggregated dataset. Care must also be taken to normalize the data such that datasets of multiple 

durations are not combined inappropriately.  

5.3 Randomly selecting occupant traits to develop individual occupant models exaggerates population 

diversity. 

In contrast to the method above, the extracted occupancy parameters can be obtained for each occupant prior to 

considering inter-occupant diversity. Subsequently, metamodels can be developed from these parameter distributions. 

The argument for this staged approach is that preserving individuality of occupants one step further – until their 

parameters have been extracted from the data – better reproduces data and reduces bias by giving each occupant equal 

weighting. 

Following the approach presented in Section 4, distributions (assumed normally distributed) were obtained after each 

occupant was modelled. Next, synthetic occupants are randomly created based on these parameter distributions. This 

section presents two variants on this metamodeling approach. The first independently randomly selects parameter 

values; the second randomly selects parameter values but maintains correlations between parameters.  

A correlation analysis among the parameters of the 16 occupants indicates that some parameter pairs are correlated, 

though most are very weak. This result is specific to the current domain and possibly the current dataset; thus the 

conclusions cannot be generalized. A correlation plot matrix from the 16 occupants’ parameters is shown in Figure 

10. The resulting analysis is important for the current modelling approach but also yields some interesting qualitative 

conclusions:  

 The timing of the three peaks in mean occupancy are mutually correlated. For instance, an occupant who 

tends to arrive late also tends to have later other peak periods (e.g., after lunch) in the day. 

 The amplitudes of the three peaks in mean occupancy are highly correlated (Pearson’s r = 0.80 for the first 

and third peaks). The interpretation for this is that occupants who tend to be present in the morning also tend 

to be present in the afternoon. 

 The two parameters defining the log-logistic regression of the absence duration are highly correlated 

(Pearson’s r = 0.91). This indicates that the probability distributions largely take on similar shapes, as later 

shown in the top-left plot of Figure 11. It was found that independently selecting these two parameters led to 

unrealistic log-logistic distributions for absence duration.  

 There is an interesting negative correlation (Pearson’s r = -0.57) between the probability of presence at the 

first peak occupancy period and the probability of starting a long absence. In essence, occupants who are in 

their office less frequently in the morning are more likely to take one-day or longer breaks. A similar, but 

lesser effect was found for the last (third) peak of the day. 

 The mobility parameter is not well correlated with the other parameters. One might have expected occupants 

who leave their office frequently to also have a more erratic mean occupancy profile.  



 

Figure 10: Correlations between the 13 parameters 

The first variant on metamodelling (independently random parameter selection) is shown in the fourth column of the 

plots in Figure 9, while the second variant (random parameter selection with correlations maintained) is in the last 

column of that figure. Referring to the current hypothesis, it was expected that failing to maintain variable correlations 

would lead to a greater spread in occupancy characteristics because the occupant parameters are less constrained and 

may be unrealistic. However, this effect is not evident from these results. Figure 9 shows that both variants on 

metamodeling predict similar levels of diversity among the six occupant characteristics that were explored. This is 

likely a result of the relatively low level of correlations between pairs of current parameter values.  

However, for simulation applications for which individual occupants are modelled, occupancy models that merely 

replicate sample means are not necessarily adequate for some applications. A closer examination of the intermediate 

modelling results indicates that failing to maintain the correlations of the sample parameter distribution may lead to 

unrealistic synthetic occupants. Figure 11 shows the log-logistic fits for the original occupant absence durations and 

the three other methods examined in this paper. The mean profiles for all modelling methods closely resemble each 

other. But, when the log-logistic parameters are generated without the correlations maintained, a significant portion 

of the occupants are modelled as being absent most frequently for two or three days. In the original dataset, three 

occupants were absent nearly equally frequently for one and two-day periods, but none have a profile similar to the 

synthetic ones that were generated. However, when the parameter correlations are maintained, the synthetic absence 

duration profiles resemble the original occupants’ in appearance. A similar effect is seen for mean occupancy profiles 

(Figure 12). The mean occupancy profile plot for which the parameter correlations were not maintained shows that 

many of the synthetic occupants have unusual schedules (e.g., arrivals to the office at 2 or 3AM and departures close 

to midnight). It is thus concluded that there is evidence to support the notion that parameter correlations need to be 

maintained when generating a synthetic population of occupants. It is expected that this effect is increased with 

stronger parameter correlations. 

However, the caveat to the current conclusion that failure to maintain parameter correlations leads to unrealistic 

synthetic occupants needs to be further verified with a much larger sample. It is not evident at this time whether the 

usual synthetic occupant characteristics merely a mathematical artefact or realistic.  For instance, it is plausible that 

in a population of 1000 occupants there would be a small minority who would opt to work overnight and routinely 

work in their office one day and then work elsewhere for two to three days before returning to the office. 



 

Figure 11: Impact of absence duration modelling. The top left plot shows the original occupant sample while the others are based 

on 100 generated synthetic occupants. 100 was used for clarity in this figure. 

 

 

Figure 12: Impact of mean weekday occupancy profile modelling. The top left plot shows the original occupant sample while the 

others are based on 1000 generated synthetic occupants according to the plot titles. 



The current diversity modelling methods (pertaining to Hypothesis 3) yielded somewhat higher diversity predictions 

than the original sample of 16 occupants and significantly higher than that in the aggregated modelling approach 

(Hypothesis 2). The expected diversity of the fictional sample is at least as high as that of the measured 16. Ideally, a 

very large sample would be available to compare the diversity of the measured sample to modelled sample. This is 

left as future work. 

6 DISCUSSION  
This section provides some final discussion on monitoring and simulation implications of occupant diversity. 

6.1 Sample size 

A recurring acknowledgement in the text above is that the current sample size – 16 – limits the confidence of the 

conclusions drawn with respect to the hypotheses. In fact, the majority of comprehensive agent-based occupant 

modelling studies use a similar sample size.  

One of the objectives of this research was to use the knowledge of diversity between occupants to estimate the required 

sample size of monitored occupants required to properly represent a population. Occupant monitoring campaigns can 

be very costly, both with regards to time and money. There is also significant effort required to comply with ethical 

constraints, recruit participants, install and maintain sensors and logging systems, and to process and analyze the data. 

Moreover, studies may be limited by the number of consenting occupants in a particular building. Thus, there is 

tremendous value to researchers in minimizing the sample size while ensuring adequate representation.  

Drawing from statistics theory, we can estimate the required sample size required to estimate the population parameter 

means (National Institute of Standards and Technology (NIST) 2016). Assuming that the occupant traits resemble a 

normal distribution (as previously discussed), the sample size required is approximately: 

𝑛 ≈ (
𝑧∝
2

𝛿2
)(

𝜎2

𝜇2
) 

(2) 

 

where n is sample size, 𝑧𝛼
2 is the z-score corresponding to the significance level α, δ is required precision of the 

estimate (relative to μ), σ2 is the population variance, and μ is the population mean. In the current case, the mean and 

variance of the population are unknown, thus they are approximated as being equal to those of the sample.  

Some occupant traits may be quite homogeneous, while others could have considerable diversity. If we wish to 

accurately capture the diversity of all important occupant traits, we must ensure that the sample size is adequate to 

quantify the most diverse trait. Applying Equation 2 to the 13 traits in the current model formulation, we can estimate 

the appropriate minimum sample size, recognizing the current assumptions and limitations.  

Table 2: Assessment of minimum sample size for each of the 13 occupant traits for margin of error = 10% and 95% confidence. 

  a1 b1 c1 a2 b2 c2 a3 b3 c3 μ p(LA) μLA σLA 

sample 
mean, μ 0.216 11.032 1.551 0.186 13.566 1.747 0.243 16.098 1.689 0.155 0.145 0.468 0.390 

sample std. 
dev., s 0.152 1.983 0.854 0.169 1.822 1.315 0.132 1.594 0.865 0.078 0.049 0.291 0.107 

minimum 
sample 
size, n 189 13 117 316 7 218 114 4 101 98 44 149 29 

 

The results indicate that a sample size of at least 316 (or 20 times more than currently available) would be necessary 

to accurately estimate the population means within 10% error margin with 95% confidence. It should be noted that 

this is a rather simplistic approach to estimating appropriate sample size that neglects the relative impact of the 

parameters on the simulation results. For instance, it is important to accurately characterize parameters that have a 

significant impact on occupancy even if the variance of that parameter is not dominant. 

The above illustrative example suggests that sample sizes on the order of hundreds are required to represent the total 

occupant population. This is typically an order of magnitude greater than what is used in the state of the art monitoring 



campaigns: 10 to 15. However, further research is required to explore acceptable model error in various applications 

(e.g., early building design and controls applications).  

6.2 Occupant uncertainty in simulation 

As discussed in the introduction, uncertainty for occupants and other sources are costly for building design and 

operation. But the real implications for occupant uncertainty are highly dependent on scale, as quantified by O’Brien 

and Gunay (2015). The law of large numbers applied to occupancy modelling means that for groups of occupants, the 

mean occupancy will approach the population mean. Thus, the importance of simulating distinct occupants is high for 

small spaces (e.g., single offices) and lower for large office buildings, communities, and cities. Put differently, the 

implications of this paper are greatest for zone-level design (e.g., terminal HVAC units) and least for urban designers. 

Despite the cost of occupant uncertainty, diversity offers some important benefits. Most notably, diversity reduces 

peak demand (space, power, water, and so on). With good knowledge of occupant diversity, building designers can 

take calculated risks to minimize the frequency of under-sizing systems while also minimizing costs. As a brief 

illustrative example, the employer of the 16 occupants in the current paper could have saved considerable cost on 

building construction if they had considered occupant diversity and the occupants were willing to give up dedicated 

offices (i.e., hotelling style office management). Figure 13 shows the time distribution for number of simultaneous 

occupants present in their offices. For instance, 99.8% of the time, the six offices would have been sufficient (vs. 16).  

 

Figure 13: Cumulative distribution of time as a function of number of simultaneous occupants present (out of the sample of 16) 

7 CONCLUSION 
This paper set out to explore a seldom-discussed issue in the field of occupant behaviour modelling for building 

simulation applications: diversity between occupants. Prior modelling efforts have typically focused on attempting to 

fit data to one or a small number of occupant archetypes without attempting to characterize the diversity of occupants 

and their behaviour. The objective of this paper was to provide a better understanding of occupant diversity modelling 

and propose new methods for attacking this age old research problem. While, the dataset is limited to 16 occupants, 

the results provide evidence for the appropriateness of the diversity modelling approaches and the methodology lays 

the groundwork for future studies. The key conclusions, as per the hypotheses tested, are: 

1. Occupant traits for an occupant sample more closely resemble a continuum than a discrete distribution. 

2. Developing occupant models from aggregated occupant data significantly suppresses diversity relative to 

observations. 

3. Developing multi-parameter metamodels from individual occupants in a sample preserves occupant diversity. 

But in generating synthetic occupants, maintaining parameter correlations should be preserved to prevent 

unrealistic occupants from being simulated. 

The current findings and methods have widespread implications for the BPS researcher and user community. It raises 

questions about adequate experimental sample sizes, the importance of reporting all factors leading to monitored 

occupant diversity, occupant modelling approaches, and strategies to simulate and exploit occupant diversity and 

uncertainty. The current dataset suggests that it would have been more appropriate to have a sample of hundreds rather 



than 16. But notably most current occupant monitoring and modelling studies are in the range of 10-15; some even 

smaller. However, as outlined in the discussion, the necessary sample size is greatly dependent on the diversity of the 

occupants. Inherent uniformity of a population will require a smaller sample size (e.g., school children who are at a 

similar age and have a fixed schedule).  

This paper also discussed the importance of modelling occupant diversity for different scales of simulation (room to 

community) and design stage. The authors argue that it is most important at small scales where assumptions about 

individuals are critical to estimating energy and comfort performance and for sizing equipment. For large scales where 

the most important performance metrics are aggregated (e.g., impact of occupants on the electrical grid or district-

scale co-generation sizing), the impact of individuals is much less important than the aggregated behaviour of all 

occupants. But for rooms and other small scales, understanding the uncertainty of individuals is of much greater 

importance (e.g., for sizing radiator capacity). This, however, does not mean that occupant models that are aimed at 

larger scale simulation applications can be constructed from small sample sizes. To the contrary, it is even more critical 

for such applications that the population is properly characterized. For if a sample from a population is poorly chosen, 

extrapolated results could cause costly errors. 

While this paper focused on modelling occupant diversity with regards to occupancy patterns, the authors speculate 

that similar approaches could be taken for adaptive and non-adaptive occupant actions and states. Moreover, similar 

theoretical research is required to support the suitability for modelling the inter-occupant diversity for these other 

domains.  

The subject of occupant diversity modelling is in its infancy and is rich with opportunities. Important future work to 

extend the current paper includes: 

 Repeating the analysis in this paper for samples of hundreds or thousands to verify the conclusions drawn 

from the current sample; 

 Exploring diversity and diversity modelling of both occupancy and occupant actions; 

 Quantifying temporal diversity of occupants (e.g., at which frequencies do occupancy and occupant actions 

become periodic, if any?); and, 

 Exploring the relationship between occupant model parameters for multiple domains (e.g., occupant use of 

lights, blinds, windows, etc.) to determine if there are correlations For instance, is a diligent light user also 

energy conserving with regard efficiently controlling window openings? 
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